向量方法在高中数学解题中的应用

合集下载

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用【摘要】向量是高中数学中重要的概念,具有广泛的应用价值。

本文首先介绍了向量的概念和性质,包括向量的定义、方向、模长等基本概念。

接着讲解了向量的加法和减法运算,以及向量的数量积和夹角的相关知识。

然后通过举例说明了向量在数学问题中的具体应用,例如求解三角形和平行四边形的问题。

讨论了向量在高中数学中的重要性,以及向量在其他领域中的应用拓展。

总结指出,掌握向量的知识能够帮助我们更好地解决数学问题,提高数学思维能力,是高中数学学习中不可或缺的一部分。

通过本文的学习,读者可以更深入地了解向量在解决高中数学问题中的应用及重要性。

【关键词】向量、高中数学、应用、概念、性质、加法、减法、数量积、夹角、三角形、平行四边形、重要性、拓展、总结。

1. 引言1.1 向量在解决高中数学问题中的应用向量在解决高中数学问题中的应用非常广泛,它可以帮助我们更好地理解和解决复杂的数学问题。

在高中数学中,我们经常会遇到各种与方向、大小和位置有关的问题,而向量恰好可以提供一种简洁而直观的方法来描述这些问题。

通过引入向量的概念和性质,我们可以轻松地进行向量的加法和减法运算,从而解决复杂的方向和位置问题。

向量的数量积和夹角也可以帮助我们求解与向量相关的长度、角度等问题。

通过学习向量的基本性质和运算规律,我们可以更快更准确地解决各种高中数学问题。

在实际应用中,向量还可以帮助我们解决三角形和平行四边形等几何问题。

通过向量的方法,我们可以更直观地理解和证明几何定理,从而提高解题的效率和准确性。

向量在高中数学中扮演着非常重要的角色,它不仅可以简化问题的求解过程,还可以帮助我们更深入地理解数学知识。

向量在解决高中数学问题中的应用是非常广泛且重要的。

通过深入学习和理解向量的概念和性质,我们可以更好地应用向量解决各种复杂的数学问题,提高解题的效率和准确性。

向量对于高中数学的学习和应用具有重要的意义。

2. 正文2.1 向量的概念和性质向量是高中数学中的重要概念之一,它在解决各种数学问题中起着至关重要的作用。

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

反思 感悟
用向量法求长度的策略 (1)根据图形特点选择基底,利用向量的数量积转化,用公式 |a|2=a2求解. (2)建立坐标系,确定相应向量的坐标,代入公式:若a=(x,y), 则|a|= x2+y2.
跟踪训练2 在△ABC中,已知A(4,1),B(7,5),C(-4,7),则BC边上的 中线AD的长是
∴A→B=-32C→D,∴A→B与C→D共线. 又|A→B|≠|C→D|,∴该四边形为梯形.
12345
4.当两人提起重量为|G|的旅行包时,两人用力方向的夹角为θ,用力大
小都为|F|,若|F|=|G|,则θ的值为
A.30°
B.60°
C.90°
√D.120°
解析 作O→A=F1,O→B=F2,O→C=-G(图略), 则O→C=O→A+O→B,
答案 物理中的向量:①物理中有许多量,比如力、速度、加速度、位 移都具有大小和方向,因而它们都是向量. ②力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向 量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分 解也就是向量的分解,运动的叠加也用到了向量的加法. ③动量mv是数乘向量. ④力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.
解析 对于 A,A→B-A→C=C→B,故 A 中结论错误; 对于 B,设 θ 为向量A→B与B→C的夹角, 因为A→B·B→C=A→B·B→C·cos θ,而 cos θ<1, 故A→B·B→C<A→B·B→C,故 B 中结论正确; 对于 C,A→B+A→C·A→B-A→C=A→B2-A→C2=0, 故A→B=A→C,所以△ABC 为等腰三角形,故 C 中结论正确;
A.v1-v2
√B.v1+v2

浅谈平面向量在高中数学中的应用

浅谈平面向量在高中数学中的应用

出来,通过向量的矢量运算,来求解几何问题,这样有
利于学生对知识的融合理解,帮助学生同时增加向量
与立体几何的解题经验.
例3 四边形犃犅犆犇 是菱 形,犃犆犈犉 是矩形,平面 犃犆犈犉
⊥ 平面犃犅犆犇,犃犅=2犃犉=2,
∠犅犃犇 =60°,犌 是犅犈 的中点.
(1)用 两 种 方 法 证 明:犆犌
∥ 平面犅犇犉.
备考
征进行说明,同时也可以利用向量的运算来计算解析
几何的性 质.明 确 向 量 在 解 析 几 何 中 的 应 用,更 加 有
利于学生 开 拓 解 题 思 维,优 化 学 生 的 认 知 结 构,对 于
学生的向量学习有很大意义.
例2 已知点 犕(-2,0),犖(2,0),点犘 满足:直 线犘犕 的斜率为犽1,直线犘犖 的斜率为犽2,且犽1·犽2
犗犎 平面犅犇犉,所以犆犌 ∥
平面 犅犇犉.
图2
向量作为有力的数学工
具,可以通过具体的应用把高中阶段的知识点相互联
系,帮 助 构 成 完 整 又 严 密 的 知 识 体 系.学 生 要 善 于 分
析向量的应用并加以掌握,才能从整体上完成对向量
知识的认知,同时加强数学方法的学习.犠
高中
67
何形 式 与 代 数 形 式,是 连 接 代 数 与 几 何 的 天 然 桥 梁.
在高中数学立体几何中,为了考查学生对于直观性和
抽象性问题 的 理 解,通 常 会 将 数 与 形 结 合 起 来 一 起
考,对 于 这 类 综 合 性 质 较 强 的 问 题,学 生 可 以 利 用 向
量的数学性质,将空间中的几何量用向量的形式表现
为定值.讨论直线犾的斜率存在,设直线犾的方程为狔= 犽(狓 -1)(犽 ≠0),联立轨迹犆 的方程构造函数,运用 韦达定理和向量的数量积可得 犿;当直线犾的斜率不

高中数学解题中向量方法的应用研究

高中数学解题中向量方法的应用研究

高中数学解题中向量方法的应用研究作者:钟桂珍来源:《中学课程辅导·教学研究》2017年第17期摘要:在目前我国高中数学学习中,向量方法解题被广泛的应用,甚至在物理学习中都有所涉及。

向量方法不单单是高中数学学习中较为重要的学习内容,它也是作为一种常见的解题手段而存在。

其数形结合的特点,可以将多方面的知识连接在一起,更为直观和形象的建立成为一个整体。

本文作者通过阅读大量资料和习题,着重分析高中数学解题中向量方法的使用,对于实际的向量方法教学有一定的参考意义。

关键词:高中数学;向量;应用研究一、向量解题方法对于高中数学教学的必要性:1.加深学生理解目前我国数学教育教材的设置,在高中以前的初中数学教育阶段,主要涉及数学常量和变量的一些基础知识,也是主要为高中包括后面的数学学习打下坚实基础。

高中数学中向量的学习则是在初中数学的学习基础之上帮助学生初步构建数学学习知识体系,对于学生从初中数学意识向高中数学学习思路的转型起到过渡作用。

可以有效的加深学生对于数学学习的理解。

2.提升高中生解题能力向量知识作为重要的解题方法存在,对于思维推理能力以及空间能力正在塑造过程中的高中生来说,可通过简单、形象、直观的表现方式,帮助学生快速解答问题,对于学生初步建立数学模型有一定的帮助。

3.数形结合,提升学生发散式思维数形结合思维是向量解题方法中非常重要的部分。

它可以将本身比较复杂和繁琐的数字和文字描述,通过向量构建成形象直观的模型,并且结合命题数据展示出来。

对于教师来说,在课程设计上面,要注重将问题转化为概括性、抽象性等形式,再通过教师的思路引导,可以有效的帮助学生建发散式思维。

二、数学解题中影响向量解题法的一些因素分析:数学解题过程中因素分析:在实际的解题过程中,影响向量解题法的因素众多,本文将这些因素进行了汇总和分析:第一,情感因素。

情感因素在高中生学习过程中占据重要位置。

包括我们常见到的学生的学习兴趣、爱好、学生学习的动力来源等等,这些对于学生的学习和解题过程起到主导作用。

高中数学--空间向量之法向量求法及应用方法

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用一、 平面的法向量1、定义:如果α⊥→a ,那么向量→a 叫做平面α的法向量。

平面α的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。

由n α⊥,得0n a ⋅=且0n b ⋅=,由此得到关于,x y 的方程组,解此方程组即可得到n 。

方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。

0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。

其法向量),,(C B A n =→;若平面与3个坐标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++czb y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。

方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→→⨯b a 为一长度等于θsin ||||→→b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。

通常我们采取「右手定则」,也就是右手四指由 的方向转为的方向时,大拇指所指的方向规定为→→⨯b a 的方向,→→→→⨯-=⨯a b b a 。

:),,,(),,,(222111则设z y x b z y x a ==→→⎝⎛=⨯→→21y y b a ,21z z 21x x - ,21z z 21x x⎪⎪⎭⎫21y y (注:1、二阶行列式:c a M =cb ad db-=;2、适合右手定则。

) 例1、 已知,)1,2,1(),0,1,2(-==→→b a , 试求(1):;→→⨯b a (2):.→→⨯a bKey: (1) )5,2,1(-=⨯→→b a ;)5,2,1()2(-=⨯→→a b例2、如图1-1,在棱长为2的正方体1111ABCD A BC D -中,求平面AEF 的一个法向量n 。

向量在高中数学中的应用

向量在高中数学中的应用


创 设 情 景 。 发 兴趣 激
提高 了学 习数 学 的 兴趣 。 画的直 角三角形 大小不一样 , 但最终都得 喜 悦 ,
教 师在教 学 中要善于联 系教材 与学 设有思考价值 的问题或悬念 , 以激发学生 的求知欲望。
到了相 同的结果 , 从而总结 出了直 角三角
直 1要 生 的实际 ,设计生动有趣 的教学情景 , 创 形 三边 之 间 的 关 系 : 角三 角形 两 直 角边 点 , . 自然合理。导入既是前面知识 的 的 平 方 和 等 于 斜 边 的 平 方 。 这 时 教 师 指 继 续 , 是 后 续 知 识 的 开 端 , 一 定 的积 又 以
体会。

活 动是个人体验 的源泉 , 在数学活动 中学习数学 , 建构新的知识 、 新的信息 , 因 势利导 , 帮助提高学生的思维能 力。 要求每个学 生各 自画一个直角三角形 , 测 下它们 的平方 , 观察两直 角边 的平 方与 经提 问 , 同学们踊跃发言 。虽 然同学们
。这样引入 , 将本节课的教学 如在讲 “ 勾股定理 ” 这节课时 , 课前我 计图的选择”
积 的最 大值 、 小 值 . 类题 在知 识 交 汇 处 最 这 出题 , 点在 于 向量 的运 算 转 化 . 学 生 难 因此

函数的一种工具 , 有着极其丰富 的实际背
景 , 高 考 关 注 的 知 识 “ 汇 点 ”下 面 举 是 交 . 例 说 明 向 量 的几 种 应 用及 应 对 策 略 .
验 到 了数 学 在 实际 生 活 中的 作 用 ,而 且 品
“ 良好 的开 端是 成 功的 一半 ” 教 师 , 要 上 好 一堂 课 , 入 起 着 重 要 的作 用 。 导 倘 若 新 课 一 开始 ,学 生 的积 极 性 就 被 调 动 起 来 ,那 就会 使 学 生 在 浓 厚 的 兴 趣 中接 受 新 的 知识 ,从 而 取 得 良好 的 是 值 得我 们探 讨 的重 要课 题 。下 面 , 本

空间向量在立体几何中的应用

空间向量在立体几何中的应用

空间向量在立体几何中的应用ʏ贵州省仁怀市周林高中 尹伟云空间向量是高中数学的一个重要组成部分,在高考中具有较高的地位,是立体几何中的一个主要命题方向,往往以 证算并重 的方式进行考查㊂常以多面体为载体,考查用向量法确定空间点㊁线㊁面的位置关系,求解空间角㊁空间距离㊁立体几何中的动点探究性问题等㊂需要同学们借助向量的工具性作用,将空间几何量之间的位置关系转化为数量关系来求解㊂下面分类分析空间向量在立体几何中的应用㊂1.证明共线与共面问题图1例1 如图1,在长方体A B C D -A 1B 1C 1D 1中,点E ,F 分别在棱D D 1,B B 1上,且|E D 1|=2|D E |,|B F |=2|F B 1|,线段E F 的中点为M ㊂求证:(1)点M 在长方体的对角线A C 1上;(2)点C 1在平面A E F 内㊂解析:证法1(利用向量的坐标运算)图2(1)以点C 1为坐标原点,分别以向量C 1D 1ң,C 1B 1ң,C 1C ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系C 1-x yz ,如图2所示㊂设|C 1D 1|=a ,|C 1B 1|=b ,|C 1C |=c ,则C 1(0,0,0),A (a ,b ,c ),E a ,0,2c 3,F 0,b ,c 3,Ma 2,b 2,c 2㊂从而C 1M ң=a 2,b 2,c 2,C 1A ң=(a ,b ,c ),故C 1M ң=12C 1A ң㊂又C 1Mң与C 1A ң有公共点C 1,所以点M 在长方体对角线A C 1上㊂(2)由(1)知,E A ң=0,b ,c 3=C 1F ң,所以A E ʊC 1F ,从而A ,E ,F ,C 1四点共面,故点C 1在平面A E F 内㊂证法2(利用向量的几何运算)(1)由向量的平行四边形法则及三角形法则,得C 1M ң=12(C 1E ң+C 1F ң)=12(C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң)=12(C 1A 1ң+B 1F ң+F B ң)=12(C 1A 1ң+A 1A ң)=12C 1A ң,即C 1M ң=12C 1A ң㊂所以点M 在长方体对角线A C 1上㊂(2)依题意,得C 1E ң+C 1F ң=C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң=C 1D 1ң+F B ң+C 1F ң=C 1D 1ң+C 1B ң=C 1A ң,即C 1A ң=C 1E ң+C 1F ң㊂由向量共面的充要条件知,点C 1在平面A E F 内㊂评注:空间向量兼具代数与几何的双重特征,证明多点共线或多线共面问题也是从这两个方面入手,关键是掌握空间向量的线性运算法则和共线㊁共面的充要条件㊂具体方法是:要证明三点共线,可以证明任意两点构成的一组向量共线且共点;要证明四点共面,可以利用向量共面的充要条件,即以其中一点A 为起点,分别以另三点B ,C ,D 为终点得到向量A B ң,A C ң,A D ң,证明存在唯一的实数对(λ,μ),使A B ң=λA C ң+μA D ң成立即可;要证明两条直线共面,可以证明两条直线平行或相交,从而转化为两条直线的方向向量共不共线的问题,即若存在实数λ,使两条直线的方向向量a ,b 满足b =λa ,则两条直线平行,若不存在实数λ满足b =λa ,则两条直线相交㊂2.证明线㊁面的平行与垂直关系例2 如图3所示,在直二面角D -A B -E 中,四边形A B C D 是边长为2的正方形,|A E |=|E B |,F 为C E 上的点,且B F ʅ平面A C E ,G 为C E 的中点㊂解题篇 经典题突破方法 高二数学 2023年5月图3求证:(1)A E ʊ平面B D G ;(2)A E ʅ平面BC E ;(3)平面BD F ʅ平面A B C D ㊂解析:因为A B C D 为正方形,所以B C ʅA B ㊂因为二面角D -A B -E 为直二面角,平面D A B ɘ平面A B E =A B ,所以B C ʅ平面A E B ㊂设线段A B 的中点为O ,连接O E ㊂因为|A E |=|E B |,所以A B ʅO E ㊂图4故以O 为坐标原点,分别以向量O E ң,O B ң,A D ң的方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -x yz ,如图4所示㊂则A (0,-1,0),B (0,1,0),C (0,1,2),D (0,-1,2)㊂设E (x 0,0,0)(x 0>0),则E C ң=(-x 0,1,2)㊂因为F 为C E 上的点,所以设E F ң=λE C=(-λx 0,λ,2λ),0ɤλɤ1,得F ((1-λ)x 0,λ,2λ),则B F ң=((1-λ)x 0,λ-1,2λ)㊂又A C ң=(0,2,2),A E ң=(x 0,1,0),B F ʅ平面A C E ,所以B F ң㊃A C ң=2(λ-1)+4λ=0,且B F ң㊃A E ң=(1-λ)x 20+λ-1=0,解得x 0=1,λ=13㊂所以E (1,0,0),F23,13,23,G 12,12,1㊂(1)方法1:设A C 与B D 相交于H ,则H (0,0,1),所以H G ң=12,12,0㊂可得A E ң=(1,1,0)=2H G ң㊂又A E ⊄平面B D G ,H G ⊂平面B D G ,所以A E ʊ平面B D G ㊂方法2:易知B D ң=(0,-2,2),B G ң=12,-12,1㊂设平面B D G 的一个法向量为k =(a ,b ,c ),则k ㊃B D ң=0,k ㊃B G ң=0,所以-2b +2c =0,12a -12b +c =0㊂取c =1,得k =(-1,1,1)㊂因此,k ㊃A E ң=(-1,1,1)㊃(1,1,0)=0㊂又A E ⊄平面B D G ,故A E ʊ平面B D G ㊂(2)方法1:因为A E ң=(1,1,0),B E ң=(1,-1,0),B C ң=(0,0,2),所以A E ң㊃B E ң=0,A E ң㊃B C ң=0,则A E ʅB E ,A E ʅB C ㊂又B E ɘB C =B ,所以A E ʅ平面B C E ㊂方法2:易知B E ң=(1,-1,0),B C ң=(0,0,2)㊂设平面B C E 的一个法向量为n =(x 1,y 1,z 1),由n ㊃B E ң=0,n ㊃B C ң=0,得x 1-y 1=0,2z 1=0㊂取y 1=1,得n =(1,1,0)㊂又A E ң=(1,1,0)=n ,故A E ңʊn ,A E ʅ平面B C E ㊂(3)由题意知,O E ң=(1,0,0)为平面A B -C D 的一个法向量,设平面B D F 的一个法向量为m =(x 2,y 2,z 2)㊂由(1)知,B F ң=23,-23,23,B D ң=(0,-2,2),所以m ㊃B F ң=23x 2-23y 2+23z 2=0,且m ㊃B D ң=-2y 2+2z 2=0㊂取z 2=1,则y 2=1,x 2=0,所以m =(0,1,1)㊂因m ㊃O E ң=0,故m ʅO E ң㊂因此,平面B D F ʅ平面A B C D ㊂评注:利用向量法证线面平行,一般有三个思路:一是用向量共面的充要条件,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共面,根据共面向量概念和直线在平面外,得线面平行;二是先求出平面的法向量,再证明法向量与直线的方向向量垂直;三是证明已知直线与平面内的一条直线平行,也就是将其转化为证明线线平行的问题,再根据线面平行的判断定理得证㊂证面面平行,一般有两个思路:一是利用向量证明一个平面内两条相交直线平行于另一个平面,根据面面平行的判定定理得证;二是求出两个平面的法向量,证明这两个法向量平行,则这两个平面平行㊂证线线垂直,可转化为两条直线的方向向量垂直,即证明两条直线方向向量的数量积为0㊂证线面垂直有两个思路:一是证平面的法向量与直线的方向向量平行;二是证直线与平面内两条相交直线垂直,再用线面垂直判定定理证明㊂证面面垂直,先求出两个平面的法向量,通过证明这两个平面的法向量垂直即可㊂解题篇 经典题突破方法高二数学 2023年5月以上思路大多要用到平面的法向量,当题中出现线面垂直时,则该直线的方向向量就是该平面的一个法向量,为减少计算量,无需另求法向量㊂3.解决平行或垂直的探索性问题图5例3 如图5所示,在四棱柱A B C D -A 1B 1C 1D 1中,A 1D ʅ平面A B C D ,底面A B C D 是边长为1的正方形,侧棱|A 1A |=2㊂(1)在棱A 1B 上是否存在一点M ,使得A 1D ʊ平面A C M(2)在棱A 1A 上是否存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1图6解析:如图6,分别以D A ,D C ,D A 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系㊂则由题中数据,得D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),B 1(0,1,3),C 1(-1,1,3)㊂从而D A 1ң=(0,0,3),B A 1ң=(-1,-1,3),A C 1ң=(-2,1,3),C 1B 1ң=(1,0,0),A A 1ң=(-1,0,3)㊂(1)假设线段A 1B 上存在一点M (a 1,b 1,c 1),使得A 1D ʊ平面A C M ㊂设B M ң=λB A 1ң(0<λ<1),即(a 1-1,b 1-1,c 1)=λ(-1,-1,3)㊂则a 1-1=-λ,b 1-1=-λ,c 1=3λ㊂解得M (1-λ,1-λ,3λ)㊂从而A M ң=(-λ,1-λ,3λ),C M ң=(1-λ,-λ,3λ)㊂设平面A C M 的一个法向量为m =(a 2,b 2,c 2),则m ㊃A M ң=0,m ㊃C M ң=0,即-λa 2+(1-λ)b 2+3λc 2=0,(1-λ)a 2-λb 2+3λc 2=0㊂两式相减,得a 2-b 2=0㊂令a 2=1,得m =1,1,2λ-13λ㊂由D A 1ң㊃m =0,得3㊃(2λ-1)3λ=0,解得λ=12,此时M 12,12,32,M 为线段A 1B 的中点㊂所以线段A 1B 上存在一点M ,使得A 1D ʊ平面A C M ㊂(2)假设棱A 1A 上存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1㊂设A P ң=μA A 1ң,0<μɤ1,则P (1-μ,0,3μ),从而B 1P ң=(1-μ,-1,3(μ-1))㊂设平面A B 1C 1的一个法向量为n 1=(x 1,y 1,z 1),由n 1㊃C 1B 1ң=0,n 1㊃A C 1ң=0, 得x 1=0,-2x 1+y 1+3z 1=0㊂ 令z 1=3,则n 1=(0,-3,3)㊂设平面P B 1C 1的一个法向量为n 2=(x 2,y 2,z 2),由n 2㊃C 1B 1ң=0,n 2㊃B 1P ң=0,得x 2=0,(1-μ)x 2-y 2+3(μ-1)z 2=0㊂令z 2=3,得n 2=(0,3(μ-1),3)㊂由n 1㊃n 2=0,得-3ˑ3(μ-1)+3ˑ3=0,解得μ=43>1,不合题意,所以这样的点P 不存在㊂评注:涉及线段上的动点问题,先设出动点分线段的某个比值λ,根据两个向量共线的充要条件得数乘关系,从而用λ表示动点的坐标,再进行相关计算,这样可以减少未知量,简化过程㊂值得注意的是,应给出λ的取值范围㊂另外,建系时最好用右手直角坐标系且使几何元素尽量分布在坐标轴的正方向上㊂4.求解点面距离或几何体的体积例4 如图7,在三棱柱A B C -A 1B 1C 1中,棱A A 1ʅ侧面A B C ,A B ʅB C ,D 为A C 的中点,|A A 1|=|A B |=2,|B C |=3,求三 解题篇 经典题突破方法 高二数学 2023年5月图7棱锥A 1-B C 1D 的体积㊂解析:由题意知,B 1C 1,B 1B ,B 1A 1三条直线两两垂直,故以B 1为坐标原点,建立空间直角坐标系B 1-x yz ,如图8所示㊂图8则由题中数据,得B 1(0,0,0),B (0,2,0),C (3,2,0),C 1(3,0,0),A (0,2,2),A 1(0,0,2),D32,2,1,则C 1A 1ң=(-3,0,2),C 1B ң=(-3,2,0),B D ң=32,0,1㊂所以|C 1A 1ң|=(-3)2+02+22=13,|C 1B ң|=(-3)2+22+02=13,c o s øA 1C 1B =C 1A 1ң㊃C 1B ң|C 1A 1ң||C 1B ң|=-3ˑ(-3)13ˑ13=913㊂从而s i nøA 1C 1B =1-c o s 2øA 1C 1B=22213,所以S әA 1C 1B =12|C 1A 1ң|㊃|C 1B ң|s i n øA 1C 1B =12ˑ13ˑ13ˑ22213=22㊂设平面A 1C 1B 的一个法向量为n =(x ,y ,z ),则n ㊃C 1A 1ң=0,n ㊃C 1B ң=0,即-3x +2z =0,-3x +2y =0㊂令z =3,得x =2,y =3,即n =(2,3,3)㊂所以D 到平面A 1C 1B 的距离d =|n ㊃B D ң||n |=622,故V A 1-B C 1D =13S әA 1C 1B ㊃d =13ˑ22ˑ622=2㊂评注:求锥体或柱体的体积,关键是求底面积和高,对于底面积,如әA B C 的面积可由S =12|A B ң||A C ң|s i n A =12|A B ң||A C ң㊃1-c o s 2A =12(|A B ң||A C ң|)2-(A B ң㊃A C ң)2求解㊂高可以转化为空间两点间距离,又可看作是向量长度,即已知空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则d =|P 1P 2ң|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2,有时要用到|a |=a 2求解㊂高也可以看作是点到平面的距离,其数值等于斜线段对应的向量在平面法向量方向上的投影向量的模㊂如求点A 到平面α的距离,可在α内任取一点B ,则A 到平面α的距离d =||A B ң|c o s α|=|A B ң㊃n ||n |㊂另外,点面距离还可以转化为线面距离㊁两平行平面间的距离等㊂5.求空间角图9例5 如图9,在四棱锥P -A B C D 中,底面A B C D为矩形,P D ʅ底面A BC D ,|A B ||A D |=2,直线P A 与底面A B C D 成60ʎ角,点N 是P B的中点㊂(1)求异面直线D N 与B C 所成角的余弦值;(2)求直线P A 与平面P B C 所成角的正弦值;(3)求二面角P -N C -D 的余弦值㊂图10解析:依题意,以D 为原点,分别以向量D A ң,D C ң,D P ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系,如图10所示㊂设|A D |=1,则|A B |=2㊂因为P D ʅ底面A B -C D ,所以øP A D 是直线P A 与平面A B C D所成的角,得øP A D =60ʎ,则|P D |=3㊂易得D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),P (0,0,3),N 12,1,32㊂(1)易知D N ң=12,1,32,B C ң=(-1,0,0),所以异面直线D N 与B C 所成角θ1的余弦值为c o s θ1=|c o s <D N ң,B C ң>|=|D N ң㊃B C ң||D N ң||B C ң|=24㊂(2)易知P A ң=(1,0,-3),P B ң=(1,2,-3)㊂设平面P B C 的法向量为m =(x 1,y 1,z 1),直线P A 与平面P B C 所成的角为解题篇 经典题突破方法 高二数学 2023年5月θ2,则m ㊃P B ң=x 1+2y 1-3z 1=0,且m ㊃B C ң=-x 1=0㊂令z 1=2,则x 1=0,y 1=3㊂所以m =(0,3,2),则s i n θ2=|c o s <m ,P A ң>|=|m ㊃P A ң||m ||P A ң|=217㊂(3)由(2)知,m =(0,3,2)是平面P B C的一个法向量㊂设平面C D N 的法向量为n=(x 2,y 2,z 2),因为D N ң=12,1,32,D C ң=(0,2,0),所以n ㊃D N ң=12x 2+y 2+32z 2=0,且n ㊃D C ң=2y 2=0㊂令z 2=1,则x 2=-3,y 2=0,n =(-3,0,1)㊂所以c o s <m ,n >=m ㊃n |m ||n |=77㊂在二面角P -N C -D 内部取一点H (0,0,1),则C H ң=(0,-2,1)㊂因为m ㊃C H ң=-23+2<0,n ㊃C H ң=1>0,所以二面角P -N C -D 的大小等于<m ,n >,其余弦值为77㊂评注:解异面直线夹角问题,先求出两条异面直线的方向向量m ,n ,再求出m ,n 的夹角,设两异面直线的夹角θ,利用c o s θ=|c o s <m ,n >|=|m ㊃n ||m ||n |求出异面直线的夹角㊂注意异面直线夹角与向量夹角不完全相同,当两个方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角,两条异面直线夹角θ的取值范围是0,π2㊂解线面角问题,设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为φ,则直线的方向向量a 在平面法向量n 方向上的投影向量的长度|a ㊃n ||n |与直线方向向量a 的模|a |之比|a ㊃n ||a ||n |就是线面角的正弦值,即有s i n θ=|c o s φ|=|a ㊃n ||a ||n |㊂当φ为锐角时,s i n θ=s i n (90ʎ-φ)=c o s φ=a ㊃n|a ||n |;当φ为钝角时,s i n θ=s i n (φ-90ʎ)=-c o s φ=-a ㊃n|a ||n |㊂解二面角问题,是依据二面角两个半平面的法向量夹角与二面角相等或互补来处理㊂大多数情况下是根据图形判断该角是锐角还是钝角,有时也可以根据两个半平面的法向量的指向来判断㊂6.结构不良型问题图11例6 (2022年北京高考卷)如图11,在三棱柱A B C -A 1B 1C 1中,侧面B C C 1B 1为正方形,平面B C C 1B 1ʅ平面A B B 1A 1,|A B |=|B C |=2,M ,N 分别为A 1B 1,A C 的中点㊂(1)求证:MN ʊ平面B C C 1B 1㊂(2)再从条件①㊁条件②中选择一个作为已知条件,求直线A B 与平面B MN 所成角的正弦值㊂条件①:A B ʅMN ;条件②:|B M |=|MN |㊂注:如果选择条件①和条件②分别解答,那么按第一个解答计分㊂解析:(1)因为侧面C B B 1C 1为正方形,所以C B ʅB B 1㊂又平面C B B 1C 1ʅ平面A B B 1A 1,平面C B B 1C 1ɘ平面A B B 1A 1=B B 1,C B ⊂平面C B B 1C 1,所以C B ʅ平面A B B 1A 1㊂因为A B ⊂平面A B B 1A 1,所以B C ʅA B ㊂因为M ,N 分别为A 1B 1,A C 的中点,所以MNң=B N ң-B M ң=12B A ң+12B C ң-B B 1ң-12B 1A 1ң=12B C ң-B B 1ң,故MN ң,B C ң,B B 1ң三向量共面㊂又MN ⊄平面B C C 1B 1,B C ⊂平面B C C 1B 1,B B 1⊂平面B C C 1B 1,所以MN ʊ平面B C C 1B 1㊂(2)若选①,A B ʅMN ,则A B ң㊃MN ң=0㊂由(1)知,MN ң=12B C ң-B B 1ң,所以A B ң㊃MN ң=A B ң㊃12B C ң-B B 1ң=0㊂解题篇 经典题突破方法 高二数学 2023年5月由B C ңʅA B ң,得B C ң㊃A B ң=0,所以A B ң㊃B B 1ң=0,即B A ʅB B 1㊂图12故B C ,B A ,B B 1三条直线两两垂直,以B 为坐标原点,分别以B C ң,B A ң,B B 1ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系B -x yz ,如图12所示㊂则由题中数据,得B (0,0,0),A (0,2,0),M (0,1,2),N (1,1,0),故B A ң=(0,2,0),B M ң=(0,1,2),B N ң=(1,1,0)㊂设平面B MN 的一个法向量为n =(x ,y ,z ),则n ʅB N ң,n ʅB M ң, 所以n ㊃B N ң=0,n ㊃B M ң=0,即x +y =0,y +2z =0㊂令z =1,得n =(2,-2,1)㊂因此,直线A B 与平面B MN 所成角θ的正弦值为s i n θ=|c o s <n ,B A ң>|=|n ㊃B A ң||n ||B A ң|=|-2ˑ2|22+(-2)2+12ˑ2=23㊂若选②:|M B |=|MN |,则|B M ң|2=|MN ң|2㊂由(1)知,MN ң=12B C ң-B B 1ң,所以B B 1ң+12BA ң2=12B C ң-B B 1ң2,化为|B B 1ң|2+14|B A ң|2+B B 1ң㊃B A ң=14|B C ң|2+|B B 1ң|2-B C ң㊃B B 1ң,即B B 1ң㊃B A ң+B C ң㊃B B 1ң=0㊂因为B C ʅB B 1,所以B C ң㊃B B 1ң=0,B B 1ң㊃B A ң=0,即B B 1ʅB A ,故BC ,B A ,B B 1三条直线两两垂直㊂以下步骤与选①相同,过程略㊂评注:本题运用空间向量的三角形法则㊁平行四边形法则㊁数量积及模的运算,得到共面和垂直关系,避开了复杂的推理过程,无需添加辅助线,降低了思维难度,让人感到耳目一新㊂对于选择性条件的结构不良试题,应该选择一个易于入手的条件进行求解㊂7.最值问题例7 (2022年全国乙卷理数)如图图1313,在四面体A -B C D 中,A D ʅC D ,|A D |=|C D |,øA D B =øB D C ,E 为A C 的中点㊂(1)证明:平面B E D ʅ平面A C D ;(2)设|A B |=|B D |=2,øA C B =60ʎ,点F 在棱B D 上,当әA F C 的面积最小时,求C F 与平面A B D所成角的正弦值㊂解析:(1)因为|A D |=|C D |,E 为A C 的中点,所以A C ʅD E ㊂又øA D B =øC D B ,|D B |=|D B |,所以әA B D ɸәC B D ,|A B |=|C B |㊂连接B E ,又因为E 为A C 的中点,所以A C ʅB E ㊂因为D E ɘB E =E ,所以A C ʅ平面B E D ㊂因为A C ⊂平面A C D ,所以平面B E D ʅ平面A C D ㊂(2)因为әA B D ɸәC B D ,所以|C B |=|A B |=|B D |=2㊂又因为øA C B =60ʎ,所以әA B C 是等边三角形,|A E |=|E C |=1,|B E |=3㊂因为A D ʅC D ,所以|D E |=12|A C |=1㊂图14在әD E B 中,|D E |2+|B E |2=|B D |2,所以B E ʅD E ㊂以E 为坐标原点建立如图14所示的空间直角坐标系E -x yz ㊂则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1),所以A D ң=(-1,0,1),A B ң=(-1,3,0),D B ң=(0,3,-1)㊂连接E F ,由(1)知,A C ʅ平面B E D ㊂因为E F ⊂平面B E D ,所以AC ʅE F ,S әA F C =12|A C |㊃|E F |㊂因为|A C |=2,所以当|E F |取最小值时,әA F C 的面积最小㊂设此时F (a ,b ,c ),D F ң=λD B ң(0ɤλɤ1),即(a ,b ,c -1)=λ(0,3,-1),得F (0,3λ,1-λ)㊂解题篇 经典题突破方法高二数学 2023年5月则|EF ң|=02+(3λ)2+(1-λ)2=4λ-142+34㊂当λ=14时,|E F |取最小值,此时F 0,34,34,从而C F ң=1,34,34㊂设平面A B D 的一个法向量为n =(x ,y ,z ),则n ㊃A D ң=-x +z =0,n ㊃A B ң=-x +3y =0㊂取y =3,则n =(3,3,3)㊂所以C F 与平面A B D 所成角θ的正弦值为s i n θ=|c o s <n ,C F ң>|=|n ㊃C F ң||n ||C F ң|=621ˑ74=437㊂评注:对于面积㊁点面距离或体积的最值,一般有两个思考方向:一是从图中直接观察,先分清哪些量是定值,哪些量是变量,通过点或线的变化情况寻找最值,如本题中,E 为定点,F 为动点,可以看出当E F ʅB D 时,|E F |取最小值,易得|D F |=12,故D F ң=14D B ң,即可得点F 的坐标,或者由EF ң=(0,3λ,1-λ)与D B ң=(0,3,-1)垂直,得E F ң㊃D B ң=0,进而得λ;二是直接根据目标函数的关系,转化为函数的最值或值域问题来处理,如果是求空间角的三角函数的最值,可直接利用数量积及模的计算公式写出三角函数的表达式,再转化为二次函数来处理㊂8.逆向探索性问题图15例8 已知四边形A B C D 是梯形,S 为A D 的中点,B C ʊA D ,øBCD =90ʎ,|A D |=2|B C |=4㊂现将әA B S 沿B S 向上翻折,使A 到A ',且二面角A '-B S -C 为直二面角,E ,F 分别是A 'S ,A 'B 的中点,如图15所示㊂在线段B C 上是否存在一点M ,使得点D 到平面E F M 的距离为25若存在,求出|B M ||M C |的值;若不存在,请说明理由㊂图16解析:由题意知,四边形B C D S 是边长为2的正方形,B S ʅS D ,B S ʅS A ',S A 'ʅS D ,以S 为坐标原点,分别以向量S D ң,S B ң,S A 'ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系S -x yz ,如图16所示㊂则点S (0,0,0),A '(0,0,2),C (2,2,0),D (2,0,0),E (0,0,1),F (0,1,1),则E F ң=(0,1,0),D E ң=(-2,0,1)㊂假设在线段B C 上存在一点M (x 0,2,0)满足题意,则E M ң=(x 0,2,-1)㊂设平面E F M 的法向量为n =(x ,y ,z ),则有n ㊃E F ң=0,n ㊃E M ң=0㊂故(x ,y ,z )㊃(0,1,0)=0,(x ,y ,z )㊃(x 0,2,-1)=0,所以y =0,z =x 0x ㊂令x =1,得n =(1,0,x 0)㊂则D E ң在平面E F M 的法向量方向上的投影向量的长为|D E ң㊃n ||n |=25,得|-2+x 0|1+x 20=25,两边同时平方,得21x 20-100x 0+96=0,即(3x 0-4)㊃(7x 0-24)=0㊂因0<x 0<2,解得x 0=43,所以M43,2,0㊂从而M C ң=23,0,0,|M C |=23,|B M |=2-23=43,即在线段B C 上存在一点M 满足题意,且|B M ||M C |=2㊂评注:对于距离㊁体积或空间角的逆向存在性问题,其求解思路是先假设条件存在,把假设当作新的已知条件进行推理,通过构造方程求解㊂若得到合理的数据,则假设成立;若出现矛盾,则假设不成立㊂对于翻折问题,关键是抓住翻折前后几何量的变与不变进行相关计算㊂(责任编辑 徐利杰)解题篇 经典题突破方法 高二数学 2023年5月。

向量在高中数学解题中的应用

向量在高中数学解题中的应用

法, 使解题思路来得更快 , 更准确 。
参 考 文献 :
解 析: 如右 图所 示 , 延长O A于A , 延长O 于B , B 延长O 于c连接A B , C 连接BC , 连接A C 。我们可 以采取其它
方法去解此题, 是复杂, 但 思路 的 确 立 不 清 晰 , 取 向量 的 方 法 采
[] 3中学教 学参考・ 理科版 ,0 9 . 2 0 . 5


证明不等式 , 不等式系列 问题。
1 )

(l ̄ m -) O1 B

例( 已 a ∈, a 1 b 1 1 证:+= 1 知 . r 、 - +、 一 :, ab1 ) b 且 / b / a 求 22
证 :造向 高( / ):/ b设 量 , 夹 明 构 量 :, 1 ,(1 , 向 mn a 。 、 一 ) 、 n , 的
四、 向量 在 求 2 离 中 的应 用 巨
以 ,2b: a 21 +
点评: 运用 向量 的方法除用来证 明等式外, 可以用来证 明 还 不等式, 一般比常规方法来得更简 单。 新颖 , 更 不仅节约时间, 而
且 最 重要 的是 解 题 正确 。 二 、 方程 组 问题 解
f+ + = , y z 3 x
例: 已知两条异面直线所成角为 ( 如右图) 在 直线 .b 分 别取E、 , 已 ̄ A = A = 、 d 上 、 F H E m, F n
E = , 公垂 线 段 A FL求 A 的长 d
解方程组{
解: E + , 亩: + l I ( + + ) ( + + ) 亩 E , .E ) :

故 B sA o
AA1 } B C,
‘A m ,

浅谈向量在高中数学中的应用

浅谈向量在高中数学中的应用

浅谈向量在高中数学中的应用【摘要】本文主要介绍了向量在高中数学中的应用。

文章首先介绍了向量的概念、性质和运算,为后文内容铺垫。

接着,详细讨论了向量在几何图形表示、平面和空间向量运算中的应用,以及在物理等其他学科中的实际应用。

结合实际解题案例,探讨了向量在高中数学中的重要性和广泛应用,强调向量为学生提供更加直观和灵活的解题方式。

通过本文的阐述,希望读者能更深入地理解向量在高中数学中的重要性及实际应用,从而更好地掌握相关知识,提升数学解题能力。

【关键词】向量的概念、向量的性质、向量的运算、几何图形、平面向量、空间向量、物理学、实际应用、重要性、广泛应用、直观、灵活解题方式1. 引言1.1 向量的概念向量是高中数学中一个重要的概念。

在数学中,向量是具有大小和方向的量,通常用箭头表示。

向量可以表示空间中的某个点到另一个点的位移,也可以表示一个力、速度或者加速度。

向量的概念最早由英国数学家威廉·测量提出,后来被广泛应用于数学、物理、工程等领域。

在数学中,向量可以用不同的形式来表示,比如坐标形式、分解形式等。

向量的大小叫做模长,方向由箭头指向表示。

向量之间可以进行加法、减法、数乘等运算。

向量的性质有共线性、共点性、平行性等。

向量的运算包括模长运算、数量积、向量积等。

通过学习向量的概念,我们可以更好地理解和描述几何图形,解决各种几何问题。

向量在平面向量和空间向量的运算中也有重要应用,比如求向量的夹角、平行四边形的性质等。

向量还被广泛运用于物理等其他学科中,例如描述力的大小和方向、分析运动的轨迹等。

向量的应用使我们能够更加直观地理解和解决问题,为学生提供了更加灵活和直观的解题方式。

1.2 向量的性质向量的性质是向量运算中非常重要的概念,它们决定了向量在数学中的具体行为和特性。

在高中数学中,我们常常会接触到以下几种向量性质:1. 平行向量的性质:如果两个向量平行,则它们具有相同的方向。

这意味着它们乘以同一个数仍然平行,而且它们的夹角为0度或180度。

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用【摘要】向量在高中数学中的应用是非常重要的。

本文首先介绍了向量的基本概念及性质,然后着重讨论了向量在几何和代数中的应用。

通过向量几何解决几何问题和向量代数解决代数问题的实例,展示了向量在解决数学问题中的强大作用。

还探讨了向量在物理问题中的应用,以及向量在实际生活中的应用。

本文强调了向量在高中数学教学中的重要性,并展望了未来向量在高中数学教育中的发展。

通过深入理解和应用向量的知识,可以更好地解决各种复杂问题,提升数学学习成绩,同时也为未来的学习和工作奠定基础。

【关键词】关键词:向量、高中数学、基本概念、性质、几何问题、代数问题、物理问题、实际应用、重要性、应用拓展、教学发展。

1. 引言1.1 向量在解决高中数学问题中的应用向量在解决高中数学问题中的应用是一种非常重要且广泛应用的数学工具。

在高中数学学习过程中,向量不仅仅是一个概念,更是一个具有实际意义的数学工具。

通过向量的运用,我们可以更好地理解和解决各种数学问题。

在高中数学课程中,向量被广泛运用于几何、代数和物理等领域。

在几何中,向量可以帮助我们解决平面几何、立体几何以及空间几何中的各种问题,如求距离、角度、面积等。

在代数中,向量可以用来表示方程组、矩阵运算,从而解决各种代数问题。

在物理中,向量可以帮助我们描述物体的运动、力的作用等实际问题,解决物理学中的各种问题。

2. 正文2.1 向量的基本概念及性质向量是高中数学中一个非常重要的概念,它不仅在几何中有着广泛的应用,还可以帮助我们解决各种代数和物理问题。

在学习向量之前,我们首先需要了解向量的基本概念和性质。

向量是一个具有大小和方向的量。

在坐标系中,一个向量通常用一个有序对表示,如(3,4),其中3代表向量在x轴上的分量,4代表向量在y轴上的分量。

向量的大小通常用模表示,记作||a||,其中a是向量,模的计算公式为sqrt(x^2 + y^2),即向量的长度。

向量还有一些重要的性质,比如向量的加法和数乘。

高中数学2.5平面向量应用举例(教、学案)

高中数学2.5平面向量应用举例(教、学案)

2. 5平面向量应用举例一、教材分析向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。

二、教学目标1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。

三、教学重点难点重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。

五、教学方法1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。

2.学案导学:见后面的学案3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的 应用2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时 八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标教师首先提问:(1)若O 为ABC ∆重心,则OA +OB +OC =0(2)水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3) 两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。

拓展思维,简洁直观——例谈向量法在高中数学解题中的妙用

拓展思维,简洁直观——例谈向量法在高中数学解题中的妙用

+ = 1 , a 2 b + b  ̄ + c 2 a = t , 试求 : a b + b c + c a 5 . ( 答案 : 3 . 题 设中 第三个条件多余 , 是“ 忽悠” 人的 ) 笔者有意选择 了高 中的题 目,但从 初 中知识 出发 ,
通过学生深 入思考 , 教师适 时 、 适 当地点拨 、 启发 、 引导 , 让学生 “ 跳一 跳 , 摘到桃子 ” . 把教 师教 的时间让给学 生 ,
似 于上述 提到的相关 问题 , 则能 轻松解决. 现结合 例子 ,
设 向量A 与C D的夹角为0 ,  ̄c o s 0 = c o s (
 ̄c o s O : : 吣 。 + s i
日I . I CDl


即得c o s ( a - 1 f ) = c o s c  ̄ c o  ̄+ s i n a s i r C J .

l y

, .  ̄ l J
、 / l 、 / l + 侃
= 一
I I - x yl
、 o ) 多点 琢磨 . 当然 , 从高 中 、 大 学数学 知识 出发
问题会有更 多样 的简明解 法.
留给学生足够 的时 空 , 放 手让他们多点思考 、 多点尝试 、
有十分广泛 的应用. 除了在空 间立体 几何 中的广泛应 用 外, 笔者 也发现在解 析几何 、 不 等式 、 代数中, 也能找 到 它 的影子. 向量法解题 具有应用 方便 、 简 洁直观 的特 点 , 能很大程度上降低运算能力要求 、 开阔思维 、 拓展 思路 , 教师在平时训练 时 , 若能着重 引导学生用 向量 法解决类
所 以MC / / MN . 故 、 Ⅳ、 c 三点共线.

高中数学复习专题讲座(第3讲)运用向量法解题的思路及方法

高中数学复习专题讲座(第3讲)运用向量法解题的思路及方法

1题目高中数学复习专题讲座运用向量法解题高考要求平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题重难点归纳1解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识二是向量的坐标运算体现了数与形互相转化和密切结合的思想2向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题3用空间向量解决立体几何问题一般可按以下过程进行思考(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?典型题例示范讲解例1如图,已知平行六面体ABCD—A1B1C1D1的底面 ABCD是菱形,且∠C1CB=∠C1CD=∠BCD(1)求证C1C⊥BD(2)当1CCCD的值为多少时,能使A1C⊥平面C1BD?请给出证明命题意图本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力知识依托解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单错解分析本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系技巧与方法利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可(1)证明 设C B =a , C D =b ,1C C c = ,依题意,|a|=|b |,C D 、C B 、1C C中两两所成夹角为θ,于是DB =a -b ,1CC BD =c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c|·|b |cos θ=0,∴C 1C ⊥BD(2)解 若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由1111()()CA C D CA AA CD CC ⋅=+⋅-=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c|2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c|·cos θ=0,得 当|a =|c |时,A 1C ⊥DC 1,同理可证当|a |=|c|时,A 1C ⊥BD ,∴1CC CD =1时,A 1C ⊥平面C 1BD例2如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点(1)求B N的长;(2)求cos<11,BA CB>的值;(3)求证 A 1B ⊥C 1M 命题意图 本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题知识依托 解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标错解分析 本题的难点是建系后,考生不能正确找到点的坐标技巧与方法 可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标(1)解 如图,以C 为原点建立空间直角坐标系O -xyz 依题意得 B (0,1,0),N (1,0,1)∴|B N|=)01()10()01(222=-+-+-(2)解 依题意得 A 1(1,0,2),C (0,0,0),B 1(0,1,2) ∴1BA =1(1,1,2),CB -=(0,1,2)11BA CB ⋅=1×0+(-1)×1+2×2=3 |1BA|=6)02()10()01(222=-+-+-1||CB == 111111cos ,10||||BA CB BA CB BC CB ⋅∴<>===⋅(3)证明 依题意得 C 1(0,0,2),M (2,21,21)1111(,,0),(1,1,2)22C M A B ==--∴111111(1)1(2)00,,22A B C M A B C M ⋅=-⨯+⨯+-⨯=∴⊥∴A 1B ⊥C 1M例3三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求 (1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值解 (1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+-||2AM ∴==(2)||10,||5AB AC ====D 点分BC 的比为2∴x D =31121227,3121121=+⨯+==+⨯+-D y||AD ==(3)∠ABC 是BA 与B C 的夹角,而BA=(6,8),B C =(2,-5)2629cos 145||||BA BC ABC BA BC ⋅∴====⋅学生巩固练习1 设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A 正方形B 矩形C 菱形D 平行四边形2 已知△ABC 中, AB =a ,A C =b ,a ·b <0,S △ABC =415,|a|=3,|b |=5,则a与b 的夹角是( )A 30°B -150°C 150°D 30°或150°3 将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x-5的图象只有一个公共点(3,1),则向量a=_________4 等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的两个平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________5 如图,在△ABC 中,设AB =a ,A C =b ,AP =c , AD =λa,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c6 正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a(1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角7 已知两点M (-1,0),N (1,0),且点P 使,,M P M N PM PN N M N P⋅⋅⋅成公差小于零的等差数列(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与P N的夹角,求tan θ8 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的 中点(1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明 BD ∥平面EFGH ; (3)设M 是EG 和FH 的交点,求证 对空间任一点O ,有1(4O M O A O B O C O D =+++参考答案1 解析 AB =(1,2),D C =(1,2),∴AB =D C ,∴AB∥D C ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB|=5,A C =(5,3),|A C |=34,∴|AB|≠|A C },∴ ABCD 不是菱形,更不是正方形; 又B C =(4,1),∴1·4+2·1=6≠0,∴AB 不垂直于B C ,∴ABCD 也不是矩形,故选D 答案 D2 解析 ∵21415=·3·5sin α得sin α=21,则α=30°或α=150°又∵a·b <0,∴α=150°答案 C3 (2,0)4 13 cm5 解 ∵BP 与BE 共线,∴BP =m BE =m (AE -AB )=m (μb-a ),∴AP =AB +BP =a +m (μb -a )=(1-m ) a+m μb ①又C P 与C D 共线,∴C P =n C D =n (AD -A C )=n (λa-b ), ∴AP =A C +C P =b +n (λa -b )=n λa+(1-n ) b ② 由①②,得(1-m )a +μm b =λn a+(1-n ) b∵a与b 不共线,∴110110m a n m m n n m λλμμ-=+-=⎧⎧⎨⎨=-+-=⎩⎩即 ③解方程组③得 m =λμμλμλ--=--11,11n代入①式得c =(1-m ) a+m μb =πμ-11[λ(1-μ) a+μ(1-λ)b ]6 解 (1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23a a 2a )(2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1M C =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,02a )由于1M C ·AB=0,1M C ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角∵1AC=(,),(0,,),222a a a A M -=22190244a AC AM a a ∴⋅=++=13||,||2AC AM a ====而2194cos ,322aAC AM a∴<>==⨯所以1AC AM与所成的角,即AC 1与侧面ABB 1A 1所成的角为30°7 解 (1)设P (x ,y ),由M (-1,0),N (1,0)得, PM =-M P=(-1-x ,-y ),PN N P =-=(1-x ,-y ), M N =-N M=(2,0),∴M P ·M N =2(1+x ), PM ·P N=x 2+y 2-1,N M N P ⋅ =2(1-x )于是,,,M P M N PM PN N M N P ⋅⋅⋅是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆(2)点P 的坐标为(x 0,y 0)220012,||||PM PN x y PM PN ⋅=+-=⋅===cos ||PM PN PM PNθ⋅∴==⋅010cos 1,0,23x πθθ<≤∴<≤≤<||3cos sin tan ,411cos 1sin 0222y x x =-==∴--=-=∴θθθθθ8 证明 (1)连结BG ,则 1()2EG EB BG EB BC BD EB BF EH EF EH =+=++=++=+由共面向量定理的推论知 E 、F 、G 、H 四点共面,(其中21BD=EH )(2)因为1111()2222EH AH AE AD AB AD AB BD =-=-=-=所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH 所以BD ∥平面EFGH(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知12EH BD =,同理12FG BD = ,所以EH FG = ,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以 1111111()[()][()]2222222OM OE OG OE OG OA OB OC OD =+=+=+++ 1().4O A O B O C O D=+++课前后备注。

浅谈向量在高中数学中的应用

浅谈向量在高中数学中的应用

浅谈向量在高中数学中的应用【摘要】向量是高中数学中非常重要的内容,它在几何问题中扮演着重要的角色。

本文首先介绍了向量的概念和在几何问题中的应用。

随后对向量的加法和减法、数量积和数量积的几何意义、平面向量与坐标、向量的线性运算以及向量在物理问题中的应用进行了详细讨论。

通过这些内容,读者可以深入了解向量在数学和物理领域中的应用。

结合向量在高中数学教学中的重要性、向量的应用拓展以及向量知识与现实生活的联系,总结了向量的广泛应用和重要性。

通过本文的阐述,希望读者能够更加深入地理解和掌握向量的概念,并将其应用于解决实际问题中。

【关键词】向量、高中数学、引入、几何问题、加法、减法、数量积、几何意义、平面向量、坐标、线性运算、物理问题、重要性、应用拓展、现实生活联系1. 引言1.1 向量概念的引入向量是高中数学中一个非常重要的概念,它不仅在数学中有着广泛的应用,同时也在物理学、工程学等领域起着重要作用。

在引入向量的概念之前,我们先来了解一下什么是向量。

向量是一个既有大小又有方向的量,通常用箭头表示,箭头的长度代表向量的大小,箭头的方向表示向量的方向。

在生活中,我们可以将向量理解为有一定长度和方向的箭头,比如一辆汽车以40千米/小时的速度向东行驶,这就可以用一个向量来表示。

在数学中,我们经常用字母加上箭头的形式来表示向量,比如向量a,向量b等。

向量的大小也可以用数值来表示,比如向量a的大小为5,表示向量a的长度为5。

向量的方向通常用角度或者指示方向的字母来表示。

通过引入向量的概念,我们可以更方便地描述物体的位移、速度和加速度等问题,同时也可以更直观地理解和解决各种几何问题。

向量在高中数学中具有重要的地位,是数学学习中不可或缺的一部分。

1.2 向量在几何问题中的应用在几何问题中,向量起着至关重要的作用。

使用向量的概念可以帮助我们更清晰地描述和解决许多几何问题。

向量可以用来表示空间中的方向和距离。

通过向量的方向和大小,我们可以更直观地理解平面或空间中各个点之间的关系,从而更准确地描述几何图形的特征。

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用高中数学问题相对于其他阶段的数学问题而言具有一定的复杂性,并且高中数学知识也有着相应的连贯性特点,所以针对一个题目会存在着多种解答方法。

“向量”也可以用来解决数学中的许多问题,因此教师在进行教学、学生在进行题目解答时要发挥“向量”的作用价值,应用到各类数学问题中去。

一、教学策略中体现“向量”的价值意义向量在许多数学问题上能够作为有效的手段进行问题解决,因此向量在数学教学中是一个非常重要的环节,教师进行向量基础知识的教学中就应该重视对向量的价值意义进行解释,使得学生对向量的学习保持着一定的热情,从而能够重视向量知识的应用。

例如在学习“向量的加法”时,设a=(x,y),b=(x1,y1),向量满足着平行四边形法则和三角形法则,所以便可以得出AB+BC=AC,由此满足向量公式:a+b=(x+x1,y+y1),并且a+0=0+a=a。

这个知识点就是一个关于向量在平面图形中的应用问题,所以教师便可以让学生进行猜想:平面问题的解决是否可以用向量知识来解答呢。

这个问题就是“向量”价值意义的体现,促进学生在学习向量这个知识时能够结合其他知识来进行思考,推动知识的结合应用,充分把向量的价值意义能够从其他类型的知识体系中体现出来。

这也是教师教学策略的体现,让学生巩固数学知识,寻找解决途径。

又比如“数乘向量”的学习,实数λ和向量a的乘积是一个向量,记作λa,且?Oλa=λ?a?O。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

需要追的是:按定义知,如果λa=0,那么λ=0或a=0。

这种数乘向量的知识也有着其重要的价值意义,规律中对λ的讨论就是一种严谨性的数学意识,这在高中数学学习中非常重要,因此向量知识也将此体现出来。

而向量特殊的方向性,对整个数学问题的讨论有着指导性作用,引导着学生更加注意到数学问题中的正负问题,这在其他类别的数学问题上也有着体现,所以向量的价值意义还在于对其他知识体系的映射,学生能够通过向量的学习类比其他数学问题,这便是非常重要的数学经验。

向量在解决高中数学问题中的应用研究

向量在解决高中数学问题中的应用研究

向量在解决高中数学问题中的应用研究
作者:翟梦河
来源:《新教育时代·学生版》2016年第12期
摘要:向量是高中数学一个重要并且实用的知识点,它能够将复杂的数学问题转化成几个简单的计算题,提升学生对数学问题的解决和理解。

本文将详细阐述向量在解决高中数学问题时的应用方式,以提升学生对于高中数学问题的解决能力。

关键词:向量高中数学数学问题
引言
高中数学对于学生的逻辑性和解题技巧有了更高的要求,学生需要更加灵活的运用各种方式对问题进行解析,并选择合适的、灵活的方式解题方法[1]。

向量就是一种非常常用且灵活的解题方式,被广泛的应用在数学问题中[2]。

在不等式、三角函数、线性规划等问题中,都能很好的降低问题的难度,帮助学生更好的进行解题,提升学生的解题能力。

高中数学 平面向量应用举例

高中数学  平面向量应用举例

分割 A(0, 0), B(1, 0), 则下面说法正确的是 ( )
(A) C 可能是线段 AB 的中点
(B) D 可能是线段 AB 的中点
(C) C, D 可能同时在线段 AB 上
(D) C, D 不可能同时在线段 AB 的延长线上
分析: 点 C, D 调和分割 A, B, 则
AC = l AB,
证明: ∵∠A 是直角,
A
AB AC = 0.
BD, BC 同向,
2 BD
C
BDBC = |BD||BC | = AB .
于是 ADBC = (AB BD)BC
= ABBC BDBC
2
= ABBC AB
= AB(BC AB)
= AB AC =0. ∴AD⊥BC.
例1. 平行四边形是表示向量加法与 减法的几何模型. 如图, AC = AB AD, A
在向量中判定平行, 可用共线的条件 b=la, 可
用坐标 x1y2-x2y1=0. 判定垂直, 用向量的数量积为零. 平面几何用的几何方法, 几乎完全在图形中找关
系. 向量方法是将几何问题转化为代数问题, 用代数 计算的方法解决几何问题.
例(补充). 如图, 在直角三角形ABC中, 角A是直 角, D是BC边上一点, AB2=BD·BC. 求证: AD⊥BC.
(B) D 可能是线段 AB 的中点
(C) C, D 可能同时在线段 AB 上
(D) C, D 不可能同时在线段 AB 的延长线上
分析: 点 C, D 调和分割 A, B, 则
AC = l AB,
AD = AB,
1
l
1
=
2.
即 (c, 0)=l(1, 0), (d, 0)=(1, 0).

高中数学平面向量在几何中的应用

高中数学平面向量在几何中的应用

平面向量应用举例2.5.1 平面几何中的向量方法知识点梳理1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a ∥b (b ≠0)⇔________⇔______________________. (2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a ,b ,a ⊥b ⇔____________⇔______________.(3)求夹角问题,往往利用向量的夹角公式cos θ=______________=___________________. (4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a |=_______ 2.直线的方向向量和法向量(1)直线y =kx +b 的方向向量为________,法向量为________.(2)直线Ax +By +C =0的方向向量为________,法向量为________.一、选择题1.在△ABC 中,已知A (4,1)、B (7,5)、C (-4,7),则BC 边的中线AD 的长是( )A .2 5 B.52 5 C .3 5 D.7252.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点3.已知直线l 1:3x +4y -12=0,l 2:7x +y -28=0,则直线l 1与l 2的夹角是( ) A .30° B .45° C .135° D .150°4.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形5.已知点A (3,1),B (0,0),C (3,0),设∠BAC 的平分线AE 与BC 相交于E ,那么有BC→=λCE →,其中λ等于( )A .2 B.12 C .-3 D .-136.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形 D .等边三角形二、填空题7.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为__________________.8.已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5.则AB →·BC →+BC →·CA →+CA →·AB →=________________.9.设平面上有四个互异的点A 、B 、C 、D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状一定是__________.10.在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上且|OC→|=2,则OC →=__________________.三、解答题11.在△ABC 中,A (4,1),B (7,5),C (-4,7),求∠A 的平分线的方程.12.P 是正方形ABCD 对角线BD 上一点,PFCE 为矩形.求证:P A =EF 且P A ⊥EF .提升练习13.已知点O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB→=PB ·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( ) A .重心、外心、垂心 B .重心、外心、内心 C .外心、重心、垂心 D .外心、重心、内心 14.求证:△ABC 的三条高线交于一点.总结1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.2.在直线l :Ax +By +C =0(A 2+B 2≠0)上任取两点P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→(λ∈R 且λ≠0)也是直线l 的方向向量.所以,一条直线的方向向量有无数多个,它们都共线.同理,与直线l :Ax +By +C =0(A 2+B 2≠0)垂直的向量都叫直线l 的法向量.一条直线的法向量也有无数多个.熟知以下结论,在解题时可以直接应用. ①y =kx +b 的方向向量v =(1,k ),法向量为n =(k ,-1).②Ax +By +C =0(A 2+B 2≠0)的方向向量v =(B ,-A ),法向量n =(A ,B ).平面向量应用举例 平面几何中的向量方法答案知识梳理1.(1)a =λb x 1y 2-x 2y 1=0 (2)a·b =0 x 1x 2+y 1y 2=0(3)a·b|a||b |x 1x 2+y 1y 2x 21+y 21x 22+y 22(4)x 2+y 22.(1)(1,k ) (k ,-1) (2)(B ,-A ) (A ,B )1.B [BC 中点为D ⎝⎛⎭⎫32,6,AD →=⎝⎛⎭⎫-52,5, ∴|AD →|=525.]2.D [∵OA →·OB →=OB →·OC →, ∴(OA →-OC →)·OB →=0. ∴OB →·CA →=0.∴OB ⊥AC .同理OA ⊥BC ,OC ⊥AB , ∴O 为垂心.]3.B [设l 1、l 2的方向向量为v 1,v 2,则 v 1=(4,-3),v 2=(1,-7),∴|cos 〈v 1,v 2〉|=|v 1·v 2||v 1|·|v 2|=255×52=22.∴l 1与l 2的夹角为45°.]4.B [∵|OB →-OC →|=|CB →|=|AB →-AC →|, |OB →+OC →-2OA →|=|AB →+AC →|, ∴|AB →-AC →|=|AB →+AC →|,∴四边形ABDC 是矩形,且∠BAC =90°. ∴△ABC 是直角三角形.] 5.C[如图所示,由题知∠ABC =30°,∠AEC =60°,CE =33,∴|BC ||CE |=3,∴BC →=-3CE →.] 6.D [由⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,得角A 的平分线垂直于BC .∴AB =AC . 而AB →|AB →|·AC →|AC →|=cos 〈AB →,AC →〉=12,又〈AB →,AC →〉∈[0°,180°],∴∠BAC =60°.故△ABC 为正三角形,选D.] 7.2解析 ∵O 是BC 的中点, ∴AO →=12(AB →+AC →)=m 2AM →+n 2AN →,∴MO →=AO →-AM →=(m 2-1)AM →+n 2AN →.又∵MN →=AN →-AM →,MN →∥MO →,∴存在实数λ,使得MO →=λMN →,即⎩⎨⎧m2-1=-λ,n2=λ,化简得m +n =2. 8.-25解析 △ABC 中,B =90°,cos A =35,cos C =45,∴AB →·BC →=0,BC →·CA →=4×5×⎝⎛⎭⎫-45=-16, CA →·AB →=5×3×⎝⎛⎭⎫-35=-9. ∴AB →·BC →+BC →·CA →+CA →·AB →=-25. 9.等腰三角形解析 ∵(DB →+DC →-2DA →)·(AB →-AC →)=[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →) =(AB →+AC →)·(AB →-AC →)=AB →2-AC →2 =|AB →|2-|AC →|2=0, ∴|AB →|=|AC →|,∴△ABC 是等腰三角形.10.⎝⎛⎭⎫-105,3105 解析已知A (0,1),B (-3,4), 设E (0,5),D (-3,9), ∴四边形OBDE 为菱形.∴∠AOB 的角平分线是菱形OBDE 的对角线OD .设C (x 1,y 1),|OD →|=310,∴OC →=2310OD →.∴(x 1,y 1)=2310×(-3,9)=⎝⎛⎭⎫-105,3105,即OC →=⎝⎛⎭⎫-105,3105.11.解 AB →=(3,4),AC →=(-8,6), ∠A 的平分线的一个方向向量为: AB →|AB →|+AC →|AC →|=⎝⎛⎭⎫35,45+⎝⎛⎭⎫-45,35=⎝⎛⎭⎫-15,75. ∵∠A 的平分线过点A .∴所求直线方程为-75(x -4)-15(y -1)=0.整理得:7x +y -29=0.12.证明 以D 为坐标原点,DC 所在直线为x 轴,DA 所在直线为y 轴,建立平面直角坐标系如图所示,设正方形边长为1,|DP →|=λ,则A (0,1),P ⎝⎛⎭⎫2λ2,2λ2,E ⎝⎛⎭⎫1,22λ,F ⎝⎛⎭⎫22λ,0, 于是P A →=⎝⎛⎭⎫-22λ,1-22λ,EF →=⎝⎛⎭⎫22λ-1,-22λ.∴|P A →|=⎝⎛⎭⎫22λ-12+⎝⎛⎭⎫-22λ2=λ2-2λ+1, 同理|EF →|=λ2-2λ+1, ∴|P A →|=|EF →|,∴P A =EF .∴P A →·EF →=⎝⎛⎭⎫-22λ⎝⎛⎭⎫2λ2-1+⎝⎛⎭⎫1-22λ⎝⎛⎭⎫-22λ=0,∴P A →⊥EF →.∴P A ⊥EF . 13.C[如图,∵NA →+NB →+NC →=0, ∴NB →+NC →=-NA →.依向量加法的平行四边形法则,知|N A →|=2|ND →|,故点N 为△ABC 的重心. ∵P A →·PB →=PB →·PC →, ∴(P A →-PC →)·PB →=CA →·PB →=0.同理AB →·PC →=0,BC →·P A →=0, ∴点P 为△ABC 的垂心. 由|OA →|=|OB →|=|OC →|,知点O 为△ABC 的外心.] 14.证明如图所示,已知AD ,BE ,CF 是△ABC 的三条高. 设BE ,CF 交于H 点, 令AB →=b ,AC →=c ,AH →=h , 则BH →=h -b ,CH →=h -c ,BC →=c -b . ∵BH →⊥AC →,CH →⊥AB →, ∴(h -b )·c =0,(h -c )·b =0, 即(h -b )·c =(h -c )·b整理得h·(c -b )=0,∴AH →·BC →=0∴AH ⊥BC ,∴AH →与AD →共线. AD 、BE 、CF 相交于一点H .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量方法在高中数学解题中的应用王贤举摘要:向量具有丰富的物理背景。

它既是几何的研究对象,又是代数的研究对象,是沟通代数、几何的桥梁。

通过向量法使代数问题几何化、使几何问题代数化、使代数问题和几何问题相互转化的一些实例,体现向量法在解决中学代数问题和几何问题的一些作用和优点。

关键词:高中数学;向量法;解题;应用Abstract: The vector has rich physical backgrounds. It is both the object of geometry and the object of algebra, and also is the bridge of algebra and geometry. By some examples about vector methods that make some algebra problems into geometry problems, or make some geometry problems into algebra problems, or make algebra problems and geometry problems transform mutually, it manifests the merit of vector methods in solving algebra and geometry problems in senior high school mathematics.Key word: Senior high school mathematics; Vector methods; Problem solving; Application1、向量与高中数学教学向量是既有大小,又有方向的量【1】,是数学中的重要概念之一。

向量具有丰富的物理背景,如力、位移、速度、加速度、动量、电场强度等都是向量。

在高中数学新课程中设置向量的容,是基于以下几方面原因:1.1向量是几何的研究对象物体的位置和外形是几何学的基本研究对象。

向量可以表示物体的位置,也是一种几何图形(几何里用有向线段表示向量:所指的方向为向量的方向,线段的长度表示向量的大小),因而它成为几何学的基本研究对象。

作为几何学的研究对象,向量有方向,可以刻画直线、平面等几何对象及它们的位置关系;向量有长度,可以刻画长度、面积、体积等几何度量问题。

1.2向量是代数的研究对象运算及其规律是代数学的基本研究对象。

向量可以进行加、减、数乘、数量积(点乘)等多种运算,这些运算及其规律赋予向量集合特定的结构,使得向量具有一系列丰富的性质。

向量的运算及其性质自然成为代数学的研究对象。

1.3向量是代数研究对象和几何研究对象的桥梁。

著名数学家拉格朗日曾经说过:“只要代数同几何分道扬镳,它们的进展就缓慢.它们的应用就狭窄。

但当这两门科学结合成伴侣时,它们就互相吸收新鲜的活力,从而以快捷的步伐走向完美”。

我国著名数学家华罗庚先生也有“数缺形时少直观,形缺数时难入微”的精辟论述。

高中数学中引入向量后【2】,通过在代数、几何中应用,改善教材结构、简化解题方法,也可通过在几何中的应用,加深对向量容的理解。

数学《新大纲》【3】引入向量后学习这部分容既可了解向量的实际应用,又可加深对该部分容的理解。

本文通过向量法使代数问题几何化、使几何问题代数化、使代数问题和几何问题相互转化的一些实例,体现向量法在解决中学代数问题和几何问题的一些作用和优点。

从而让学生学会使用向量法来解决高中数学问题,提高数学解题能力。

2、向量方法在高中数学解题中的应用2.1、向量法使代数问题几何化向量沟通了代数与几何的联系,因此对某些代数问题,如能巧妙地构造向量,便能将其转化为几何问题【4】,从而使问题简化。

例1、证明:对于任意两个向量b a ,,都有| b || a ||b || |b |- | a | |+≤+≤a 。

证明:若b a ,中有一个为0,则不等式显见 成立 若b a ,都不是0时,作a OA =,b AB =则b a OB +=. (1) 当b a ,不共线时,如图1所示, 则||||||||AB ||OA ||OB OA OB +<<-,即|||||a |||b ||a ||b a b +≤+≤-.(2) 当b a ,共线时,若b a ,同向,如图2所示, |||OA ||OB |AB += 即|||||b a |b a +=+.若b a ,反向,如图3所示, |OB |||AB ||OA ||=-, 则|b a |||b ||a ||+=-综上可知: |b ||a ||b a |||b ||a ||+≤+≤-.评注:该命题的证明方法有多种,但应用向量工具把代数问题几何化,使其理解更容易和具体化。

通过向量具有数形结合的性质,当两个向量不共线时,利用向量的三角形法则,转化为几何中三角形的性质进行讨论,得出|b ||a ||b a |||b ||a ||+≤+≤—.当两向量共线时,转化为对线段的讨论,从而可得到|b ||a ||b a |||b ||a ||+≤+≤—。

2.2、向量法使几何问题代数化通过对向量的学习可知,向量有一整套的符号和运算系统,对大量的几何问题,不但可以用向量的语言加以叙述,而且完全可以借助向量的方法予以证明,从而把抽象的逻辑推理转化为具体的向量运算【5】。

例1、求证:直角三角形斜边上的中线等于斜边的一半。

证明:如图4所示,在Rt ABC ∆中,C Rt ∠=∠,D 是AB 边上的中点。

由向量加法的平行四边形法则知 )CB CA (21CD +=, ))(CA (41CD CB CA CB CD ++=⋅∴ ,0CA =⋅CB2222||41)|||CA (|41|CD |AB CB =+=∴ .|AB |21|CD |=∴ 评注:向量作为联系代数与几何图形的最佳桥梁,它可以使图形量化,使图形间的关系代数化。

本题将直角三角形的各边及斜边上的中线用向量表示出来,利用平面向量的平行四边形法则和两向量垂直时数量积为0,转化为向量的代数运算,得AB 21CD =,即证得直角三角形斜边上的中线等于斜边的一半。

例2、设抛物线()220y px p =>的焦点为F ,经过点F 的直线交抛物线于A 、B 两点。

点C 在抛物线的准线上,且BC //x 轴.求证:直线AC 经过原点O 【6】。

证明:如图5所示,设211,2y A y p ⎛⎫ ⎪⎝⎭,222,2y B y p ⎛⎫ ⎪⎝⎭, 由题设可知2,0,,22p p F C y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭, 故⎪⎪⎪⎭⎫ ⎝⎛--=1212,2AF y p p y , ⎪⎪⎪⎭⎫ ⎝⎛--=122122,2AB y y p y y . 由三点共线,知AB //AF , (图5)()()2222121211022p y y y y y y p p--∴⋅--⋅-=, ()()221120y y p y y ∴-+=.12222121,,y p y p y y y y -=-=∴≠ ⎪⎪⎪⎭⎫ ⎝⎛--=121,2AO y p y⎪⎪⎪⎭⎫ ⎝⎛+-+-=⎪⎪⎪⎭⎫ ⎝⎛---=12122121221,2,22AC y p p p y y p p y y y()22222111110,22y p y p y y p y p ⎛⎫⎛⎫⎛⎫++-⋅---⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且直线AO 与直线AC 有公共点A ,A ∴、O 、C 三点共线,即直线AC 经过原点O .评注:用向量方法去解传统的立体几何题也是有优势的,能使问题很清晰,本题通过建立平面直角坐标,可得到向量AC AO AB AF ,,,。

根据三点共线得AB AF ,是共线的向量,从而可求得AC AO ,也是共线向量。

由平面上共线的两向量有公共点时,那么这三点在同一直线上,所以直线AC 经过原点O 。

例3、如图6,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=,侧棱12AA =,,D E 分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD ∆的重心G 。

(1)求1A B 与平面ABD 所成的角的大小(结果用 反三角函数值表示);(2)求点1A 到平面AED 的距离。

解: 以C 为原点,1,,CA CB CC 分别为,,x y z 轴,建立空间直角坐标系,设CA a =则)2,0a (1,0,00a 0)20a (1,),(),,,(,,,A D B A =, 从而,,1,22a a E ⎛⎫ ⎪⎝⎭1,,,333a a G ⎛⎫ ⎪⎝⎭),1,0,(AD a -=⎪⎭⎫ ⎝⎛=32,6,6G E a a ,由AD G E ⊥得 ,0AD =⋅GE 即22063a -+=,2a ∴=. (1) 设1A B 与平面ABD 所成的角,即BE 与BG 所成的角为θ,),1,1,1(BE -=),31,34,32(-=BG ,37||||.cos =⋅=BG BE BG BE θarccos 3θ∴=. (2) 设点1A 在平面AED 上的射影为(),,,H p s t 则,,H A 11EH H A AH ⊥⊥,H A 1DH ⊥即,,00,0H A 111=⋅=⋅=⋅DH H A EH H A AH 代入运算得()()()()()()()()()()222220,211210,2120.p s t t p p s s t t p p s t t ⎧-++-=⎪⎪--+-+--=⎨⎪-++--=⎪⎩4,32,32.3p s t ⎧=⎪⎪⎪⇒=⎨⎪⎪=⎪⎩ 或 2,0,2.p s t =⎧⎪=⎨⎪=⎩(舍去) 422,,,333H ⎛⎫∴ ⎪⎝⎭从而1A H == 评注:向量解决问题的直接好处体现得异常充分,学生比较容易找到落脚点,把空间的问题转化为代数问题,从向量的角度切入,可以有效地避开很多难点。

本题通过建立空间直角坐标系,设CA a =,得到向量GE AD ,,BG BE ,。

根据空间直线与平面间的定理可得AD ⊥G E ,算出CA 的长,在由BG BE ,之间的数量积、夹角和模的关系,可求出BG BE ,的夹角,即为设1A B 与平面ABD 所成的角。

设点1A 在平面AED 上的射影为),,(t s p H =,可得到向量DH H A EH H A AH ⊥⊥⊥111,,H A 由两向量垂直时其数量积为0得,0H A 1=⋅AH 0,0H A 11=⋅=⋅DH H A EH 可算出1A H 的长度,也就是点1A 到平面AED 的距离。

2.3、向量法使几何与代数问题相互转化在直角坐标系中,向量的坐标运算有加、减、数乘运算、数量积运算。

相关文档
最新文档