高考全国卷Ⅲ理科数学及答案
2018新课标全国卷3高考理科数学试题及答案解析
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2005年高考数学试卷及答案
2005年高考理科数学全国卷Ⅲ试题及答案(四川陕西甘肃等地区用)源头学子小屋本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:(本大题共12个小题,每小题5分,共60分1.已知α是第三象限的角,则2α是( ). A.第一或二象限的角 B.第二或三象限的角 C.第一或三象限的角 D.第二或四象限的角2. 已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m 的值为( ).A.0B.-8C.2D.10 3.在(x-1)(x+1)8的展开式中x 5的系数是( )A.-14B.14C.-28D.284.设三棱柱ABC-A 1B 1C 1的体积是V ,P.Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )A.V 61B.V 41C.V 31D.V 21 5.)3x 4x 22x 3x 1(lim 221x +--+-→=( )A.-21B.21C.-61D.61 6.若55ln ,33ln ,22ln ===c b a ,则( ) A.a<b<c B.c<b<a C.c<a<b D.b<a<c 7.设0≤x<2π,且x 2sin 1-=sinx-cosx, 则( )A.0≤x ≤πB.4π≤x ≤47π C.4π≤x ≤45π D.2π≤x ≤23π 8.=∙+xx x x 2cos cos 2cos 12sin 22( ) A.tanx B.tan2x C.1 D.219.已知双曲线1222=-y x 的焦点为F 1.F 2,点M 在双曲线上且021=∙MF ,则点M 到x 轴的距离为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A.34B.35C.332 D.3 10.设椭圆的两个焦点分别为F 1.F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若三角形F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A.22 B.212- C.22- D.12- 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )个 A.3 B.4 C.6 D.7 12.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号这些符号与十进制的数的对应关系如下表:例如用十六进制表示:E+D=1B ,则A ×B=()A.6EB.72C.5FD.B0二、填空题: 本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13.已知复数z 0=3+2i, 复数z 满足z ∙z 0=3z+z 0,则z=14.已知向量),10,k (OC ),5,4(OB ),12,k (OA -==,且A.B.C 三点共线,则k= . 15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取-22,-3,-25,0,25,3, 22, 用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ=16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则P 到AC.BC 距离的的乘积的最大值是 三、解答题(共76分) 17.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.1251)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形, 平面V AD ⊥底面ABCD 1)求证AB ⊥面V AD ;2)求面VAD 与面VDB 所成的二面角的大小.19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n的通项k n21.(本小题满分14分)设()11,y x A .()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; 2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围2005年高考理科数学全国卷Ⅲ试题及答案(必修+选修Ⅱ) (四川陕西甘肃等地区用)参考答案13.12-14.315.716.317.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.1251)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?解:记“甲机器需要照顾”为事件A ,“乙机器需要照顾”为事件B ,“丙机器需要照顾”为事件C ,由题意三个事件互不影响,因而A ,B ,C 互相独立(1)由已知有:P (A ∙B )= P(A)∙P(B)=0.05,P (A ∙C )= P(A)∙P(C)=0.1P (C ∙B )= P(B)∙P(C)=0.125 解得P (A )=0.2, P(B)=0.25, P(C)=0.5,所以甲.乙.丙三台机器在这一个小时内各自需要照顾的概率分别为0.2;0.25;0.5.(2)记事件A 的对立事件为A ,事件B 的对立事件为B ,事件C 的对立事件为C , 则P(A )=0.8, P(B )=0.75, P(C )=0.5,于是P(A+B+C)=1-P(A ∙B ∙C )=1-P(A )∙P(B )∙P(C )=0.7. 故在这一个小时内至少有一台需要照顾的概率为0.7.18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面VAD ⊥底面ABCD 1)求证AB ⊥面VAD ;2)求面VAD 与面VDB 所成的二面角的大小.证法一:(1)由于面VAD 是正三角形,设AD 的中点为E ,则VE⊥AD ,而面VAD ⊥底面ABCD ,则VE ⊥AB又面ABCD 是正方形,则AB ⊥CD ,故AB ⊥面VAD (2)由AB ⊥面VAD ,则点B 在平面VAD 内的射影是A ,设VD 的中点为F ,连AF ,BF 由△VAD 是正△,则AF ⊥VD ,由三垂线定理知BF ⊥VD ,故∠AFB 是面VAD 与面VDB 所成的二面角的平面角设正方形ABCD 的边长为a ,则在Rt △ABF 中,,AB=a, AF=23a ,tan ∠AFB =33223==a a AF AB 故面VAD 与面VDB 所成的二面角的大小为arctan证明二:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………1分建立如图空间直角坐标系,并设正方形边长为1,………2分则A (12,0,0),B (12,1,0),C (-12,1,0),D (-12,0,0),V (0,0,∴1(0,1,0),(1,0,0),(,0,)22AB AD AV ===-……3分 由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥…………4分13(0,1,0)(,0,)02AB AV AB AV ⋅=⋅-=⇒⊥……5分又AB ∩AV=A ∴AB ⊥平面VAD …………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量……………………7分设(1,,)n y z =是面VDB 的法向量,则110(1,,)(,1,0(1,1,220(1,,)(1,1,0)03x n VB y zn z n BD y z=-⎧⎧⎧⋅=⋅--=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=-⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分 ∴(0,1,0)(1,1,cos ,3AB n ⋅-<>==11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos7……12分 (II )证法三:由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量…………………7分设平面VDB 的方程为mx+ny+pZ+q=0,将V.B.D 三点的坐标代入可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=++023021021q p q m q n m 解之可得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==qp qn q m3222令q=,21则平面VDB 的方程为x-y+33Z+21=0 故平面VDB 的法向量是)33,1,1(-=………………………………9分 ∴(0,1,0)(1,1,cos ,3AB n ⋅-<>==11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos 7……12分19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值 解:(1)由B cos 43=得:47sin =B由ac b =2及正弦定理得:C A B sin sin sin 2= 于是:()BC A C A A C A C C C A A C A 2sin sin sin sin sin cos cos sin sin cos sin cos cot cot +=+=+=+ 774sin 1sin sin 2===BB B (2)由23=⋅得:23cos =⋅B ac ,因B cos 43=,所以:2=ac ,即:2=b 由余弦定理B ac c a b cos 2222⋅-+=得:5cos 2222=⋅+=+B ac b c a于是:()9452222=+=++=+ac c a c a故:c a +=20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n的通项k n解:由题意得:4122a a a =……………1分 即)3()(1121d a a d a +=+…………3分又0,d ≠d a =∴1…………4分 又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===dda a q ,………6分 所以113+⋅=n k a a n ………8分又11)1(a k d k a a n n k n =-+=……………………………………10分13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分21.(本小题满分14分)设()11,y x A 、()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线(1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围注:本小题主要考察直线与抛物线等基础知识,考察逻辑推理能力和综合分析、解决问题的能力解法一:(1)⇔=⇔∈FB FA l F A 、B 两点到抛物线的准线的距离相等 因为:抛物线的准线是x 轴的平行线,0≥i y ()2,1=i ,依题意1y 、2y 不同时为0 所以,上述条件等价于()()02121222121=-+⇔=⇔=x x x x x x y y ;注意到:21x x ≠,所以上述条件等价于021=+x x即:当且仅当021=+x x 时,直线l 经过抛物线的焦点F(2)设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以1x 、2x 满足方程02122=-+m x x ,即4121-=+x x A 、B 为抛物线上不同的两点等价于上述方程的判别式0841>+=∆m ,也就是:32>m 设AB 的中点H 的坐标为为()00,y x ,则有:812210-=+=x x x ,m m x y +=+-=161200 由l H ∈得:b m +-=+41161,于是:32321165165=->+=m b 即:l 在y 轴上截距的取值范围是⎝⎛+∞,329 .解法二:(Ⅰ)∵抛物线22x y =,即41,22=∴=p y x , ∴焦点为1(0,)8F …………………………………………1分 (1)直线l 的斜率不存在时,显然有021=+x x ………………3分 (2)直线l 的斜率存在时,设为k ,截距为b即直线l :y=kx+b 由已知得:12121212221k bk y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩……5分 2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩ 22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩………7分 2212104b x x ⇒+=-+≥14b ⇒≥ 即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F ……………9分(II)解:设直线l 的方程为:y=2x+b,故有过AB 的直线的方程为m x 21y +-=,代入抛物线方程有2x 2+m x 21-=0, 得x 1+x 2=-41.由A.B 是抛物线上不同的两点,于是上述方程的判别式0m 841>+=∆,即321m -> 由直线AB 的中点为)2,2(2121y y x x ++=)m 161,81()m x 21,81(0+-=+--, 则,b 41m 161+-=+ 于是.329321165m 165b =->+= 即得l 在y 轴上的截距的取值范围是,329(+∞22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围解: (1)对函数f(x)=],1,0[x ,x 27x 42∈--求导,得f ’(x)=,)x 2()7x 2)(1x 2()x 2(716x 4222----=--+-,令f ’(x)=0解得x=21或x=27. 当x 变化时,f ’(x), f(x)的变化情况如下表所示:所以,当)21,0(x ∈时,f(x)是减函数;当)1,21(x ∈时,f(x)是增函数当]1,0[x ∈时,f(x)的值域是[-4,-3](II )对函数g(x)求导,则g ’(x)=3(x 2-a 2).因为1a ≥,当)1,0(x ∈时,g ’(x)<5(1-a 2)≤0, 因此当)1,0(x ∈时,g(x)为减函数,从而当x ∈[0,1]时有g(x)∈[g(1),g(0)],又g(1)=1-2a-3a 2,g(0)=-2a,即当x ∈[0,1]时有g(x)∈[1-2a-3a 2,-2a],任给x 1∈[0,1],f(x 1)∈[-4,-3],存在x 0∈[0,1]使得g(x 0)=f(x 1),则[1-2a-3a 2,-2a]]3,4[--⊃,即⎩⎨⎧-≥--≤--3a 24a 3a 212 ②①,解①式得a ≥1或a 35-≤,解②式得23a ≤, 又1a ≥,故a 的取值范围内是23a 1≤≤.。
2021年全国高考真题全国三卷理科数学(word版附答案)
2021年全国高考真题全国三卷理科数学(word版附答案)2021年普通高等学校招生全国统一考试全国三卷理科数学(word版附答案)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1,2?,则A1.已知集合A??x|x?1≥0?,B??0,A.?0?B.?1?B?2? C.?1,1,2? D.?0,2.?1?i??2?i?? A.?3?iB.?3?iC.3?i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是14.若sin??,则cos2??3A.5 B.7 9 C.?7 9 D.?8 92??5.?x2??的展开式中x4的系数为x??A.10 B.20 C.402 D.806.直线x?y?2?0分别与轴,轴交于A,B两点,点P在圆?x?2??y2?2上,则△ABP面积的取值范围是6? A.?2,8? B.?4,?C.??2,32??D.??22,32?7.函数y??x4?x2?2的图像大致为8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX?2.4,P?X?4??P?X?6?,则p? A.0.7C.0.4D.0.3a2?b2?c29.△ABC的内角A,B,C的对边分别为,,,若△ABC的面积为,则C?4ππππA. B. C. D.2346C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积10.设A,B,为93,则三棱锥D?ABC体积的最大值为 A.123B.183C.243D.543x2y2b?0)的左、右焦点,O是坐标原点.过F211.设F1,F2是双曲线C:2?2?1(a?0,ab作C的一条渐近线的垂线,垂足为P.若PF1?6OP,则C的离心率为 A.5B.2C.3D.212.设a?log0.20.3,b?log20.3,则A.a?b?ab?0B.ab?a?b?0C.a?b?0?ab D.ab?0?a?b二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=?1,2?,b=?2,?2?,c=?1,λ?.若c∥?2a+b?,则??________.1?处的切线的斜率为?2,则a?________. 14.曲线y??ax?1?ex在点?0,π??π?的零点个数为________. 15.函数f?x??cos?3x??在?0,6??1?和抛物线C:y2?4x,过C的焦点且斜率为的直线与C交于A,B两16.已知点M??1,点.若∠AMB?90?,则k?________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)a5?4a3.等比数列?an?中,a1?1,(1)求?an?的通项公式;(2)记Sn为?an?的前项和.若Sm?63,求m. 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:第一种生产方式第二种生产方式超过m 不超过m (3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K?2n?ad?bc?2?a?b??c?d??a?c??b?d?,P?K2≥k? 0.050 0.010 19.(12分)3.841 0.001 6.635 10.828 如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M?ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.20.(12分)x2y2已知斜率为的直线与椭圆C:??1交于A,B两点,线段AB的中点为43M?1,m??m?0?.1(1)证明:k??;2(2)设F为C的右焦点,P为C上一点,且FP?FA?FB?0.证明:FA,FP,FB成等差数列,并求该数列的公差. 21.(12分)已知函数f?x???2?x?ax2?ln?1?x??2x.(1)若a?0,证明:当?1?x?0时,f?x??0;当x?0时,f?x??0;(2)若x?0是f?x?的极大值点,求.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4―4:坐标系与参数方程](10分)?x?cos?,⊙O的参数方程为?在平面直角坐标系xOy中,(为参数),过点0,?2y?sin????且倾斜角为?的直线与⊙O交于A,B两点.(1)求?的取值范围;(2)求AB中点P的轨迹的参数方程. 23.选修4―5:不等式选讲](10分)设函数f?x??2x?1?x?1.(1)画出y?f?x?的图像;???,f?x?≤ax?b,求a?b的最小值.(2)当x∈?0,参考答案:1 C2 D3 A4 B5 C6 A7 D8 B9 C 10 B 11 C 12 B感谢您的阅读,祝您生活愉快。
高中高考全国卷Ⅲ理科数学包括答案.docx
WORD格式2019 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改,用橡动皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A{x|1 ,0,1,2} ,2B{x|x ≤ 1},则 A∩B=A.{ - 1, 0, 1}B . {0 , 1}C. { - 1, 1}D . {0 , 1, 2}2.若 z(1i)2i,则zA.- 1- iB .- 1+ iC . 1- iD . 1+ i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机了查调100 位学生,其中阅读过《西游记》和《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的计估为值A.0.5B . 0.6C . 0.7D . 0.84.243(12x)(1x)的展开式中x 的系数为A.12B. 16C. 20D. 245.已知各项为正数的等比数列 { a n} 的前 4 项和为 15,且 a53a34a1,则 a3 A.16B. 8C. 4D. 2x6.已知曲线yaexlnx 在点 (1 , ae) 处的切线方为程y2xb ,则A.ae, b1B.ae, b1专业资料整理WORD格式理科数学试题第 1 页(共 4 页)专业资料整理WORD格式-1-1 C.ae, b1D.ae, b137.函数2xy 在 [6,6]的图象大致为xx228.如图,点N 为正方形ABCD的中心,△ ECD为正三角形,平面ECD⊥平面 ABCD, M是线段 ED的中点,则A. BM= EN,且直线 BM, EN是相交直线B. BM≠EN,且直线BM, EN是相交直线C. BM= EN,且直线 BM, EN是异面直线D. BM≠EN,且直线BM, EN是异面直线9.执行右边的程序框图,如果输入的为0.01 ,则输出s 的值为A.21 4 2B. 21 5 2C. 21 6 2D. 21722210.双曲线 C:xy1 的右焦点为 F,点 P 在 C 的一条渐近线上, O为42坐标原点.若 |PO||PF|,则△ PFO的面积为A.32. 32 42C . 22D . 3211.设 f(x)是定义域为 R 的偶函数,且在 (0 ,+) 单调递减,则3223A .11 2332f(log)f(2)f(2)B . f(log)f(2)f(2).3 3 44 C 32 2323 1132 f(2)f(2)f(log)D . f(2)f(2)f(log)3 34 412.设函数 ()sin()(0)fxx ,已知 f(x) 在 [0 ,2] 有且仅有 5 个零点,下列四个结论: 5① f (x) 在 (0 ,2) 有且仅有 3 个极大值点②f(x) 在 (0 ,2) 有且仅有 2 个极小值点专业资料整理WORD格式③f(x) 在 (0 ,) 单调递增101229④在取值范围是[ , )510理科数学试题第 2 页(共 4 页)专业资料整理WORD格式其中所有正确结论的编号是A.①④ B.②③ C.①②③ D.①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2018年高考数学全国卷三理科试题(附答案)
2018年高考数学全国卷三理科试题(附答案) 2018年高考数学全国卷三理科考试已经落下帷幕,本试卷为考生带来了挑战,让大家从中更加深入的了解数学知识,本试卷的答案让大家从中收获了成长。
2018年高考数学全国卷三理科试题2018年高考数学全国卷三理科试题出炉,考生们做好了准备,及时解决遇到的问题,取得优异的成绩。
本次全国卷三包括4个部分组成,分别是选择题、填空题、解答题和分析题。
如下:一、选择题1. 若集合A={x|-2≤x≤2},集合B={x|x2<4},则A∩B= (A) {-2,2} (B) {-2,0,2} (C) {-1,1} (D) {0,2}2. 若平面上的两个点的坐标分别A(2,3),B(4,-3),那么它们之间的距离是(A)2(B)5(C)7(D)63. 若复数z1=1-i,z2=1+i,则z1、z2的共轭复数分别为(A)1-i,1+i(B)1+i,1-i(C)-1+i,-1-i(D)-1-i,-1+i4. 若函数y=3x3-6x2+9x+3在x=2处取得极值,则极大值为(A)-12(B)-9(C)15(D)185. 若两个圆O1,O2的半径分别是6,9,则O1, O2相切的条件是(A)r1=r2(B)r1+r2=15(C)r1-r2=3(D)r1+r2=3二、填空题1. 下列各式中,(1+√5)5次方的展开式中,常数项为a_1r_1+a_3r_3+a_5r_5,其中a_1,a_3,a_5分别为______,_______,_______。
答案:a_1=5 ; a_3=-5 ; a_5=12.函数f (x)=2x2+8x+9,x≤1时的最大值为_________。
答案:13三、解答题1.求实数a,b满足等式|a-3|-|b+3|=4的解。
答:解得a=-1、b=-72.曲线y=x3+3x2+3x+c的图象经过点(1,1),求参数c的值。
答:设y=x3+3x2+3x+c设点P(1,1)在曲线上,即1=1+3+3+cc=0四、分析题1.已知实数x,y满足约束条件2x+y≤12,x,y≥0,求此约束条件下的最大值。
2019年高考理科数学全国卷3含答案
数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B = ()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则=z ()A .1i--B .1+i-C .1i-D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.84.()()42121++x x 的展开式中3x 的系数为()A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134=+a a a ,则3=a ()A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点1(,)ae 处的切线方程为2=+y x b ,则()A.–1==,a e bB.1==,a e b C.–11==,a e b D.–11==-a e b ,7.函数3222xxx y -=+在[]6,6-的图象大致为()A.B.C .D.8.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,⊥平面平面ECD ABCD ,M 是线段ED 的中点,则()A.=BM EN ,且直线,BM EN 是相交直线B.≠BM EN ,且直线,BM EN 是相交直线C.=BM EN ,且直线,BM EN 是异面直线D.≠BM EN ,且直线,BM EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于()毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则PFO△的面积为()A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则()A .23323log 1224ff f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>B .23323124l 2og f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭>>C .23332124log 2f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>D .23323lo 122g 4f f f--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>12.设函数()si 5n f x x ωπ+⎛⎫= ⎪⎝⎭()0ω>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b 为单位向量,且·0=a b,若2=-c a ,则cos ,=a c .14.记n S 为等差数列{}n a 的前n 项和,12103a a a =≠,,则105S S =.15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥-O EFGH 后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为30.9 g/cm ,不考虑打印损耗,制作该模型所需原料的质量为g.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析
2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷Ⅲ卷理科数学(含答案)(2021年整理精品文档)
(完整版)2018年高考全国卷Ⅲ卷理科数学(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年高考全国卷Ⅲ卷理科数学(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年高考全国卷Ⅲ卷理科数学(含答案)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}012=-≥,{}B=,,,则A B=|10A x xA.{}0B.{}1C.{},,012,D.{}122.()()+-=1i2iA.3i-+C.3i-D.3i+--B.3i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0。
2019年高考真题——理科数学(全国卷Ⅲ)附答案解析
2019年普通高等学校招生全国统一考试(全国 III 卷)理科数学一.选择题1、已知集合}1|{},2,1,0,1{2≤=-=x x B A ,则=⋂B A ( ) A. }1,0,1{- B. B.{0,1} C. C.}1,1{- D. D.}2,1,0{ 答案: A解答:}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .2.若i i z 2)1(=+,则=z ( ) A.i --1 B.i +-1 C.i -1 D.i +1 答案: D 解答:i i z 2)1(=+,i i i i i i i i i z +=-=-+-=+=1)1()1)(1()1(212. 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.5.0 B.6.0 C.7.0 D.8.0 答案:C解答:7.0100608090=+-4.42)1)(21(x x ++的展开式中3x 的系数为( )A.12B.16C.20D.24 答案: A解答:由题意可知含3x 的项为33142334121211x x C x x C =⋅⋅⋅+⋅⋅⋅,所以系数为12.5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =() A. 16 B. 8 C. 4 D. 2 答案: C解答:设该等比数列的首项1a ,公比q ,由已知得,4211134a q a q a =+, 因为10a >且0q >,则可解得2q =,又因为231(1)15a q q q +++=,即可解得11a =,则2314a a q ==.6. 已知曲线x x ae y xln +=在点)1(ae ,处的切线方程为b x y +=2,则( ) A.e a =,1-=b B.e a =,1=b C.1-=e a ,1=b D.1-=e a ,1-=b 答案: D解析:令x x ae x f xln )(+=,则1ln )(++='x ae x f x,21)1(=+='ae f ,得11-==e ea .b ae f +==2)1(,可得1-=b .故选D.7.函数3222x xx y -=+在[6,6]-的图像大致为( ) A.B.C.D.答案: B解析:∵32()22x x x y f x -==+,∴332()2()()2222x x x xx x f x f x ----==-=-++,∴()f x 为奇函数,排除选项 C.又∵334442424(4)8222f -⨯⨯=≈=+,根据图像进行判断,可知选项B 符合题意. 8.如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则( )A.,且直线,是相交直线 B.,且直线,是相交直线 C.,且直线,是异面直线 D.,且直线,是异面直线答案: B解析: 因为直线,都是平面内的直线,且不平行,即直线,是相交直线,设正方形的边长为,则由题意可得:,根据余弦定理可得:,,所以,故选B.9.执行右边的程序框图,如果输出为,则输出的值等于()A.B.C.D.答案:C解析:第一次循环:;第二次循环:;第三次循环:;第四次循环:;…第七次循环:,此时循环结束,可得.故选C.10. 双曲线C :22142x y -=的右焦点为F ,点P 为C 的一条渐近线的点,O 为坐标原点.若||||PO PF =则PFO ∆的面积为( )A: 4B:2C:D:答案: A解析:由双曲线的方程22042x y -=可得一条渐近线方程为2y x =;在PFO ∆中||||PO PF =过点P 做PH 垂直OF 因为tan POF=2∠得到PO =;所以124S PFO ∆==;故选A;11. 若()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A. 233231(log )(2)(2)4f f f -->> B. 233231(log )(2)(2)4f f f -->> C. 233231(2)(2)(log )4f f f -->> D.233231(2)(2)(log )4f f f -->>答案: C 解析:依据题意函数为偶函数且函数在(0,)+∞单调递减,则函数在(,0)-∞上单调递增;因为3331(log )(log 4)(log 4)4f f f =-=;又因为233230221log 4--<<<<;所以233231(2)(2)(log )4f f f -->>;故选C.12.设函数()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点,下述四个结论: ○1()f x 在()0,2π有且仅有3个极大值点 ○2()f x 在()0,2π有且仅有2个极小值点 ○3()f x 在0,10π⎛⎫⎪⎝⎭单调递增 ○4ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A. ○1○4B.○2○3C.○1○2○3D.○1○3○4 答案: D解析:根据题意,画出草图,由图可知[)122,x x π∈,由题意可得,125565x x πωππωπ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12245295x x πωπω⎧=⎪⎪⎨⎪=⎪⎩,所以2429255πππωω≤<,解得1229510ω≤<,故○4对; 令52x ππω+=得3010x πω=>,∴图像中y 轴右侧第一个最值点为最大值点,故○1对; ∵[)122,x x π∈,∴()f x 在()0,2π有2个或3个极小值点,故○2错; ∵1229510ω≤<,∴1149251051002πππππω≤⋅+<<,故○3对. 二.填空题13.已知a ,b 为单位向量,且0a b ⋅=,若25c a b =-,则cos ,a c = . 答案:23解析:∵()22222545459c a ba b a b =-=+-⋅=,∴3c =,∵()225252a c a a b a a b ⋅=⋅-=-⋅=,∴22cos ,133a c a c a c⋅===⨯⋅. 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 答案:4解析:设该等差数列的公差为d ,∵213a a =,∴113a d a +=,故()1120,0d a a d =≠≠,∴()()()1101101551102292102452452a a a d S d a a S a d d++⨯====++.15.设1F 、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________. 答案:)15,3(解析:已知椭圆1203622=+y x C :可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形21F MF ∆中8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M ,代入1203622=+y x C :可得3=M x .故M 的坐标为)15,3(. 16.学生到工厂劳动实践,利用3D 打印技术制作模型。
2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.(5分)复数的虚部是()A .﹣B .﹣C .D .3.(5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(5分)已知向量,满足||=5,||=6,•=﹣6,则cos <,+>=()A .﹣B .﹣C .D .7.(5分)在△ABC中,cos C =,AC=4,BC=3,则cos B=()A .B .C .D .8.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.(5分)已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.(5分)若直线l与曲线y =和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x +C.y =x+1D.y =x +11.(5分)设双曲线C :﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.(5分)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
历年高考数学真题-2005年高考理科数学全国卷Ⅲ试题及答案(四川、陕西、云南、甘肃等地区用)
2005年高考理科数学全国卷Ⅲ试题及答案(四川陕西甘肃等地区用)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:(本大题共12个小题,每小题5分,共60分在每小题所给的四个答案中有且只有一个答案是正确的)1.已知α是第三象限的角,则2α是( ). A.第一或二象限的角 B.第二或三象限的角 C.第一或三象限的角 D.第二或四象限的角2. 已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m 的值为( ).A.0B.-8C.2D.10 3.在(x-1)(x+1)8的展开式中x 5的系数是( )A.-14B.14C.-28D.284.设三棱柱ABC-A 1B 1C 1的体积是V ,P.Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )A.V 61B.V 41C.V 31D.V 21 5.)3x 4x 22x 3x 1(lim 221x +--+-→=( )A.-21B.21C.-61D.61 6.若55ln ,33ln ,22ln ===c b a ,则( ) A.a<b<c B.c<b<a C.c<a<b D.b<a<c 7.设0≤x<2π,且x 2sin 1-=sinx-cosx, 则( )A.0≤x ≤πB.4π≤x ≤47π C.4π≤x ≤45π D.2π≤x ≤23π 8.=∙+xx x x 2cos cos 2cos 12sin 22( ) 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A.tanxB.tan2xC.1D.21 9.已知双曲线1222=-y x 的焦点为F 1.F 2,点M 在双曲线上且021=∙MF MF ,则点M 到x 轴的距离为( )A.34 B.35 C.332 D.3 10.设椭圆的两个焦点分别为F 1.F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若三角形F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A.22 B.212- C.22- D.12- 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )个 A.3 B.4 C.6 D.712.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号这些符号与十进制的数的对应关系如下表:A.6EB.72C.5FD.B0二、填空题: 本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13.已知复数z 0=3+2i, 复数z 满足z ∙z 0=3z+z 0,则z= 14.已知向量),10,k (OC ),5,4(OB ),12,k (OA -==,且A.B.C 三点共线,则k= . 15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取-22,-3,-25,0,25,3, 22, 用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ= 16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则P 到AC.BC 距离的的乘积的最大值是 三、解答题(共76分) 17.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.125 1)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形,平面V AD ⊥底面ABCD 1)求证AB ⊥面V AD ;2)求面VAD 与面VDB 所成的二面角的大小.19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n 的通项k n21.(本小题满分14分)设()11,y x A .()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; 2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围2005年高考理科数学全国卷Ⅲ试题及答案(必修+选修Ⅱ) (四川陕西甘肃等地区用)参考答案13.12i -14.3-15.716.317.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.125 1)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?解:记“甲机器需要照顾”为事件A ,“乙机器需要照顾”为事件B ,“丙机器需要照顾”为事件C ,由题意三个事件互不影响,因而A ,B ,C 互相独立(1)由已知有:P (A ∙B )= P(A)∙P(B)=0.05,P (A ∙C )= P(A)∙P(C)=0.1P (C ∙B )= P(B)∙P(C)=0.125 解得P (A )=0.2, P(B)=0.25, P(C)=0.5,所以甲.乙.丙三台机器在这一个小时内各自需要照顾的概率分别为0.2;0.25;0.5.(2)记事件A 的对立事件为A ,事件B 的对立事件为B ,事件C 的对立事件为C , 则P(A )=0.8, P(B )=0.75, P(C )=0.5,于是P(A+B+C)=1-P(A ∙B ∙C )=1-P(A )∙P(B )∙P(C )=0.7. 故在这一个小时内至少有一台需要照顾的概率为0.7.18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面VAD ⊥底面ABCD 1)求证AB ⊥面VAD ;2)求面VAD 与面VDB 所成的二面角的大小.证法一:(1)由于面VAD 是正三角形,设AD 的中点为E ,则VE⊥AD ,而面VAD ⊥底面ABCD ,则VE ⊥AB 又面ABCD 是正方形,则AB ⊥CD ,故AB ⊥面VAD (2)由AB ⊥面VAD ,则点B 在平面VAD 内的射影是A ,设VD 的中点为F ,连AF ,BF 由△VAD 是正△,则AF ⊥VD ,由三垂线定理知BF ⊥VD ,故∠AFB 是面VAD 与面VDB 所成的二面角的平面角设正方形ABCD 的边长为a ,则在Rt △ABF 中,,AB=a, AF=23a ,tan ∠AFB =33223==a a AF AB故面VAD 与面VDB 所成的二面角的大小为证明二:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………1分建立如图空间直角坐标系,并设正方形边长为1,………2分 则A (12,0,0),B (12,1,0),C (-12,1,0),D (-12,0,0),V (0,0,∴1(0,1,0),(1,0,0),(2AB AD AV ===- ……3分由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥…………4分1(0,1,0)(02AB AV AB AV ⋅=⋅-=⇒⊥ ……5分又AB ∩AV=A ∴AB ⊥平面VAD …………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量……………………7分设(1,,)n y z =是面VDB 的法向量,则110(1,,)(,1,0(1,1,230(1,,)(1,1,0)0x n VB y z n z n BD y z =-⎧⎧⎧⋅=⋅-=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分∴(0,1,0)(1,cos ,3AB n ⋅-<>==11分又由题意知,面VAD 与面VDB所成的二面角,所以其大小为arccos7……12分 (II )证法三:由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量…………………7分设平面VDB 的方程为mx+ny+pZ+q=0,将V.B.D 三点的坐标代入可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=++023021021q p q m q n m 解之可得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==q p q n q m 3222令q=,21则平面VDB 的方程为x-y+33Z+21=0 故平面VDB 的法向量是)33,1,1(-=n ………………………………9分∴(0,1,0)(1,cos,7AB n⋅-<>==-11分又由题意知,面VAD与面VDB所成的二面角,所以其大小为arccos7……12分19.(本小题满分12分)ABC∆中,内角A.B.C的对边分别为a.b.c,已知a.b.c成等比数列,且Bcos4=(1)求CA cotcot+的值;(2)若23=⋅,求ca+的值解:(1)由Bcos43=得:47sin=B由acb=2及正弦定理得:CAB sinsinsin2=于是:()BCACAACACCCAACA2sinsinsinsinsincoscossinsincossincoscotcot+=+=+=+774sin1sinsin2===BBB(2)由23=⋅BCBA得:23cos=⋅Bac,因Bc os43=,所以:2=ac,即:2=b 由余弦定理Baccab cos2222⋅-+=得:5cos2222=⋅+=+Bacbca于是:()9452222=+=++=+accaca故:ca+=20.(本小题满分12分)在等差数列{a n}中,公差d≠0,且a2是a1和a4的等比中项,已知a1,a3,,a,a,a,an321kkkk成等比数列,求数列k1,k2,k3,…,k n的通项k n解:由题意得:4122aaa=……………1分即)3()(1121daada+=+…………3分又0,d≠da=∴1…………4分又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===dd a a q ,………6分 所以113+⋅=n k a a n ………8分又11)1(a k d k a a n n k n =-+=……………………………………10分13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分21.(本小题满分14分)设()11,y x A 、()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线(1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围注:本小题主要考察直线与抛物线等基础知识,考察逻辑推理能力和综合分析、解决问题的能力解法一:(1)⇔=⇔∈FB FA l F A 、B 两点到抛物线的准线的距离相等 因为:抛物线的准线是x 轴的平行线,0≥i y ()2,1=i ,依题意1y 、2y 不同时为0 所以,上述条件等价于()()02121222121=-+⇔=⇔=x x x x x x y y ;注意到:21x x ≠,所以上述条件等价于21=+x x即:当且仅当021=+x x 时,直线l 经过抛物线的焦点F(2)设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以1x 、2x 满足方程02122=-+m x x ,即4121-=+x x A 、B 为抛物线上不同的两点等价于上述方程的判别式0841>+=∆m ,也就是:32>m AB 的中点H 的坐标为为()00,y x ,则有:812210-=+=x x x ,m m x y +=+-=161200由l H ∈得:b m +-=+41161,于是:32321165165=->+=m b 即:l 在y 轴上截距的取值范围是⎝⎛+∞,329 .解法二:(Ⅰ)∵抛物线22x y =,即41,22=∴=p y x , ∴焦点为1(0,)8F …………………………………………1分 (1)直线l 的斜率不存在时,显然有021=+x x ………………3分 (2)直线l 的斜率存在时,设为k ,截距为b即直线l :y=kx+b 由已知得:12121212221k bk y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩……5分 2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩ 22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩………7分 2212104b x x ⇒+=-+≥14b ⇒≥ 即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F ……………9分 (II)解:设直线l 的方程为:y=2x+b,故有过AB 的直线的方程为m x 21y +-=,代入抛物线方程有2x 2+m x 21-=0, 得x 1+x 2=-41.由A.B 是抛物线上不同的两点,于是上述方程的判别式0m 841>+=∆,即321m -> 由直线AB 的中点为)2,2(2121y y x x ++=)m 161,81()m x 21,81(0+-=+--, 则,b 41m 161+-=+ 于是.329321165m 165b =->+= 即得l 在y 轴上的截距的取值范围是,329(+∞22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围解: (1)对函数f(x)=],1,0[x ,x27x 42∈--求导,得f ’(x)=,)x 2()7x 2)(1x 2()x 2(716x 4222----=--+-,令f ’(x)=0解得x=1或x=7. 当x 变化时,f ’(x), f(x)的变化情况如下表所示:所以,当)21,0(x ∈时,f(x)是减函数;当)1,21(x ∈时,f(x)是增函数当]1,0[x ∈时,f(x)的值域是[-4,-3](II )对函数g(x)求导,则g ’(x)=3(x 2-a 2).因为1a ≥,当)1,0(x ∈时,g ’(x)<5(1-a 2)≤0, 因此当)1,0(x ∈时,g(x)为减函数,从而当x ∈[0,1]时有g(x)∈[g(1),g(0)],又g(1)=1-2a-3a 2,g(0)=-2a,即当x ∈[0,1]时有g(x)∈[1-2a-3a 2,-2a],任给x 1∈[0,1],f(x 1)∈[-4,-3],存在x 0∈[0,1]使得g(x 0)=f(x 1),则[1-2a-3a 2,-2a]]3,4[--⊃,即⎩⎨⎧-≥--≤--3a 24a 3a 212 ②①,解①式得a ≥1或a 35-≤,解②式得23a ≤, 又1a ≥,故a 的取值范围内是23a 1≤≤.。
2019年高考理数全国卷3含答案解析
()
A.
f
log3
1 4
>f
3 2 2
>f
2 2 3
B.
f
log3
1 4
>f
2 2 3
>f
3 2 2
C.
f
3 2 2
>f
2 2 3
>f
log3
1 4
D.
f
2 2 3
>f
3 2 2
>f
log3
1 4
12.设函数
f
x
sin
x
D.0,1, 2
2.若 z(1 i) 2i ,则 z
()
A. 1 i
B. 1+i
C.1 i
D.1+i
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为
中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查
了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过
2
22
7
.得
BM 7 ,所以 BM EN .连接 BD , BE ,因为四边形 ABCD 为正方形,所
以 N 为 BD 的中点,即 EN , MB 均在平面 BDE 内,所以直线 BM , EN 是相交 直线,故选B.
第9页
【考点】空间线线位置关系
【考查能力】空间想象
9.【答案】C
【解析】执行程序框图 x 1, s 0 , s 0 1 1, x 1 ,不满足 x< 1 ,
坐标.
23.[选修 4–5:不等式选讲](10 分) 设 x, y, z R ,且 x y z 1 . (1)求 (x 1)2 ( y 1)2 (z 1)2 的最小值; (2)若 (x 2)2 ( y 1)2 (z a)2≥ 1 成立,证明: a≤ 3 或 a≥1. 3
2021全国卷Ⅲ高考理科数学试卷与答案(word版)(Word最新版)
2021全国卷Ⅲ高考理科数学试卷与答案(word版)通过整理的2021全国卷Ⅲ高考理科数学试卷与答案(word版)相关文档,希望对大家有所帮助,谢谢观看!2021年普通高等学校招生全统一考试理科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合,,则(A) [2,3] (B)(- ,2] [3,+)(C) [3,+)(D)(0,2] [3,+)(2)若,则(A)(B)(C)(D)(3)已知向量BA,BC,则(A)30° (B)45° (C)60° (D)120° (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)若,则(A)(B)(C)(D)(6)已知,,,则(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的,那么输出的(A)3 否是n=0,s=0 输入a,b 输出n 开始结束a=b-a b=b-a a=b+a s=s+a,n=n+1 s>16 (B)4 (C)5 (D)6 (8)中,,边上的高等于,则(A)(B)(C)(D)(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)(B)(C)(D)(10)在封闭的直三棱柱内有一个体积为的球.若,,,,则的最大值是(A)(B)(C)(D)(11)已知为坐标原点,是椭圆:的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为(A)(B)(C)(D)(12)定义“规范01数列”如下:共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数 . 若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个第Ⅱ卷本卷包括必考题和选考题两部分。
2021高考理数真题试卷(全国Ⅲ卷)带答案解析
2021年高考理数真题试卷(全国Ⅲ卷)一、选择题:本题共12小题,每小题5分,共60分。
(共12题;共60分)1.已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A. {-1,0,1}B. {0,1}C. {-1,1}D. {0,1,2} 【答案】A【考点】交集及其运算【解析】【解答】解:∵集合A={−1,0,1,2},B={x|−1≤x≤1},则A∩B={−1,0,1},故答案为:A.【分析】先求出集合B,再利用交集的运算即可得结果.2.若z(1+i)=2i,则z=()A. -1-iB. -1+iC. 1-iD. 1+i【答案】 D【考点】复数代数形式的乘除运算【解析】【解答】解:∵z(1+i)=2i,则z=2i1+i =2i(1−i)(1+i)(1−i)=2i(1−i)2=1+i,故答案为:D.【分析】利用复数的乘除运算,即可求出复数z的代数式.3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【考点】集合中元素个数的最值【解析】【解答】解:设集合A表示阅读过《西游记》的学生,集合B表示阅读过《红楼梦》的学生,依题意,可得学生人数分别为card(A∪B)=90,card(B)=80,card(A∩B)=90,∵card(A∪B)=card(A)+card(B)−card(A∩B),∴90= card(A)+80-90,∴card(A)=70,∴该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7,故答案为:C.【分析】利用集合中元素个数的关系式card(A∪B)=card(A)+card(B)−card(A∩B)列式,得到阅读过《西游记》的学生人数,即可求出与该校学生总数比值的估计值.4.(1+2x2)(1+x)4的展开式中x3的系数为()A. 12B. 16C. 20D. 24【答案】A【考点】二项式定理的应用【解析】【解答】解:∵(1+x)4的通项公式为Tr+1=C4r x r,∴展开式中x3的系数为1×C43+2×C41=4+8=12,故答案为:A.【分析】由已知利用(1+x)4的通项公式为Tr+1=C4r x r,结合(1+2x2)即可求出展开式中x3的系数.5.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16B. 8C. 4D. 2【答案】C【考点】等比数列的通项公式【解析】【解答】解:∵a5=3a3+4a1,则a1q4=3a1q2+4a1,∵a1≠0,∴q4−3q2−4=0,解得q2=4或q2=−1(舍),∵各项均为正数,∴q=2,又∵等比数列{a n}的前4项为和为15,∴a1(1−q4)1−q=15,解得a1=1,∴a3=a1q2=4,故答案为:C.【分析】由已知利用等比数列的通项公式列式,得到q=2,再由前4项为和为15列式,解得a1=1,即可求出a3的值.6.已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A. a=e,b=-1B. a=e,b=1C. a=e-1,b=1D. a=e-1,b=-1【答案】 D【考点】利用导数研究曲线上某点切线方程【解析】【解答】解:依题意,点(1,ae)在已知曲线y=a e x+xlnx上,∵y ′=ae x+lnx+1,∴切线的斜率k=y ′|x=1=ae+1,∵切线方程为y=2x+b,∴{ae+1=2ae=2×1+b,解得{ae=1b=−1,即a=e−1,b=−1,故答案为:D.【分析】由已知可得点(1,ae)在曲线y=a e x+xlnx上,求导并代入x=1得到切线斜率的表达式,利用切线的斜率和点(1,ae)在切线上列式,解得{ae=1b=−1即可得结果.7.函数y=2x32x+2−x,在[-6,6]的图像大致为()A. B.C. D.【答案】B【考点】函数的图象【解析】【解答】解:∵f(−x)=2(−x)32−x+2x =−2x32x+2−x=−f(x),∴此函数是奇函数,排除选项C;又∵当x=4时,f(4)=2×4324+2−4≈8,排除选项A,D,故答案为:B.【分析】先利用函数的奇偶性排除选项C,再把x=4代入求值,利用特值法排除选项A,D,即可判断得到函数的大致图象.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A. BM=EN,且直线BM、EN是相交直线B. BM≠EN,且直线BM,EN是相交直线C. BM=EN,且直线BM、EN是异面直线D. BM≠EN,且直线BM,EN是异面直线【答案】B【考点】平面的基本性质及推论【解析】【解答】解:连接BD,BE,MN,如图:∵M,N分别是线段ED,BD的中点,∴MN∥BE,∴直线MN,BE确定一个平面,∴直线BM,EN 是相交直线,设正方形ABCD的的边长为a,则DE=a,DB= √2a,∵DE≠DB,∴△BMD与△END不全等,∴BM≠EN,故答案为:B.【分析】由已知可证MN∥BE,得到直线MN,BE确定一个平面,可证直线BM,EN 是相交直线,再由△BMD与△END不全等,得到BM≠EN,即可判断得结论.9.执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于()A. 2−124B. 2−125C. 2−126D. 2−127 【答案】 C 【考点】程序框图【解析】【解答】解:执行已知程序框图,第1次: S =1,x =12 ,不满足条件,继续循环;第2次: S =1+12,x =122 ,不满足条件,继续循环;第3次: S =1+12+122,x =123 ,不满足条件,继续循环;…;第7次: S =1+12+⋯+126,x =127 ,满足条件,结束循环,输出S 的值,即 S =1−1271−12=2−126,故答案为:C.【分析】执行已知程序框图,进行循环计算,直到满足条件,结束循环,由 S =1−1271−12=2−126 ,即可求出输出S 的值. 10.双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( ) A.3√24 B. 3√22C. 2√2D. 3√2 【答案】 A【考点】双曲线的简单性质 【解析】【解答】解:∵双曲线C :x 24−y 22=1,则 a =2,b =√2 ,∴ c =√6 , F (√6,0) ,渐近线方程为 y =±√22x ,设P 在渐进线 y =√22x 上,过P 作 PM ⊥OF ,如图:∵ |PO|=|PF| ,∴△POF 是等腰三角形,∴ M (√62,0) ,代入渐进线方程 y =√22x 中,可得 |PM |=√32,∴ S △PFO=12|OF |·|PM |=3√24,故答案为:A.【分析】由已知得到F(√6,0),过P作PM⊥OF,由|PO|=|PF|,得到△POF是等腰三角形,求出|PM|=√32,即可求出△PFO的面积.11.设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A. f(log3 14)>f(2−32)>f(2−23) B. f(log3 14)>f(2−23)>f(2−32)C. f(2−32)>f(2−23)>f(log3 14) D. f(2−23)>f(2−32)>f(log314)【答案】C【考点】不等式比较大小【解析】【解答】解:∵f(x)是定义域为R的偶函数,∴f(−x)=f(x),∴f(log314)=f(−log34)= f(log34),又∵−32<−23<0,∴2−32<2−23<20=1,∵log34>log33=1,∴2−32<2−23<log34,∵f(x)在(0,∞)单调递减,∴f(2−32)>f(2−23)>f(log3 14),故答案为:C.【分析】由已知f(x)是偶函数,得到f(log314)=f(log34),利用f(x)的单调性,即可比较大小.12.设函数f(x)=sin(ωx+ π5)(ω>0),已如f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点③f(x)在(0,π10)单调递增④ω的取值范围[ 125,2910)其中所有正确结论的编号是()A. ①④B. ②③C. ①②③D. ①③④【答案】 D【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】【解答】解:由已知画出函数的大致图象,如图:由图可知f(x)在(0,2π)有且仅有3个极大值点,故①正确;2π在E,F之间,靠近点E,有且仅有2个极小值点,靠近点F,有且仅有3个极小值点,故②错误;令f(x)=0,可得E,F的横坐标分别为24π5ω,29π5ω,则24π5ω≤2π<29π5ω,解得ω的取值范围是[ 125,2910),故④正确;由④可取ω的最大值ω=3,得到函数在−π2<3x+π5<π2单调递增,即f(x)在(0,π10)单调递增,故③正确,故答案为:D.【分析】由已知画出函数的大致图象,利用图象得到①正确,②错误,再利用函数f(x)的性质得到③④正确,即可得结论.二、填空题:本题共4小题,每小题5分,共20分.(共4题;共20分)13.已知a,b为单位向量,且a-b=0,若c=2a- √5b,则cos<a,c>=________。
2022年全国卷3高考理科数学含答案详解
2021年全国卷3高考理科数学含答案详解绝密★启用前2022年普通高等学校招生全国统一考试〔新课标Ⅲ〕理科数学考前须知:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.集合A={}22(,)1x y x y+=│,B={}(,)x y y x=│,那么A B中元素的个数为A.3 B.2 C.1 D.0 2.设复数z满足(1+i)z=2i,那么∣z∣=A.12B.22C.2D.23.某城市为了解游客人数的变化规律,提高旅游效劳质量,收集并整理了2022年1月至2022年12月期间月接待游客量〔单位:万人〕的数据,绘制了下面的折线图.学#科&网根据该折线图,以下结论错误的选项是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量顶峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比拟平稳4.(x+y)(2x-y)5的展开式中x3y3的系数为A.-80 B.-40 C.40D.80A .5B .4C .3D .28.圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为A .πB .3π4 C .π2 D .π49.等差数列{}na 的首项为1,公差不为0.假设a 2,a 3,a 6成等比数列,那么{}na 前6项的和为 A .-24 B .-3 C .3 D .810.椭圆C :22221x y a b +=,〔a >b >0〕的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,那么C 的离心率为A 6B 3C .23D .1311.函数211()2()x x f x xx a e e --+=-++有唯一零点,那么a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.假设AP =λ AB +μAD ,那么λ+μ的最大值为A .3B .2C 5D .2二、填空题:此题共4小题,每题5分,共20分。
2019年高考真题全国3卷理科数学(附答案解析)
绝密★启用前2019年普通高等学校招生统一考试理科数学试题卷一、单选题1.已知集合{}{}21,0,1,21A B x x ,=−=≤,则A B ⋂=( )A .{}1,0,1−B .{}0,1C .{}1,1−D .{}0,1,22.若(1i)2i z +=,则z =( ) A .1i −−B .1+i −C .1i −D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−7.函数3222x xx y −=+在[]6,6−的图像大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线9.执行如图所示的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A .4122−B .5122−C .6122−D .7122−10.双曲线C :2242x y −=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229,)其中所有正确结论的编号是 A .①④ B .②③C .①②③D .①③④二、填空题13.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________.14.记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 15.设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D −挖去四棱锥O EFGH −后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .三、解答题17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.19.图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.20.已知函数32()2f x x ax b =−+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1−且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.21.已知曲线C :y =22x ,D 为直线y =12−上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC,曲线3M 是弧»CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标. 23.设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z −++++的最小值; (2)若2221(2)(1)()3x y z a −+−+−≥成立,证明:3a −≤或1a ≥−.参考答案1.A 【解析】 【分析】先求出集合B 再求出交集. 【详解】21,x ≤∴Q 11x −≤≤,∴{}11B x x =−≤≤,则{}1,0,1A B ⋂=−, 故选A . 【点睛】本题考查了集合交集的求法,是基础题. 2.D 【解析】 【分析】根据复数运算法则求解即可. 【详解】()(2i 2i 1i 1i 1i 1i 1i )()z −===+++−.故选D . 【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题. 3.C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解. 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归4.A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数. 5.C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 6.D 【解析】 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e −∴=将(1,1)代入2y x b =+得21,1b b +==−,故选D .本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 7.B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x xx y f x −==+,则332()2()()2222x x x x x x f x f x −−−−==−=−++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f −⨯=>+排除选项D ;36626(6)722f −⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 8.B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCE , MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性. 9.C 【解析】 【分析】根据程序框图,结合循环关系进行运算,可得结果. 【详解】输入的ε为0.01,1.01,0.50.01?x S x ==+=<不满足条件; 1101,0.01?24S x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<L 满足条件 输出676111112122222S ⎛⎫=++⋯+=−=− ⎪⎝⎭,故选C .【点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 10.A 【解析】 【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题. 【详解】由2,,,a b c ====.,P PO PF x =∴=Q ,又P 在C 的一条渐近线上,不妨设为在2y x =上,112224PFO P S OF y ∴=⋅==△,故选A . 【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积. 11.C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f −−⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422−−−−>==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f −−⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f −−⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值. 12.D 【解析】【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得5265πππωπ≤+<,结合正弦函数的图像分析得出答案. 【详解】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案, 当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选D . 【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题. 13.23. 【解析】 【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果. 【详解】因为2c a =v v,0a b ⋅=vv ,所以22a c a b vv v v⋅=⋅2=,222||4||5||9c a b b =−⋅+=vv v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案. 14.4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 15.( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【详解】由已知可得2222236,20,16,4a b c a b c ==∴=−=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =−舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 16.118.8 【解析】 【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量. 【详解】由题意得, 2146423122EFGH S cm =⨯−⨯⨯⨯=, 四棱锥O −EFG 的高3cm , ∴31123123O EFGH V cm −=⨯⨯=.又长方体1111ABCD A B C D −的体积为32466144V cm =⨯⨯=, 所以该模型体积为22114412132V V V cm =−=−=,其质量为0.9132118.8g ⨯=. 【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.17.(1) 0.35a =,0.10b =;(2) 4.05,6. 【解析】 【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数. 【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=−=−,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【点睛】本题考查频率分布直方图和平均数,属于基础题.18.(1) 3B π=;(2)()82. 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅V ,又根据正弦定理和1c =得到ABC S V 关于C 的函数,由于ABC V 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C V 的值域. 【详解】 (1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sinsin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. 0<B π<,02AC π+<<因为故2A CB +=或者2AC B π++=,而根据题意A B C π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC V 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<−<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ−=⋅=⋅=⋅=⋅V 22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ−==⋅−=+.又因,tan 623C C ππ<<>,故3188tan 82C <+<,故82ABC S <<V . 故ABC S V的取值范围是 【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查ABC V 是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.19.(1)见详解;(2) 30o . 【解析】 【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC V 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2)在图中找到B CG A −−对应的平面角,再求此平面角即可.于是考虑B 关于GC 的垂线,发现此垂足与A 的连线也垂直于CG .按照此思路即证. 【详解】(1)证:Q //AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥Q .AB ∴⊥平面BCGE ,AB ⊂Q 平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)过B 作BH GC ⊥延长线于H ,连结AH ,因为AB ⊥平面BCGE ,所以AB GC ⊥ 而又BH GC ⊥,故GC ⊥平面HAB ,所以AH GC ⊥.又因为BH GC ⊥所以BHA ∠是二面角B CG A −−的平面角,而在BHC △中90BHC ∠=o ,又因为60FBC ∠=o 故60BCH ∠=o ,所以sin 60BH BC ==o而在ABH V 中90ABH ∠=o ,tanAB BHA BH ∠===B CG A −−的度数为30o .【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.20.(1)见详解;(2) 01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【解析】 【分析】(1)先求()f x 的导数,再根据a 的范围分情况讨论函数单调性;(2) 根据a 的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出a ,b 的值. 【详解】(1)对32()2f x x ax b =−+求导得2'()626()3af x x ax x x =−=−.所以有当0a <时,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 当0a =时,(,)−∞+∞区间上单调递增;当0a >时,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以若0a <,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 此时在区间[0,1]上单调递增,所以(0)1f =−,(1)1f =代入解得1b =−,0a =,与0a <矛盾,所以0a <不成立.若0a =,(,)−∞+∞区间上单调递增;在区间[0,1].所以(0)1f =−,(1)1f =代入解得1a b =⎧⎨=−⎩. 若02a <≤,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≥,故所以区间[0,1]上最大值为(1)f .即322()()13321a a ab a b ⎧−+=−⎪⎨⎪−+=⎩相减得32227a a −+=,即(0a a a −+=,又因为02a <≤,所以无解.若23a <≤,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≤,故所以区间[0,1]上最大值为(0)f .即322()()1331a a ab b ⎧−+=−⎪⎨⎪=⎩相减得3227a =,解得x =23a <≤,所以无解.若3a >,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =⎧⎨−+=−⎩解得41a b =⎧⎨=⎩.综上得01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.21.(1)见详解;(2) 3或【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t −然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=−,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥u u u u v u u u v得出t 的值,从而求出M 坐标和EM u u u u u v 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t −,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=−,整理得112210tx y −+=. 设22(,)B x y ,同理得222210tx y −+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y −+=.于是直线2210tx y −+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y −+=.即2(21)0tx y +−+=,当20,210x y =−+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx −−=, 于是2121212122,1,()121x x t x x y y t x x t +==−+=++=+212|||2(1)AB x x t =−==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =−u u u u r ,AB u u u r 与向量(1,)t 平行,所以()220t t t +−=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.22.(1) 2cos ([0,])4πρθθ=∈,32sin ([,])44ππρθθ=∈,32cos ([,])4πρθθπ=−∈,(2) )6π,)3π,2)3π,5)6π. 【解析】 【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围. (2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,])4M πρθθ=∈, 23:2cos()2sin ([,])244M πππρθθθ=−=∈,33:2cos()2cos ([,])4M πρθπθθπ=−=−∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3π=θ或23πθ=,此时P 的极坐标为)3π或2)3π解方程32cos [,])4πθθπ−=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π. 【点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.(1) 43;(2)见详解. 【解析】【分析】(1)根据条件1x y z ++=,和柯西不等式得到2224(1)(1)(1)3x y z −++++≥,再讨论,,x y z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的,,x y z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z −++++++≥−++++=+++=故2224(1)(1)(1)3x y z −++++≥等号成立当且仅当111x y z −=+=+而又因1x y z ++=,解得531313x y z ⎧=⎪⎪⎪=−⎨⎪⎪=−⎪⎩时等号成立 所以222(1)(1)(1)x y z −++++的最小值为43. (2) 因为2221(2)(1)()3x y z a −+−+−≥,所以222222[(2)(1)()](111)1x y z a −+−+−++≥. 根据柯西不等式等号成立条件,当21x y z a −=−=−,即22321323a x a y a z a +⎧=−⎪⎪+⎪=−⎨⎪+⎪=−⎪⎩时有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a −+−+−++=−+−+−=+成立. 所以2(2)1a +≥成立,所以有3a −≤或1a ≥−.【点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型.。
2018年全国卷3高考理科数学试题解析版
C. 40
D. 80
【解析】分析:写出
,然后可得结果
详解:由题可得
令
,则
所以
故选 C.ຫໍສະໝຸດ 拓展:本题主要考查二项式定理,属于基础题。
6. 直线
分别与轴,轴交于,两点,点在圆
范围是
A.
B.
C.
D.
【答案】A
上,则
面积的取值
【解析】分析:先求出 A,B 两点坐标得到 再计算圆心到直线距离,得到点 P 到直线距
详解:由题可得
,即
故答案为
拓展:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
14. 曲线
在点
处的切线的斜率为 ,则 ________.
【答案】
【解析】分析:求导,利用导数的几何意义计算即可。
详解:
则
所以
故答案为-3.
拓展:本题主要考查导数的计算和导数的几何意义,属于基础题。
15. 函数
【答案】2
【解析】分析:利用点差法进行计算即可。
详解:设
则
所以
所以
取 AB 中点 因为
,分别过点 A,B 作准线 ,
的垂线,垂足分别为
因为 M’为 AB 中点,
所以 MM’平行于 x 轴
因为 M(-1,1)
所以 ,则
即
故答案为 2.
拓展:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设
,利
详解:当 时, ,排除 A,B.
,当
时, ,排除 C
故正确答案选 D.
拓展:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 , ,则 或 或 ,与 矛盾.
综上,当且仅当 , 或 , 时, 在区间 的最小值为-1,最大值为1.
21.(12分)
(1)设 , ,则 .
由于 ,所以切线DA的斜率为 ,故 .
整理得 .
设 ,同理可得 .
故直线AB的方程为 .
所以直线AB过定点 .
(2)由(1)得直线AB的方程为 .
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 , ,则A∩B=
A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}
2.若 ,则
A.-1-iB.-1+iC.1-iD.1+i
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为
由 可得 .
于是 , , ,
.
设 分别为D,E到直线AB的距离,则 , .
因此,四边形ADBE的面积 .
由于 ,而 , 与向量 平行,所以 ,解得 或 .
当 时, ;当 时, .
因此,四边形ADBE的面积为3或 .
23.(10分)
(1)由于
,
故由已知得 ,当且仅当 时等号成立.
所以 的最小值为 .
(2)由于
若 ,则 ,解得 .
综上,P的极坐标为 或 或 或 .
单位(学校):下山镇花岗岵学校
作者(教师或学生):免小刚
电话:13987962584
QQ:1547639179
邮箱:1547639179@
微信:13987962584
(1)分别写出 , , 的极坐标方程;
(2)曲线M由 , , 构成,若点P在M上,且 ,求P的极坐标.
23.[选修4-5:不等式选讲](10分)
设 ,且 .
(1)求 的最小值;
(2)若 成立,证明: 或 .
普通高等学校招生全国统一考试
理科数学参考答案
一、选择题
1.A2.D3.C4.A5.C6.D
7.B8.B9.C10.A11.C12.D
16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点, cm, cm.3D打印所用的原料密度为 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.
A.0.5B.0.6C.0.7D.0.8
4. 的展开式中 的系数为
A.12B.16C.20D.24
5.已知各项为正数的等比数列 的前4项和为15,且 ,则
A.16B.8C.4D.2
6.已知曲线 在点 处的切线方程为 ,则
A. B.
C. D.
7.函数 在 的图象大致为
8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则
A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
9.执行右边的程序框图,如果输入的 为0.01,则输出s的值为
A.
B.
C.
D.
10.双曲线C: 的右焦点为F,点P在C的一条渐近线上,O为
由正弦定理得 .
由于△ABC为锐角三角形,故 , .
由(1)知 ,所以 ,故 ,从而 .
因此,△ABC面积的取值范围是 .
19.(12分)
(1)由已知AD∥BE,CG∥BE,所以AD∥CG,
故AD,CG确定一个平面,从而A,C,D,G四点共面.
由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.
又因为 平面ABC,所以平面ABC⊥平面BCGE.
(2)求图2中的二面角B-CG-A的大小.
20.(12分)
已知 .
(1)讨论 的单调性;
(2)是否存在a,b,使得 在区间 的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.
21.(12分)
已知曲线C: , 为直线 上的动点,过 作C的两条切线,切点分别为A,B.
(1)证明:ቤተ መጻሕፍቲ ባይዱ线AB过定点;
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中的a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).
18.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知 .
(2)作EH⊥BC,垂足为H,因为 平面BCGE,平面BCGE⊥平面ABC,
所以EH⊥平面ABC.
由已知,菱形BFGC的边长为2,∠EBC=60°,可求得 , .
以H为坐标原点, 的方向为x轴的正方向,建立如图所示的空间直角坐标系 ,则 , , , , .
设平面ACGD的法向量为 ,则
即
所以可取 .
(2)若以 为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
如图,在极坐标系Ox中, , , , ,弧 , , 所在圆的圆心分别是 , , ,曲线 是弧 ,曲线 是弧 ,曲线 是弧 .
二、填空题
13. 14.415. 16.
三、解答题
17.(12分)
由已知得 ,故
.
.
(2)甲离子残留百分比的平均值的估计值为
.
乙离子残留百分比的平均值的估计值为
.
18.(12分)
(1)由题设及正弦定理得 .
因为 ,所以 .
由 ,可得 ,故 .
因为 ,故 ,因此 .
(2)由题设及(1)知△ABC的面积 .
(ⅰ)当 时,由(1)知, 在 单调递增,所以 在 的最小值为 ,最大值为 .
此时a,b满足题设条件当且仅当 , ,即 , .
(ⅱ)当 时,由(1)知, 在 单调递减,所以 在 的最大值为 ,最小值为 .
此时a,b满足题设条件当且仅当 , ,即 , .
(ⅲ)当 时,由(1)知, 在 的最小值为 ,最大值为b或 .
普通高等学校招生全国统一考试
学校:*花贡镇花岗岵中心学校*
教师:*欧阳刚需*
班级:*佰伍佰班*
理科数学
注意事项:
1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
二、填空题:本题共4小题,每小题5分,共20分。
13.已知 为单位向量,且 ,若 ,则 __________.
14.记 为等差数列 的前n项和,若 , ,则 ___________.
15.设 为椭圆C: 的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为___________.
,
由已知得 ,当且仅当 时等号成立.
因此 最小值为 .
由题设知 ,解得 或 .
22.(10分)
(1)由题设可得,弧 , , 所在圆的极坐标方程为
, , .
所以 的极坐标方程为 ( ), 的极坐标方程为 ( ), 极坐标方程为 ( ).
(2)设 ,由题设及(1)知
若 ,则 ,解得 ;
若 ,则 ,解得 或 ;
坐标原点.若 ,则△PFO的面积为
A. B.
C. D.
11.设 是定义域为R的偶函数,且在 单调递减,则
A. B.
C. D.
12.设函数 ,已知 在 有且仅有5个零点,下列四个结论:
① 在 有且仅有3个极大值点
② 在 有且仅有2个极小值点
③ 在 单调递增
④ 在取值范围是
其中所有正确结论的编号是
A.①④B.②③C.①②③D.①③④
(1)求B;
(2)若△ABC为锐角三角形,且 ,求△ABC面积的取值范围.
19.(12分)
图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,D,G四点共面,且平面ABC⊥平面BCGE;
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:
又平面BCGE的法向量为 .
所以 .
因此二面角B-CG-A的大小为30°.