关于滤波器设计的matlab函数简表

合集下载

Matlab滤波信号处理函数

Matlab滤波信号处理函数

Matlab滤波信号处理函数2009-12-04 19:32:22| 分类:matlab方法| 标签:|字号大中小订阅1 conv功能:求卷积。

格式:c = conv(a,b)说明:c = conv(a,b)返回向量a、b的卷积c。

举例:a = [1 2 3]b = [4 5 6]c = conv(a,b)c=4 13 28 27 182 impz功能:数字滤波器的冲激响应。

格式:[h,t] = impz(b,a)[h,t] = impz(b,a,n)[h,t] = impz(b,a,n,Fs)impz(b,a)impz(...)说明:[h,t] = impz(b,a)返回系统(b,a)的冲激响应h和相应的时间轴向量t,b、a分别为系统传递函数的分子和分母系数向量。

[h,t] = impz(b,a,n)返回指定的n点冲激响应[h,t] = impz(b,a,n,Fs)指定了冲激响应采样点的频率间隔1/Fs。

Fs 为相对频率,缺省值为1。

impz(b,a)和impz(...)绘制冲激响应的图形。

举例:计算线性系统(b,a)的冲激响应,结果见图1.4.1。

b =[0.2 0.1 0.3 0.1 0.2];a =[1 ?.1 1.55 ?.7 0.3];impz(b,a,50)3 zplane功能:离散系统的零极点图。

格式:zplane(z,p)zplane(b,a)说明:zplane(z,p)和zplane(b,a)绘制系统的零极点图,用“o”表示零点,“x”表示极点。

z、p分别为零点和极点向量,b、a分别为系统传递函数的分子和分母系数向量。

举例:计算线性系统(b,a)的零点和极点,结果见图1.4.2。

b =[0.2 0.1 0.3 0.1 0.2];a =[1.0 -1.1 1.5 -0.7 0.3];zplane(b,a)4 abs功能:求幅值。

格式:y = abs(x)说明:y = abs(x)返回复数向量x的幅值向量y。

使用MATLAB设计FIR滤波器

使用MATLAB设计FIR滤波器

使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。

语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。

如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。

⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。

matlab自带的滤波器函数

matlab自带的滤波器函数

matlab自带的滤波器函数
Matlab自带的滤波器函数可以用于对信号进行滤波处理,常用的函数有:
1. fir1函数:设计一阶低通、高通、带通、带阻滤波器的FIR 数字滤波器,可自定义通带和阻带的截止频率。

2. cheby1函数:设计ChebyshevI型低通、高通、带通、带阻数字滤波器,可自定义通带和阻带的截止频率和最大通带波纹。

3. butter函数:设计Butterworth型低通、高通、带通、带阻数字滤波器,可自定义通带和阻带的截止频率和滤波器阶数。

4. filtfilt函数:对信号进行双向滤波处理,可避免滤波后信号的相位畸变和滞后。

这些函数可以在Matlab的Signal Processing Toolbox中找到,可根据需要选择合适的函数进行滤波处理。

- 1 -。

matlab滤波器设计(源代码)

matlab滤波器设计(源代码)

某合成信号,表达式如下:f=10cos(2pi*30t)+cos(2pi*150t)+5cos(2pi*600t),请设计三个滤波器,分别提取出信号中各频率分量,并分别绘制出通过这三个滤波器后信号的时域波形和频谱这个信号的频率分量分别为30、150和600Hz,因此可分别设计一个低通、带通和高通的滤波器来提取。

以FIR滤波器为例,程序如下:clear;fs=2000;t=(1:1000)/fs;x=10*cos(2*pi*30*t)+cos(2*pi*150*t)+5*cos(2*pi*600*t);L=length(x);N=2^(nextpow2(L));Hw=fft(x,N);figure(1);subplot(2,1,1);plot(t,x);grid on;title('滤波前信号x');xlabel('时间/s');% 原始信号subplot(2,1,2);plot((0:N-1)*fs/L,abs(Hw));% 查看信号频谱grid on;title('滤波前信号频谱图');xlabel('频率/Hz');ylabel('振幅|H(e^jw)|');%% x_1=10*cos(2*pi*30*t)Ap=1;As=60;% 定义通带及阻带衰减dev=[(10^(Ap/20)-1)/(10^(Ap/20)+1),10^(-As/20)];% 计算偏移量mags=[1,0];% 低通fcuts=[60,100];% 边界频率[N,Wn,beta,ftype]=kaiserord(fcuts,mags,dev,fs);% 估算FIR滤波器阶数hh1=fir1(N,Wn,ftype,kaiser(N+1,beta));% FIR滤波器设计x_1=filter(hh1,1,x);% 滤波x_1(1:ceil(N/2))=[];% 群延时N/2,删除无用信号部分L=length(x_1);N=2^(nextpow2(L));Hw_1=fft(x_1,N);figure(2);subplot(2,1,1);plot(t(1:L),x_1);grid on;title('x_1=10*cos(2*pi*30*t)');xlabel('时间/s');subplot(2,1,2);plot((0:N-1)*fs/L,abs(Hw_1));% 查看信号频谱grid on;title('滤波后信号x_1频谱图');xlabel('频率/Hz');ylabel('振幅|H(e^jw)|');%% x_2=cos(2*pi*150*t)Ap=1;As=60;% 定义通带及阻带衰减dev=[10^(-As/20),(10^(Ap/20)-1)/(10^(Ap/20)+1),10^(-As/20)];% 计算偏移量mags=[0,1,0];% 带通fcuts=[80,120,180,220];% 边界频率[N,Wn,beta,ftype]=kaiserord(fcuts,mags,dev,fs);% 估算FIR滤波器阶数hh2=fir1(N,Wn,ftype,kaiser(N+1,beta));% FIR滤波器设计x_2=filter(hh2,1,x);% 滤波x_2(1:ceil(N/2))=[];% 群延时N/2,删除无用信号部分L=length(x_2);N=2^(nextpow2(L));Hw_2=fft(x_2,N);figure(3);subplot(2,1,1);plot(t(1:L),x_2);grid on;title('x_2=cos(2*pi*150*t)');xlabel('时间/s');subplot(2,1,2);plot((0:N-1)*fs/L,abs(Hw_2));% 查看信号频谱grid on;title('滤波后信号x_2频谱图');xlabel('频率/Hz');ylabel('振幅|H(e^jw)|');%% x_3=5*cos(2*pi*600*t)Ap=1;As=60;% 定义通带及阻带衰减dev=[10^(-As/20),(10^(Ap/20)-1)/(10^(Ap/20)+1)];% 计算偏移量mags=[0,1];% 高通fcuts=[500,550];% 边界频率[N,Wn,beta,ftype]=kaiserord(fcuts,mags,dev,fs);% 估算FIR滤波器阶数hh2=fir1(N,Wn,ftype,kaiser(N+1,beta));% FIR滤波器设计x_3=filter(hh2,1,x);% 滤波x_3(1:ceil(N/2))=[];% 群延时N/2,删除无用信号部分L=length(x_3);N=2^(nextpow2(L));Hw_3=fft(x_3,N);figure(4);subplot(2,1,1);plot(t(1:L),x_3);grid on;title('x_3=5*cos(2*pi*600*t)');xlabel('时间/s');subplot(2,1,2);plot((0:N-1)*fs/L,abs(Hw_3));% 查看信号频谱grid on;title('滤波后信号x_3频谱图');xlabel('频率/Hz');ylabel('振幅|H(e^jw)|');。

matlab滤波函数详解

matlab滤波函数详解

matlab滤波函数详解Matlab作为一种广泛应用于数值计算和数据处理的软件,提供了许多用于信号处理和图像处理的函数。

其中,滤波函数是其中非常重要的一部分,它们在许多应用中都起着关键的作用。

本文将详细介绍Matlab中常见的滤波函数,包括它们的用途、参数设置、使用方法和示例。

一、滤波函数概述滤波函数主要用于对信号进行滤波处理,以消除噪声、突出信号特征或实现其他特定的处理目标。

在Matlab中,常见的滤波函数包括低通、高通、带通、带阻等类型,它们可以根据不同的应用需求选择。

滤波器通常由一组数学函数组成,用于对输入信号进行加权和叠加,以达到滤波的目的。

二、低通滤波函数低通滤波函数用于消除高频噪声,保持低频信号的完整性。

在Matlab中,常用的低通滤波函数包括lfilter和filter等。

lfilter函数适用于线性滤波器,而filter函数适用于任意滤波器设计。

低通滤波函数的参数包括滤波器系数、输入信号和采样率等。

通过调整滤波器系数,可以实现不同的滤波效果。

三、高通滤波函数高通滤波函数用于消除低频噪声,突出高频信号特征。

在Matlab 中,常用的高通滤波函数包括hilbert和highpass等。

hilbert函数适用于频谱分析和高频信号提取,而highpass函数则适用于消除低频噪声。

高通滤波函数的参数包括滤波器系数、采样率和信号类型等。

通过调整滤波器系数,可以实现不同的高通效果。

四、带通滤波函数带通滤波函数用于选择特定频率范围内的信号进行过滤。

在Matlab中,常用的带通滤波函数包括bandpass和butter等。

bandpass函数适用于设计带通滤波器,而butter函数则适用于连续时间滤波器设计。

带通滤波函数的参数包括带外抑制值、带宽和采样率等。

通过调整带宽参数,可以实现不同的带通效果。

五、其他滤波函数除了以上三种常见的滤波函数外,Matlab还提供了其他一些滤波函数,如带阻、限幅、防混叠等类型。

(整理)各类滤波器的MATLAB程序清单.

(整理)各类滤波器的MATLAB程序清单.

各类滤波器的MATLAB程序一、理想低通滤波器IA=imread('lena.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');Hd=ones(size(IA));r=sqrt(f1.^2+f2.^2);Hd(r>0.2)=0;Y=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=ifft2(Ya);figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');二、理想高通滤波器IA=imread('lena.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');Hd=ones(size(IA));r=sqrt(f1.^2+f2.^2);Hd(r<0.2)=0;Y=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=real(ifft2(Ya));figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');三、B utterworth低通滤波器IA=imread('lena.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');D=0.3;r=f1.^2+f2.^2;n=4;for i=1:size(IA,1)for j=1:size(IA,2)t=r(i,j)/(D*D);Hd(i,j)=1/(t^n+1);endendY=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=real(ifft2(Ya));figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');四、B utterworth高通滤波器IA=imread('lena.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');D=0.3;r=f1.^2+f2.^2;n=4;for i=1:size(IA,1)for j=1:size(IA,2)t=(D*D)/r(i,j);Hd(i,j)=1/(t^n+1);endendY=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=real(ifft2(Ya));figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');五、高斯低通滤波器IA=imread('lena.bmp');IB=imread('babarra.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');D=100/size(IA,1);r=f1.^2+f2.^2;Hd=ones(size(IA));for i=1:size(IA,1)for j=1:size(IA,2)t=r(i,j)/(D*D);Hd(i,j)=exp(-t);endendY=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=real(ifft2(Ya));figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');六、高斯高通滤波器IA=imread('lena.bmp');IB=imread('babarra.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');%D=100/size(IA,1);D=0.3;r=f1.^2+f2.^2;for i=1:size(IA,1)for j=1:size(IA,2)t=r(i,j)/(D*D);Hd(i,j)=1-exp(-t);endendY=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=real(ifft2(Ya));figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');七、梯形低通滤波器IA=imread('lena.bmp');IB=imread('babarra.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');%D=100/size(IA,1);D0=0.1;D1=0.4;r=sqrt(f1.^2+f2.^2);Hd=zeros(size(IA));Hd(r<D0)=1;for i=1:size(IA,1)for j=1:size(IA,2)if r(i,j)>=D0 & r(i,j)<=D1Hd(i,j)=(D1-r(i,j))/(D1-D0);endendendY=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=real(ifft2(Ya));figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');八、梯形高通滤波器IA=imread('lena.bmp');IB=imread('babarra.bmp');[f1,f2]=freqspace(size(IA),'meshgrid');%D=100/size(IA,1);D0=0.1;D1=0.4;r=sqrt(f1.^2+f2.^2);Hd=ones(size(IA));Hd(r<D1)=0;for i=1:size(IA,1)for j=1:size(IA,2)if r(i,j)>=D0 & r(i,j)<=D1Hd(i,j)=(D0-r(i,j))/(D0-D1);endendendY=fft2(double(IA));Y=fftshift(Y);Ya=Y.*Hd;Ya=ifftshift(Ya);Ia=real(ifft2(Ya));figuresubplot(2,2,1),imshow(uint8(IA));subplot(2,2,2),imshow(uint8(Ia));figuresurf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');九、用其他方法编写的理想低通、理想高通、Butterworth低通、同态滤波程序1、理想低通i1=imread('lena.bmp');i2=imnoise(i1,'salt & pepper',0.1);f=double(i2);k=fft2(f);g=fftshift(k);[N1,N2]=size(g);d0=50;u0=floor(N1/2)+1;v0=floor(N2/2)+1;for i=1:N1for j=1:N2d=sqrt((i-u0)^2+(j-v0)^2);if d<=d0h=1;elseh=0;endy(i,j)=g(i,j)*h;endendy=ifftshift(y);E1=ifft2(y);E2=real(E1);figuresubplot(2,2,1),imshow(uint8(i1));subplot(2,2,2),imshow(uint8(i2));subplot(2,2,3),imshow(uint8(E2));2、理想高通i1=imread('lena.bmp');i2=imnoise(i1,'salt & pepper',0.1); f=double(i2);k=fft2(f);g=fftshift(k);[N1,N2]=size(g);n=2;d0=10;u0=floor(N1/2)+1;v0=floor(N2/2)+1;for i=1:N1for j=1:N2d=sqrt((i-u0)^2+(j-v0)^2);if d<=d0h=0;else h=1;endy(i,j)=g(i,j)*h;endendy=ifftshift(y);E1=ifft2(y);E2=real(E1);figuresubplot(2,2,1),imshow(uint8(i1)); subplot(2,2,2),imshow(uint8(i2)); subplot(2,2,3),imshow(uint8(E2));3、Butterworth低通i1=imread('lena.bmp');i2=imnoise(i1,'salt & pepper',0.1); f=double(i2);k=fft2(f);g=fftshift(k);[N1,N2]=size(g);n=2;d0=50;u0=floor(N1/2)+1;v0=floor(N2/2)+1;for i=1:N1for j=1:N2d=sqrt((i-u0)^2+(j-v0)^2);h=1/(1+(d/d0)^(2*n));y(i,j)=g(i,j)*h;endendy=ifftshift(y);E1=ifft2(y);E2=real(E1);figuresubplot(2,2,1),imshow(uint8(i1)); subplot(2,2,2),imshow(uint8(i2)); subplot(2,2,3),imshow(uint8(E2));4、同态滤波I=rgb2gray(imread('fabric00.bmp')); [M,N]=size(I);T=double(I);L=log(T);F=fft2(L);A=2;B=0.3;for i=1:Mfor j=1:ND(i,j)=((i-M/2)^2+(j-N/2)^2);endendc=1.1;%锐化参数D0=max(M,N);H=(A-B)*(1-exp(c*(-D/(D0^2))))+B;F=F.*H;F=ifft2(F);Y=exp(F);figuresubplot(1,2,1),imshow(I);subplot(1,2,2),imshow(uint8(real(Y)));十、十一、Gabor滤波器。

matlab之经典数字滤波函数介绍

matlab之经典数字滤波函数介绍

matlab 之经典数字滤波函数介绍 南京理工大学仪器科学与技术专业 谭彩铭2010-3-121 butter 函数设计一个9阶高通Butterworth 数字滤波器,截止频率为300Hz图1图2下面看一看freqz 函数例如对离散系统传递函数1212(1)(2)(3)()(1)(2)(3)b b z b z H z a a za z----++=++freqz 函数的的主要计算环节是计算()sjw T H e编写下图所示程序验证之图3图4可见h1和h相等图2中出现小于-360度是否表达其他不同的意义?-361度和-1度有什么区别吗?对于正弦波应该是一样的,故理论上说应该没有区别。

butter函数的原理是什么?顾名思义,butter函数的原理是基于Butterworth滤波器。

这里始终要带着这个问题去研究,滤波系数本身有什么特性竟然可使低频的滤掉,高频的通过,其实这里想要寻找的是敏捷控程,理论上这个问题的答案已经很成熟。

2 impinvar函数用冲击响应不变法数字仿真模拟Butterworth滤波器,程序如下。

图53 bilinear 函数用双线性变换法数字仿真模拟Butterworth 滤波器,程序如下。

图64 fir1函数由理想滤波器幅频特性反推滤波系数,得出来的系数数量是无穷多的。

故可采用加窗的方法舍去部分,留下有限的滤波系数数量,使仍能基本达到需要的滤波效果。

图7图85 fir2函数fir2函数的基本原理同fir1函数,它的功能更进一层,可以设计任意形状的频率响应图形。

图9图10、图9中,w 如果是角频率值,将w 转换成频率值时,应该是将w 除以2*pi ,但是程序中为什么除以的是pi 呢?准确地说,图9中的w 并非是角频率值,而是频率值,freqz 函数调用时若没有加入采样率参数,其返回的频率值的范围是0~pi 。

6 fir1函数补充对调用方式b=fir(n,wn),wn 的取值范围是(0,1),其中1对应于0.5fs (fs 为采样率)。

基于MATLAB设计FIR滤波器

基于MATLAB设计FIR滤波器

基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。

基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。

fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。

要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。

阶数决定了滤波器的截止频率的陡峭程度。

一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。

步骤2:确定滤波器的截止频率。

截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。

根据应用的需求,可以选择适当的截止频率。

步骤3:选择窗函数。

窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。

常用的窗函数有Hamming、Hanning等。

窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。

步骤4:使用fir1函数设计滤波器。

根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。

具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。

设计好FIR滤波器后,可以使用filter函数对信号进行滤波。

具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。

以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。

根据具体需求和信号特性,可以进行相应的调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于滤波器设计、实现的Matlab函数分类函数名功能说明
滤波器分析
(求幅频、相频响应)abs求模值
angle求相角
freqs模拟滤波器的频率响应freqz数字滤波器的频率响应grpdelay群延迟
impz脉冲响应(离散的)zplane画出零极点图
fvtool滤波器可视化工具
滤波器实现(求输入信号通过滤波器的响应)conv/conv2卷积/二维卷积
filter求信号通过滤波器的响应
IIR滤波器阶数估算buttord巴特沃斯滤波器阶数估算
cheb1ord切比雪夫Ⅰ型滤波器阶数估算
cheb2ord切比雪夫Ⅱ型滤波器阶数估算
ellopord椭圆滤波器阶数估算
IIR数字滤波器设计(求系统函数H(z))butter cheby1 cheby2 ellip
模拟低通滤波器原型(归一化的)buttap模拟低通巴特沃斯滤波器原型cheb1ap模拟低通切比雪夫Ⅰ型滤波器原型cheb2ap模拟低通切比雪夫Ⅱ型滤波器原型ellipap模拟低通椭圆滤波器原型besselap模拟低通贝塞尔滤波器原型
模拟低通滤波器设计(求系统函数H(s))butter巴特沃斯滤波器设计cheby1切比雪夫Ⅰ型滤波器设计cheby2切比雪夫Ⅱ型滤波器设计ellip椭圆滤波器设计besself贝塞尔滤波器设计
模拟滤波器频带变换lp2bp低通→带通
lp2bs低通→带阻
lp2hp低通→高通
lp2lp低通→低通
滤波器离散化(由模拟滤波器得到数字滤波器)bilinear脉冲响应不变法impinvar双线性变换法
FIR滤波器设计fir1基于窗函数的FIR滤波器设计
fir2基于窗函数的任意响应FIR滤波器设

窗函数boxcar矩形窗
rectwin矩形窗
bartlett三角窗
triang三角窗hanning汉宁窗hamming海明窗blackman布莱克曼窗kaiser凯塞窗gausswin高斯窗chebwin切比雪夫窗tukeywin Tukey窗。

相关文档
最新文档