《算法初步》单元教学设计
算法初步单元教学设计优秀5篇
算法初步单元教学设计优秀5篇《分数初步认识》教学设计篇一通过两周的课程设计,完成了预定的目标,其中有很多的随想。
老师的题目发下来的很早,大概提前了3周,当时就着手搜索有关线索二叉树的思想,思路,借了一本《数据结构-c语言描述》,在大体上就有了一个轮廓,先是输入二叉树,在对二叉树进行线索化,依次往下,但在具体实现时,遇到了很多问题:首先是思想的确定,其非常重要,以前有了这个想法,现在愈加清晰起来,因此,花了大量的时间在插入删除的具体操作设计上,大概三个晚上的时间,对其中什么不清晰明确之处均加以推敲,效果是显著的,在上机上相应的节约了时间。
通过具体的实验编码,思路是对的,但是在小问题上摔了一次又一次,大部分时间都是花在这方面,这个节点没传过来啊之类的,以后应该搞一个小册子,记录一些错误的集合,以避免再犯,思想与C语言联系起来,才是我们所需要的,即常说的理论与实践的关系。
数据结构是基础的一门课,对于有过编程经验的人,结合自己的编程体会去悟它的思想;而且我觉得随着编程经历的丰富对它的体会越深入,较初接触是对一些思想可能只是生硬的记忆,随着学习的深入逐渐领悟了很多。
看了这次课程设计的题目,虽然具体要求没有看清,但是总结一下,可以看出,其需要我们能把一个具体案例或一件事情反映为程序来表达,数据结构就是桥梁,通过自己的设计,使应用能力得以融汇,对与问题,具有了初步的分析,继而解决之的能力,感觉对以后的学习会有很大的帮助,学习无非是用于实践。
认识到自己的不足,希望能有进一步的发展。
影子系统激活算法初步篇二教学内容:教科书第55页的例1、例2,练习十二的第7—12题。
教学目的:1.使学生理解并掌握从一个数里连续减去两个数,改为从这个数里减去这两个减数的和的简便算法。
2.通过求加、减法算式中的未知数,使学生进一步理解加、减法各部分间的关系,为学习简易方程和列方程解应用题做较好的准备。
教学重点:求加、减法算式中的未知数教学难点:理解加、减法各部分间的关系教具准备:小黑板教学过程:一、教学例1出示例1:育名小学图书室新买来一叁0本图书。
高中数学《算法初步》教案新人教A版必修
高中数学《算法初步》教案新人教A版必修章节一:算法概念及程序框图1. 教学目标:a. 理解算法的概念,体会算法在数学及日常生活中的应用。
b. 熟悉程序框图的基本组成部分,能够运用程序框图描述简单的算法。
2. 教学内容:a. 算法的定义及特性。
b. 程序框图的组成部分:顺序结构、条件结构、循环结构。
3. 教学重点与难点:a. 算法的概念理解。
b. 程序框图的绘制及应用。
4. 教学方法:a. 案例分析法:通过具体案例让学生理解算法概念。
b. 实践操作法:学生动手绘制程序框图,加深对算法理解。
5. 教学过程:a. 引入:通过日常生活中的算法案例,引导学生思考算法的概念。
b. 讲解:详细讲解算法的定义、特点及程序框图的组成部分。
c. 实践:学生动手绘制程序框图,教师巡回指导。
d. 总结:强调算法在实际问题中的应用价值。
章节二:顺序结构算法1. 教学目标:b. 能够运用顺序结构算法解决实际问题。
2. 教学内容:a. 顺序结构的定义及特点。
b. 顺序结构算法在实际问题中的应用。
3. 教学重点与难点:a. 顺序结构算法的理解。
b. 顺序结构算法在实际问题中的应用。
4. 教学方法:a. 案例分析法:通过具体案例让学生理解顺序结构算法。
b. 实践操作法:学生动手编写顺序结构算法,解决问题。
5. 教学过程:a. 引入:通过日常生活中的顺序结构算法案例,引导学生思考顺序结构的特点。
b. 讲解:详细讲解顺序结构的定义、特点及应用。
c. 实践:学生动手编写顺序结构算法,解决问题,教师巡回指导。
d. 总结:强调顺序结构算法在实际问题中的应用价值。
章节三:条件结构算法1. 教学目标:a. 理解条件结构的算法特点。
b. 能够运用条件结构算法解决实际问题。
2. 教学内容:b. 条件结构算法在实际问题中的应用。
3. 教学重点与难点:a. 条件结构算法的理解。
b. 条件结构算法在实际问题中的应用。
4. 教学方法:a. 案例分析法:通过具体案例让学生理解条件结构算法。
人教A版高中数学《算法初步》单元教材教学分析
第一课时:算法的概念和步骤。了解算法的含义,能用自然语言描述解决具体问题的算法。
第二课时:程序框图。学习程序框图的画法,将上一节课具体问题的算法用程序框图表示。在具体问题的解决过程中,理解程序框图的3种基本逻辑结构。能够写出程序框图执行的步骤,得出输出结果。
第三课时:程序框图的循环结构。能够正确读取含有循环结构的程序框图,得出输出内容,会填控制循环结构的条件。会提取循环体在做什么。
单元目标
1、通过分析解决具体问题的过程和步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法;
2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的算法的过程,学习程序框图的画法,会读程序框图。
3、在具体问题的解决过程中,理解程序框图的三种基本逻辑结构;
4、结合具体问题,理解几种基本算法语句,理解它们与三种基本逻辑结构之间的关系;
人教A版高中数学《算法初步》单元教材教学分析
学段及学科
高中数学
教材版本
人教A版
单元名称
《ห้องสมุดไป่ตู้法初步》
单元教材主题内容与价值作用
本单元的内容分为3个部分:1、算法与程序框图;2、基本算法语句;3、算法案例。算法是数学及其应用的重要组成部分,是计算机科学的重要基础。随着现代信息技术的飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想也正成为普通公民的常识,成为现代人应具备的一种基本数学素养。
5、经历将具体问题的程序框图转化为程序语句的过程;
6、了解中国古代及西方数学中几个典型的算法案例,理解其中所包含的算法思想,体会中国古代数学对世界数学发展的贡献。
重点、难点与关键
重点:理解算法的3种基本逻辑结构、5种基本算法语句的结构和用法,学习用自然语言、程序框图、程序表示算法,初步体会算法思想。
第十一章算法初步(教案)
§11.1 算法初步教学目的:1.通过分析具体问题过程与步骤,建立算法的概念,感受算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法。
2.掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构3.掌握画程序框图的基本规则,能正确画出程序框图。
4.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
5.正确理解输入语句、输出语句、赋值语句、条件语句、循环语句的的结构。
能用这五种基本的算法语句表示算法教学重点:1.通过实例体会算法思想,初步理解算法的含义。
2.经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,程序框图的基本概念、基本图形符号和3种基本逻辑结构3.正确理解输入语句、输出语句、赋值语句、条件语句、循环语句的作用。
教学难点:1.通过实例体会算法思想,初步理解算法的含义。
2.能正确地画出程序框图。
3.准确写出输入语句、输出语句、赋值语句、条件语句、循环语句。
教学过程:一、知识梳理1.现代意义上的算法算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步之内完成。
对算法定义的理解:(1)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系。
算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决。
(2)算法的五个特征①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。
②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。
③逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。
人教版高中必修3第一章算法初步教学设计 (2)
人教版高中必修3第一章算法初步教学设计一、教学目标1.1 知识目标•掌握算法的基本概念和算法设计的流程;•能够正确理解和应用算法中的常用术语和符号;•学习并实现常见的算法,如冒泡排序、选择排序等。
1.2 能力目标•培养学生分析问题、解决问题的能力;•培养学生运用算法设计解决实际问题的能力;•培养学生的团队合作精神,提高学生的学习兴趣和学习效果。
二、教学内容2.1 什么是算法?•算法的定义;•算法与计算的关系;•算法的特点。
2.2 算法设计的流程•算法设计的步骤;•算法设计时需要考虑的问题。
2.3 常见算法•冒泡排序;•选择排序;•插入排序;•快速排序。
三、教学过程3.1 任务型学习1.让学生自己搜索和学习算法的定义,掌握算法的基本概念;2.将学生分为小组,分别针对冒泡排序、选择排序、插入排序、快速排序这四个常见算法进行深入学习;3.鼓励学生在小组内交流讨论,互相帮助,通过任务型学习的方式掌握每一种算法的实现过程和应用场景。
3.2 理论讲解1.讲解算法设计的流程,强调算法设计的基本思想;2.结合具体算法进行详细介绍;3.帮助学生掌握常用术语和符号的意义和用法。
3.3 多媒体展示1.利用计算机多媒体技术对算法的基本概念、算法设计的流程和常见算法进行展示;2.通过多媒体展示帮助学生理解算法中的关键点和难点。
3.4 实践操作1.让学生利用所学知识,对一些简单的排序问题进行解决;2.鼓励学生在实践中发现问题和总结经验;3.引导学生在实践中培养合作精神,培养团队意识。
四、教学评价4.1 测试评价1.设计一份测试题,测评学生对算法设计的基本概念、设计思想、常见算法等方面的掌握情况;2.给出具体的分值和评分标准。
4.2 成果展示1.让学生利用所学知识,针对一些复杂实际问题进行算法设计和实现;2.要求学生用合适的方式进行成果展示和说明;3.通过成果展示,评价学生团队合作精神和算法设计能力。
五、教学反思通过本次教学,学生基本掌握了算法的定义、算法设计的基本流程和常见算法的实现方法。
算法初步教案
算法初步教案一、教学目标1、知识与技能目标了解算法的概念和特征。
掌握用自然语言和流程图描述算法的方法。
能够分析简单问题,设计出有效的算法,并能用流程图表示出来。
2、过程与方法目标通过实际问题的分析和解决,培养学生的逻辑思维能力和问题解决能力。
通过算法的设计和流程图的绘制,提高学生的动手实践能力和创新能力。
3、情感态度与价值观目标让学生体会算法在解决实际问题中的重要作用,激发学生学习算法的兴趣。
培养学生严谨的思维习惯和合作精神。
二、教学重难点1、教学重点算法的概念和特征。
用自然语言和流程图描述算法。
2、教学难点复杂问题的算法设计。
流程图的规范绘制。
三、教学方法讲授法、演示法、实践法、讨论法四、教学过程1、导入(5 分钟)通过一个简单的生活实例,如“如何泡茶”,引导学生思考解决问题的步骤,从而引出算法的概念。
2、算法的概念(10 分钟)给出算法的定义:算法是指解决某一问题的明确和有限的步骤。
举例说明算法在生活和计算机中的应用,如计算数学题、排序数据等。
3、算法的特征(10 分钟)有穷性:一个算法必须在执行有限个步骤之后终止。
确定性:算法的每一步骤都必须有明确的定义,不能有歧义。
可行性:算法的每一步骤都必须是可行的,能够通过有限的操作实现。
输入:一个算法有零个或多个输入。
输出:一个算法有一个或多个输出。
4、用自然语言描述算法(15 分钟)以“求解两个数的最大值”为例,用自然语言详细描述算法的步骤。
让学生练习用自然语言描述一些简单问题的算法,如“判断一个数是否为偶数”。
5、用流程图描述算法(20 分钟)介绍流程图的常用图形符号,如起止框、输入输出框、处理框、判断框、流程线等。
以“求解两个数的最大值”为例,绘制流程图展示算法的流程。
让学生分组合作,选择一个问题,先用自然语言描述算法,再绘制流程图。
6、算法的设计(20 分钟)提出一个较复杂的问题,如“计算一个班级学生的平均成绩”。
引导学生分析问题,确定算法的步骤。
河北省高二数学下册 第一单元《算法初步》全套教案
1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.导入新课大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 提出问题(1)阅读教材第3页“鸡兔同笼”问题,思考解二元一次方程组有几种方法? (2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤,并理解“高斯消去法”;(5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组1112121222,(1),(2)a x a yb a x a y b +=⎧⎨+=⎩其中a 11a 22-a 21a 12≠0,可以写出类似的求解步骤: 第一步,假定a 11≠0,①×2111()a a -+②,可得方程 (a 11a 22-a 21a 12)y= a 11b 2-a 21b 1.③ 第二步,解③,得y=11221111222112a b a b a a a a --.④第三步,将④代入①得x=22112211222112a b a b a a a a --第四步,输出结果x,y (5)算法的定义理解:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.例题解析例1 写出一个求有限整数序列中的最大值的算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……例2 写出对任意3个数a,b,c求出最大值的算法。
人教B版必修3高中数学第1章《算法初步》word教学案
四川省古蔺县中学高中数学必修三:第1章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。
2、通过模仿、操作和探索,经历设计程序流程图表达解决问题的过程。
在具体问题的解决过程中理解程序流程图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
3、通过实际问题的学习,了解构造算法的基本程序。
4、经历将具体问题的程序流程图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。
苏教版高中高二数学必修3《算法初步》教案及教学反思
苏教版高中高二数学必修3《算法初步》教案及教学反思一、背景介绍《算法初步》是苏教版高中高二数学必修3中的一章,主要内容包括算法基本概念、算法的表示方法和效率分析、排序算法、搜索算法和图论基础等。
作为计算机科学与技术专业的学生,深入理解算法并掌握其应用是至关重要的。
因此,对于这一章的教学,需要特别注重理论与实践的结合,将算法这一抽象概念用具体的例子来阐述,让学生感受到其强大的实用性和应用前景。
二、教学内容1.教学目标1.掌握算法的基本概念和表示方法2.理解和掌握排序算法、搜索算法和图论基础3.培养学生的分析问题和解决问题的能力4.拓宽学生数学应用于计算机的思维和视野2.教学重点和难点2.1 教学重点1.掌握算法的基本概念和表示方法2.理解排序算法、搜索算法和图论基础的具体实现和应用场景3.学习如何分析问题和解决问题2.2 教学难点1.掌握算法的表示方法和效率分析2.理解和体会算法设计的思想和方法3.掌握图论基础,其理论性强,概念复杂3.教学方法和教学过程3.1 教学方法1.讲授法:讲授正常的理论知识2.示范法:选取一些算法例子,用实践来体现算法设计思维的过程3.拓展法:教师提供一些拓展资源,让学生自学探究,体验到知识的广度和深度3.2 教学过程第一课时:算法基本概念和表示方法1.教师从图灵机和计算模型出发,引导学生进入算法的世界2.学习算法表示方法3.讨论算法时间复杂度和空间复杂度第二课时:排序算法1.在讲授冒泡排序、插入排序和选择排序的同时,体现时间复杂度的计算方法和排序算法的比较2.通过案例分析,讨论排序算法的应用第三课时:搜索算法1.在讲解顺序查找和折半查找的同时,体现时间复杂度的计算方法和查找算法的比较2.通过案例分析,讨论查找算法的应用第四课时:图论基础1.讲解图的基本概念和表示方法2.教师选择基础图算法来进行教学,如最短路径算法和最小生成树算法第五课时:深度体验与巩固1.学生深度体验所学算法的应用,同时巩固所学知识2.讨论算法的创新与应用前景4.教学评估和小结4.1 教学评估本章教学采用了多种教学方法,如讲授法、示范法和拓展法等,旨在培养学生的分析问题和解决问题的能力。
第一章 算法初步全章教案
第一章 算法初步第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解→写出算法.③练习:举例更多的算法例子;→对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1.2.顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.第一课时 1.2.1 输入语句、输出语句和赋值语句教学要求:正确理解输入语句、输出语句、赋值语句的结构. 让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿. 通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想. 教学重点:会用输入语句、输出语句、赋值语句.教学难点:正确理解输入语句、输出语句、赋值语句的作用.教学过程:一、新课导入:1. 提问:学习了哪些算法的表示形式?(自然语言或程序框图描述)算法中的三种基本的逻辑结构?(顺序结构、条件结构和循环结构)2. 导入:我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的. 因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序. 程序设计语言有很多种. 如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB 等.各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输入语句、输出语句、赋值语句. 基本上对应于算法中的顺序结构.二、讲授新课:1. 教学三种语句的格式及功能:①出示例1:编写程序,计算一个学生数学、语文、英语三门课的平均成绩.(分析算法→框图表示→教师给出程序,学生试说说对各语句的理解.)①出示例2:用描点法作函数y=x3+3x2-24x+30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值②出示例3:给一个变量重复赋值. (程序见P16)③出示例4:交换两个变量A和B的值,并输出交换前后的值.(教法:先分析算法→画出框图→编写程序→分析各语句→变式→小结:先写算法,再编程)3. 小结:输入、输出和赋值语句的格式;赋值“=”及表达式;编写简单程序解决数学问题.三、巩固练习:1. 练习:教材P16 1、2题 2. 作业:P16 3、4题.第二课时 1.2.2 条件语句教学要求:正确理解条件语句的概念,并掌握其结构. 会应用条件语句编写程序. 教学重点:条件语句的步骤、结构及功能.教学难点:会编写程序中的条件语句.教学过程:一、复习准备:1. 提问:算法的三种逻辑结构?条件结构的框图模式?2. 提问:输入语句、输出语句和赋值语句的格式与功能?3. 一次招生考试中,测试三门课程,如果三门课程的总成绩在200分及以上,则被录取. 请对解决此问题的算法分析,画出程序框图. (变题:…总成绩在200分以下,则不被录取)二、讲授新课:1. 教学条件语句的格式与功能:①分析:复习题③中的两种条件结构的框图模式?②给出复习题③的程序,试读懂程序,说说新的语句的结构及含义.③条件语句的一般有两种:IF—THEN语句;IF—THEN—ELSE语句. 语句格式及框图如下.分析语句执行流程,并说明:①“条件”是由一个关系表达式或逻辑表达式构成,其一般形式为“<表达式><关系运算符><表达式>”,常用的运算符有“>”(大于)、“<”(小于)、“>=”(大于或等于)、“<=”(小于或等于),“<>”(不等于). 关系表达式的结果可取两个值,以“真”或“假”来表示,“真”表示条件满足,“假”则条件不满足. ②“语句”是由程序语言中所有语句构成的程序段,即可以是语句组. ③条件语句可以嵌套,即条件语句的THEN 或ELSE后面还可以跟条件语句,嵌套时注意内外分层,避免逻辑混乱.2. 教学典型例题:②出示例5:编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根.(算法分析→画程序框图→编写程序→给出系数的一组值,分析框图与程序各步结果)注意:解方程之前,先由判别式的符号判断方程根的情况. 函数SQR()的功能及格式.②讨论:例5程序中为何要用到条件语句?条件语句一般用在什么情况下?答:一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套③练习:编写程序,使得任意输入的2个实数从小到大排列.④出示例6:编写程序,使得任意输入的3个实数从小到大排列.(讨论:先用什么语句?→用具体的数值给a、b、c,分析计算机如何排列这些数?→写出程序→画出框图→说说算法→变式:如果是4个实数呢?3. 小结:条件语句的格式与功能及对应框图. 编程的一般步骤:①算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法. ②画程序框图:依据算法分析,画出程序框图. ③写出程序:根据程序框图中的算法步骤,逐步写出相应的程序语句.三、巩固练习: 1. 练习:教材P22 1、2题.2. 试编写程序进行印刷品邮资的计算. (前100g 0.7元,以后每100g 0.4元)3. 作业:P22 3、4题.第三课时 1.2.3 循环语句教学要求:正确理解循环语句的概念,并掌握其结构. 会应用循环语句编写程序. 教学重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法.教学难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句. 教学过程:一、复习准备:1. 设计一个计算1+2+3+……+10的算法,并画出程序框图.2. 循环结构有哪两种模式?有何区别?相应框图如何表示?答:当型(while 型)和直到型(until 型). 当型循环语句先对条件判断,根据结果决定是否执行循环体,可能一次也不执行循环体,也称为“前测试型”循环;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.二、讲授新课:1. 教学两种循环语句的格式与功能:① 给出复习题①的两种循环语句的程序,试读懂程序,说说新的语句的结构及含义.② 两种循环语句的语句结构及框图如下.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 当使用WHIL 语句时,循环内部应当有改变循环的条件,否则会产生无限循环. 学习时注意两种循环语句的区别.③ 讨论:两种循环语句的区别?当型循环先判断后执行,直到型循环先执行后判断,则:在WHILE 语句中,是当条件满足时执行循环体;在UNTIL 语句中,先执行循环体,再当条件不满足时再执行循环体.2. 教学例题:① 出示例:编写程序,计算1+2+3+……+99+100的值.(分析:实现累加的算法 → 分别用两种循环语句编写 → 变题:计算20以内偶数的积.② 给出下列一段程序,试读懂程序,说说各语句的作用,分析程序的功能. (见教材P24)(读,找疑问 → 说各语句 → 分析功能)③ 练习:用描点法作函数y =x 3+3x 2-24x +30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x =-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. ④ 分析右边所给出程序:当n=10时,结果是多少?程序INPUT “n=”;ni =1 a =0 WHILE i <= n a = a +(i +1)/i i = i+1WENDPRINT “…”;aEND实现功能?3. 小结:① 循环语句的两种不同形式:WHILE 语句和UNTIL 语句(还可补充了For 语句),掌握它们的一般格式.② 在用WHILE 语句和UNTIL 语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法. WHILE 语句中是当条件满足时执行循环体,而UNTIL 语句中是当条件不满足时执行循环体.③ 循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务. 如累加求和,累乘求积等问题中常用到.三、巩固练习: 1. 练习:教材P24 1题.2. 编写程序,实现输出1000以内能被3和5整除的所有整数. (算术运算:5 MOD 3 =2)3. 作业:P24 2、3题.第一课时 1.3.1 算法案例---辗转相除法与更相减损术教学要求:理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析; 基本能根据算法语句与程序框图的知识设计出辗转相除法与更相减损术完整的程序框图并写出它们的算法程序.教学重点:理解辗转相除法与更相减损术求最大公约数的方法.教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言. 教学过程:一、复习准备:1. 回顾算法的三种表述:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句).2. 提问:①小学学过的求两个数最大公约数的方法?(先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.)口算出36和64的最大公约数. ②除了用这种方法外还有没有其它方法?6436128=⨯+,36∴和28的最大公约数就是64和36的最大公约数,反复进行这个步骤,直至842=⨯,得出4即是36和64的最大公约数.二、讲授新课:1. 教学辗转相除法:例1:求两个正数1424和801的最大公约数.分析:可以利用除法将大数化小,然后逐步找出两数的最大公约数. (适用于两数较大时)①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的. 利用辗转相除法求最大公约数的步骤如下:(1)用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2)若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3)若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;……依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数.②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数是否等于0来决定,所以我们可以把它看成一个循环体,它的程序框图如右图:(师生共析,写出辗转相除法完整的程序框图和程序语言)练习:求两个正数8251和2146的最大公约数. (乘法格式、除法格式)2. 教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之.翻译为:(1)任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执行第二步.(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.例2:用更相减损术求91和49的最大公约数.分析:更相减损术是利用减法将大数化小,直到所得数相等时,这个数(等数)就是所求的最大公约数. (反思:辗转相除法与更相减损术是否存在相通的地方) 练习:用更相减损术求72和168的最大公约数.3. 小结:辗转相除法与更相减损术及比较①都是求最大公约数的方法,辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少;②结果上,辗转相除法体现结果是以相除余数为0得到,而更相减损术则以减数与差相等而得到.三、巩固练习:1、练习:教材P35第1题 2、作业:教材P38第1题 第二课时 1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为:5432()254367f x x x x x x =--+-+=,依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式) ④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值. (学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?)⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++. 首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+. ⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩.这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题 2、作业:教材P36第2题 第三课时 1.3.3 算法案例---进位制教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化.教学难点:除k 取余法的理解以及各进位制之间转换的程序框图及其程序的设计.教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f x x x =-+当3x =时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?二、讲授新课:1. 教学进位制的概念:① 进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制. 同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139==② 一般地,任意一个k 进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即1110()1...(0,n n n n k n n n n a a a a a k a a a k a k a ka k a k ----<<≤<=⨯+⨯+⨯+⨯.如:把(2)110011化为十进制数,(2)110011=1⨯25+1⨯24+0⨯23+0⨯22+1⨯21+1⨯20=32+16+2+1=51.把八进制数(8)7348化为十进制数,3210(8)7348783848883816=⨯+⨯+⨯+⨯=.2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数.(学生板书→教师点评→师生共同总结将非十进制转为十进制数的方法) 分析此过程的算法过程,编写过程的程序语言. 见P34②练习:将(5)2341、(3)121转化成十进制数.③例2、把89化为二进制数.分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)上述方法也可以推广为把十进制化为k 进制数的算法,这种算法成为除k 取余法. ④练习:用除k 取余法将89化为四进制数、六进制数.⑤例3、把二进制数(2)11011.101化为十进制数.解:4(211-=⨯. (小数也可利用上述方法化进行不同进位制之间的互化. )变式:化为八进制→方法:进制互化3. 小结:进位制的定义;进位制之间的互化.三、巩固练习:1、练习:教材P35第3题 2、作业:教材P38第3题 第四课时 1.3.4 生活中的算法实例教学要求:通过生活实例进一步了解算法思想.教学重点:生活实例的算法分析.教学难点:算法思想的理解.教学过程:一、复习准备:1. 前面学习了哪几种算法案例?每种算法的作用及操作方法是怎样的?2. 算法思想在我们的生活中无处不在,如何利用我们所学习的知识解决生活中的实际问题?二、讲授新课:1. 霍奇森算法:提问:同学们经常会面对一个共同的问题,就是有时有太多的事情要做. 例如,你可能要面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你该怎么办?(霍奇森算法可以。
《算法初步》 教案设计
学生总结:框图的几个基本组成部分有什么。
三、算法的三种基本逻辑
教师活动:举出有什么不同,并总结各自特点。
【课堂小结】
1、让学生快速浏览全节教材内容,并回忆教师的讲述内容,从整体上感知和把握所学知识。
2、让学生口头表述自己的收获。
告诉同学学反思
算法是高中数学课程中的新内容,算法的思想非常重要。当今人们把科学计算、实验和理论并列为三大科学研究方法,即人类认识世界的三大手段。算法是科学计算的重要基础。计算机能有如此广泛而神奇的应用,除了靠芯片之外,主要靠软件,而软件的核心是算法。计算机科学中的知识创新,主要就是算法的创新。算法思想已逐渐成为每个现代人应具有的数学素养.
《算法初步》
教案设计
一、教案背景
1,面向学生:中学2,学科:数学
2,课时:1
3,学生课前准备:
一、预习课文,了解算法思想
二、完成课后习题
二、教学课题
通过学习使学生进一步明确算法是一种表示计算过程的方式
1、结合生活实例说明算法的步骤和它的可行性。
2、运用数学实例,写出简单的算法并验证
3、将数学算法用框图表示。
三、教材分析
本节教材的内容:本大节首先通过鸡兔问题引入二元一次方程组和高斯消去法的分析,引出算法的概念。接着学习程序框图、算法的三种基本逻辑结构和框图表示。
教学重点:
算法的概念、程序框图、算法的三种基本逻辑结构和框图表示
教学难点:
框图表示
四、教学方法
讲授法、自学释疑法、分组讨论法
1、你从生活当中的行为步骤中得到哪些启示?
2、结合这些生活实例,推广到数学实例,怎么样解答一类题呢?
五、教学过程
算法初步教案
算法初步教案教案标题:算法初步教案教学目标:1. 了解算法的基本概念和作用;2. 掌握常见的算法思想和解题方法;3. 能够使用算法解决简单的问题。
教学内容:1. 算法的定义和基本概念;2. 常见的算法思想和解题方法,如贪心算法、动态规划、回溯算法等;3. 算法的应用实例。
教学步骤:一、导入新知1. 利用一个生动的例子引入算法的概念,如比较两个数的大小;2. 引导学生思考解决这个问题的方法,引出算法的概念。
二、讲解算法的基本概念和作用1. 介绍算法的定义和基本特征,如输入、输出、确定性和有限性;2. 解释算法在现实生活中的应用,如搜索引擎的排序算法、导航系统的路径规划算法等。
三、介绍常见的算法思想和解题方法1. 贪心算法:a. 解释贪心算法的基本思想和应用场景;b. 通过一个简单的例子演示贪心算法的求解过程。
2. 动态规划:a. 介绍动态规划的基本思想和应用场景;b. 通过一个经典的背包问题演示动态规划的求解过程。
3. 回溯算法:a. 解释回溯算法的基本思想和应用场景;b. 通过一个八皇后问题演示回溯算法的求解过程。
四、应用实例展示1. 选取一个简单的实际问题,如找零钱问题;2. 分析问题的特点,选择合适的算法思想和解题方法;3. 演示如何使用算法解决问题,并解释求解过程。
五、练习与巩固1. 提供一些算法练习题,让学生运用所学知识解决问题;2. 强调算法的思维方式和解题思路,鼓励学生动手实践。
六、总结与拓展1. 对本节课学习内容进行总结,强调算法的重要性和应用价值;2. 提供一些拓展资源,鼓励学生深入学习和应用算法。
教学评估:1. 课堂练习题的完成情况;2. 学生对算法思想和解题方法的理解程度;3. 学生对算法应用实例的分析和解决能力。
教学延伸:1. 鼓励学生参加编程竞赛,提高算法解题能力;2. 引导学生深入研究更复杂的算法思想和应用领域;3. 推荐相关的学习资源和参考书籍,拓宽学生的算法知识面。
小学信息技术教案算法初步
小学信息技术教案算法初步信息技术是现代社会中必不可少的一门技能,它的发展不仅为我们提供了更多的学习、工作和娱乐方式,还能够培养学生的逻辑思维和问题解决能力。
在小学阶段,学生正处于信息技术学习的起始阶段,因此,教案设计需要注意内容的选择和教学方法的灵活运用。
本文将介绍一份小学信息技术教案,以算法为主要内容进行初步讲解。
教案名称:算法初步1. 教学目标- 了解算法的基本概念- 能够举一反三,运用算法思维解决简单问题- 培养学生对逻辑思维的培养和抽象化能力2. 教学准备- 教师:计算机、投影仪、教具(例如积木、拼图等)- 学生:笔记本电脑或平板电脑3. 教学流程第一步:引入算法1. 教师向学生简单解释算法的概念,并提供相关的示例(如烧开水的步骤)2. 与学生一起讨论算法的作用和意义,启发学生思考如何用算法解决生活中的问题第二步:算法实践1. 学生分组,每个小组使用教具(如积木)构建一个简单的迷宫2. 学生利用计算机编写一个程序,通过算法控制一个机器人在迷宫中寻找出口3. 学生在编写程序的过程中,要求按照逻辑思路将问题分解为多个步骤,并用代码表示第三步:算法简化1. 学生尝试简化自己编写的程序,找出可以合并的步骤,减少程序的复杂性2. 鼓励学生通过代码复用、循环等方式优化自己的算法3. 学生可以相互交流,分享自己的优化方法,进行相互学习和改进第四步:算法拓展1. 学生尝试改变迷宫的形状,要求使用相同的算法解决问题2. 学生可以自由发挥,编写自己感兴趣的小程序,并与同学分享第五步:总结与分享1. 学生对这次算法实践的过程进行总结,分享自己的学习心得和体会2. 教师对学生的表现进行评价和鼓励,同时提出进一步学习算法的建议4. 教学评估- 在算法实践过程中,教师观察学生的参与程度和合作能力- 学生编写的程序能否顺利实现机器人在迷宫中寻找出口的功能- 学生能否成功简化和优化自己的算法5. 教学延伸- 学生可以继续学习更复杂的算法,如排序算法、搜索算法等- 教师可以用更具挑战性的任务来培养学生的算法思维和问题解决能力通过本教案的设计,学生可以初步了解算法的概念和应用,并能够通过编写简单的程序来实现算法。
湖北省高三数学下册 第一单元《算法初步》全套教案
分
难点
析
教学流程与教学内 容
一、复习引入:
上一节课我们学习了什么?今天我们继续学习第三种算法的基本逻辑结构——循环结构。
二、新课:
1、循环结构的定义:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是
循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
是 存在这样的三角形
不存在这样的三角形
结束
4、巩固练习: (ABC 层)(1)设 x 为一个正整数,规定如下运算:若 x 为奇数,则求 3x+2;若 x 为
偶数,则为 5x,写出算法,并画出程序框图。 (AB)(2)设计一个求解一元二次方程 ax2+bx+c=0 的算法,并画出程序框图表示。
5、课堂小结: 本节课主要讲述了程序框图的基本知识,包括常用的图形符号、算法的基本逻辑
2、典型例题:
例:设计一个计算 1+2+…+100 的值的算法,并画出程序框图。(学生做一做,然后教师点评)
算法分析:只需要一个累加变量和一个计数变量,将累加变量的初始值为 0,计数变量的值可以从
1 到 100。
程序框图:
框之间是按从上到下的顺序进行的。
例 1:已知一个三角形的三边分别为 2、3、4,利用海伦公式设计一个算法,求出
它的面积,并画出算法的程序框图。(学生做一做,然后老师点评)
算法分析:这是一个简单的问题,只需先算出 p 的值,再将它代入公式,最后输
出结果,只用顺序结构就能够表达出算法。
程序框图:
开始
输入 a,b,c P=(a+b+c)/2
教 算法的特性不宜面面俱到,强调前三点:(1)有穷性;(2)确定性;(3)顺序
人教版高中必修3(B版)第一章算法初步教学设计
人教版高中必修3(B版)第一章算法初步教学设计教学背景本设计是为人教版高中必修3(B版)第一章——算法初步编写的,旨在让学生在学习计算机基本概念的同时,掌握算法的概念、基本算法及计算复杂度分析。
教学目标•了解算法的概念及其在计算机上的应用;•掌握算法的一些基本的思想方法和算法模板;•能够分析算法的时间、空间复杂度。
教学内容知识点1.算法基本概念2.时间、空间复杂度分析3.基本算法——贪心、分治和动态规划教学方式本课程主要采用授课法和案例演示法相结合的方式进行教学。
教学步骤第一步:算法基本概念1.讲解算法的定义、特性、应用等内容。
2.通过一些简单的例子,让学生理解什么是算法。
第二步:时间、空间复杂度分析1.介绍时间复杂度和空间复杂度的概念及分析方法。
2.通过一些实例演示,让学生能够对算法的复杂度进行分析。
第三步:基本算法——贪心1.介绍贪心算法的思想。
2.通过一些案例,让学生了解贪心算法的应用场景。
3.给学生一些练习题,巩固对贪心算法思路的掌握。
第四步:基本算法——分治1.介绍分治算法的思想。
2.通过一些案例,让学生了解分治算法的应用场景。
3.给学生一些练习题,巩固对分治算法思路的掌握。
第五步:基本算法——动态规划1.介绍动态规划算法的思想。
2.通过一些案例,让学生了解动态规划算法的应用场景。
3.给学生一些练习题,巩固对动态规划算法思路的掌握。
第六步:课堂小结1.小结本节课所学内容。
2.引导学生思考如何对不同场景下的问题选择合适的算法,扩展学生的算法思维。
教学评估1.每个章节结束后进行小测试,测试学生掌握的知识点。
2.每个章节最后留出时间给学生提问和互动交流。
3.在完成练习题后,对学生提交的答案进行点评和改进。
结束语本教学设计注重启发学生思考能力,通过案例演示和举例分析的方式,激发学生对算法和计算机的兴趣,提高对算法的理解和能力。
《算法初步》单元教学设计
《算法初步》单元教学设计一、单元教学内容(1)算法的基本概念(2)算法的基本结构:顺序、条件、循环结构(3)算法的基本语句:输入、输出、赋值、条件、循环语句二、单元教学内容分析算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,*古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、*作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要*和有效*,发展有条理的思考与表达的能力,提高逻辑思维能力三、单元教学课时安排:1、算法的基本概念3课时2、程序框图与算法的基本结构5课时3、算法的基本语句2课时四、单元教学目标分析1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义2、通过模仿、*作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。
3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。
4、通过阅读*古代数学中的算法案例,体会*古代数学对世界数学发展的贡献。
五、单元教学重点与难点分析1、重点(1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题2、难点(1)程序框图(2)变量与赋值(3)循环结构(4)算法设计六、单元总体教学方法本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。
采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
七、单元展开方式与特点1、展开方式自然语言→程序框图→算法语句2、特点(1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)**处理多样选择八、单元教学过程分析1.算法基本概念教学过程分析对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法初步》单元教学设计
一、单元教学内容
(1)算法的基本概念
(2)算法的基本结构:顺序、条件、循环结构
(3)算法的基本语句:输入、输出、赋值、条件、循环语句
二、单元教学内容分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力
三、单元教学课时安排:
1、算法的基本概念3课时
2、程序框图与算法的基本结构5课时
3、算法的基本语句2课时
四、单元教学目标分析
1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义
2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。
3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。
4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
五、单元教学重点与难点分析
1、重点
(1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题
2、难点
(1)程序框图(2)变量与赋值(3)循环结构(4)算法设计
六、单元总体教学方法
本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。
采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
七、单元展开方式与特点
1、展开方式
自然语言→程序框图→算法语句
2、特点
(1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合
一横向贯通(4)弹性处理多样选择
八、单元教学过程分析
1. 算法基本概念教学过程分析
对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。
2.算法的流程图教学过程分析
对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。
3. 基本算法语句教学过程分析
经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。
能用自然语言、流程图和基本算法语句表达算法,
4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
九、单元评价设想
1.重视对学生数学学习过程的评价
关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
2.正确评价学生的数学基础知识和基本技能
关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。
算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法。