高中数学直线方程练习题集

合集下载

高中数学-直线的方程(一)练习

高中数学-直线的方程(一)练习

高中数学-直线的方程(一)练习基础达标(水平一 )1.直线的方程为ax+by+c=0,当a>0,b<0,c>0时,此直线一定不过().A.第一象限B.第二象限C.第三象限D.第四象限【解析】由题意知斜率->0,纵截距->0,故直线过第一、二、三象限.【答案】D2.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为().A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=0【解析】由题意可知,所求直线的斜率为-2,故所求直线的方程为y-3=-2(x+1),即2x+y-1=0.【答案】A3.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m是().A.1B.2C.-D.2或-【解析】当2m2+m-3≠0时,在x轴上的截距为=1,即2m2-3m-2=0,∴m=2或m=-.【答案】D4.与直线y=2x+1垂直,且在y轴上的截距为4的直线的斜截式方程是().A.y=x+4B.y=2x+4C.y=-2x+4D.y=-x+4【解析】∵直线y=2x+1的斜率为2,∴与其垂直的直线的斜率是-,∴直线的斜截式方程为y=-x+4,故选D.【答案】D5.过点P(,-)且倾斜角为45°的直线方程为.【解析】斜率k=tan 45°=1,由直线的点斜式方程可得y+=1×(x-),即x-y-2=0.【答案】x-y-2=06.已知△ABC的三个顶点为A(1,3),B(5,7),C(10,12),则BC边上的高所在直线的方程为.【解析】由k BC==1,知所求直线斜率为-1,设直线方程为y=-x+b,将点A代入,得b=4.故所求直线的方程为y=-x+4.【答案】y=-x+47.已知在△ABC中,A(0,0),B(3,1),C(1,3).(1)求AB边上的高所在直线的方程;(2)求BC边上的高所在直线的方程;(3)求过点A且与BC平行的直线方程.【解析】(1)直线AB的斜率k1==,AB边上的高所在直线的斜率为-3且过点C,所以AB边上的高所在直线的方程为y-3=-3(x-1),即y=-3x+6.(2)直线BC的斜率k2==-1,BC边上的高所在直线的斜率为1且过点A,所以BC边上的高所在直线的方程为y=x.(3)由(2)知过点A与BC平行的直线的斜率为-1,所以所求直线方程为y=-x.拓展提升(水平二)8.方程y=ax+表示的直线可能是().【解析】直线y=ax+的斜率是a,在y轴上的截距.当a>0时,斜率a>0,在y轴上的截距>0,则直线y=ax+过第一、二、三象限,四个选项都不符合;当a<0时,斜率a<0,在y轴上的截距<0,则直线y=ax+过第二、三、四象限,只有选项B符合.【答案】B9.直线mx+ny+3=0在y轴上的截距为-3,且倾斜角是直线x-y=3倾斜角的2倍,则().A.m=-,n=1B.m=-,n=-3C.m=,n=-3D.m=,n=1【解析】对于直线mx+ny+3=0,令x=0得y=-,即-=-3,∴n=1.∵x-y=3的倾斜角为60°,直线mx+ny+3=0的倾斜角是直线x-y=3的2倍, ∴直线mx+ny+3=0的倾斜角为120°,即-=-,∴m=.故选D.【答案】D10.在直线方程y=kx+b中,当x∈[-3,4]时,恰好y∈[-8,13],则此直线方程为.【解析】由一次函数的单调性知,当k>0时,函数y=kx+b为增函数,则解得即y=3x+1.当k<0时,函数y=kx+b为减函数,则解得即y=-3x+4.【答案】y=3x+1或y=-3x+411.已知过点(4,-3)的直线l在两坐标轴上的截距的绝对值相等,求直线l的方程.【解析】依条件设直线l的方程为y+3=k(x-4).令x=0,得y=-4k-3;令y=0,得x=.∵直线l在两坐标轴上的截距的绝对值相等,∴|-4k-3|=,即k(4k+3)=±(4k+3).解得k=1或k=-1或k=-.故所求直线l的方程为y=x-7或y=-x+1或y=-x.。

高中数学直线的方程(两点式、截距式)同步练习

高中数学直线的方程(两点式、截距式)同步练习

直线的方程(两点式、截距式) 同步练习一、选择题:1.过两点(2,5)和(2,-5)的直线方程为( )A .x=21 B .x=2 C .x+y=2 D .y=0 2.过两点(-1,1)和(3,9)的直线 在x 轴上的截距为( )A .-23B .-32C .52 D .2 3. 下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;B.经过任意两个不同的点P 1(x 1,y 1)和P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;C.不经过原点的直线都可以用方程a x +by =1表示; D.经过定点A (0,b )的直线都可以用方程y=kx+b 表示.4.过点A (1,2)作直线 使它在两坐标轴上的截距的绝对值相等,满足条件的直线 的条数是( )A .1B .2C .3D .45. 直线2x-3y=6在x 轴、y 轴上的截距分别为( )A .3,2B .-3,2C .3,-2D .-3,-26.直线ax+by=1 (ab ≠0)与两坐标轴围成的面积是( )A .21ab B. 21|ab| C .ab 21 D .||21ab 7.若直线(m+2)x+(m 2-2m-3)y=2m 在x 轴上的截距是3,则m 的值是( )A .52B .6C .-52 D . -6 8.过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( )A .2x+y-12=0B .2x+y-12=0 或2x-5y=0C .x-2y-1=0D .x+2y-9=0或2x-5y=0二.填充题 :9. 经过两点A(2,1), B(0,3)的直线方程是_______________.10.过点(2,4)且在两坐标轴上截距相等的直线方程_______________________ .11.直线3x-4y+k=0在两坐标轴上截距之和为2,则实数k=________.12.直线 过点(3,4),且在第一象限和两坐标轴围成的三角形的面积是24,则 的截距式方程是 _______________.三.解答题:13.已知∆ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求BC 边上的中线AD 所在直线的方程.14.求过点A (-2,3),且在两坐标轴上的截距之和为2的直线方程。

高中数学《直线与方程》测试题

高中数学《直线与方程》测试题

高中数学《直线与方程》测试题1.直线x+6y+2=0在x轴和y轴上的截距分别是()A。

(2,0) B。

(-2.-1/3) C。

(-11/3,0) D。

(-2,-3/23)2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是()A。

重合 B。

平行 C。

垂直 D。

相交但不垂直3.直线过点(-3,-2)且在两坐标轴上的截距相等,则这直线方程为()A。

2x-3y=0 B。

x+y+5=0 C。

2x-3y=5 D。

x+y+5或x-y+5=04.直线x=3的倾斜角是()A。

0 B。

π/2 C。

π D。

不存在5.点(-1,2)关于直线y=x-1的对称点的坐标是()A。

(3,2) B。

(-3,-2) C。

(-3,2) D。

(1,-2)6.点(2,1)到直线3x-4y+2=0的距离是()A。

4/5 B。

5/4 C。

4/25 D。

25/47.直线x-y+3=0的倾斜角是()A。

30° B。

45° C。

60° D。

90°8.与直线l: 3x-4y+5=0关于x轴对称的直线的方程为()A。

3x+4y-5=0 B。

3x+4y+5=0 C。

-3x+4y-5=0 D。

-3x+4y+5=09.设a、b、c分别为△ABC中∠A、∠B、∠C对边的边长,则直线xsinA+ay+c=0与直线bx-ysinB+sinC=0的位置关系是()A。

平行 B。

重合 C。

垂直 D。

相交但不垂直10.直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来位置,那么l的斜率为()A。

-1/3 B。

-3 C。

1/3 D。

311.直线kx-y+1=3k,当k变动时,所有直线都通过定点()A。

(0,0) B。

(0,1) C。

(3,1) D。

(2,1)13.直线过原点且倾角的正弦值是4/5,则直线方程为y=4x/5.14.直线mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为1/2|mn|.15.如果三条直线mx+y+3=0,x-y-2=0,2x-y+2=0不能成为一个三角形三边所在的直线,那么m的一个值是 -1/2.16.已知两条直线 (-∞,1).17.△ABC中,点A(4,-1),AB的中点为M(-1,2),直线CM 的方程为 3x+y-11=0.1.3,2为重心P,求边BC的长度。

高中数学直线的方程一般式同步练习 试题

高中数学直线的方程一般式同步练习 试题

直线的方程(一般式)同步练习一、选择题:1. 二元一次方程Ax+By+C=0表示为直线方程,下列不正确叙述是( )A .实数A 、B 必须不全为零 B .A 2+B 2≠0C .所有的直线均可用Ax+By+C=0 (A 2+B 2≠0)表示D .确定直线方程Ax+By+C=0须要三个点坐标待定A,B,C 三个变量2. 若pr<0,qr<0,则直线px+qy+r=0不经过()D.第四象限3. 下列结论正确的是( )A .Ax+By+C=0有横截距B .直线Ax+By+C=0有纵截距C .直线Ax+By+C=0既有横截距又有纵截距D .以上都不正确4. 若直线ax+by+c=0在第一、二、三象限,则()A.ab>0,bc>0B. ab>0,bc<0C. ab<0,bc>0D. ab<0,bc<05. 和直线3x-4y+5=0关于x 轴对称的直线方程是( )A.3x+4y-5=0B. 3x+4y+5=0C. -3x+4y-5=0D. -3x+4y+5=06.过点M (2,1)的直线l 与x 轴,y 轴分别相交于P ,Q 两点,且|MP|=|MQ|,则直线l 的方程是()A .x-2y+3=0B .2x-y-3=0C .2x+y-5=0D .x+2y-4=07. m ∈R,直线(m-1)x-y+2m+1=0过定点( )A .(1,21) B .(-2,0) C .(2,3) D .(-2,3)8. 若(m 2-4)x+(m 2-4m+3)y+1=0表示直线,则( )A .m ±≠2且m ≠1, m ≠3B .m ±≠ 2C.m≠1,且m≠3 D.m可取任意实数二.填充题:9.若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则A,B,C应满足条件___________. 10.若直线ax-y+2=0与直线3x-y+b=0关于直线y=x对称,则a= ______________, b=___________.11. 设点P(x0,y)在直线Ax+By+C=0上,则这条直线的方程可以写成___________.12.若直线(2t-3)x+y+6=0,不经过第一象限,则t的取值X围是__________ .三.解答题:13. 过P(-2,2)点引一条直线l,使它与两坐标轴围成的三角形面积等于4(面积单位),求此直线l的方程。

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解### 练习题1:点斜式方程题目:已知直线过点A(3,4),且斜率为-2,求该直线的方程。

解答:根据点斜式方程 \( y - y_1 = m(x - x_1) \),其中 \( m \) 是斜率,\( (x_1, y_1) \) 是已知点。

代入已知值:\( m = -2 \),\( (x_1, y_1) = (3, 4) \)。

得到方程:\( y - 4 = -2(x - 3) \)。

### 练习题2:斜截式方程题目:若直线的斜率为3,且在y轴上的截距为-5,求该直线的方程。

解答:斜截式方程为 \( y = mx + b \),其中 \( m \) 是斜率,\( b \) 是y轴截距。

代入已知值:\( m = 3 \),\( b = -5 \)。

得到方程:\( y = 3x - 5 \)。

### 练习题3:两点式方程题目:求经过点B(-1,6)和点C(4,-1)的直线方程。

解答:两点式方程为 \( \frac{y - y_1}{y_2 - y_1} = \frac{x -x_1}{x_2 - x_1} \)。

代入点B和点C的坐标:\( \frac{y - 6}{-1 - 6} = \frac{x - (-1)}{4 - (-1)} \)。

化简得到:\( 7(y - 6) = -5(x + 1) \)。

### 练习题4:截距式方程题目:若直线与x轴交于点(4,0),与y轴交于点(0,-3),求该直线的方程。

解答:截距式方程为 \( \frac{x}{a} + \frac{y}{b} = 1 \),其中 \( a \) 和 \( b \) 是x轴和y轴的截距。

代入截距:\( a = 4 \),\( b = -3 \)。

得到方程:\( \frac{x}{4} - \frac{y}{3} = 1 \)。

### 练习题5:一般式方程题目:将直线方程 \( 3x + 4y - 12 = 0 \) 转换为斜截式。

高中数学直线方程练习题集

高中数学直线方程练习题集

高中数学直线方程练习题集高中数学直线方程练题一.选择题(共12小题)1.已知A(-2,-1),B(2,-3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(-∞,8]∪[2,+∞)B.(-∞,8]∪[2,+∞)C.(-∞,8)∪(2,+∞) D.(-∞,8)∪(2,+∞)2.已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是()A.[2,+∞) B.(-∞,2]∪(2,+∞) C.(-∞,2]∪[2,+∞) D.[-2,∞)3.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(-∞,-2]∪[2,+∞) B.(-∞,2]∪(-∞,∞) C.(-∞,2]∪[2,+∞) D.[-2,∞)4.已知M(1,2),N(4,3)直线l过点P(2,-1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(-∞,3]∪[2,+∞) B.(-∞,-1]∪[2,+∞) C.[-3,2] D.(-∞,-1]∪[3,+∞)5.已知M(-2,-3),N(3,1),直线l过点(-1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.k5或k<-2 D.k≤-2或k≥56.已知A(-2,1),B(2,-1),P(-1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.π/4≤θ≤3π/4 B.-π/4≤θ≤π/4 C.-3π/4≤θ≤-π/4 D.-π/4≤θ≤π/4∪3π/4≤θ≤π/47.已知点A(2,3),B(-3,-2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.k2或k1或k18.已知O为△ABC内一点,且∠BAC=120°,∠BOC=150°,∠AOC=30°,若B,O,D三点共线,则∠BCA的度数是()A.120° B.135° C.150° D.165°9.经过(3,-2),(-2,4)两点的直线方程是()A.3x+4y-12=0 B.3x-4y+18=0 C.4x-3y+18=0D.4x+3y-18=010.过点(3,-6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0 C.x-y+3=0 D.x+y-3=0或2x+y=011.经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x-y=012.已知△ABC的顶点A(2,3),且三条中线交于点G (4,1),则BC边上的中点坐标为(5/2,-5/2)二.填空题(共4小题)13.已知直线 $ $l_1\parallel l_2$,则实数 $a$ 的值是 $-4$。

高中数学《直线与直线方程》练习题

高中数学《直线与直线方程》练习题

高中数学《直线与直线方程》练习题A 组——基础对点练1.直线x +3y +a =0(a 为实常数)的倾斜角的大小是( ) A .30° B .60° C .120°D .150°解析:直线x +3y +a =0(a 为实常数)的斜率为-33,令其倾斜角为θ,则tan θ=-33,解得θ=150°,故选D. 答案:D2.如果AB <0,且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:直线Ax +By +C =0可化为y =-A B x -C B ,∵AB <0,BC <0,∴-A B >0,-CB >0.∴直线过第一、二、三象限,不过第四象限,故选D. 答案:D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A .[0,π4] B .[3π4,π) C .[0,π4]∪(π2,π)D .[π4,π2)∪[3π4,π)解析:由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是[3π4,π). 答案:B4.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32 B .m ≠0 C .m ≠0且m ≠1D .m ≠1解析:由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.答案:D5.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:由a =1可得l 1∥l 2,反之,由l 1∥l 2可得a =1,故选C. 答案:C6.设直线l 的方程为x +y cos θ+3=0(θ∈R),则直线l 的倾斜角α的取值范围是( ) A .[0,π) B .⎝ ⎛⎭⎪⎫π4,π2C.⎣⎢⎡⎦⎥⎤π4,3π4 D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线l 的方程,可得斜率k =-1cos θ. 因为cos θ∈[-1,1]且cos θ≠0, 所以k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4,综上知,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案:C7.(2018·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( ) A .3x +4y +15=0 B .4x +3y +6=0 C .3x +y +6=0D .3x -4y +10=0解析:设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 答案:A8.直线(2m +1)x +(m +1)y -7m -4=0过定点( ) A .(1,-3) B .(4,3) C .(3,1)D .(2,3)解析:2mx +x +my +y -7m -4=0,即(2x +y -7)m +(x +y -4)=0,由⎩⎪⎨⎪⎧ 2x +y =7,x +y =4,解得⎩⎪⎨⎪⎧x =3,y =1.则直线过定点(3,1),故选C. 答案:C9.(2018·张家口模拟)直线l 经过A (2,1),B (1,-m 2)(m ∈R)两点,则直线l 的倾斜角α的取值范围是( ) A .0≤α≤π4 B .π2<α<π C.π4≤α<π2D .π2<α≤3π4解析:直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.答案:C10.已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( ) A .0B .2 C.2 D .1解析:直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a ,此直线在x 轴,y 轴上的截距和为a +1a ≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a =0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D. 答案:D11.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0, 则点N 的坐标是( ) A .(-2,-1) B .(2,3) C .(2,1)D .(-2,1)解析:∵点N 在直线x -y +1=0上, ∴可设点N 坐标为(x 0,x 0+1).根据经过两点的直线的斜率公式,得k MN =(x 0+1)+1x=x 0+2x 0.∵直线MN 垂直于直线x +2y -3=0,直线x +2y -3=0的斜率k =-12,∴k MN ×⎝ ⎛⎭⎪⎫-12=-1,即x 0+2x 0=2,解得x 0=2.因此点N 的坐标是(2,3),故选B.答案:B12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________. 解析:如图,因为k AP =1-02-1=1,k BP =3-00-1=-3,所以k ∈(-∞,-3]∪[1,+∞). 答案:(-∞,-3]∪[1,+∞)13.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴上的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a .依题意2+a =1+2a ,解得a =1或a =-2. 答案:1或-214.(2018·武汉市模拟)若直线2x +y +m =0过圆x 2+y 2-2x +4y =0的圆心,则m 的值为________.解析:圆x 2+y 2-2x +4y =0可化为(x -1)2+(y +2)2=5,圆心为(1,-2),则直线2x +y +m =0过圆心(1,-2),故2-2+m =0,m =0. 答案:015.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,求b 的取值范围. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].B 组——能力提升练1.已知f (x )=a sin x -b cos x ,若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( ) A.π3 B .π6 C.π4D .3π4解析:令x =π4,则f (0)=f ⎝ ⎛⎭⎪⎫π2,即-b =a ,则直线ax -by +c =0的斜率k =a b =-1,其倾斜角为3π4.故选D. 答案:D2.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0D .x +3y -4=0解析:两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0. 答案:A3.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,而这两点连线所在直线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2,故选A. 答案:A4.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .(1-22,12) C .(1-22,13]D .[13,12)解析:由⎩⎪⎨⎪⎧x +y =1y =ax +b 消去x ,得y =a +b a +1,当a >0时,直线y =ax +b 与x 轴交于点(-b a ,0),结合图形(图略)知12×a +b a +1×(1+b a )=12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b=1-22,故选B. 答案:B5.已知p :“直线l 的倾斜角α>π4”;q :“直线l 的斜率k >1”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当π2<α≤π时,tan α≤0,即k ≤0,而当k >1时,即tan α>1,则π4<α<π2,所以p 是q 的必要不充分条件,故选B.6.若经过点(1,0)的直线l 的倾斜角是直线x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A .4x -3y -4=0 B .3x -4y -3=0 C .3x +4y -3=0D .4x +3y -4=0解析:设直线x -2y -2=0的倾斜角为α,则其斜率tan α=12,直线l 的斜率tan 2α=2tan α1-tan 2α=43.又因为l 经过点(1,0),所以其方程为4x -3y -4=0,故选A. 答案:A7.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( ) A .-53或-35 B .-32或-23 C .-54或-45D .-43或-34解析:由题知,反射光线所在直线过点(2,-3),设反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.∵圆(x +3)2+(y -2)2=1的圆心为(-3,2),半径为1,且反射光线与该圆相切, ∴|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或k =-34.答案:D8.已知倾斜角为θ的直线与直线x -3y +1=0垂直,则23sin 2θ-cos 2θ=( )A.103 B .-103 C.1013D .-1013解析:依题意,tan θ=-3(θ∈[0,π)),所以23sin 2θ-cos 2θ=2(sin 2θ+cos 2θ)3sin 2θ-cos 2θ=2(tan 2θ+1)3tan 2θ-1=1013,故选C. 答案:C9.(2018·天津模拟)已知m ,n 为正整数,且直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,则2m +n 的最小值为( ) A .7 B .9 C .11 D .16解析:∵直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,∴2n =m (n -1),∴m +2n =mn ,两边同除以mn 可得2m +1n =1,∵m ,n 为正整数, ∴2m +n =(2m +n )⎝ ⎛⎭⎪⎫2m +1n =5+2n m +2m n ≥5+22n m ·2m n =9.当且仅当2n m =2mn 时取等号.故选B. 答案:B10.直线x cos θ-y -1=0(θ∈R)的倾斜角α的取值范围为________.解析:直线的斜率为k =cos θ∈[-1,1],即tan α∈[-1,1],所以α∈[0,π4]∪[34π,π).答案:[0,π4]∪[34π,π)11.过点A (1,2)且与直线x -2y +3=0垂直的直线方程为________.解析:直线x -2y +3=0的斜率为12,所以由垂直关系可得要求直线的斜率为-2,所以所求方程为y -2=-2(x -1),即2x +y -4=0. 答案:2x +y -4=012.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:动直线x +my =0(m ≠0)过定点A (0,0),动直线mx -y -m +3=0过定点B (1,3).由题意易得直线x +my =0与直线mx -y -m +3=0垂直,即P A ⊥PB .所以|P A |·|PB |≤|P A |2+|PB |22=|AB |22=12+322=5,即|P A |·|PB |的最大值为5.答案:513.已知直线x =π4是函数f (x )=a sin x -b cos x (ab ≠0)图象的一条对称轴,求直线ax +by +c =0的倾斜角. 解析:f (x )=a 2+b 2sin(x -φ),其中tan φ=b a ,将x =π4代入,得sin(π4-φ)=±1,即π4-φ=k π+π2,k ∈Z ,解得φ=-k π-π4,k ∈Z.所以tan φ=tan ⎝ ⎛⎭⎪⎫-k π-π4=-1=b a ,所以直线ax +by +c =0的斜率为-a b =1,故倾斜角为π4.高中语文《椭圆》练习题 A 组——基础对点练1.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( ) A .2 B .3 C .4 D .9 解析:由4=25-m 2(m >0)⇒m =3,故选B.答案:B2.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ) A .k >4 B .k =4 C .k <4D .0<k <4解析:方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,即方程x 24+y 2k =1表示焦点在x 轴上的椭圆,可得0<k <4,故选D. 答案:D3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B .x 28+y 26=1 C.x 22+y 2=1D .x 24+y 2=1解析:依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A. 答案:A4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为( ) A.12 B .55 C.14D .5-2解析:由题意可得2|F 1F 2|=|AF 1|+|F 1B |,即4c =a -c +a +c =2a ,故e =c a =12. 答案:A5.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为( )A.12 B .22 C .1D . 2解析:如图,假设F 1,F 2分别是椭圆和双曲线的左、右焦点,P 是第一象限的点,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.设|F 1F 2|=2c ,又∠F 1PF 2=π4,则在△PF 1F 2中,由余弦定理得,4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos π4,化简得,(2-2)a 21+(2+2)a 22=4c 2,设椭圆的离心率为e 1,双曲线的离心率为e 2,∴2-2e 21+2+2e 22=4,又2-2e 21+2+2e 22≥22-2e 21·2+2e 22=22e 1·e 2,∴22e 1·e 2≤4,即e 1·e 2≥22,即椭圆和双曲线的离心率乘积的最小值为22.故选B. 答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________. 解析:将椭圆的方程化为标准形式得y 22k +x 22=1,因为x 2+ky 2=2表示焦点在y轴上的椭圆,所以2k >2,解得0<k <1. 答案:(0,1)7.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B .C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e =3. 答案:39.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c . (1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c , 代入椭圆,得c 2a 2+y 2b 2=1. 解得|y |=b 2a =|AF 2|,即b 2a =36c , ∴a 2-c 2=36ac .∴e 2+36e -1=0,解得e =32. (2)设M (0,b ),N (0,-b ),P (x 0,y 0), 则直线MP 的方程为y =y 0-bx 0x +b .令y =0,得点R 的横坐标为bx 0b -y 0.直线NP 的方程为y =y 0+bx 0x -b .令y =0,得点Q 的横坐标为bx 0b +y 0. ∴|OR →|·|OQ →|=⎪⎪⎪⎪⎪⎪b 2x 20b 2-y 20=⎪⎪⎪⎪⎪⎪⎪⎪a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0),其中e =12,焦距为2,过点M (4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →. (1)求椭圆C 的标准方程. (2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y 23=1.(2)由题意可知A ,B ,M 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意. 则AB 所在直线l 的斜率存在,设为k , 则直线l 的方程为y =k (x -4).由⎩⎨⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且⎩⎪⎨⎪⎧x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47, 可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0. 则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2), AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组——能力提升练1.(2018·合肥市质检)已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( )A .(1,6)B .(1,5)C .(3,6)D .(3,5)解析:由于椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎪⎨⎪⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a 2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0xa 2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5),故选D. 答案:D2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a =sin ∠MF 2F 1c,则该椭圆离心率的取值范围为( )A .(0,2-1)B .(22,1) C .(0,22)D .(2-1,1)解析:在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c ,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=ac .①又M 是椭圆x 2a 2+y 2b 2=1上一点, F 1,F 2是该椭圆的焦点, ∴|MF 1|+|MF 2|=2a .②由①②得,|MF 1|=2ac a +c ,|MF 2|=2a 2a +c .显然,|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a 2a +c <a +c ,整理得c 2+2ac -a 2>0, ∴e 2+2e -1>0, 解得e >2-1,又e <1,∴2-1<e <1,故选D. 答案:D3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2), 则x 214+y 212=1,① x 224+y 222=1,②①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0, ∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1), 即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a =2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22). 答案:[2,22)5.(2018·保定模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程.(2)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值. 解析:(1)因为e =32=c a , 所以a =23c ,b =13c .代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,① 把①代入x 24+y 2=1, 解得P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.② ①与②联立解得M ⎝ ⎛⎭⎪⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N ⎝ ⎛⎭⎪⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).。

高中数学直线方程相关试题(含答案)

高中数学直线方程相关试题(含答案)

高中数学直线练习题一、选择题1.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A.(-2,-1)B.(2,3)C.(2,1)D.(-2,1) 答案 B解析 由题意知,直线MN 的方程为2x -y -1=0.又∵点N 在直线x -y +1=0上,∴⎩⎪⎨⎪⎧ x -y +1=0,2x -y -1=0,解得⎩⎪⎨⎪⎧x =2,y =3. 2.三点A (3,1),B (-2,k ),C (8,11)在一条直线上,则k 的值为( )A.-8B.-9C.-6D.-7答案 B解析 ∵三点A (3,1),B (-2,k ),C (8,11)在一条直线上,∴k AB =k AC ,∴k -1-2-3=11-18-3, 解得k =-9.故选B.3.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n )可能是( )A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3)考点 两条直线的交点题点 求两条直线的交点坐标答案 A解析 由已知可得直线y =2x ,x +y =3的交点为(1,2),此点也在直线mx +ny +5=0上, ∴m +2n +5=0,再将四个选项代入,只有A 满足此式.4.与直线l :x -y +1=0关于y 轴对称的直线的方程为( )A.x +y -1=0B.x -y +1=0C.x +y +1=0D.x -y -1=0 考点 对称问题的求法题点 直线关于直线的对称问题答案 A解析 直线l :x -y +1=0与两坐标轴的交点分别为(-1,0)和(0,1),因为这两点关于y 轴的对称点分别为(1,0)和(0,1),所以直线l :x -y +1=0关于y 轴对称的直线方程为x +y -1=0.5.已知A (2,3),B (-4,a ),P (-3,1),Q (-1,2),若直线AB ∥PQ ,则a 的值为( )A.0B.1C.2D.3答案 A解析 ∵直线AB 的斜率k AB =3-a 6,直线PQ 的斜率k PQ =2-1-1-(-3)=12,直线AB ∥PQ ,∴3-a 6=12,解得a =0,故选A. 6.如果AB >0,BC >0,则直线Ax -By -C =0不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限考点 直线的一般式方程题点 直线的一般式方程的概念答案 B解析 直线Ax -By -C =0化成斜截式方程y =A B x -C B, ∵AB >0,BC >0,∴斜率大于0,纵截距小于0,∴直线不经过第二象限.7.已知点P (2,-3),Q (3,2),直线ax -y +2=0与线段PQ 相交,则a 的取值范围是( )A.a ≥43B.a ≤-43C.-52≤a ≤0D.a ≤-43或a ≥12 考点 直线的图象特征与倾斜角、斜率的关系题点 倾斜角、斜率的变化趋势及其应用答案 C解析 直线ax -y +2=0可化为y =ax +2,斜率k =a ,恒过定点A (0,2),如图,直线与线段PQ 相交,则k AP ≤k ≤0,即-52≤a ≤0,故选C. 8.过点A (3,-1)且在两坐标轴上截距的绝对值相等的直线有( )A.2条B.3条C.4条D.无数多条答案 B解析 由题意知,直线的斜率存在,设所求直线的方程为y =k (x -3)-1.当y =0时,得横截距x =3+1k; 当x =0时,得纵截距y =-1-3k .由题意得⎪⎪⎪⎪3+1k =|-1-3k |, ∴-1-3k =3+1k 或-1-3k =-1k-3, ∴k =-1或k =-13或k =1, ∴所求直线有3条.故选B.二、填空题9.若直线l 的斜率是过点(1,6),(-1,2)的直线的斜率的2倍,则直线l 的斜率为________. 答案 4解析 过点(1,6),(-1,2)的直线的斜率为6-21-(-1)=2,∴l 的斜率为k =2×2=4. 10.若无论m 为何值,直线l :(2m +1)x +(m +1)y -7m -4=0恒过一定点P ,则点P 的坐标为________.答案 (3,1)解析 特殊值法:令m =-1,得-x +3=0;令m =0,得x +y -4=0.联立⎩⎪⎨⎪⎧ x =3,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1. 故点P 的坐标为(3,1).11.设直线l 经过点(-1,1),则当点(2,-1)与直线l 的距离最远时,直线l 的方程为________. 答案 3x -2y +5=0解析 数形结合(图略)可知,当直线l 与过两点的直线垂直时,点(2,-1)与直线l 的距离最远,因此所求直线的方程为y -1=-2-(-1)-1-1·(x +1),即3x -2y +5=0. 三、解答题12.已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解 (1)∵k =tan 135°=-1,∴由直线的点斜式方程得直线l 的方程为y -1=-(x -1),即x +y -2=0.(2)设点A ′的坐标为(a ,b ),则根据题意有⎩⎪⎨⎪⎧ b -4a -3×(-1)=-1,a +32+b +42-2=0,故a =-2,b =-1.∴A ′的坐标为(-2,-1).13.在平面直角坐标系中,已知A (-1,2),B (2,1),C (1,0).(1)判定△ABC 的形状;(2)求过点A 且在x 轴和y 轴上的截距互为倒数的直线方程;(3)已知l 是过点A 的直线,点C 到直线l 的距离为2,求直线l 的方程.考点 分类讨论思想的应用题点 分类讨论思想的应用解 (1)k AC =-1,k BC =1,k AC ·k BC =-1,且|AC |≠|BC |,∴△ABC 为直角三角形.(2)设所求直线方程为x a+ay =1(a ≠0), 则-1a +2a =1,即a =-12或a =1, ∴-2x -12y =1或x +y =1, ∴所求直线方程为-2x -12y =1或x +y =1,即4x +y +2=0或x +y -1=0. (3)①当直线l 的斜率不存在时,l 的方程为x =-1,此时点C 到直线l 的距离为2,符合题意;②当直线l 的斜率存在时,设斜率为k ,则直线l 的方程为y -2=k (x +1),即kx -y +k +2=0,则点C 到直线l 的距离d =|2k +2|k 2+1=2,解得k =0, ∴直线l 的方程为y -2=0.综上可知,直线l 的方程为x +1=0或y -2=0.14.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是( )①y =x +1;②y =2;③y =43x ;④y =2x +1. A.①③B.①④C.②③D.③④ 考点 点到直线的距离题点 与点到直线的距离有关的最值问题 答案 C解析 设点M 到下列4条直线的距离分别为d 1,d 2,d 3,d 4,对于①,d 1=|5-0+1|2=32>4; 对于②,d 2=2<4;对于③,d 3=|5×4-3×0|5=4; 对于④,d 4=|5×2-0+1|5=115>4, 所以符合条件的有②③.15.已知一束光线经过直线l 1:3x -y +7=0和l 2:2x +y +3=0的交点M ,且射到x 轴上一点N (1,0)后被x 轴反射.(1)求点M 关于x 轴的对称点P 的坐标;(2)求反射光线所在的直线l 3的方程.考点 对称问题的求法题点 关于对称的综合应用解 (1)由⎩⎪⎨⎪⎧ 3x -y +7=0,2x +y +3=0,得⎩⎪⎨⎪⎧x =-2,y =1,∴M (-2,1). ∴点M 关于x 轴的对称点P 的坐标为(-2,-1).(2)易知l 3经过点P 与点N , ∴l 3的方程为y -0-1-0=x -1-2-1, 即x -3y -1=0.。

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。

高中数学3.2直线的方程练习试题(A)

高中数学3.2直线的方程练习试题(A)

3.2直线的方程(A)一、选择题1.经过点()2倾斜角是30的直线的方程是( )A.(2)3y x +=- B.2y x +=-C.23y x -=D.2y x -=+2.直线方程可表示成点斜式方程的条件是( )A.直线的斜率存在B.直线的斜率不存在C.直线不过原点D.不同于上述答案3、如果AC<0,且BC<0,那么直线0=++C By Ax 不通过 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4、下列命题中正确的是( )A. 经过点P 0(x 0,y 0)的直线都可以用方程y -y 0=k(x -x 0)表示B. 经过定点A(0,b)的直线都可以用方程y=kx +b 表示.C. 经过任意两个不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可用方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示.D. 不经过原点的直线都可以用方程a x +by =1表示. 5.直线Ax+By+C=0通过第一、二、三象限,则( )(A) A ·B>0,A ·C>0 (B) A ·B>0,A ·C<0(C) A ·B<0,A ·C>0 (D) A ·B<0,A ·C<06. 过点(1,0)且与直线x-2y-2=0平行的直线方程是(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0二、填空题7.在直线方程y =kx +b 中,当x ∈[-3,4]时,y ∈[-8,13],则此直线的方程是_____ _____.8.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是_________.9. 若直线l 在x 轴上的截距4-时,倾斜角的余弦值是35-,则直线l 的点斜式方程是___________;直线l 的斜截式方程是___________;直线l 的一般式方程是___________三、解答题10.已知直线y=kx +k +2与以A(0,-3)、B(3,0)为端点的线段相交,求实数k 的取值范围.11. 设△ABC的顶点A(1,3),边AB、AC上的中线所在直线的方程分别为x-2y+1=0,y=1,求△ABC中AB、AC各边所在直线的方程.12. 求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程.13. 已知△ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.(1)求AB边所在的直线方程;(2)求中线AM的长;(3)求AB边的高所在直线方程.14. 若一直线被直线4x+y+6=0和3x-5y-6=0截得的线段的中点恰好在坐标原点,求这条直线的方程.3.2直线的方程(B)一、选择题1.已知直线方程34)y x -=-,则这条直线经过的已知点,倾斜角分别是( )A.(4,3);3πB.(-3,-4);6π C.(4,3);6π D.(-4,-3);3π 2.以(1,3)A ,(5,1)B -为端点的线段的垂直平分线方程是( )A.3x -y -8=0 B .3x +y +4=0C. 3x -y +6=0D. 3x +y +2=03、经过点A (1,2)并且在坐标轴上截距的绝对值相等的直线共有( )A. 4条B. 3条C. 2条D.1条4.若直线0=++C By Ax 通过第二、三、四象限,则系数A 、B 、C 满足条件( )A.AB<0,C<0B.AC<0,BC>0C.C=0,AB<0D.A=0,BC<05.设A 、B 是x 轴上的两点,点P 的横坐标为2,且│PA │=│PB │,若直线PA 的方程为x-y+1=0,则直线PB 的方程是( )A.2y-x-4=0B.2x-y-1=0C.x+y-5=0D.2x+y-7=0二、填空题6.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,则所得直线方程为_____ _____.7..已知直线l 过点P(5,10),且原点到它的距离为5,则直线l 的方程为___________.8.经过点P(0,-1)作直线l ,若直线l 与连接A(1,-2),B(2,1)的线段没有公共点,则直线l 的斜率k 的取值范围为___________.9. 点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.三、解答题10. 已知点M (1,0),N (-1,0),点P 为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?11.已知直线l 1:y=4x 和点P(6,4),过点P 引一直线l 与l 1交于点Q ,与x 轴正半轴交于点R,当△OQR的面积最小时,求直线l的方程.12. 经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程.13. 求经过点(2,2)A 并且和两个坐标轴围成的三角形的面积是1的直线方程14.过点A(-5,-4)作一直线l,使它与两坐标轴相交且与两坐标轴所围成的三角形面积为5.求直线l的方程.3.3一、选择题1. 直线3x +5y -1=0与4x +3y -5=0的交点是( )A.(-2,1)B.(-3,2)C.(2,-1)D.(3,-2)2. 过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线的方程是( )A.2x +y -8=0B.2x -y -8=0C.2x +y +8=0D.2x -y +8=03. 两平行直线12:3420,:6850l x y l x y +-=+-=的距离等于( )A .3B .01⋅C .05⋅D .74.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则N 点的坐标是( )A .(-2,-3)B .(2,1)C .(2,3)D .(-2,-1)5.已知A(3,-1)、B(5,-2),点P 在直线x+y=0上,若使|PA |+|PB |取最小值,则P 点坐标是( )A.(1,-1)B.(-1,1)C.(135,135-) D.(-2,2)二、填空题6.直线mx+y-m=0,无论m 取什么实数,它都过定点 .7. 已知点(3,2)P --到直线512100x y -+=的距离与到5120x y c -+=的距离相等,则c = .8若直线y =kx +3与直线15y x k=-的交点在直线y =x 上,则k =______________.9.已知△ABC 的顶点坐标为A(3,2),B(1,0),C(2,1-,则AB 边上的中线CM 的长为__________________.三、解答题10.求经过点(2,3)且经过l 1:x + 3y – 4 = 0与l 2:5x + 2y + 6 = 0的交点的直线方程.11.求经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线l 的方程.12.在x轴上求一点P,使P点到A(-4,3)和B(2,6)两点的距离相等.13.如图,一束光线经过P (2,1)射到直线l:x + y + 1 = 0,反射后穿过点Q (0,2),求:(1)入射光线所在直线的方程;(2)沿这条光线从P到Q的长度.14. 已知直线l过两条直线3x+4y-5=0,2x-3y+8=0的交点,且与A(2,3),B(-4,5)两点的距离相等,求直线l的方程.。

高中直线与方程练习题及答案详解

高中直线与方程练习题及答案详解

高中直线与方程练习题及答案详解1.高中直线与方程练题及答案详解一、选择题1.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A.a+b=√2/2B.a-b=√2/2C.a+b=0D.a-b=02.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=03.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.-8B.2C.10D.无法确定4.已知ab0,则直线ax+by=c通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x=1的倾斜角和斜率分别是()A.45°,1B.135°,-1C.90°,不存在D.180°,不存在6.若方程(2m+m-3)x+(m-m)y-4m+1=0表示一条直线,则实数m满足()A.m≠1B.m≠-1/2C.m≠1/2D.m≠0二、填空题1.点P(1,-1)到直线x-y+1=0的距离是√2/2.2.已知直线.3.若原点在直线l上的射影为(2,-1),则l的方程为2x-y=0.4.点P(x,y)在直线x+y-4=0上,则x+y的最小值是4.5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为y=-3x。

三、解答题1.已知直线Ax+By+C=0。

1)系数为什么值时,方程表示通过原点的直线;当C=0时,方程变为Ax+By=0,解得y=-A/B*x,即过原点且斜率为-A/B的直线。

2)系数满足什么关系时与坐标轴都相交;当A≠0且B≠0时,直线与x轴和y轴都相交。

3)系数满足什么条件时只与x轴相交;当B=0且A≠0时,直线只与x轴相交。

4)系数满足什么条件时是x轴;当A=0且B≠0且C=0时,直线是x轴。

高中数学-直线与方程_练习测试题

高中数学-直线与方程_练习测试题

高中数学-直线与方程测试练习题1. 直线y=−2x+1在y轴上的截距是()A.0B.1C.−1D.122. 直线2x+y+1=0的斜率为k,在y轴上的截距为b,则()A.k=2,b=1B.k=−2,b=−1C.k=−2,b=1D.k=2,b=−13. 已知平行四边形相邻两边所在的直线方程是l1:x−2y+1=0和l2:3x−y−2=0,此四边形两条对角线的交点是(2, 3),则平行四边形另外两边所在直线的方程是()A.2x−y+7=0和x−3y−4=0 B.x−2y+7=0和3x−y−4=0C.x−2y+7=0和x−3y−4=0D.2x−y+7=0和3x−y−4=04. 若ab<0,则直线xa +yb=1的倾斜角为()A.arctg(ba ) B.π−arctg(ba) C.−arctg(ba) D.π+arctg(ba)5. 直线:,,所得到的不同直线条数是()A.22B.23C.24D.256. 设a<0,两直线x−a2y+1=0与(a2+1)x+by+3=0垂直,则ab的最大值为()A.−2B.−1C.1D.27. 已知点A(2, 0),B(−1, 1)到直线l的距离分别为1和2,则满足条件的直线l有()A.1条B.2条C.3条D.4条8. 设椭圆x24+y23=1的长轴端点为M、N,不同于M、N的点P在此椭圆上,那么PM、PN的斜率之积为( )A.−34B.−43C.34D.439. 过点P(−2, 3)且与两坐标轴围成的三角形面积为12的直线共有()条.A.1B.2C.3D.410. 已知两点A(−2, 0),B(0, 4),则线段AB的垂直平分线方程是()A.2x+y=0B.2x−y+4=0C.x+2y−3=0D.x−2y+5=011. 过点A(3, 2)、B(−1, 4)直线l的斜率k是________.12. 已知三角形的三个顶点是O(0,0),A(4,3),B(2,−1),则此三角形AB边上的中线所在直线的方程为________.13. 经过原点且经过直线I1:3x+4y−2=0,I2:2x+y+2=0交点的直线方程是________.14. 已知直线2x+y+2+λ(2−y)=0与两坐标轴围成一个三角形,该三角形的面积记为S(λ),当λ∈(1, +∞)时,S(λ)的最小值是________.15. 在△ABC中,已知角A,B,C所对的边依次为a,b,c,且2lg(sin B)=lg(sin A)+lg(sin C),则两条直线l1:x sin A+y sin B=a与l2:x sin B+y sin C=c的位置关系是________.16. 已知直线l1:ax+2y+6=0,直线l2:x+(a−1)y+a2−1=0.当a________时,l1与l2相交;当a________时,l1⊥l2;当a________时,l1与l2重合;当a________时,l1 // l2.17. 已知圆O:x2+y2=1和点A(−2, 0),若定点B(b, 0)(b≠−2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则:(Ⅰ)b=________−1;2(Ⅱ)λ=________1.218. 设点,若直线与线段有一个公共点,则的最小值为________.19. 直线x−y−4=0上有一点P,它与A( 4, −1 ),B( 3, 4 )两点的距离之差最大,则P 点坐标为________.20. 两平行直线5x+12y+3=0与10x+24y+5=0间的距离是________.21. 已知两直线l1:ax−by+4=0,l2:(a−1)x+y+b=0. 求分别满足下列条件的a,b的值.(1)直线l1过点(−3, −1),并且直线l1与l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.22. 已知直线l的倾斜角为30∘,(结果化成一般式)(1)若直线l过点P(3, −4),求直线l的方程.(2)若直线l在x轴上截距为−2,求直线l的方程.(3)若直线l在y轴上截距为3,求直线l的方程.23. 过点M(2, 4)作两条互相垂直的直线,分别交x轴y轴的正半轴于A、B,若四边形OAMB的面积被直线AB平分,求直线AB的方程.24. 已知直线l经过点P(1, 2).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若A(1,−1),B(3,1)两点到直线l的距离相等,求直线l的方程.,且与x轴的正半轴交于A,与y轴的正半轴交25. 已知O为坐标原点,直线l的斜率为−34于B,三角形AOB面积等于6.(1)求直线l的方程.(2)设三角形AOB的重心为G,外心为M,内心为N,试求出它们的坐标,并判定这三点是否共线.参考答案与试题解析高中数学-直线与方程测试练习题一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】确定直线位置的几何要素【解析】根据截距的定义,令x=0即可得到结论.【解答】解:当x=0时,y=1,即直线y=−2x+1在y轴上的截距是1,故选:B2.【答案】B【考点】直线的斜截式方程【解析】要求直线与x轴的截距就要令x=0求出y的值,要求直线与y轴的截距就要令y=0求出x的值即可.【解答】解:由直线方程2x+y+1=0,即y=−2x−1,故斜率为k=−2,截距为b=−1.故选B.3.【答案】B【考点】直线的一般式方程与直线的平行关系【解析】直接利用两直线平行的条件,斜率相等,得出答案.【解答】解:l1的对边与l1平行应为x−2y+c=0形式排除A、D;l2对边也与l2平行,应为3x−y+c1=0形式排除C,故选B.4.【答案】C【考点】直线的倾斜角【解析】根据题意,求出直线的斜率,再根据倾斜角的范围求出倾斜角的大小.解:直线xa +yb=1转化成y=−bax+ab直线斜率为−ba ,即直线倾斜角的正切值等于−ba,又倾斜角大于或等于0小于π,故倾斜角为−arctg(ba),故选C.5.【答案】B【考点】直线的倾斜角直线的两点式方程直线的截距式方程【解析】ry】根据排列知识求解,关键要减去重复的直线.【解答】当m,n相等时,有1种情况;当mn不相等时,有A12=6×5=30种情况,但1 2=24=36,21=42=63,23=46,13=26.重复了8条直线,因此共有1+30−8=23条直线故选B.6.【答案】A【考点】直线的一般式方程与直线的垂直关系【解析】由直线x−a2y+1=0与(a2+1)x+by+3=0互相垂直,结合两直线垂直,两斜率积为−1,我们易得到a,b的关系,结合基本不等式即可求出ab的范围.【解答】解:∵直线x−a2y+1=0与直线(a2+1)x+by+3=0互相垂直∴1a2×(−a2+1b)=−1∴b=a2+1a2∵a<0ab=a⋅a2+1a2=a+1a=−[−a+(−1a)]≤−2∴ab的最大值是−2.故选:A.7.【答案】D点到直线的距离公式确定直线位置的几何要素【解析】由已知得直线l与圆A:(x−2)2+y2=1相切,且直线l与圆B:(x+1)2+(y−1)2= 4相切,即直线l是圆A与圆B的公切线,由圆心距离d=|AB|=√(2+1)2+(0−1)2=√10>1+2=3,得两圆相离,从而求出满足条件的直线l有4条.【解答】解:点A(2, 0)到直线l的距离为1,则直线l是以A为圆心,1为半径的圆的切线,即直线l与圆A:(x−2)2+y2=1相切,点B(−1, 1)到直线l的距离为2,则直线l是以B为圆心,2为半径的圆的切线,即直线l与圆B:(x+1)2+(y−1)2=4相切,∴直线l是圆A与圆B的公切线,圆心距离d=|AB|=√(2+1)2+(0−1)2=√10>1+2=3,∴两圆相离,∴满足条件的直线l有4条.故选:D.8.【答案】A【考点】直线的斜率【解析】根据椭圆方程求得M,N的坐标,设P的坐标为(2cos w, √3sin w),进而表示出PM、PN 的斜率,二者相乘整理可求得答案.【解答】解:依题意可知M(2, 0),N(−2, 0),P是椭圆上任意一点,设坐标为P(2cos w, √3sin w),PM、PN的斜率分别是K1=√3sin w2(cos w−1),K2=√3b sin w 2(cos w+1)于是K1×K2=√3sin w2(cos w−1)⋅√3b sin w2(cos w+1)=34×sin2wcos2w−1=−3 4故选A.9.【答案】 C【考点】直线的截距式方程 【解析】设直线的斜率为k ,则有直线的方程为y −3=k(x +2),由直线过点P(−2, 3)且与两坐标轴围成的三角形面积为12求出k 的值有3个,从而得出结论. 【解答】解:过点P(−2, 3)且与两坐标轴围成的三角形面积为12的直线的斜率为k ,则有直线的方程为y −3=k(x +2),即kx −y +2k +3=0,它与坐标轴的交点分别为M(0, 2k +3)、N(−2−3k , 0). 再由12=12OM ⋅ON =12|2k +3|×|−2−3k|,可得|4k +9k+12|=24,4k +9k+12=24,或4k +9k +12=−24. 解得k =32,或 k =−9−6√22或 k =−9+6√22, 故满足条件的直线有3条, 故选C . 10. 【答案】 C【考点】与直线关于点、直线对称的直线方程 中点坐标公式两条直线垂直与倾斜角、斜率的关系【解析】求出AB 的中点坐标,直线AB 的斜率,然后求出AB 垂线的斜率,利用点斜式方程求出线段AB 的垂直平分线方程. 【解答】解:两点A(−2, 0),B(0, 4),它的中点坐标为:(−1, 2), 直线AB 的斜率为:4−00+2=2,AB 垂线的斜率为:−12, 线段AB 的垂直平分线方程是:y −2=−12(x +1),即:x +2y −3=0. 故选C .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】 −12【考点】斜率的计算公式根据题意,由直线l 过点A 、B 的坐标,代入直线斜率的公式,计算可得答案. 【解答】解:根据题意,直线l 过点A(3, 2)、B(−1, 4), 则其斜率k =4−2−1−3=−12;故答案为:−12. 12.【答案】 x −3y =0 【考点】 中点坐标公式 直线的两点式方程【解析】因为AB 边上的中线所在直线经过点O 与AB 的中点,所以先求出AB 的中点坐标,写出直线方程,化成一般式即可. 【解答】解:∵ A (4,3),B (2,−1), ∴ AB 的中点坐标为C(4+22,3−12),即C(3,1). 又O(0,0),∴ 直线OC 方程为y =13x ,即x −3y =0,∴ 此三角形AB 边上的中线所在直线的方程为x −3y =0. 故答案为:x −3y =0. 13.【答案】 y =−x 【考点】两条直线的交点坐标 【解析】联立{3x +4y −2=02x +y +2=0,解得交点(−2, 2),再利用点斜式即可得出.【解答】解:联立{3x +4y −2=02x +y +2=0,解得{x =−2y =2.∴ 交点(−2, 2).∴ 要求的直线斜率k =2−2=−1. ∴ 要求的直线方程为y =−x .14. 【答案】 8直线的图象特征与倾斜角、斜率的关系【解析】求出直线2x+y+2+λ(2−y)=0与坐标轴的交点A、B的坐标,计算△AOB的面积,求出最小值即可.【解答】直线2x+y+2+λ(2−y)=0中,令x=0,得y=,令y=0,得x=−λ−1,所以直线2x+y+2+λ(2−y)=0与坐标轴的交点为A(−λ−1, 0),B(0,),其中λ∈(1, +∞),所以△AOB的面积为S(λ)=×|−λ−1|×||==λ−1+ +4≥2×+4=8,当且仅当λ−1=,即λ=3时取等号.所以S(λ)的最小值是8.15.【答案】平行或重合【考点】直线的一般式方程【解析】由对数的运算性质可知sin2B=sin A⋅sin C,再利用比例关系sin Asin B =sin Bsin C≠ac即可判断两直线的位置关系.【解答】解:依题意,sin2B=sin A⋅sin C,∴sin Asin B =sin Bsin C,即两直线方程中x的系数之比与y的系数之比相等,∴两条直线l1:x sin A+y sin B=a与l2:x sin B+y sin C=c平行或重合.故答案为:平行或重合.16.【答案】a≠−1且a≠2,=23,a=2,a=−1【考点】方程组解的个数与两直线的位置关系【解析】由a(a−1)−2×1=0可解得a=−1或a=2,验证可得两直线平行,重合,相交的条件,由a ×1+2(a −1)=0可解得垂直的条件. 【解答】解:由a(a −1)−2×1=0可解得a =−1或a =2,当a =−1时,l 1:−x +2y +6=0,l 2:x +2y =0,显然l 1 // l 2. 当a =2时,l 1:x +y +3=0,l 2:x +y +3=0,显然l 1与l 2重合, ∴ 当a ≠−1且a ≠2时,l 1与l 2相交,由a ×1+2(a −1)=0可解得a =23,此时l 1⊥l 2; 故答案为:a ≠−1且a ≠2;=23;a =2;a =−1 17. 【答案】 ,【考点】 三点共线 【解析】(Ⅰ)利用|MB|=λ|MA|,可得(x −b)2+y 2=λ2(x +2)2+λ2y 2,由题意,取(1, 0)、(−1, 0)分别代入,即可求得b ;(Ⅱ)取(1, 0)、(−1, 0)分别代入,即可求得λ. 【解答】解法一:设点M(cos θ, sin θ),则由|MB|=λ|MA|得(cos θ−b)2+sin 2θ=λ2[(cos θ+2)2+sin 2θ],即−2b cos θ+b 2+1=4λ2cos θ+5λ2对任意θ都成立,所以{−2b =4λ2b 2+1=5λ2.又由|MB|=λ|MA|得λ>0,且b ≠−2,解得{b =−12λ=12.解法二:(Ⅰ)设M(x, y),则 ∵ |MB|=λ|MA|,∴ (x −b)2+y 2=λ2(x +2)2+λ2y 2,由题意,取(1, 0)、(−1, 0)分别代入可得(1−b)2=λ2(1+2)2,(−1−b)2=λ2(−1+2)2,∴ b =−12,λ=12.(2)由(Ⅰ)知λ=12.18. 【答案】15【考点】待定系数法求直线方程 点到直线的距离公式 【解析】 tb +P试题分析:一…直线ax+b=1与线段AB有一个公共点,2)…点A(1,0),B(2,1)在直线ax+by=1的两侧,(a−1)(2a+b−1)≤0即a−1≤0,2a+b−1≥0或a−1≥0,2a+b−1≤0画出它们表示的平面区域,如图所示.a2+b2表示原点到区域内的点的距离的平方,由图可知,当原点O到直线2x+y−1=0的距离为原点到区域内的点的距离的最小值,d=|−1|√4+1那么a2+b2的最小值为:d2=15【解答】此题暂无解答19.【答案】(3, −1)【考点】两点间的距离公式与直线关于点、直线对称的直线方程【解析】判断A,B与直线的位置关系,求出A关于直线的对称点A1的坐标,求出直线A1B的方程,与直线x−y−4=0联立,求出P的坐标.【解答】解:易知A(4, −1)、B(3, 4)在直线l:x−y−4=0的两侧.作A关于直线l的对称点A1(3, 0),当A1、B、P共线时距离之差最大,A1B的方程为:x=3…①直线x−y−4=0…②解①②得P点的坐标是(3, −1)故答案为:(3, −1).20.【答案】126【考点】两条平行直线间的距离【解析】先把两条直线方程中对应未知数的系数化为相同的,再代入两平行直线间的距离公式进行运算.【解答】解:∵两平行直线ax+by+m=0与ax+by+n=0间的距离是√a2+b2,5x+ 12y+3=0即10x+24y+6=0,∴两平行直线5x+12y+3=0与10x+24y+5=0间的距离是√102+242=√576=126.故答案为126.三、解答题(本题共计 5 小题,每题 10 分,共计50分)21.【答案】解:(1)∵l1⊥l2,∴a(a−1)+(−b)⋅1=0,即a2−a−b=0. ①又点(−3, −1)在l1上,∴−3a+b+4=0,②由①②得a=2,b=2.(2)∵l1 // l2,∴ab =1−a,∴b=a1−a,故l1和l2的方程可分别表示为:(a−1)x+y+4(a−1)a =0,(a−1)x+y+a1−a=0.又原点到l1与l2的距离相等,∴4|a−1a |=|a1−a|,解得a=2或a=23,∴a=2,b=−2或a=23,b=2.【考点】两条直线垂直与倾斜角、斜率的关系两条直线平行与倾斜角、斜率的关系【解析】(1)利用直线l1过点(−3, −1),直线l1与l2垂直,斜率之积为−1,得到两个关系式,求出a,b的值.(2)类似(1)直线l1与直线l2平行,斜率相等,坐标原点到l1,l2的距离相等,利用点到直线的距离相等.得到关系,求出a,b的值.【解答】解:(1)∵l1⊥l2,∴a(a−1)+(−b)⋅1=0,即a2−a−b=0. ①又点(−3, −1)在l1上,∴−3a+b+4=0,②由①②得a=2,b=2.(2)∵l1 // l2,∴ab =1−a,∴b=a1−a,故l1和l2的方程可分别表示为:(a−1)x+y+4(a−1)a =0,(a−1)x+y+a1−a=0.又原点到l1与l2的距离相等,∴4|a−1a |=|a1−a|,解得a=2或a=23,∴a=2,b=−2或a=23,b=2.22.【答案】解:直线l的倾斜角为30∘,则直线的斜率为:√33.(1)过点P(3, −4),由点斜式方程得:y+4=√33(x−3),∴y=√33x−√3−4,即√3x−3y−3√3−12=0. (2)在x轴截距为−2,即直线l过点(−2, 0),由点斜式方程得y−0=√33(x+2),则y=√33x+2√33,即√3x−3y+2√3=0.(3)在y轴上截距为3,由斜截式方程得y=√33x+3.即√3x−3y+9=0.【考点】各直线方程式之间的转化直线的斜截式方程直线的点斜式方程直线的斜率【解析】(1)先求出直线的斜率,分别根据直线的点斜式和斜截式方程,代入求出即可.(2)根据直线的点斜式和斜截式方程,代入求出即可.(3)根据直线的点斜式和斜截式方程,代入求出即可.【解答】解:直线l的倾斜角为30∘,则直线的斜率为:√33.(1)过点P(3, −4),由点斜式方程得:y+4=√33(x−3),∴y=√33x−√3−4,即√3x−3y−3√3−12=0.(2)在x轴截距为−2,即直线l过点(−2, 0),由点斜式方程得y−0=√33(x+2),则y=√33x+2√33,即√3x−3y+2√3=0. (3)在y轴上截距为3,由斜截式方程得y=√33x+3.即√3x−3y+9=0.23.【答案】解:由题意,设A(a, 0)、B(0, b).则直线AB 方程为xa+yb =1(a >0, b >0)∵ MA ⊥MB ,∴4−02−a×4−b 2−0=−1,化简得a =10−2b .∵ a >0,∴ 0<b <5.直线AB 的一般式方程为bx +ay −ab =0 ∴ 点M(2, 4)到直线AB 的距离为d 1=√a 2+b 2.又∵ O 点到直线AB 的距离为d 2=√a 2+b 2,∵ 四边形OAMB 的面积被直线AB 平分,∴ d 1=d 2,∴ 2b +4a −ab =±ab . 又∵ a =10−2b .解得{a =2b =4或{a =5b =52, ∴ 所求直线为2x +y −4=0或x +2y −5=0.【考点】直线的一般式方程两条直线垂直与倾斜角、斜率的关系 点到直线的距离公式【解析】设A(a, 0)、B(0, b).得到直线AB ,由题知MA ⊥MB 即直线MA 与直线MB 的斜率乘积为−1,得到a 与b 的关系式;又因为四边形OAMB 的面积被直线AB 平分得到M 到直线AB 与O 到直线AB 的距离相等得到a 与b 的关系式,两者联立求出a 和b 即可得到直线AB 的方程. 【解答】解:由题意,设A(a, 0)、B(0, b).则直线AB 方程为xa +yb =1(a >0, b >0) ∵ MA ⊥MB ,∴ 4−02−a ×4−b2−0=−1,化简得a =10−2b .∵ a >0,∴ 0<b <5.直线AB 的一般式方程为bx +ay −ab =0 ∴ 点M(2, 4)到直线AB 的距离为d 1=√a 2+b 2.又∵ O 点到直线AB 的距离为d 2=√a 2+b 2,∵ 四边形OAMB 的面积被直线AB 平分,∴ d 1=d 2,∴ 2b +4a −ab =±ab . 又∵ a =10−2b .解得{a =2b =4或{a =5b =52,∴ 所求直线为2x +y −4=0或x +2y −5=0. 24.【答案】解:(1)当直线l 不过原点, 设直线l 的方程为:xa +yb =1, 把点P 代入可得:1a +2b =1,联立{1a +2b =1,a =b,解得{a =3,b =3,∴ 直线l 的方程为x +y =3.当直线l 过原点,则设直线l 的方程为:y =kx , 代入P 点坐标得:k =2, 此时直线l 的方程为y =2x .综上所述,直线l 的方程为x +y =3或y =2x . (2)若A ,B 两点在直线l 同侧, 则AB//l , AB 的斜率k =−1−11−3=−2−2=1,即l 的斜率为1,则l 的方程为y −2=x −1, 即y =x +1,若A ,B 两点在直线的两侧,即l 过A ,B 的中点C(2,0), 则l 的方程为y =−2x +4,综上所述,l 的方程为y =−2x +4或y =x +1. 【考点】待定系数法求直线方程 直线的截距式方程 直线的点斜式方程 【解析】 此题暂无解析 【解答】解:(1)当直线l 不过原点, 设直线l 的方程为:xa+yb =1,把点P 代入可得:1a +2b =1, 联立{1a +2b =1,a =b,解得{a =3,b =3,∴ 直线l 的方程为x +y =3.当直线l 过原点,则设直线l 的方程为:y =kx , 代入P 点坐标得:k =2, 此时直线l 的方程为y =2x .综上所述,直线l 的方程为x +y =3或y =2x . (2)若A ,B 两点在直线l 同侧, 则AB//l , AB 的斜率k =−1−11−3=−2−2=1,即l 的斜率为1,则l 的方程为y −2=x −1,即y=x+1,若A,B两点在直线的两侧,即l过A,B的中点C(2,0), 则l的方程为y=−2x+4,综上所述,l的方程为y=−2x+4或y=x+1.25.【答案】如图,设直线在y轴上的截距为m(m>0),则直线方程为y=−34x+m,取y=0,得x=43m.由S△AOB=12×43m2=6,解得m=3.∴直线l的方程为y=−34x+3;由(1)可得,A(4, 0),B(0, 3).由重心坐标公式可得G(43, 1);联立直线{x=2y=32,得M(2, 32);设∠BAO的角平分线的斜率为k,则k=−tan∠BAO2=−sin∠BAO1+cos∠BAO=−351+45=−13.∴∠BAO的角平分线方程为y=−13(x−4),联立{y=−13(x−4)y=x,解得N(1, 1).∵k MG=32−12−43=34,k MN=32−12−1=12,k MG≠k MN,∴G、M、N三点不共线.【考点】直线的一般式方程与直线的性质直线的斜率【解析】(1)设直线在y轴上的截距为m(m>0),取y=0求出直线在x轴上的截距,代入三角形面积公式求得m,则直线方程可求;(2)利用重心坐标公式求重心,利用两边垂直平分线的交点求外心,由两内角平分线的交点求内心,再由斜率的关系判断不共线.【解答】如图,设直线在y轴上的截距为m(m>0),则直线方程为y=−34x+m,取y=0,得x=43m.由S△AOB=12×43m2=6,解得m=3.∴直线l的方程为y=−34x+3;由(1)可得,A(4, 0),B(0, 3).由重心坐标公式可得G(43, 1);联立直线{x=2y=32,得M(2, 32);设∠BAO的角平分线的斜率为k,则k=−tan∠BAO2=−sin∠BAO1+cos∠BAO=−351+45=−13.∴∠BAO的角平分线方程为y=−13(x−4),联立{y=−13(x−4)y=x,解得N(1, 1).∵k MG=32−12−43=34,k MN=32−12−1=12,k MG≠k MN,∴G、M、N三点不共线.。

高中数学必修二直线与方程练习题(考查直线五种形式)

高中数学必修二直线与方程练习题(考查直线五种形式)

必修二直线与方程(直线的五种形式)练习题让4第I卷(选择题)一、单选题(本大题共16小题,共80.0分)1.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()A. k1<k2<k3B. k3<k1<k2C. k3<k2<k1D. k1<k3<k22.已知△ABC的顶点为A(3,3),B(2,−2),C(−7,1),则∠A的内角平分线AD所在直线的方程为()A. y=−x+6B. y=xC. y=−x+6和y=xD. 15x−12y−20=03.点(1,1)到直线x+y−1=0的距离为()D. √2A. 1B. 2C. √224.已知直线l1:ax+2y−1=0,直线l2:8x+ay+2−a=0,若l1//l2,则实数a的值为()A. ±4B. −4C. 4D. ±25.已知点A(1,6√3),B(0,5√3)到直线l的距离均等于a,且这样的直线l可作4条,则a的取值范围是()A. a≥1B. 0<a<1C. 0<a≤1D. 0<a<26.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为1,3则实数m,n的值分别为()A. 4和3B. −4和3C. −4和−3D. 4和−37.若两平行直线2x+y−4=0与y=−2x−m−2间的距离不大于√5,则实数m的取值范围是()A. [−11,−1]B. [−11,0]C. [−11,−6)∪(−6,−1]D. [−1,+∞)8.已知定点P(x0,y0)不在直线l:f(x,y)=0上,则f(x,y)+f(x0,y0)=0表示一条()A. 过点P且与l垂直的直线B. 过点P且与l平行的直线C. 不过点P且垂直于l的直线D. 不过点P且平行于l的直线9.已知过点M(2,1)的直线与x轴、y轴分别交于P,Q两点.若M为线段PQ的中点,则这条直线的方程为()A. 2x−y−3=0B. 2x+y−5=0C. x+2y−4=0D. x−2y+3=010.经过两条直线2x+3y+1=0和x−3y+4=0的交点,并且垂直于直线3x+4y−7=0的直线的方程为()A. 4x−3y+9=0B. 4x−3y−9=0C. 3x−4y+9=0D. 3x−4y−9=011.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>cC. b<0,d>0,a>cD. b<0,d>0,a<c12.已知直线l1:3x+4y+2=0,l2:6x+8y−1=0,则l1与l2之间的距离是()A. 12B. 35C. 1D. 31013.三点A(3,1),B(−2,k),C(8,11)在一条直线上,则k的值为()A. −8B. −9C. −6D. −714.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. √2B. 2−√2C. 1D. √2−115.已知两点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,则直线l的斜率k的取值范围是()A. (−1,1)B. (−∞,−1)∪(1,+∞)C. [−1,1]D. (−∞,−1]∪[1,+∞)16.直线y=−√33x+1与x轴,y轴分别交于点A,B,以线段AB为边在第一象限内作等边△ABC,如果在第一象限内有一点P(m,12),使得△ABP和△ABC面积相等,则m的值()A. 5√32B. 3√32C. √32D. √3第II卷(非选择题)二、单空题(本大题共4小题,共20.0分)17.已知直线ax+3y−12=0与直线4x−y+b=0互相垂直,且相交于点P(4,m),则b=.18.已知两直线2x−5y+20=0,mx−2y−10=0与两坐标轴围成的四边形有外接圆,则实数m=.19.若直线l1:(2m2−5m+2)x−(m2−4)y+5=0的斜率与直线l2:x−y+1=0的斜率相同,则m的值为.20.若原点O在直线l上的射影是P(1,2),则直线l在y轴上的截距为__________.三、解答题(本大题共5小题,共60.0分)21.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.22.已知直线l1:ax+2y+6=0和直线l2:x+(a−3)y+a2−1=0.(1)当l1⊥l2时,求a的值;(2)在(1)的条件下,若直线l3//l2,且l3过点A(1,−3),求直线l3的一般方程.23.设直线4x+3y=10与2x−y=10相交于一点A.(1)求点A的坐标;(2)求经过点A,且垂直于直线3x−2y+4=0的直线的方程.24.已知直线l:(a+1)x+y−2−a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)当O(0,0)点到直线l距离最大时,求直线l的方程.25.如图,△ABC中,顶点A(1,2),BC边所在直线的方程为x+3y+1=0,AB边的中点D在y轴上.(1)求AB边所在直线的方程;(2)若|AC|=|BC|,求AC边所在直线的方程.答案和解析1.【答案】D本题考查直线的倾斜角与斜率,属于基础题.根据题意,利用直线的倾斜角来判断直线的斜率关系,即可得解.【解答】解:直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k3<k2,因此k1<k3<k2,故选D.2.【答案】B本题考查了点到直线的距离公式,角平分线的性质,考查了学生的运算能力,属于中档题.求出直线AB,直线AC的方程,进行求解即可.【解答】解:设∠A的内角平分线AD上的任意一点P(x,y),又△ABC的顶点为A(3,3)、B(2,−2)、C(−7,1),可得:直线AB方程为:5x−y−12=0,直线AC的方程为:x−5y+12=0,∴点P到直线AC距离等于点P到直线AB距离,则√26=√26,解得x+y−6=0(此时B、C两点位于直线x+y−6=0同侧,不符合题意,舍去)或x−y=0.∴角平分线AD所在直线方程为:x−y=0.故选B.3.【答案】C【分析】本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.利用点到直线的距离公式即可得出.【解答】解:由点到直线的距离公式,得所求距离d=22=√22.4.【答案】B【分析】本题考查直线的一般式方程与直线的平行关系,利用直线平行的性质求解.【解答】解:由a2−2×8=0,得a=±4.当a=4时,l1:4x+2y−1=0,l2:8x+4y−2=0,l1与l2重合.当a=−4时,l1:−4x+2y−1=0,l2:8x−4y+6=0,l1//l2.综上所述,a=−4.故选B.5.【答案】B本题主要考查了点与直线的位置关系和两点间的距离公式的应用,做题时要善于转化,把求a的范围问题转化为求两点间的距离的问题,属于中档题.可分A,B在直线l的同侧还是两侧两种情况讨论直线l的可能,若A,B两点在直线l 的同侧,一定可作出两条直线,所以则当A,B两点分别在直线l的两侧时,还应该有两条,这时,只需a小于A,B两点间距离的一半即可.【解答】解:∵若A,B两点在直线l的同侧,可作出两条直线,∴若这样的直线l可作4条,则当A,B两点分别在直线l的两侧时,还应该有两条.∴2a小于A,B间距离,∵|AB|=√(1−0)2+(6√3−5√3)2=2.∴0<2a<2,∴0<a<1.故选B .6.【答案】C本题主要考查直线的方程的应用,属于基础题.由直线平行可得−mn =−43,再由直线在y 轴上的截距为13,可得−1n =13,联立解得m ,n 的值. 【解答】解:当n =0时,不合题意,所以n ≠0, 由题意知:−mn =−43,即3m =4n , 且在y 轴上的截距为13,即−1n =13, 联立解得:n =−3,m =−4. 故选C .7.【答案】C8.【答案】D9.【答案】C本题考查直线点斜式方程、中点坐标公式,属于基础题.设所求直线的方程为y −1=k(x −2),得Q 点坐标为(0,1−2k),P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0. 【解答】解:设所求直线的方程为y −1=k(x −2). 令x =0得y =1−2k , 所以Q 点坐标为(0,1−2k),又因为M 为线段PQ 的中点,P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0.10.【答案】A本题主要考查两条直线的交点及两直线垂直的性质应用,属于基础题.联立方程2x +3y +1=0和x −3y +4=0,可求出交点坐标,垂直于直线3x +4y −7=0,可设为4x −3y +m =0,代入交点坐标即可求出该直线的方程. 【解答】解:由{2x +3y +1=0,x −3y +4=0,得{x =−53y =79, 因为所求直线与直线3x +4y −7=0垂直, 所以可设所求直线的方程为4x −3y +m =0, 代入点(−53,79),解得m =9,故所求直线的方程为4x −3y +9=0. 故选A .11.【答案】C本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解. 【解答】解:l 1 :y =−1a x −ba , l 2 : y =−1c x −dc ,由图象知:①−1a >−1c >0,②−ba <0,③−dc >0, 解得:①c <a <0,②b <0,③d >0, 故选C .12.【答案】A【分析】本题考查两条平行线之间的距离公式,属基础题.在使用两条平行线间的距离公式时,要注意两直线方程中x,y的系数必须相同.【解答】解:直线l1:3x+4y+2=0可化为直线l1:6x+8y+4=0,则l1与l2之间的距离是√62+82=12,故选A.13.【答案】B本题考查了斜率计算公式、斜率与三点共线的关系,考查了推理能力与计算能力,属于基础题.三点A(3,1),B(−2,k),C(8,11)在一条直线上,可得k AB=k AC,利用斜率计算公式即可得出.【解答】解:∵三点A(3,1),B(−2,k),C(8,11)在一条直线上,∴k AB=k AC,即k−1−2−3=11−18−3,解得k=−9.故选B.14.【答案】D本题考查直线和圆的位置关系,点到直线的距离公式的应用,是基础题.化标准方程求圆心与半径,由圆心到直线的距离易得结果.【解答】解:由题设知圆心为C(−1,−2),半径r=1,而圆心C(−1,−2)到直线x−y+1=0距离为:d=√2=√2,因此,圆上点到直线的最短距离为d−r=√2−1,故选D.15.【答案】D本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,属于基础题.根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围.【解答】解:如图所示:∵点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,∴直线l的斜率k≥k PB或k≤k PA,∵PA的斜率为4−0−3−1=−1,PB的斜率为2−03−1=1,∴直线l的斜率k≥1或k≤−1,故选D.16.【答案】A【解析】解:根据题意画出图形,如图所示:由直线y=−√33x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=√3,故点A(√3,0),∵△ABC为等边三角形,且OA=√3,OB=1,根据勾股定理得:AB=2,故点C到直线AB的距离为√3,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=√32|−√33m+12|=√3,即−√33m+12=2或−√33m+12=−2,解得:m=−3√32(舍去)或m=5√32.则m的值为5√32.根据题意画出图形,令直线方程中x与y分别为0,求出相应的y与x的值,确定出点A与B的坐标,进而求出AB的长即为等边三角形的边长,求出等边三角形的高即为点C到直线AB的距离,由△ABP和△ABC的面积相等,得到点C与点P到直线AB的距离相等,利用点到直线的距离公式表示出点P到直线AB的距离d,让d等于求出的高列出关于m的方程,求出方程的解即可得到m的值.此题考查了一次函数的性质,等边三角形的性质以及点到直线的距离公式.学生做题时注意采用数形结合的思想及转化的思想的运用,在求出m的值后要根据点P在第一象限舍去不合题意的解.17.【答案】−13【解析】【分析】本题考查两条直线垂直的斜率关系,两直线的交点问题,属于基础题.由两直线互相垂直得a=34,由点P(4,m)在直线34x+3y−12=0上,得m=3,再将点P(4,3)代入4x−y+b=0,即可求出结果.【解答】解:由题意,直线ax+3y−12=0与直线4x−y+b=0互相垂直,可得−a3×4=−1,解得a=34,由点P(4,m)在直线34x+3y−12=0上,得3+3m−12=0,解得m=3,再将点P(4,3)代入直线4x−y+b=0,得16−3+b=0,解得b=−13,故答案为−13.18.【答案】−5【解析】略19.【答案】320.【答案】52【解析】【分析】本题考查直线方程的求法,两直线垂直斜率之间的关系,属于基础题.由题意得OP ⊥l ,求出OP 的斜率即可得到直线l 的斜率,从而求出直线l 的方程,即可得到答案.【解答】解:由题意得OP ⊥l ,而k OP =2−01−0=2,∴k l =−12. ∴直线l 的方程为y −2=−12(x −1),化成斜截式为y =−12x +52.当x =0时,y =52,∴直线l 在y 轴上的截距为52.故答案为52. 21.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0;当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =22=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 22.【答案】解:(1)由A 1A 2+B 1B 2=0⇒a +2(a −3)=0⇒a =2;(2)由(1),l 2:x −y +3=0,又l 3//l 2,设l 3:x −y +C =0,把(1,−3)代入上式解得C =−4,所以l 3:x −y −4=0.【解析】本题考查了两条直线平行、两条直线垂直的条件,属于基础题.(1)利用两条直线垂直的充要条件即可得出.(2)根据平行可设l 3:x −y +C =0,代值计算即可.23.【答案】解:(1)由{2x −y =104x +3y =10,解得{x =4,y =−2., ∴A (4,−2). (2)直线3x −2y +4=0的斜率为32,垂直于直线3x −2y +4=0的直线斜率为−23,则过点A (4,−2)且垂直于直线3x −2y +4=0的直线的方程为y +2=−23(x −4),即:2x +3y −2=0.【解析】本题考查求两直线的交点坐标,直线与直线的位置关系,直线方程的求法,属于基础题.(1)解方程组{2x −y =104x +3y =10,可得点A 的坐标; (2)由题可得直线3x −2y +4=0的斜率为32,则垂直于直线3x −2y +4=0的直线斜率为−23,由点斜式即可得出所求直线的方程. 24.【答案】解:(1)直线l :(a +1)x +y −2−a =0,取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a =−2或a =0,故直线方程为x −y =0或x +y −2=0.(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大.k OA =1,故k =−1,解得a =0,故所求直线方程为x +y −2=0.【解析】本题考查了直线的截距、相互垂直时斜率之间的关系,考查了推理能力与计算能力,属于基础题.(1)取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a .(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大,即可求解. 25.【答案】解:(1)因点B 在直线x +3y +1=0上,不妨设B(−3a −1,a),由题意得(−3a −1)+1=0,解得a =0,所以B 的坐标为(−1,0),故AB 边所在直线的方程为x−1−1−1=y−20−2,即x −y +1=0;(2)因|AC|=|BC|,所以点C 在线段AB 的中垂线x +y −1=0上由{x +y −1=0x +3y +1=0,解得x =2,y =−1,即C 的坐标为(2,−1), 又点A(1,2),∴AC 边所在直线的方程为x−12−1=y−2−1−2,即3x +y −5=0.【解析】(1)利用点B 在直线上,设B(−3a −1,a),利用中点坐标公式,求出点B 的坐标,然后再由两点式求出直线方程即可;(2)联立两条直线的方程,求出交点坐标即点C ,再由两点式求出直线方程即可. 本题考查了直线方程的求解,主要考查了两点式直线方程的应用,涉及了中点坐标公式以及直线交点坐标的求解,属于基础题.。

高中数学直线方程习题

高中数学直线方程习题

(数学2必修)第三章 直线与方程[基础训练A 组]一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 知足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率别离是( )A .045,1B .0135,1- C .090,不存在 D .0180,不存在二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________;3.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.4.直线l 过原点且平分ABCD 的面积,若平行四边形的两个极点为(1,4),(5,0)B D ,则直线l 的方程为________________。

三、解答题1.已知直线A x B yC ++=0, (1)系数为何值时,方程表示通过原点的直线;(2)系数知足什么关系时与坐标轴都相交;(3)系数知足什么条件时只与x 轴相交;(4)系数知足什么条件时是x 轴; (5)设()P x y 00,为直线Ax B yC ++=0上一点, 证明:这条直线的方程可以写成()()A x x B y y -+-=000.2.求通过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。

高中数学直线方程练习题集

高中数学直线方程练习题集

高中数学直线方程练习题小题)12 一.选择题(共有交点,与线段AB ,﹣B(2 3),过点P(1,5)的直线l 1.已知A(﹣2,﹣1),)则l 的斜率的范围是(∞)[2,+A.(﹣∞,8]﹣B.∞),+∞)D.(﹣∞,8)﹣∪(2.(﹣∞,C8]﹣∪[2,+相交,AB )+1 与线段y=k 2.已知点A(1,3),B(﹣2,﹣1).若直线l:(x﹣2)k 的取值范围是(则,﹣2∞)D.[﹣∪.(﹣∞,2]﹣C .(﹣∞,2][,+BA.[,+∞)](含端点)与线段2,﹣2),若直线l:x+my+m=0 AB (.已知点3 A(﹣1,1),B)的取值范围是(相交,则实数m2],+A.(﹣∞,]∪[2,∞)B.[2]C.(﹣∞,2]∪﹣[﹣,+ ,﹣D.[﹣∞)相交,那么)且与线段MN 2 ,﹣1过点,),.已知M (1,2N(43 )直线l P(4)的取值范围是(的斜率直线l k,D[.(﹣∞,﹣]∪3] C.+3]A.(﹣∞,﹣∪[2,∞)B[﹣,.[﹣,2]∞)+相交,则直)且与线段MN 103 N3),(,),直线l 过点(﹣,22 M5.已知(﹣,﹣)的取值范围是(k l 线的斜率.或.A CB5.D.k≥,(),,(﹣.已知6 A2B2且与线段过点1,1(﹣),P),若直线lP)有公共点,则直线AB l 的倾斜角的范围是(.B.A∪..CD7.已知点A(2,3),B(﹣3,﹣2),若直线l 过点P(1,1)与线段AB 始终没的斜率l 的取值范围是(k 有交点,则直线)B.k>2 或k<C.k>A.D.k<22<<kO 为△ABC B,8.已知O,D三点共,若内一点,且,t 的值为(线,则)C.D..A.B9.经过(3,0),(0,4)两点的直线方程是()A.3x+4y ﹣12=0 B .3x﹣4y+12=0 C .4x﹣3y+12=0 D.4x+3y ﹣12=010 .过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B .x+y+3=0C.x﹣y+3=0 D.x+y+3=0 或2x+y=0.经过点M(1,1)且在两轴上截距相等的直线是()11y=0或x﹣.x=1 或y=1 D.x+y=2 A.x+y=2 B.x+y=1 C.已知△ABC 的顶点A(2,3),且三条中线交于点G(4,1),则BC 边上的12中点坐标为()B.(6,﹣1)C.(5,﹣3)D,A.(50).(6,﹣3)二.填空题(共 4 小题)13 .已知直线l:ax+3y+1=0 ,l:2x+ (a+1)y+1=0 ,若l∥l,则实数a 的值2211是..直线l :(3+a )x+4y=5 ﹣3a 和直线l:2x+(5+a )y=8 平行,则a=.1421和l:(m﹣2)x+3y+2m=0 ,当m=时,l∥l :l.设直线x+my+6=0,152112当m=时,l⊥l.1216 .如果直线(2a+5 )x+(a﹣2)y+4=0 与直线(2﹣a)x+(a+3 )y﹣1=0 互相垂直,则a 的值等于.三.解答题(共11 小题)17 .已知点A(1 ,1 ),B(﹣2,2 ),直线l 过点P (﹣1,﹣1)且与线段AB 始终有交点,则直线l 的斜率k 的取值范围为.18 .已知x,y 满足直线l:x+2y=6 .(1)求原点O 关于直线l 的对称点P 的坐标;(2)当x∈[1,3]时,求的取值范围.19 .已知点A(1,2)、B(5,﹣1),(1)若A,B 两点到直线l 的距离都为2,求直线l 的方程;(2)若A, B 两点到直线l 的距离都为m (m>0),试根据m 的取值讨论直线l存在的条数,不需写出直线方程.20 .已知直线l 的方程为2x+(1+m )y+2m=0 ,m∈R,点P 的坐标为(﹣1,0).(1)求证:直线l 恒过定点,并求出定点坐标;(2)求点P 到直线l 的距离的最大值.21 .已知直线方程为(2+m)x+(1 ﹣2m )y+4 ﹣3m=0 .(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x 轴、y 轴的负半轴交于A,B 两点,求△AOB 面积的最小值及此时直线的方程.22 .已知光线经过已知直线l:3x﹣y+7=0 和l :2x+y+3=0 的交点M,且射到x21轴上一点N(1,0)后被x 轴反射.(1)求点M 关于x 轴的对称点P 的坐标;(2)求反射光线所在的直线l 的方程.3(3)求与l 距离为的直线方程.323 .已知直线l:y=3x+3求(1)点P(4,5)关于l 的对称点坐标;(2)直线y=x ﹣2关于l 对称的直线的方程.24 .已知点M(3,5),在直线l:x﹣2y+2=0 和y 轴上各找一点P 和Q,使△MPQ的周长最小.25 .已知直线l 经过点P(3,1),且被两平行直线l;x+y+1=0 和l:x+y+6=021截得的线段之长为5,求直线l 的方程.26 .已知直线l:5x+2y+3=0 ,直线l′经过点P(2,1)且与l 的夹角等于45 ,求直线l'的一般方程.27.已知点A(2,0),B(0,6),O 为坐标原点.(1)若点 C 在线段OB 上,且∠ACB=,求△ABC的面积;(2)若原点O 关于直线AB 的对称点为D,延长BD 到P,且|PD|=2|BD| ,已知的倾斜角.l ,求直线P经过点108 =0 ﹣ax+10y+84 :L直线高中数学直线方程练习题参考答案与试题解析小题)12 一.选择题(共),过点32,﹣1),B(2A(﹣,﹣20161.()的直线 5 1,P(滑县期末)已知秋?.(﹣的斜率的范围是()Al 与线段AB 有交点,则l∞)2,+D.(﹣∞,8)﹣∪(∞)﹣∪∞)C.(﹣∞,8][2,+.∞,8]﹣B[2,+利用斜率计算公式与斜率的意义即可得【分析】,﹣8出.【解答】解:k= =2,k= =PBPA的斜率的范围是l 与线段AB 有交点,∴∵直线l .2﹣,或k≥k≤8.C故选:本题考查了斜率计算公式与斜率的意义,考查了推理能力与计算能力,【点评】属于中档题.y=k),:).若直线lB (﹣2,﹣11 ?.(22016秋碑林区校级期末)已知点A(,3的取值范围是(与线段+1 AB 相交,则k ﹣(x2)),A.[D2﹣.[+,﹣∪﹣.(﹣∞,B,+∞)2]C .(﹣∞,2][∞)]【分析】由直线系方程求出直线所过定点,由两点求斜率公式求得连接定点与l上点的斜率的最小值和最大值得答案.线段AB),过点+1 )﹣(:l解:∵直线y=k x2 P 1,2(【解答】,连接P ,1(上的点AB 与线段 A l )时直线3的斜率最小,为.的斜率最大,为1)时直线l 连接P 与线段AB 上的点B(﹣2,﹣.k 的取值范围是∴.D故选:本题考查了直线的斜率,考查了直线系方程,是基础题.【点评】雅安期末)已知点?3.(2016 秋x+my+m=02),若直线l:,A(﹣11),B(2 ,﹣)的取值范围是(与线段AB(含端点)相交,则实数m2],[+∞)B.]A.(﹣∞,∪[2,2][,﹣﹣﹣∪C.(﹣∞,2][﹣,+∞)D.利用斜率计算公式、斜率与倾斜角的关系及其单调性即可得出.【分析】),,﹣1 P解:直线l:x+my+m=0 经过定点(0【解答】﹣.==2,k=k=﹣PBPA(含端点)相交,∵直线l与线段AB:x+my+m=0≤∴﹣,2≤.∴.B故选:【点评】本题考查了斜率计算公式、斜率与倾斜角的关系及其单调性,考查了推理能力与计算能力,属于中档题.庄河市校级期末)已知?秋4.(2016 ,( 2 P l 34N2M(1,),(,)直线过点)l 相交,那么直线的斜率的取值范围是(k MN 1﹣)且与线段,D,﹣.] C [B∞)+,﹣∪.(﹣∞,A3][2 .﹣,[32][].(﹣∞,﹣∪∞)+【分析】画出图形,由题意得,用直≥k满足k的斜率l所求直线或≤kkk PMPN线的斜率公式求出k 和k 的值,解不等式求出直线l 的斜率k 的取值范围.PMPN【解答】解:如图所示:由题意得,所求直线l 的斜率k 满足k≥k 或k≤k,PMPN即k≥=2,或k≤=﹣3,∴k≥2,或k≤3﹣,故选:A.【点评】本题考查直线的斜率公式的应用,体现了数形结合的数学思想.5.(2013 秋?迎泽区校级月考)已知M(﹣2,﹣3),N(3,0),直线l 过点(﹣1,2)且与线段MN 相交,则直线l 的斜率k 的取值范围是()A.或k≥5B.C.D.【分析】求出边界直线的斜率,作出图象,由直线的倾斜角和斜率的关系可得.【解答】解:(如图象)即P(﹣1,2),由斜率公式可得PM 的斜率k ==5,1= ,= PN 直线的斜率k2当直线l 与x 轴垂直(红色线)时记为l′,可知当直线介于l′和PM 之间时,k≥5 ,当直线介于l′和PN 之间时,k≤﹣,故直线l 的斜率k 的取值范围是:k≤﹣,或k ≥5故选A【点评】本题考查直线的斜率公式,涉及数形结合的思想和直线的倾斜角与斜率的关系,属中档题.6.(2004 秋?南通期末)已知A(﹣2,),B(2,),P(﹣1,1),若直线l 过点P 且与线段AB 有公共点,则直线l 的倾斜角的范围是()A.B.D.∪C.【分析】先求出直线的斜率的取值范围,再根据斜率与倾斜角的关系以及倾斜角的范围求出倾斜角的具体范围.【解答】解:设直线l 的斜率等于k,直线的倾斜角为α由题意知,k==﹣,或k==﹣PAPB设直线的倾斜角为,tanπ,∈α,则α[0),=kα由图知0°≤α≤120 °或150 °≤α<180 °故选:D.【点评】本题考查直线的倾斜角和斜率的关系,直线的斜率公式的应用,属于基础题.7.已知点A(2,3),B(﹣3,﹣2),若直线l 过点P(1,1)与线段AB 始终没有交点,则直线l 的斜率k 的取值范围是()D.k<2A.<k<2B.k>2 或k<C.k>【分析】求出PA ,PB 所在直线的斜率,数形结合得答案.【解答】解:点A(2,3),B(﹣3,﹣2),若直线l 过点P(1,1),∵直线PA 的斜率是=2,=.直线PB 的斜率是如图,∵直线l 与线段AB 始终有公共点,∴斜率k 的取值范围是(,2).故选:A.【点评】本题考查了直线的倾斜角和直线的斜率,考查了数形结合的解题思想方法,是基础题.8.(2017 ?成都模拟)已知O 为△ABC 内一点,且,,若B,O,D 三点共线,则t 的值为()A.B.C.D.【分析】以OB ,OC 为邻边作平行四边形OBFC ,连接OF 与BC 相交于点E,E 为BC 的中点.由,可得=2 =2,点O是直线AE 的中点.根据,B,O,D 三点共线,可得点 D 是BO 与AC 的交点.过点O 作OM ∥BC 交AC 于点M,则点M 为AC 的中点.即可得出.【解答】解:以OB ,OC 为邻边作平行四边形OBFC ,连接OF 与BC 相交于点E,E 为BC 的中点.∵,∴=2 =2,∴点O 是直线AE 的中点.∵,B,O,D 三点共线,∴点D 是BO 与AC 的交点.过点O 作OM∥BC 交AC 于点M,则点M 为AC 的中点.则OM= EC= BC,= ,∴DM= MC ,∴AD= AM= AC ,∴t= .故选:B.【点评】本题考查了向量共线定理、向量三角形与平行四边形法则、平行线的性质,考查了推理能力与计算能力,属于中档题.)(,4)两点的直线方程是经过(3,0),(0沙坪坝区校级期中)9.(2016 秋?A.3x+4y ﹣12=0 B .3x﹣4y+12=0 C .4x﹣3y+12=0 D.4x+3y ﹣12=0【分析】直接利用直线的截距式方程求解即可.【解答】解:因为直线经过(3,0),(0,4)两点,所以所求直线方程为:,即4x+3y ﹣12=0 .故选D.【点评】本题考查直线截距式方程的求法,考查计算能力.10 .(2016 秋?平遥县校级期中)过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B .x+y+3=0C.x﹣y+3=0 D.x+y+3=0 或2x+y=0【分析】当直线过原点时,用点斜式求得直线方程.当直线不过原点时,设直线的方程为x+y=k ,把点(3,﹣6)代入直线的方程可得k 值,从而求得所求的直线方程,综合可得结论.【解答】解:当直线过原点时,方程为y=﹣2x,即2x+y=0 .当直线不过原点时,设直线的方程为x+y=k ,把点(3,﹣6)代入直线的方程可得k=﹣3,故直线方程是x+y+3=0 .综上,所求的直线方程为x+y+3=0 或2x+y=0 ,故选:D.【点评】本题考查用待定系数法求直线方程,体现了分类讨论的数学思想,注意当直线过原点时的情况,这是解题的易错点,属于基础题.11 .(2015 秋?运城期中)经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1C.x=1 或y=1 D.x+y=2 或x﹣y=0【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0 时,设出该直线的方程为x+y=a ,把已知点坐标代入即可求出a 的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0 时,设该直线的方程为,把已知y=kx点的坐标代入即可求出k 的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0 时,设该直线的方程为x+y=a ,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2 ;②当所求的直线与两坐标轴的截距为0 时,设该直线的方程为y=kx ,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2 或x﹣y=0 .故选:D.【点评】此题考查直线的一般方程和分类讨论的数学思想,要注意对截距为0和不为0 分类讨论,是一道基础题.12 .(2013 春?泗县校级月考)已知△ABC 的顶点A(2,3),且三条中线交于点G(4,1),则BC 边上的中点坐标为()A.(5,0)B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)【分析】利用三角形三条中线的交点到对边的距离等于到所对顶点的距离的一半,用向量表示即可求得结果.【解答】解:如图所示,;∵△ABC 的顶点 A (2,3 ),三条中线交于点G (4,1),设BC 边上的中点D(x,y),则=2,∴(4﹣2,1﹣3)=2 (x﹣4,y﹣1),即,,解得即所求的坐标为D(5,0);故选:A.【点评】本题考查了利用三角形三条中线的交点性质求边的中点坐标问题,是基础题.二.填空题(共 4 小题)13 .(2015 ?益阳校级模拟)已知直线l :ax+3y+1=0 ,l :2x+ (a+1)y+1=0 ,21若l ∥l,则实数 a 的值是﹣3.21【分析】根据l∥l,列出方程a(a+1 )﹣2×3=0,求出a 的值,讨论 a 是否满足21l∥l 即可.21【解答】解:∵l∥l,21∴a(a+1)﹣2×3=0 ,2,﹣6=0即a+a解得a= ﹣3,或a=2;当a=﹣3 时,l 为:﹣3x+3y+1=0 ,1 l 为:2x﹣2y+1=0 ,满足l ∥l;212当a=2 时,l 为:2x+3y+1=0 ,1l 为:2x+3y+1=0 ,l 与l 重合;221所以,实数 a 的值是﹣3.故答案为:﹣3.【点评】本题考查了两条直线平行,斜率相等,或者对应系数成比例的应用问题,是基础题目.14 .(2015 秋?天津校级期末)直线l :(3+a )x+4y=5 ﹣3a 和直线l:2x+(5+a )21y=8 平行,则a=﹣7.【分析】根据两直线平行的条件可知,(3+a )(5+a )﹣4×2=0,且5﹣3a≠8.进而可求出a 的值.【解答】解:直线l :(3+a)x+4y=5 ﹣3a 和直线l :2x+(5+a )y=8 平行,21则(3+a)(5+a )﹣4×2=0,2.a+8a+7=0 即7.1或a=﹣解得,a=﹣8,5﹣3a ≠又∵∴a≠1.﹣7﹣.∴a=故答案为:﹣7.【点评】本题考查两直线平行的条件,其中5﹣3a≠8 是本题的易错点.属于基础题.和l:(m﹣2)x+3y+2m=0台州期末)设直线2015 秋?.(15 ,当2x+my+6=0:l1m= ﹣1.⊥时,ll时,l∥l,当m=2121【分析】利用直线平行、垂直的性质求解.【解答】解:∵直线l :x+my+6=0 和l :(m ﹣2)x+3y+2m=0 ,21l∥l,21∴= ≠,解得m=﹣1;∵直线l :x+my+6=0 和l :(m﹣2)x+3y+2m=0 ,21l⊥l ,21∴1×(m﹣2)+3m=0 ,解得m=;故答案为:﹣1,.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用.16 .(2016 春? 2a+5 )与直线(2 ﹣a)x+信阳月考)如果直线(x+(a ﹣2)y+4=0a=22或a=﹣(a+3)y1=0﹣的值等于a 互相垂直,则.a 的方程可求.利用两条直线互相垂直的充要条件,得到关于【分析】【解答】解:设直线(2a+5 )x+(a﹣2)y+4=0 为直线M;直线(2﹣a)x+(a+3 )y﹣1=0 为直线N①当直线M 斜率不存在时,即直线M 的倾斜角为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学直线方程练习题一•选择题(共12小题)1 .已知A (- 2, - 1) , B (2 , - 3),过点P (1 , 5)的直线I与线段AB有交点,则I的斜率的范围是( )A.(-x, 8] -B. [2 , + x)C.(-汽8] -u [2, +呵D.8) -U(2 , + x)2.已知点A (1, 3), B (- 2, - 1).若直线I: y=k (x- 2) +1与线段AB相交,则k的取值范围是( )A. [ , + x)B.(-x, 2] - C .(-x, 2]-U [ , +x) D. [ - 2,]3 .已知点A (- 1, 1) , B (2, - 2),若直线I: x+my+m=O 与线段AB (含端点)相交,则实数m的取值范围是( )A ・(-x, ]U [2 , + x)B . [ , 2] C. (-x, 2] u- [-, + x) D . [- , - 2]1 1 t 14 •已知M ( 1 , 2) , N (4, 3)直线I过点P (2 , - 1)且与线段M N相交,那么直线I的斜率k的取值范围是( )A.(-x, 3] -U [2 , +x)B. [-, ] C .[-3, 2] D.(-x,- ] U [+ x)1 A 1 15 .已知M (- 2, - 3) , N (3 , 0),直线I过点(-1 , 2)且与线段MN相交,则直线I的斜率k的取值范围是( )A. 或k>5B.C.D.6.已知A (- 2, ) , B (2, ), P (- 1 , 1),若直线I过点P且与线段K^h A J n V ■iH、科AB有公共点,则直线I的倾斜角的范围是:) °■ ■■ dFS 1 亠一0ITV 3 I *M 3A. B.C. D. U・(F ]R1T17 rMTT c TF1 / .畑jjji于豐q6 J\j|r *wBr Afli 1 a£dTBT有交点,则直线I的斜率k的取值范围是()A. <k< 2 B• k> 2 或k v C. k> D. k v28已知O ABC内一点,且,若B, O, D三点共线,则t的值为()X 丄,严A. B. C. D.9 •经过(3 , 0 ),(0, 4)两点的直线方程是()A. 3x+4y - 12=0 B . 3x - 4y+12=0 C . 4x - 3y+12=0 D . 4x+3y - 12=010 .过点(3, - 6)且在两坐标轴上的截距相等的直线的方程是()A. 2x+y=0 B . x+y+3=0C. x - y+3=0 D . x+y+3=0 或2x+y=011 .经过点M ( 1, 1)且在两轴上截距相等的直线是( )A. x+y=2 B . x+y=1 C . x=1 或y=1 D . x+y=2 或x - y=012 .已知△ ABC的顶点A ( 2, 3),且三条中线交于点G (4, 1),贝U BC边上的中点坐标为( )A.(5, 0)B.(6,- 1)C.( 5,-3)D.( 6,- 3)二.填空题(共4小题)13 .已知直线l1: ax+3y+仁0 , 2 2x+ (a+1) y+仁0,若l1 II l2,则实数a的值是.14 .直线l1 : (3+a ) x+4y=5 - 3a 和直线l2: 2x+ ( 5+a ) y=8 平行,则a= .15 .设直线l : x+my+6=0 和口l: (m - 2) x+3y+2m=0,当m= 时,l //l ,1 2 1 216 .如果直线(2a+5 ) x+ ( a - 2) y+4=0 与直线(2 - a) x+ ( a+3 ) y -仁0 互相垂直,贝U a的值等于三.解答题(共11小题)17 .已知点A( 1,1),B (- 2,2 ),直线I过点P (- 1,- 1 )且与线段AB始终有交点,则直线I的斜率k的取值范围为18 .已知x, y满足直线I: x+2y=6 .(1)求原点O关于直线I的对称点P的坐标;(2)当x € [1 , 3]时,求的取值范围.19 .已知点A ( 1, 2 )、B (5, - 1),(1 )若A, B两点到直线l的距离都为2,求直线l的方程;(2 )若A, B两点到直线l的距离都为m ( m > 0),试根据m的取值讨论直线l存在的条数,不需写出直线方程.20 .已知直线I的方程为2x+ (1+m ) y+2m=0 , m € R,点P的坐标为(-1, 0).(1)求证:直线I恒过定点,并求出定点坐标;(2)求点P到直线I的距离的最大值. •21 .已知直线方程为(2+m) x+ (1 - 2m ) y+4 - 3m=0 .(I)证明:直线恒过定点M;(U)若直线分别与x轴、y轴的负半轴交于A, B两点,求△ AOB面积的最小值及此时直线的方程.22 .已知光线经过已知直线l1:3x - y+7=0和l2 : 2x+y+3=0的交点M,且射到x轴上一点N (1, 0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2 )求反射光线所在的直线13的方程.(3)求与13距离为的直线方程.Vio23 •已知直线l: y=3x+3求(1 )点P ( 4, 5)关于l的对称点坐标;(2)直线y=x - 2关于I对称的直线的方程.24 •已知点M (3, 5),在直线I: x - 2y+2=0和y轴上各找一点P和0,使厶MPQ 的周长最小.25 •已知直线I经过点P ( 3, 1),且被两平行直线l i; x+y+仁0 和口I2: x+y+6=0 截得的线段之长为5,求直线I的方程.26 •已知直线1: 5x+2y+3=0,直线I’经过点P (2, 1)且与I的夹角等于45 , 求直线I'的一般方程.27.已知点A (2, 0) , B (0, 6) , O为坐标原点.(1)若点C在线段OB上,且/ ACB= ,求△ ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L: ax+10y+84 - 108 =0经过点P,求直线I的倾斜角.高中数学直线方程练习题参考答案与试题解析一•选择题(共12小题)1.( 2016秋?滑县期末)已知 A (- 2, - 1), B (2, - 3),过点P ( 1 , 5)的直线I与线段AB有交点,则I的斜率的范围是()A.(-D .( — X, 8) —U( 2 , + g) *, 8] - B . [2 , + g) C . (-g, 8] -U [2, + g)【分析】利用斜率计算公式与斜率的意义即可得出.【解答】解:k PA= =2 , k PB= = - 8,W*■一”4L•••直线I与线段AB有交点,••• I的斜率的范围是k w 8 -,或k > 2.故选:C.【点评】本题考查了斜率计算公式与斜率的意义,考查了推理能力与计算能力,属于中档题.2. (2016秋?碑林区校级期末)已知点A (1, 3), B (-2,-1).若直线I: y=k(x-2) +1与线段AB相交,则k的取值范围是( )A. [ , + g)B.(-g, 2] - C .(-g, 2]-U [ , +g) D. [ - 2,]【分析】由直线系方程求出直线I所过定点,由两点求斜率公式求得连接定点与■■A线段AB上点的斜率的最小值和最大值得答案.【解答】解:•••直线I: y=k (x-2) +1过点P ( 2, 1), 连接P与线段AB上的点A (1, 3)时直线I的斜率最小,为••• k 的取值范围是【点评】 本题考查了直线的斜率,考查了直线系方程,是基础题.3. ( 2016 秋?雅安期末)已知点 A (— 1 , 1), B (2 , — 2),若直线 I : x+my+m=O 与线段AB (含端点)相交,则实数 m 的取值范围是()A .( — x, ]U [2 , + x)B . [ , 2]C . ( —^, 2] —U [ —, +8)D . [— , — 2]【分析】 利用斜率计算公式、斜率与倾斜角的关系及其单调性即可得出. 【解答】 解:直线I : x+my+m=0经过定点P (0, — 1), k PA == — 2, k PB ==/■I i *1-•••直线I : x+my+m=0与线段AB (含端点)相交, n*/I nu9 oU . Ji Jr.. W w 2 —,故选:B .【点评】本题考查了斜率计算公式、 理能力与计算能力,属于中档题.(-2,— 1)时直线I 的斜率最大,为斜率与倾斜角的关系及其单调性,考查了推连接P 与线段AB4. ( 2016秋?庄河市校级期末)已知M (1 , 2), N (4, 3)直线I过点P ( 2 ,—1)且与线段MN相交,那么直线I的斜率k的取值范围是( )A.( — x, 3] —U [2 , +x)B. [ —, ] C .[—3, 2] D.( — x,—] U [ + x)【分析】画出图形,由题意得所求直线I的斜率k满足k > k PN或k W k PM,用直由题意得 所求 31)CAD【分求出边界【解=5 线I 的斜率k 的取值范围是即k >或 k > 5 B【解答】解:如图所示 =2,或 k <解:(如图象)即 I 的斜率k 满足k > k PN 或k w k PM故选:A线的斜率公式求出 k PN 和k PM 的值,解不等式求出直线 I 的斜率k 的取值范围P (- 1, 2) k >2,或 k w 3 2)且与线段MN 相交,则 5.( 2013秋?迎泽区校级月考)已知 M (- 2, - 3), N ( 3, 0),直线I 过点 由斜率公式可得PM 的斜率k i (红色线)时记为 i 直线的斜率,作出图象,由直线的倾斜角和斜率的关系可得直线的斜率公式的应用,体现了数形结合的数学思想当直线I 与x 轴垂直 直线PN 的斜率k 2可知当直线介于I’和PM之间时,k > 5 ,当直线介于I’和PN之间时,k<-,故直线I的斜率k的取值范围是:k <-,或k > 5 故选A【点评】本题考查直线的斜率公式,涉及数形结合的思想和直线的倾斜角与斜率的关系,属中档题.6.( 2004 秋?南通期末)已知A (- 2, ) , B (2, ), P (- 1, 1)直线I过点P且与线段AB有公共点,则直线—I的倾斜角的范围是()I lanJV 'Q IJMdi QA. B.C. D. U再根据斜率与倾斜角的关系以及倾斜角【解答】解:设直线I的斜率等于k,直线的倾斜角为a=由题意知,k PB==-,或k PA设直线的倾斜角为a,则a € [0 , n ), tan a =k ,由图知0°WaW 120。

相关文档
最新文档