2019年江苏苏州中考数学试题含详解

合集下载

2019年数学中考试题附答案

2019年数学中考试题附答案

2019年数学中考试题附答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D3.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是24.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分6.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( )A .B .C .D .7.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .48.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 9.下列二次根式中的最简二次根式是( ) A .30B .12C .8D .0.510.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=12.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,3二、填空题13.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD ⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.14.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.15.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.18.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.4.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.5.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.B解析:B【解析】【分析】若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).7.C【解析】 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确; ②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确; ③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确. 故选C .8.A解析:A 【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A .考点:由实际问题抽象出分式方程.9.A解析:A 【解析】 【分析】根据最简二次根式的概念判断即可. 【详解】A 30B 12=23C 8=22,不是最简二次根式;D 20.5=2,不是最简二次根式; 故选:A . 【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.10.B解析:B 【解析】 【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=, DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o , 故选B . 【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.11.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.A解析:A 【解析】 【分析】 【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0, 解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.二、填空题13.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.14.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.15.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到»»BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)-=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=57,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)2π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323x=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.24.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

2019年数学中考试卷(含答案)

2019年数学中考试卷(含答案)
(2)如图 2,当 6<t<10 时,DE 是否存在最小值?若存在,求出 DE 的最小值;若不存 在,请说明理由. (3)当点 D 在射线 OM 上运动时,是否存在以 D,E,B 为顶点的三角形是直角三角形? 若存在,求出此时 t 的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)【一】单项选择题1.以下运算:①a2•a3=a6,②〔a3〕2=a6,③a5÷a5=a,④〔ab〕3 =a3b3,其中结果正确的个数为〔〕A. 1B. 2C. 3D. 4【来源】山东省滨州市2019年中考数学试题2.计算的结果是〔〕A. B. C. D.【来源】江苏省南京市2019年中考数学试卷【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:应选:B.点睛:此题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法那么和性质是解题的关键.3.以下计算结果等于的是〔〕A. B. C. D.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题4.以下运算正确的选项是〔〕A. B.C. D.【来源】湖南省娄底市2019年中考数学试题【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法那么逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,应选D.【点睛】此题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法那么是解题的关键.5.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省德州市2019年中考数学试题6.我国南宋数学家杨辉所著的«详解九章算术»一书中,用以下图的三角形解释二项式的展开式的各项系数,此三角形称为〝杨辉三角〞.A. 84B. 56C. 35D. 28【来源】山东省德州市2019年中考数学试题7.以下运算正确的选项是〔〕A. B. C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法那么逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,应选D.【点睛】此题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法那么是解题的关键.8.据省××局发布,2019年我省有效发明专利数比2019年增长22.1%假定2019年的平均增长率保持不变,2019年和2019年我省有效发明专利分别为a万件和b万件,那么〔〕A. B.C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据题意可知2019年我省有效发明专利数为〔1+22. 1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a,由此即可得.【详解】由题意得:2019年我省有效发明专利数为〔1+22.1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a万件,即b=〔1+22.1%〕2a万件,应选B.【点睛】此题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省泰安市2019年中考数学试题10.按如下图的运算程序,能使输出的结果为的是〔〕A. B. C. D.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕11.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省宿迁市2019年中考数学试卷12.以下运算正确的选项是〔〕A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. 〔x﹣1〕2=x2﹣1【来源】江苏省连云港市2019年中考数学试题13.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省盐城市2019年中考数学试题14.以下计算正确的选项是〔〕A. B.C. D.【来源】湖北省孝感市2019年中考数学试题详解:A、,正确;B、〔a+b〕2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、〔a3〕2=a6,故此选项错误;应选:A、点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法那么是解题关键.15.假设单项式am﹣1b2与的和仍是单项式,那么nm的值是〔〕A. 3B. 6C. 8D. 9【来源】山东省淄博市2019年中考数学试题【解析】分析:首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=23=8.应选:C、点睛:此题考查了合并同类项的知识,解答此题的关键是掌握同类项中的两个相同.16.以下运算正确的选项是( )A. B. C. D.【来源】广东省深圳市2019年中考数学试题17.以下运算结果正确的选项是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos3 0°=【来源】湖北省黄冈市2019年中考数学试题【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.应选D、点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.以下计算正确的选项是〔〕A. B.C. D.【来源】四川省成都市2019年中考数学试题19.以下计算正确的选项是( )A. B. C. D.【来源】山东省潍坊市2019年中考数学试题【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法那么,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-〔b-a〕=2a-b,故C正确;D、〔-a〕3=-a3,故D错误.应选C、点睛:此题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法那么是解题的关键.20.计算〔﹣a〕3÷a结果正确的选项是〔〕A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2019年中考数学试题详解:〔-a〕3÷a=-a3÷a=-a3-1=-a2,应选B、点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法那么是解题关键.21.把三角形按如下图的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,那么第⑦个图案中三角形的个数为〔〕A. 12B. 14C. 16D. 18【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是〔〕A. ①B. ②C. ③D. ④【来源】2019年浙江省绍兴市中考数学试卷解析【二】填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,那么位于第45行、第8列的数是__________.【来源】山东省淄博市2019年中考数学试题∴第45行、第8列的数是2025﹣7=2019,点睛:此题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如下图的三角形,我们称之为〝杨辉三角〞,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2019年中考数学试题25.假设a-=,那么a2+值为_______________________.【来源】湖北省黄冈市2019年中考数学试题详解:∵a-=,∴〔a-〕2=6,∴a2-2+=6,∴a2+=8.点睛:此题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.,,,,,,…〔即当为大于1的奇数时,;当为大于1的偶数时,〕,按此规律,__________.【来源】四川省成都市2019年中考数学试题27.计算的结果等于__________.【来源】天津市2019年中考数学试题【解析】分析:依据单项式乘单项式的运算法那么进行计算即可.详解:原式=2x4+3=2x7.点睛:此题主要考查的是单项式乘单项式,掌握相关运算法那么是解题的关键.28.假设是关于的完全平方式,那么__________.【来源】贵州省安顺市2019年中考数学试题详解:∵x2+2〔m-3〕x+16是关于x的完全平方式,∴2〔m-3〕=±8,解得:m=-1或7,点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简〔x﹣1〕〔x+1〕的结果是_____.【来源】浙江省金华市2019年中考数学试题30.观察以下各式:请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2019年中考数学试题详解:由题意可得:=+1++1++ (1)=9+〔1﹣+﹣+﹣+…+﹣〕=9+=9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.【来源】湖南省娄底市2019年中考数学试题32.如图是一个运算程序的示意图,假设开始输入的值为625,那么第2019次输出的结果为__________.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题【三】解答题33.先化简,再求值:a〔a+2b〕﹣〔a+1〕2+2a,其中.【来源】山东省淄博市2019年中考数学试题【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣〔a2+2a+1〕+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2〔+1〕〔-1〕﹣1=2﹣1=1.点睛:此题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法那么进行化简是解此题的关键.34.〔1〕计算:;〔2〕化简:(m+2)2 +4(2-m)【来源】浙江省温州市2019年中考数学试卷35.我们常用的数是十进制数,如,数要用10个数码〔又叫数字〕:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2019年中考数学试题【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:此题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.〔1〕计算:;〔2〕解不等式:【来源】江西省2019年中等学校招生考试数学试题37.计算或化简.〔1〕;〔2〕.【来源】江苏省扬州市2019年中考数学试题【解析】分析:〔1〕根据负整数幂、绝对值的运算法那么和特殊三角函数值即可化简求值.〔2〕利用完全平方公式和平方差公式即可.详解:〔1〕〔〕-1+|−2|+tan60°=2+〔2-〕+=2+2-+=4〔2〕〔2x+3〕2-〔2x+3〕〔2x-3〕=〔2x〕2+12x+9-[〔2x2〕-9]=〔2x〕2+12x+9-〔2x〕2+9=12x+18点睛:此题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决以下问题:〔1〕写出第6个等式:;〔2〕写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2019年中考数学试题【解析】【分析】〔1〕根据观察到的规律写出第6个等式即可;〔2〕根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:〔1〕〔2〕【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,那么称n为〝极数〞.〔1〕请任意写出三个〝极数〞;并猜想任意一个〝极数〞是否是99的倍数,请说明理由;〔2〕如果一个正整数a是另一个正整数b的平方,那么称正整数a 是完全平方数,假设四位数m为〝极数〞,记D〔m〕=.求满足D〔m〕是完全平方数的所有m.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如下图的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=〔a+b〕2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=〔a+b〕2请你根据方案【二】方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2019年中考数学试卷。

2019江苏省苏州市中考数学试卷(解析版)

2019江苏省苏州市中考数学试卷(解析版)

2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. 15B. −15C. 5D. −52.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. 0.26×108B. 2.6×108C. 26×106D. 2.6×1074.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A. 126∘B. 134∘C. 136∘D. 144∘5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. 54∘B. 36∘C. 32∘D. 27∘6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. 15x =24x+3B. 15x=24x−3C. 15x+3=24xD. 15x−3=24x7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. x<0B. x>0C. x<1D. x>18.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18√3m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A. 55.5mB. 54mC. 19.5mD. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. 4√2B. 4C. 2√5D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若√x−6在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为______.18. 如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm ,三角板的外框线和与其平行的内框线之间的距离均为√2cm ,则图中阴影部分的面积为______cm 2(结果保留根号).三、计算题(本大题共1小题,共6.0分)19. 先化简,再求值:x−3x 2+6x+9÷(1-6x+3),其中,x =√2-3.四、解答题(本大题共9小题,共70.0分)20. 计算:(√3)2+|-2|-(π-2)021. 解不等式组:{2(x +4)>3x +7x+1<522. 在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______; (2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23. 某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=______,n=______;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.25.如图,A为反比例函数y=k(其中x>0)图象上的一点,x在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2√10.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=k(其中x>0)的图象于点C,连接OCx的值.交AB于点D,求ADDB26.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;,求sin∠CDA的值.(3)若tan∠CAD=1227.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2√5cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为______cm/s,BC的长度为______cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN 的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为:2.6×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°-54°=126°.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥6【解析】解:若在实数范围内有意义,则x-6≥0,解得:x≥6.故答案为:x≥6.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【答案】5【解析】解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】5√22【解析】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】827【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.【答案】5【解析】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.【答案】(10+12√2)【解析】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8--2-=6-2,∴图中阴影部分的面积为:8×8÷2-(6-2)×(6-2)÷2=32-22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=x−3(x+3)2÷(x+3x+3-6x+3)=x−3 (x+3)2÷x−3 x+3=x−3 (x+3)2•x+3 x−3=1x+3,当x=√2-3时,原式=√2−3+3=√2=√22. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:原式=3+2-1=4.【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:解不等式x +1<5,得:x <4,解不等式2(x +4)>3x +7,得:x <1,则不等式组的解集为x <1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】12【解析】 解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,{AB=AE∠BAC=∠EAF AC=AF,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°-65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.【解析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.【答案】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=12OB=2,∴AH =√OA 2−OH 2=6, ∴点A 的坐标为(2,6).∵A 为反比例函数y =kx 图象上的一点,∴k =2×6=12. (2)∵BC ⊥x 轴,OB =4,点C 在反比例函数y =12x 上,∴BC =k OB =3.∵AH ∥BC ,OH =BH ,∴MH =12BC =32,∴AM =AH -MH =92.∵AM ∥BC ,∴△ADM ∽△BDC ,∴AD DB =AM BC =32.【解析】(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,利用等腰三角形的性质可得出DH 的长,利用勾股定理可得出AH 的长,进而可得出点A 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由OB 的长,利用反比例函数图象上点的坐标特征可得出BC 的长,利用三角形中位线定理可求出MH 的长,进而可得出AM 的长,由AM ∥BC 可得出△ADM ∽△BDC ,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A 的坐标;(2)利用相似三角形的性质求出的值.26.【答案】解:(1)∵点D 是BC⏜中点,OD 是圆的半径, ∴OD ⊥BC ,∵AB 是圆的直径,∴∠ACB =90°,∴AC ∥OD ;(2)∵CD⏜=BD ⏜, ∴∠CAD =∠DCB ,∴△DCE ∽△DCA ,∴CD 2=DE •DA ;(3)∵tan∠CAD=1,2∴△DCE和△DAC的相似比为:1,2设:DE=a,则CD=2a,AD=4a,AE=3a,∴AE=3,DE即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=1,2∴AC=6k,AB=10k,∴sin∠CDA=3.5【解析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB=90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5-2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4×2+(4+2x-5)×3-×5×(2x-5)=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=×2×6+(6+15-2x)×3-×5×(15-2x)=2x,∴S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M 运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v= =6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y =-x 2+(a +1)x -a令y =0,即-x 2+(a +1)x -a =0解得x 1=a ,x 2=1由图象知:a <0∴A (a ,0),B (1,0)∵s △ABC =6∴12(1−a)(−a)=6解得:a =-3,(a =4舍去)(2)设直线AC :y =kx +b ,由A (-3,0),C (0,3),可得-3k +b =0,且b =3∴k =1即直线AC :y =x +3,A 、C 的中点D 坐标为(-32,32) ∴线段AC 的垂直平分线解析式为:y =-x ,线段AB 的垂直平分线为x =-1代入y =-x ,解得:y =1∴△ABC 外接圆圆心的坐标(-1,1)(3)作PM⊥x轴,则s△BAP=12AB⋅PM=12×4×d∵s△PQB=S△PAB∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x-1联立{y=x−1y=−x2−2x+3解得:{y=−5x=−4∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。

2019年中考数学试题含答案

2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 2.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .185.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A.10B .5C .22D.36.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A 、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.127.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tan tanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,正比例函数1y=k x与反比例函数2ky=x的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x 的图象上,则k 的值为________.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .18.若一个数的平方等于5,则这个数等于_____.19.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 23.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.24.解方程:3x x +﹣1x =1. 25.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 2.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。

2024年江苏省盐城市中考真题数学试卷含答案解析

2024年江苏省盐城市中考真题数学试卷含答案解析

2024年江苏省盐城市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.有理数2024的相反数是( )A .2024B .2024-C .12024D .12024-【答案】B【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A .工作中的雨刮器B .移动中的黑板C .折叠中的纸片D .骑行中的自行车【答案】C【分析】本题考查了折叠,根据折叠的定义逐项判断即可求解,掌握折叠的定义是解题的关键.【详解】解:A 、工作中的雨刮器,属于旋转,不合题意;B 、移动中的黑板,属于平移,不合题意;C 、折叠中的纸片,属于翻折,符合题意;D 、骑行中的自行车,属于平移,不合题意;故选:C .3.下列运算正确的是( )A .624a a a ÷=B .22a a -=C .326a a a ⋅=D .()235a a =【答案】A【分析】本题考查了同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等知识点,熟知相关运算法则是解本题的关键.根据同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等运算法则分别计算即可得出答案.【详解】解:A 、624a a a ÷=,正确,符合题意;B 、2a a a -=,错误,不符合题意;C 、325a a a ⋅=,错误,不符合题意;D 、()236a a =,错误,不符合题意;故选:A .4.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A .70.2410⨯B .52410⨯C .72.410⨯D .62.410⨯5.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A .湿B .地C .之D .都【答案】C 【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C .6.小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,AB CD∴3155∠=∠=︒,∴21802335∠=︒-∠-∠=︒,故选:B7,设其面积为2cm S ,则S 在哪两个连续整数之间( )A .1和2B .2和3C .3和4D .4和58.甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢【答案】A【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.【详解】解:由折线统计图可知,甲公司2019~2021年利润增长50万元,2021~2023年利润增长70万元,乙公司2019~2021年利润增长20万元,2021~2023年利润增长20万元,∴甲始终比乙快,故选:A.二、填空题9.若分式11x-有意义,则x的取值范围是.故答案为:1x ≠.10.分解因式:x 2+2x +1= 【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11.两个相似多边形的相似比为12∶,则它们的周长的比为 .12.如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠= ︒.【答案】50【分析】本题考查主要考查圆周角定理、等腰三角形的性质、三角形内角和定理,先根据圆周角定理计算出280AOB C ∠=∠=︒,再根据等边对等角得出OAB OBA ∠=∠,最后利用三角形内角和定理即可求出OAB ∠.【详解】解: 40C ∠=︒,∴280AOB C ∠=∠=︒,13.已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是.【答案】20π【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520=⨯⨯=Sππ故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.14.中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.15.如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B的俯角为45︒,则教学楼AB的高度约为m.(精确到1m,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)由题意知30m AH =,在Rt PHA △中,tan AH PHA PH∠=解得40m PH =,∴4026.613.4QH PH PQ =-=-=16.如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF = .∵CF ∥AB ,∴45FCB CBA ∠=∠=︒,∴BCG 是等腰直角三角形,且22BC =,∴22222CG BG BC ===⨯=,三、解答题17.计算:()0214sin30π--++︒18.求不等式113x x +≥-的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.【详解】解:去分母得,()131x x +≥-,去括号得,133x x +≥-,移项得,331x x -≥--,合并同类项得,24x -≥-,系数化为1得,2x ≤,∴不等式的正整数解为1,2.19.先化简,再求值:22391a a a a a---÷+,其中4a =.20.在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙):C.新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.21.已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】①或③(答案不唯一),证明见解析【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,A FBD D ECA ∠=∠∠=∠,再由全等三角形的判定和性质得出AC BD =,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出(SAS)AEC BFD ≌,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①CE DF ∥;∵AE BF ∥,CE DF ∥,∴,A FBD D ECA ∠=∠∠=∠,∵AE BF =,∴(AAS)AEC BFD ≌ ,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;选择②CE DF =;无法证明AEC BFD △≌△,无法得出AB CD =;选择③E F ∠=∠;∵AE BF ∥,∴A FBD ∠=∠,∵AE BF =, E F ∠=∠,∴()ASA AEC BFD ≌,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;故答案为:①或③(答案不唯一)22.小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C 坐标.由图可得3AD =,2OD =,设点C 的坐标为6,m m ⎛⎫- ⎪⎝⎭,则CE ∴63BE OE OB m=-=--, 矩形直尺对边平行,23.如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.∵CD 是O 的切线,点∴OCD OCA ∠∠=+∴ACD OCB ∠∠=,24.阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25.如图1,E、F、G、H分别是平行四边形ABCD各边的中点,连接AF CE、交于点M,连接AG、CH交于点N,将四边形AMCN称为平行四边形ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;、交于点O,可得M、N两点都在BD上,当平行四边形ABCD满(2)①如图2,连接AC BD足________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)(2)①当平行四边形ABCD 满足AC BD ⊥时,中顶点四边形AMCN 是菱形,由(1)得四边形AMCN 是平行四边形,∵AC BD ⊥,∴MN AC ⊥,∴中顶点四边形AMCN 是菱形,故答案为:AC BD ⊥;②如图所示,即为所求,连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OM ==(或作BM=MN=ND ),然后连接AB BC CD DA 、、、即可,∴点M 和N 分别为ABC ADC 、的重心,符合题意;证明:矩形AMCN ,∴,AC MN OM ON ==,∵2,2ND ON MB OM ==,∴OB OD =,∴四边形ABCD 为平行四边形;分别延长CM AM AN CN 、、、交四边于点E 、F 、G 、H 如图所示:∵矩形AMCN ,∴AM CN ∥,MO NO =,由作图得BM MN =,∴MBF NBC ∽,∴12BF BM BC BN ==,∴点F 为BC 的中点,同理得:点E 为AB 的中点,点26.请根据以下素材,完成探究任务.制定加工方案背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.生产背景背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.探究任务任务3拟定加工方案制定使每天总利润最大的加工方案.27.发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n个籽,每列有k个籽,行上相邻两籽、列上相邻两籽的间距都为d(n,k均为正整数,>≥,0n k3d>),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.。

2019年中考数学试卷带答案

2019年中考数学试卷带答案
∴该组数据的众数是80分或90分.
故选D.
【点睛】
本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.
7.C
解析:C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
8.A
解析:A
【解析】
【分析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°= ,构建方程即可解决问题.
【详解】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.
在Rt△CDN中,∵ ,设CN=4k,DN=3k,
A.21.7米B.22.4米C.27.4米D.28.8米
9.已知 为矩形 的对角线,则图中 与 一定不相等的是()
A. B. C. D.
10.若关于x的一元二次方程 有两个实数根,则k的取值范围是()
A. B. C. D.
11.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )
A. B. C. D.
9.D
解析:D
【解析】
【分析】
【详解】
解:A选项中,根据对顶角相等,得 与 一定相等;
B、C项中无法确定 与 是否相等;
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1.
故选:D
10.D
解析:D
【解析】
【分析】
运用根的判别式和一元二次方程的定义,组成不等式组即可解答
【详解】

苏教版中考模拟考试《数学卷》含答案解析

苏教版中考模拟考试《数学卷》含答案解析

苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.122.计算2(2)--的结果是( )A. 2B. ﹣2C. ﹣4D. 43.2018年苏州市GDP(国内生产总值)约为1860 000 000 000元.该数据可用科学记数法表示为( )A. 1860×109B. 186×1010C. 18.6×1011D. 1.86×10124.一组数据5,4,2,5,6中位数是( )A 5 B. 4 C. 2 D. 65.若2x﹣3y2=3,则1﹣x+32y2的值是( )A. ﹣2B. ﹣12C.32D. 46.对于二次函数,下列说法正确的是( )A. 当x>0,y随x的增大而增大B. 当x=2时,y有最大值-3C. 图像的顶点坐标为(-2,-7)D. 图像与x轴有两个交点7.如图,D是△ABC的边AB的延长线上一点,DE∥BC,若∠A=32°,∠D=56°.则∠C的度数是( )A. 16°B. 20°C. 24°D. 28°8.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于点D,E,连接AD,若△ABD的周长C△ABD =16cm,AB=5cm,则线段BC的长度等于( )A. 8cmB. 9 cmC. 10 cmD. 11 cm9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为( )A 6 B. 8 C. 10 D. 1210.如图,正方形ABCD的边长为1,点P为BC上任意一点(可与点B或C重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最小值是( )A. 1B. 2C. 3D. 5二.填空题(共8小题)11.因式分解:2x2﹣8=_____.12.函数y=23xx中,自变量x的取值范围是____.13.已知关于x的一元二次方程ax2+x+a2﹣2a=0的一个根是x=0,则系数a=_____.14.如图,直线y=kx+b(k>0)与x轴交点为(﹣2,0),则关于x的不等式kx+b<0的解集是_____.15.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________16.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为__________.17.如图,已知抛物线y=ax2+bx+4与x轴、y轴正半轴分别交于点A、B、D,且点B的坐标为(4,0),点C在抛物线上,且与点D的纵坐标相等,点E在x轴上,且BE=AB,连接CE,取CE的中点F,则BF 的长为___.18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A 落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=_____.三.解答题(共10小题)19.计算:31)0﹣|2820.解不等式组523(1)21162x x x x +≥-⎧⎪-⎨->⎪⎩,并写出该不等式组的所有整数解. 21.先化简再求值:2221a a a a +++÷(1a a -﹣2311a a --),其中a =3+1. 22.2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时? 23.如图,平行四边形ABCD 中,O 是对角线BD 的中点,过点O 的直线EF 分别交DA ,BC 的延长线于E ,F .(1)求证:AE =CF ;(2)若AE =BC ,试探究线段OC 与线段DF 之间的关系,并说明理由.24.某学校为了了解九年级学生”一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生”一分钟跳绳”测试的成绩按A ,B ,C ,D 四个等级进行了统计,并绘制了如下两幅不完整的统计图.(1)本次随机调查抽样的样本容量为 ;(2)D 等级所对扇形的圆心角为 °,并将条形统计图补充完整;(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级”一分钟跳绳”测试成绩为A 等级的学生有 人;(4)现有测试成绩为A 等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率. 25.如图,在平面直角坐标系中,矩形ABCD 的顶点,B C 在轴的正半轴上,8,6AB BC ==.对角线,AC BD相交于点,反比例函数(0)k y x x=>的图像经过点,分别与,AB CD 交于点,F G .(1)若8OC =,求的值;(2)连接EG ,若2BF BE -=,求CEG 的面积.26.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC ,垂足为点H ,连接DE ,交AB 于点F .(1)求证:DH 是⊙O 的切线;(2)若⊙O 的半径为4,①当AE =FE 时,求AD 的长(结果保留π);②当6sin 4B = 时,求线段AF 长.27.如图,二次函数y =ax 2+2ax +c (a <0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,顶点为D ,一次函数y =mx ﹣3的图象与y 轴交于E 点,与二次函数的对称轴交于F 点,且tan ∠FDC =43.(1)求a 的值;(2)若四边形DCEF 为平行四边形,求二次函数表达式.(3)在(2)的条件下设点M是线段OC上一点,连接AM,点P从点A出发,先以1个单位长度/s的速度沿线段AM到达点M,再以10个单位长度/s的速度沿MC到达点C,求点P到达点C所用最短时间为s(直接写出答案).28.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒cm;当t=秒时,四边形PQCM是平行四边形?在图2中反映这一情况的点是(并写出此点的坐标);(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.答案与解析一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A2.计算2(2)--( )A. 2B. ﹣2C. ﹣4D. 4【答案】B【解析】【分析】2a得到原式=-|-2|,然后利用绝对值的意义去绝对值即可.【详解】原式=﹣|﹣2|=﹣2.故选:B.2a.3.2018年苏州市GDP(国内生产总值)约为1860 000 000 000元.该数据可用科学记数法表示为( )A. 1860×109B. 186×1010C. 18.6×1011D. 1.86×1012【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1860 000 000 000用科学记数法表示为:1.86×1012.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.一组数据5,4,2,5,6的中位数是( )A. 5B. 4C. 2D. 6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.5.若2x﹣3y2=3,则1﹣x+32y2的值是( )A. ﹣2B. ﹣12C.32D. 4【答案】B 【解析】【分析】将已知等式变形为x-32y2=32,再代入到原式=1-(x-32y2)计算可得.【详解】∵2x﹣3y2=3,∴x﹣32y2=32,则原式=1﹣(x﹣32y2)=1﹣3 2=﹣12,故选:B.【点睛】此题考查代数式的求值,解题的关键是掌握整体代入思想的运用.6.对于二次函数,下列说法正确的是( )A. 当x>0,y随x的增大而增大B. 当x=2时,y有最大值-3C. 图像的顶点坐标为(-2,-7)D. 图像与x轴有两个交点【解析】 【详解】二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误;当x=2时,取得最大值,最大值为-3,选项B 正确;顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误,故答案选B.考点:二次函数的性质.7.如图,D 是△ABC 的边AB 的延长线上一点,DE ∥BC ,若∠A =32°,∠D =56°.则∠C 的度数是( )A. 16°B. 20°C. 24°D. 28°【答案】C【解析】【分析】 根据平行线的性质求出∠DBC ,根据三角形外角性质得出即可.【详解】∵DE ∥BC ,∠D =56°,∴∠DBC =56°,∵∠A =32°,∴∠C =56°﹣32°=24°,故选:C .【点睛】此题考查三角形外角性质和平行线的性质,能熟练地运用性质进行推理是解此题的关键. 8.如图,在△ABC 中,DE 是AC 的垂直平分线,分别交BC ,AC 于点D ,E ,连接AD ,若△ABD 的周长C △ABD =16cm ,AB =5cm ,则线段BC 的长度等于( )A. 8cmB. 9 cmC. 10 cmD. 11 cm【答案】D【解析】【分析】根据线段垂直平分线性质求出AD=DC,得出△ABD周长=AB+BC即可.【详解】∵AC的垂直平分线分别交BC、AC于点D、E,∴AD=DC,∴△ABD的周长为AB+AD+BD=AB+DC+BD=AB+BC,∵C△ABD=16cm,AB=5cm,∴BC=11cm,故选:D.【点睛】此题考查线段垂直平分线性质的应用,解题关键是根据线段垂直平分线上的点到线段两个端点的距离相等解答.9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为( )A. 6B. 8C. 10D. 12【答案】C【解析】【分析】由菱形的性质得出AC⊥BD, AO=OC=12AC=2,OB=OD=12BD=8,由平移的性质得出'2''8,''90O C OA O B OB CO B====∠=︒,,得出''6AO AC O C=+=,由勾股定理即可得出答案. 【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=12AC=2,OB=OD=12BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O 'C =OA =2,O 'B '=OB =8,∠CO 'B '=90°,∴AO '=AC +O 'C =6, ∴2222'8610AB O B AO '''=+=+=;故选:C .【点睛】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键. 10.如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可与点B 或C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最小值是( )A. 1B. 2C. 3D. 5【答案】B 【解析】【详解】解:连接AC ,DP .∵四边形ABCD 是正方形,正方形ABCD 的边长为1,∴AB=CD ,S 正方形ABCD =1,∵S △ADP =12S 正方形ABCD =12,S △ABP +S △ACP =S △ABC =12S 正方形ABCD =12,∴S △ADP +S △ABP +S △ACP =1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2AP ,∵2,∴当P 与C 2.故选B二.填空题(共8小题)11.因式分解:2x2﹣8=_____.【答案】2(x+2)(x﹣2).【解析】【分析】观察原式,找到公因式2,提出即可得出答案.【详解】2x2﹣8=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).【点睛】此题考查提公因式法和公式法分解因式,解题关键在于掌握运算法则.12.函数y中,自变量x的取值范围是____.【答案】x≤23且x≠0.【解析】【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【详解】解:由题意得,2﹣3x≥0且x≠0,解得,x≤23且x≠0.故答案为x≤23且x≠0.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.已知关于x的一元二次方程ax2+x+a2﹣2a=0的一个根是x=0,则系数a=_____.【答案】2.【解析】【分析】把x=0代入一元二次方程ax2+x+a2-2a=0得a2-2a=0,解得a1=0,a2=2,然后根据一元二次方程的定义确定a 的值.【详解】把x=0代入一元二次方程ax2+x+a2﹣2a=0得a2﹣2a=0,解得a1=0,a2=2,而a≠0,所以a的值为2.故答案为2.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是_____.【答案】x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为x<﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.15.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________【答案】8 27【解析】【分析】先得到小正方体的个数,然后再得到恰有三个面涂有红色的小正方体个数,再利用概率公式进行计算即可【详解】小正方体个数为3×3×3=27个由图直接数出恰有三个面涂有红色的小正方体的个数为8个,所以取得的小正方体恰有三个面涂有红色的概率为827,故填827【点睛】本题主要考查概率公式计算,本题关键在于找出恰有三个面涂有红色的小正方体的个数16.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为__________.【答案】5【解析】分析】连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r−1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.【详解】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°,∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r−1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r−1)2+9,解得:r=5.故答案为5.【点睛】本题考查了勾股定理、等腰直角三角形的性质以及圆的基本性质,利用勾股定理,得出关于扇形半径的方程是解题的关键.17.如图,已知抛物线y=ax2+bx+4与x轴、y轴正半轴分别交于点A、B、D,且点B的坐标为(4,0),点C在抛物线上,且与点D的纵坐标相等,点E在x轴上,且BE=AB,连接CE,取CE的中点F,则BF的长为___.【答案】22【解析】【分析】根据题意A、B关于对称轴对称,C、D关于对称轴对称得到AC=BD=42,连结AC,由中位线定理得AC=2BF,求出AC长即可得解.【详解】解:∵点C在抛物线上,且与点D的纵坐标相等,D(0,4),B(4,0),∴BD=2244=42,∵A、B关于对称轴对称,C、D关于对称轴对称,∴AC=BD=42,连AC,BE=AB,CE的中点是F,∴BF=12AC=22故答案为:2【点睛】本题考查二次函数图象上点的坐标特征及中位线定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A 落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=_____.【答案】13.【解析】【分析】过C点作MN⊥BG,交BG于M,交EF于N,由旋转性质可得∠ABC=∠GBE=90°,BA=BG=5,BC=BE=3,由勾股定理可求CG=4,由锐角三角函数可求CM的长,即可求BM的长,由题意可证四边形BENM是矩形,可求EN,CN的长,即可求解.【详解】过C点作MN⊥BG,交BG于M,交EF于N,由旋转变换的性质可知,∠ABC=∠GBE=90°,BA=BG=5,BC=BE=3,由勾股定理得,CG22BG BC-259-=4,∵sin∠GBC=GC CM BG BC=,∴45CMBC =∴CM=125,∴BM22BC CM-=9 5∵MN⊥BG,∠GBE=∠BEF=90°,∴四边形BENM是矩形,∴MN=BE=3,BM=EN=95,∴CN=3﹣125=35,∴tanα=CNEN=3595=13故答案为:13.【点睛】此题考查翻转变换的性质,锐角三角函数,矩形的性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.三.解答题(共10小题)19.计算:1)0﹣|【答案】.【解析】【分析】根据零指数幂和绝对值的意义计算;【详解】原式=1=【点睛】此题考查二次根式的混合运算,解题关键在于先把二次根式化为最简二次根式,然后合并同类二次根式即可.20.解不等式组523(1)21162x xxx+≥-⎧⎪-⎨->⎪⎩,并写出该不等式组的所有整数解.【答案】x=﹣2或﹣1或0或1.【解析】【分析】分别求出每一个不等式的解集,根据口诀”大小小大中间找”确定不等式组的解集,再在解集内确定其整数解即可.【详解】由5x+2≥3(x﹣1),得x≥﹣2.5,由21162xx-->,得x<2,∴﹣2.5≤x <2,∵x 为整数,∴x =﹣2或﹣1或0或1.【点睛】此题考查解一元一次不等式组和不等式组的整数解,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.21.先化简再求值:2221a a a a +++÷(1a a -﹣2311a a --),其中a +1.【答案】1a a -. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【详解】原式=2(1)(1)a a a ++÷[2(1)(1)a a a a ++-﹣31(1)(1)a a a -+-] =1a a +÷2(1)(1)(1)a a a -+- =1a a +•11a a +- =1a a -,当a 时,33+. 【点睛】此题考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.22.2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?【答案】提速前的速度为200千米/小时,提速后的速度为350千米/小时,【解析】【分析】设列车提速前的速度为x 千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句”100千米缩短了10分钟”可列方程,解方程即可.【详解】设提速前后的速度分别为x 千米每小时和1.5x 千米每小时,根据题意得:100100101.560x x-=解得:x=200,经检验:x=200是原方程的根,∴1.5x=300,答:提速前后的速度分别是200千米每小时和300千米每小时.【点睛】考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.23.如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.【答案】(1)见解析;(2)OC∥DF,且OC=12DF,理由见解析.【解析】【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出∠ADB=∠CBD,证明△BOF≌△DOE,得出DE=BF,即可得出结论;(2)证出CF=BC,得出OC是△BDF的中位线,由三角形中位线定理即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵O是对角线BD的中点,∴OB=OD,在△BOF和△DOE中,CBD ADB OB ODBOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOF≌△DOE(ASA),∴DE=BF,∴DE-AD=BF﹣BC,∴AE=CF;(2)解:OC∥DF,且OC=12DF,理由如下:∵AE=BC,AE=CF,∴CF=BC,∵OB=OD,∴OC是△BDF的中位线,∴OC∥DF,且OC=12 DF.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.24.某学校为了了解九年级学生”一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生”一分钟跳绳”测试的成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图.(1)本次随机调查抽样的样本容量为;(2)D等级所对扇形的圆心角为°,并将条形统计图补充完整;(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级”一分钟跳绳”测试成绩为A等级的学生有人;(4)现有测试成绩为A等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率.【答案】(1)80;(2)18;补全图形见解析;(3)120;(4)选出的2人恰好是1男1女的概率为23.【解析】【分析】(1)由C等级人数及其对应的百分比可得样本容量;(2)用360°乘以样本中D等级人数所占比例,再用总人数乘以B等级百分比可得其人数,从而补全图形;(3)总人数乘以样本中A等级人数所占比例即可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好是1男1女的情况,再利用概率公式求解即可求得答案.【详解】(1)本次随机调查抽样的样本容量为20÷25%=80, 故答案为:80;(2)D 等级所对扇形的圆心角为360°×480=18°, B 等级的人数为80×40%=32,补全图形如下:故答案为:18;(3)根据以上样本估计全校九年级”一分钟跳绳”测试成绩为A 等级的学生有400×2480=120(人), 故答案为:120;(4)画树状图得:∵共有12种等可能的结果,选出的2人恰好是1男1女的有8种情况,∴选出的2人恰好是1男1女的概率为812=23. 【点睛】此题考查列表法或树状图法求概率,条形统计图与扇形统计图.解题关键在于掌握:概率=所求情况数与总情况数之比.25.如图,在平面直角坐标系中,矩形ABCD 的顶点,B C 在轴的正半轴上,8,6AB BC ==.对角线,AC BD相交于点,反比例函数(0)k y x x=>的图像经过点,分别与,AB CD 交于点,F G .(1)若8OC=,求的值;(2)连接EG,若2BF BE-=,求CEG的面积.【答案】(1)k=20;(2)△CEG的面积为215.【解析】【分析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入kyx=可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.【详解】(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=kx得k=5×4=20;(2)∵AC2268+=10,∴BE=EC=5,∵BF﹣BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=28x,当x=10时,y=2814 105=,∴G(10,145),∴△CEG的面积=114213255⨯⨯=.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.26.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D 作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求AD的长(结果保留π);②当6sin4B=时,求线段AF的长.【答案】(1)详见解析;(2)①85π;②43【解析】【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)①根据等腰三角形的性质的∠EAF=∠EAF,设∠B=∠C=α,得到∠EAF=∠EFA=2α,根据三角形的内角和得到∠B=36°,求得∠AOD=72°,根据弧长公式即可得到结论;②连接AD,根据圆周角定理得到∠ADB=∠ADC=90°,解直角三角形得到AD=6的性质得到AH=3,于是得到结论.【详解】证明:(1)连接OD,如图,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EF A=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴AD的长=7248 1805ππ⋅⨯=;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵sin 4B =,∴84AD =,∴AD =∵AD ⊥BC ,DH ⊥AC ,∴△ADH ∽△ACD , ∴AH AD AD AC=,=, ∴AH =3,∴CH =5,∵∠B =∠C ,∠E =∠B ,∴∠E =∠C ,∴DE =DC ,∵DH ⊥AC ,∴EH =CH =5,∴AE =2,∵OD ∥AC ,∴∠EAF =∠FOD ,∠E =∠FDO ,∴△AEF ∽△ODF , ∴AF AE OF OD=, ∴AF 24AF 4=-, ∴AF =43. 【点睛】本题考查了等腰三角形的性质和判定、切线的性质和判定、三角形相似的性质和判定、圆周角定理,正确的作出辅助线是解题的关键.27.如图,二次函数y =ax 2+2ax +c (a <0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,顶点为D ,一次函数y=mx﹣3的图象与y轴交于E点,与二次函数的对称轴交于F点,且tan∠FDC=43.(1)求a的值;(2)若四边形DCEF为平行四边形,求二次函数表达式.(3)在(2)的条件下设点M是线段OC上一点,连接AM,点P从点A出发,先以1个单位长度/s的速度沿线段AM到达点M,10个单位长度/s的速度沿MC到达点C,求点P到达点C所用最短时间为s(直接写出答案).【答案】(1)a=﹣34;(2)y=﹣34x2﹣32x+6;(3)9105.【解析】【分析】(1)过点C作CG⊥DF交于点G,求出C与D点坐标,可得CG=1,DG=-a,再由tan∠FDC=43,即可求a值;(2)由点的坐标分别求出CE=3+c,DF=c+34+m+3,再由平行四边形的性质可得3+c=c+34+m+3,可以确定y=-34x-3,求出A点坐标,将A点坐标代入y=-34x2-32x+c,即可求出c的值;(3)连接BC,过点A作AH⊥BC交于点H,AH与CO的交点为所求M;由题意可知运动时间为10;在Rt△CMH中,MH=CMsin∠10,则有AM+10=AM+MH=AH;再在Rt△ABH中,AB=6,sin∠COB=21010求出AH=ABsin∠COB=6×10910,即为所求.【详解】(1)过点C作CG⊥DF交于点G,∵C(0,c),D(﹣1,c﹣a),∴CG=1,DG=﹣a,∵tan∠FDC=43,∴43=1a,∴a=﹣34;(2)∵a=﹣34,∴D(﹣1,c+34 ),∵E(0,﹣3),F(﹣1,﹣m﹣3),∴CE=3+c,DF=c+34+m+3,∵四边形DCEF为平行四边形,∴3+c=c+34+m+3,∴m=﹣34,∴y=﹣34x﹣3,∴A(﹣4,0),将A(﹣4,0)代入y=﹣34x2﹣32x+c,可得c=6,∴y=﹣34x2﹣32x+6;(3)连接BC,过点A作AH⊥BC交于点H,AH与CO交点为所求M; 由题意可知运动时间为AM;∵y =﹣34x 2﹣32x +6,可求B (2,0), 在Rt △BCO 中,OB =2,OC =6,∴BC =210,∴sin ∠BCO =2210=110, 在Rt △CMH 中,MH =CM sin ∠BCO =10CM , ∴AM +10CM =AM +MH =AH ; 在Rt △ABH 中,AB =6,sin ∠COB =6210=310, ∴AH =AB sin ∠COB =6×310=9105, ∴点P 到达点C 所用最短时间为9105s , 故答案为9105;【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质,将时间最短借助直角三角形三角形函数值转化为边最短解题是关键.28.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒cm;当t=秒时,四边形PQCM是平行四边形?在图2中反映这一情况的点是(并写出此点的坐标);(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.【答案】(1)2,103,E(103,103);(2)y=25t2﹣8t+40;(3)存在,t=2017s时,点M在线段PC的垂直平分线上.【解析】【分析】(1)先由图2判断出点M的速度为2cm/s,PQ的运动速度为1cm/s,再由四边形PQCM为平行四边形,根据平行四边形的性质得到对边平行,进而得到AP=AM,列出关于t的方程,求出方程的解得到满足题意t的值;(2)根据PQ∥AC可得△PBQ∽△ABC,根据相似三角形的形状必然相同可知△BPQ也为等腰三角形,即BP=PQ=t,再用含t的代数式就可以表示出BF,进而得到梯形的高PE=DF=8-t,又点M的运动速度和时间可知点M走过的路程AM=2t,所以梯形的下底CM=10-2t.最后根据梯形的面积公式即可得到y与t的关系式;(3)假设存在,则根据垂直平分线上的点到线段两端点的距离相等即可得到MP=MC,过点M作MH垂直AB,由一对公共角的相等和一对直角的相等即可得到△AHM∽△ADB,由相似得到对应边成比例进而用含t的代数式表示出AH和HM的长,再由AP的长减AH的长表示出PH的长,从而在直角三角形PHM中根据勾股定理表示出MP的平方,再由AC的长减AM的长表示出MC的平方,根据两者的相等列出关于t的方程进而求出t的值.【详解】(1)由图2得,点M的运动速度为2cm/s,PQ的运动速度为1cm/s,∵四边形PQCM是平行四边形,则PM∥QC,∴AP:AB=AM:AC,∵AB=AC,∴AP=AM,即10﹣t=2t,解得:t=103,∴当t=103时,四边形PQCM是平行四边形,此时,图2中反映这一情况的点是E(103,103)故答案为:2,103,E(103,103).(2)∵PQ∥AC,∴△PBQ∽△ABC,∴△PBQ为等腰三角形,PQ=PB=t,∴BF BPBD BA=,即810BF t=解得:BF=45t,∴FD=BD﹣BF=8﹣45t,又∵MC=AC﹣AM=10﹣2t,∴y=12(PQ+MC)•FD=12(t+10﹣2t)(8﹣45t)=25t2﹣8t+40.(3)假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC,过M作MH⊥AB,交AB与H,如图所示:∵∠A=∠A,∠AHM=∠ADB=90°,∴△AHM∽△ADB,∴HM AH AM BD AD AB==又∵AD=6,∴2 8610 HM AH t==∴HM=85t,AH=65t,∴HP=10﹣t﹣65t=10﹣115t,在Rt△HMP中,MP2=(85t)2+(10﹣115t)2=375t2﹣44t+100,又∵MC2=(10﹣2t)2=100﹣40t+4t2,∵MP2=MC2,∴375t2﹣44t+100=100﹣40t+4t2,解得t1=2017,t2=0(舍去),∴t=2017s时,点M在线段PC的垂直平分线上.【点睛】此题考查四边形综合题,平行四边形的性质,三角形相似的判定与性质,垂直平分线的性质以及勾股定理的应用.第二问的解题关键是根据相似三角形的高之比等于对应边之比得出比例,进而求出关系式.。

2024-2025学年江苏省苏州市苏州地区学校数学九年级第一学期开学考试模拟试题【含答案】

2024-2025学年江苏省苏州市苏州地区学校数学九年级第一学期开学考试模拟试题【含答案】

2024-2025学年江苏省苏州市苏州地区学校数学九年级第一学期开学考试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若a >b ,则下列式子中正确的是()A .B .3-a >3-b C .2a <2b D .b-a >02、(4分)已知△ABC 中,AB =8,BC =15,AC =17,则下列结论无法判断的是()A .△ABC 是直角三角形,且AC 为斜边B .△ABC 是直角三角形,且∠ABC =90°C .△ABC 的面积为60D .△ABC 是直角三角形,且∠A =60°3、(4分)如图,矩形ABCD 中,∠AOB =60°,AB =3,则BD 的长是()A .3B .5C .3D .64、(4分)关于一次函数y=x﹣1,下列说法:①图象与y 轴的交点坐标是(0,﹣1);②y 随x 的增大而增大;③图象经过第一、二、三象限;④直线y=x﹣1可以看作由直线y=x向右平移1个单位得到.其中正确的有()A .1个B .2个C .3个D .4个5、(4分)多项式的一个因式为()A .B .C .D .6、(4分)如图,在正方形ABCD 中,分别以点B ,C 为圆心,BC 长为半径画弧,两弧相交于点E ,连接AE ,BE 得到ABE ∆,则ABE ∆与正方形ABCD 的面积比为()A .1:2B .1:3C .1:4D .7、(4分)在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =()A .32B .53C .43D .548、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数B .方差C .众数D .中位数二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)下列函数的图象(1)y x =-,(2)1y x =+,(3)21y x =-+,(4)1y x =-不经过第一象限,且y 随x 的增大而减小的是__________.(填序号)10、(4分)如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是_______.11、(4分)函数21x y x +=-中,自变量x 的取值范围是.12、(4分)如图,矩形ABCD 中,AB=6,BC=8,点F 为BC 边上的一个动点,把△ABF 沿AF 折叠。

2019年中考数学试题含答案

2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .23.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( ) A .27B .9C .﹣7D .﹣164.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .155.定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .256.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形 C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC 5BC =2,则sin ∠ACD 的值为( )A .5 B .25C .5 D .239.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 10.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)11.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .11 12.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.16.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 1.414≈,3 1.732≈)23.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.A解析:A 【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.5.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:0.0007=7×10﹣4 故选C . 【点睛】本题考查科学计数法,难度不大.7.D解析:D【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可. 【详解】对角线互相垂直且平分的四边形是菱形,故A 是假命题; 对角线互相垂直平分且相等的四边形是正方形,故B 是假命题; 对角线相等且平分的四边形是矩形,故C 是假命题; 对角线互相平分的四边形是平行四边形,故D 是真命题. 故选D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键10.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

2024年全国各省市数学中考真题汇编 专题5分式及其运算(37题)含详解

2024年全国各省市数学中考真题汇编 专题5分式及其运算(37题)含详解

专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b-C .22a b-D .2a b a b--2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=6.(2024·天津·中考真题)计算3311x x x ---的结果等于()A .3B .xC .1x x -D .231x -7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为x yxy -,则A =()A .xB .yC .x y +D .x y-二、填空题8.(2024·四川南充·中考真题)计算---a ba b a b的结果为.9.(2024·湖北·中考真题)计算:111m m m +=++.10.(2024·广东·中考真题)计算:333a a a -=--.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:2422x x x+=--.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.三、解答题15.(2024·广东·中考真题)计算:011233-⨯-+.16.(2024·江苏盐城·中考真题)先化简,再求值:22391a a a a a ---÷+,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.18.(2024·四川广安·中考真题)先化简2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.19.(2024·山东·中考真题)(11122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.20.(2024·上海·中考真题)计算:102|124(1++-.21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x ---.24.(2024·江苏苏州·中考真题)计算:()042-+-.25.(2024·福建·中考真题)计算:0(1)5-+-26.(2024·陕西·()()0723-+-⨯.27.(2024·湖南·中考真题)先化简,再求值:22432x x x x x-⋅++,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式()223232a b ba ab b -+-+的值.29.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫+ ⎪⎝⎭.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷⎪--⎝⎭.31.(2024·浙江·中考真题)计算:1154-⎛⎫-- ⎪⎝⎭32.(2024·四川广元·中考真题)先化简,再求值:22222a a b a ba b a ab b a b--÷---++,其中a ,b 满足20b a -=.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:2669x x x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.35.(2024·江苏苏州·中考真题)先化简,再求值:2212124x x xx x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.37.(2024·四川乐山·中考真题)先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b -C .22a b-D .2a b a b-【答案】A【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.93=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=【答案】D【分析】本题考查了单项式的乘除法,多项式除以单项式,负整数指数幂,根据运算法则进行逐项计算,即可作答.【详解】解:A 、32522a a a ⋅=,故该选项是错误的;B 、33218(2)a a b b b-÷⨯=-,故该选项是错误的;C 、()3221a a a a a a ++÷=++,故该选项是错误的;4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=6.(2024·天津·中考真题)计算11x x x ---的结果等于()A .3B .xC .1x x -D .231x -【答案】A【分析】本题考查分式加减运算,熟练运用分式加减法则是解题的关键;运用同分母的分式加减法则进行计算,对7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为xy -,则A =()A .xB .yC .x y+D .x y-二、填空题8.(2024·四川南充·中考真题)计算-a b a b a b的结果为.9.(2024·湖北·中考真题)计算:111m m m +=.10.(2024·广东·中考真题)计算:333a a a -=--.【答案】1【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:22x x+=.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;【答案】0x ≠【分析】本题考查函数的概念,根据分式成立的条件求解即可.熟练掌握分式的分母不等于零是解题的关键.【详解】解:由题意可得,0x ≠,故答案为:0x ≠.14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.三、解答题16.(2024·江苏盐城·中考真题)先化简,再求值:2391a a a a a---÷,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.18.(2024·四川广安·中考真题)先化简111a a a ++⎛⎫+-÷⎪--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.∴当0a =时,原式1=-;当2a =时,原式0=.19.(2024·山东·中考真题)(11122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪,其中1a =.21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-【答案】1-【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x ---.24.(2024·江苏苏州·中考真题)计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.25.(2024·福建·中考真题)计算:0(1)5-+-【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式152=+-4=.26.(2024·陕西·()()0723-+-⨯.27.(2024·湖南·中考真题)先化简,再求值:22x x x-⋅+,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b -+的值.29.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫+ ⎪⎝⎭.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式2310=-+=.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷ ⎪.31.(2024·浙江·中考真题)计算:1154-⎛⎫-- ⎪⎝⎭32.(2024·四川广元·中考真题)先化简,再求值:222a b a ab b a b--÷-,其中a ,b 满足20b a -=.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.35.(2024·江苏苏州·中考真题)先化简,再求值:2124x x +-⎛⎫+÷ ⎪--.其中3x =-.36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④22⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅,其中3x =.37.(2024·四川乐山·中考真题)先化简,再求值:242x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.。

2019年江苏省泰州市中考数学试卷(含解析版答案)

2019年江苏省泰州市中考数学试卷(含解析版答案)

2021年江苏省泰州市中考数学试卷〔考试时间120分钟,总分值150分〕请注意:1 •本试卷选择题和非选择题两个局部,2•所有试题的答案均填写在答题卡上,答案写在试淮上无效, 3•作图必须用2B 铅笔,并请加黑加粗。

一、选择题〔本大题共6小题,每题3分,总分值18分,在每题所给出的四个选项中,恰有一项为哪一项符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上〕1.的相反数是〔 〕 A. ±1B. - 1C. 0D. 14.小明和同学做“抛掷质地均匀的硬币试验〞获得的数据如下表〔〕抛掷次数 100 200 300 400 500 正面朝上的频数5398156202244假设抛掷硕币的次数为1000,那么“卜面朝上〞的频数最接近第一局部选择题 〔共18分〕A. 200B. 300C. 500D. 8005•如下列图的网格由边长相同的小正方形组成,点A 、E 、C 、D 、E 、F 、G 在小正方形的顶点上,那么△ ABC 的重心是〔 〕A.点DE ・点EC.点FD.点G6.假/F 、/G、/E W.—*AB. 1C. 2D ・ 3A. —6 】B ・6 C ・—3 D ・ 3A第二局部非选择题〔共132分〕二、填空题〔本大题共10小题,每题3分,总分值30.〕7.计算:〔Ji -1〕。

= _______ .8.假设分式〒丄〒有意义,那么x的取值范围是2x-l -----------9.2021年5月28 口,我国“科学〞号远洋科考船在最深约为UOOOm的马里亚纳海沟南侧发现了近10片珊瑚林,将11000用科学记数法表示为________ .〔X <110・不等式组彳。

的解集为[x < -3 ------------11.八边形的内角和为________ .12.命题“三角形的三个内角中至少有两个锐角〞是_________ 〔填“真命题〞或“假命题〞〕.13.根据某商场2021年四个季度的营业额绘制成如下列图的扇形统计图,其中二季度的营业额为1000万元,那么该商场全年的营业额为_____ 万元.14.假设关于x的方程工+U+m=0有两个不相等的实数根,那么加的取值范围是________ ・15・如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三角形边长为6cm,那么该莱洛三角形的周长为________ .16.如图,OO的半径为5,点P在OO±,点A在OO内,且AP=3,过点A作AP的垂线交于OO点C设PE=x,PC=y,那么y与x的函数表达式为_______ ・三、解答题〔本大题共10小题,总分值102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤〕17.〔此题总分值12分〕〔1〕计算:〔、医一J丄〕乂后;〔2〕解方程:2X-5+3_3X-3x — 2 x — 2三段弧闱成的图形称为莱洛三角形•假设正第13题图D18.〔此题总分值8分〕PM2.5是指空气中直径小于或等于的颗粒物,它对人体健康和大气坏境造成不良影响•下表是根据〔全国城市空气质量报告〕中的局部数据制作的统计表,根据统计表答复以下问题:2021年、2021年7〜12月全国338个地区及以上城市平均浓度统计表:〔单位:pin/nr〕〔1〕__________________________________________________ 2021年7〜12月PM2.5平均浓度的中位数为〔2〕“扇形统计图〞和“折线统计图〞中,更能直观地反映2021年7〜12月PM:.5平均浓度变化过程和趋势的统计图是____ ;〔3〕某同学观察统计表后说:“2021年7〜12月与2021年同期相比,空气质量有所改善〞。

【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

专题2.1 方程一、单选题1.【北京市2018年中考数学试卷】方程组的解为A. B. C. D.【答案】D【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.2.【山东省东营市2018年中考数学试题】小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19 B. 18 C. 16 D. 15【答案】B点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.【湖南省湘西州2018年中考数学试卷】若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A. 1 B.﹣3 C. 3 D. 4【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.4.【云南省昆明市2018年中考数学试题】关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m 的取值范围是()A. m<3 B. m>3 C.m≤3 D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m 的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选:A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【广西钦州市2018年中考数学试卷】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100 B. 100(1﹣x)2=80 C. 80(1+2x)=100 D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6.【四川省眉山市2018年中考数学试题】我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8% B. 9% C. 10% D. 11%【答案】C点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.【湖南省怀化市2018年中考数学试题】一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km 7.所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.= C.= D.=【答案】C点睛:此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.8.【云南省昆明市2018年中考数学试题】甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.【黑龙江省哈尔滨市2018年中考数学试题】方程的解为()A. x=﹣1 B. x=0 C. x= D. x=1【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.【山东省淄博市2018年中考数学试题】“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选:A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【湖南省张家界市2018年初中毕业学业考试数学试题】若关于的分式方程的解为,则的值为( )A. B. C. D.【答案】C点睛:此题主要考查了分式方程的解,正确解方程是解题关键.13.【台湾省2018年中考数学试卷】若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24 B. 0 C.﹣4 D.﹣8【答案】A【解析】分析:利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.详解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.点睛:本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.14.【新疆自治区2018年中考数学试题】某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.【答案】B点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.15.【湖南省常德市2018年中考数学试卷】阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为【答案】C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y==2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.16.【广西壮族自治区桂林市2018年中考数学试题】若,则x,y的值为()A. B. C. D.【答案】D点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.【浙江省台州市2018年中考数学试题】甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.18.【河北省2018年中考数学试卷】有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.【答案】A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.19.【湖南省邵阳市2018年中考数学试卷】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【答案】A【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20【湖北省恩施州2018年中考数学试题】.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元【答案】C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题22.【上海市2018年中考数学试卷】方程组的解是_____.【答案】,【解析】【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【详解】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.【点睛】本题考查了解二元二次方程组,根据方程组的结构特点灵活选取合适的方法求解是关键.这里体现的消元与转化的数学思想.23.【湖南省长沙市2018年中考数学试题】已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.24.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【详解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.25.【山东省聊城市2018年中考数学试题】已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是_____.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.26.【湖南省邵阳市2018年中考数学试卷】已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是_____.【答案】0【解析】【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为:0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax2+bx+c=0(a≠0)的两根之和等于﹣、两根之积等于是解题的关键.27.【山东省烟台市2018年中考数学试卷】已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.【答案】3<m≤5.点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.28.【江苏省淮安市2018年中考数学试题】若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.【答案】4【解析】分析:把x与y的值代入方程计算即可求出a的值.详解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.点睛:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.29.【湖北省襄阳市2018年中考数学试卷】我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.【答案】53【解析】【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:,故答案为:53.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解题的关键.30.【四川省内江市2018年中考数学试题】已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b (x+1)+1=0的两根之和为__________.【答案】1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.31.【四川省内江市2018年中考数学试题】关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.【答案】k≥﹣4【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+4x-k=0有实数根,∴△=42-4×1×(-k)=16+4k≥0,解得:k≥-4.故答案为:k≥-4.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.32.【四川省内江市2018年中考数学试卷】已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.33.【四川省内江市2018年中考数学试】关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.34.【山东省威海市2018年中考数学试题】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.【答案】44﹣16.【解析】分析:图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得:,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6+6)2=44﹣16,故答案为:44﹣16.点睛:本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.35.【山东省威海市2018年中考数学试题】关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.【答案】m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.36.【湖南省张家界市2018年初中毕业学业考试数学试题】关于x的一元二次方程有两个相等的实数根,则______.【答案】【解析】分析:根据题意可得△=0,进而可得k2-4=0,再解即可.详解:由题意得:△=k2-4=0,解得:k=±2,故答案为:±2.点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.37.【新疆自治区2018年中考数学试题】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.【答案】4详解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.38.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.39.【山东省聊城市2018年中考数学试卷】已知关于的方程有两个相等的实根,则的值是__________.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.三、解答题40.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.41.【北京市2018年中考数学试卷】关于的一元二次方程.(1)当时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.【答案】(1)原方程有两个不相等的实数根.(2),,.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.42.【湖北省随州市2018年中考数学试卷】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若=﹣1,求k的值.【答案】(1)k>﹣;(2)k=3.【解析】【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合=﹣1找出关于k的分式方程.43.【湖北省孝感市2018年中考数学试题】已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.44.【山东省东营市2018年中考数学试题】关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【答案】(1)sinA=;(2)△ABC的周长为或16.【解析】分析:(1)利用判别式的意义得到△=25sin2A-16=0,解得sinA=;(2)利用判别式的意义得到100-4(k2-4k+29)≥0,则-(k-2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.详解:(1)根据题意得△=25sin2A-16=0,∴sin2A=,∴sinA=±,∵∠A为锐角,∴sinA=;分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5,∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=2.∴△ABC的周长为10+2;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为10+2或16.点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.45.【湖北省黄石市2018年中考数学试卷】已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.【答案】(1)m<1;(2)0.(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.点睛:本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.46.【江苏省盐城市2018年中考数学试题】一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价。

江苏省苏州市张家港高级中学2018-2019高一下学期期中考试数学试卷含详解

江苏省苏州市张家港高级中学2018-2019高一下学期期中考试数学试卷含详解

张家港高级中学2018—2019第二学期期中考试高一数学试卷 2019.4(时间120分钟,满分160分)一、选择题(本大题共4小题,每小题5分,共20分)1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( )A . 3B .3C . 5D .5 1.【答案】A2.两条直线都和一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均可能2. 【答案】D3.一条光线从点()23--,射出,经y 轴反射后与圆()()22321x y ++-= 相切,则反射光线所在直线的斜率为( ). A .53-或35- B .32-或23-C .54-或45-D .43-或34- 3. 【答案】D .4.若x 、y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( )A .5-5B .5- 5C .30-10 5D .无法确定4. 【答案】C二、填空题(本大题共10小题,每小题5分,共50分)5.直线l :x -3y +1=0的倾斜角为________.【答案】 30°6.已知△ABC 的面积为3且b =2,c =2,则锐角A =______.【答案】 π37.给出下列命题:(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面; (2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面; (3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面; (4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面. 其中真命题的序号为__________. 【答案】 (1)(2)8.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为________.【答案】 2 39.若直线l 与直线3x +y -1=0垂直,且它在x 轴上的截距为-2,则直线l 的方程为________.【答案】 x -3y +2=010.在ABC △中,角C B A ,,所对应的边分别为c b a ,,.已知b B c C b 2cos cos =+,则=ba. 【答案】211.若曲线(x -1)2+(y -2)2=4上相异两点P ,Q 关于直线kx -y -2=0对称,则实数k 的值为__________. 【答案】 412.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0平行,则l 1与l 2的距离为________. 【答案】521213.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______.【答案】714.(2016全国丙理16)已知直线:330l mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若23AB =CD =__________________.14. 【答案】4 三、解答题15. (本小题满分14分) ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin sin B C 的值;(2)若6cos cos 1B C =,3a =,求ABC △的周长.15.解 (1)因为ABC △的面积23sin a S A =且1sin 2S bc A =,所以21sin 3sin 2a bc A A =, 即223sin 2a bc A =.由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠,得2sin sin 3B C = (7)(2)由(1)得2sin sin 3B C =,又1cos cos 6B C =,因为πA B C ++=,所以()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=. 又因为()0πA ∈,,所以60A =o ,3sin A =1cos 2A =.由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,所以22sin sin 8sin a bc B C A=⋅= ② 由①,②,得33b c +=333a b c ++=+ABC △周长为333+ (14)16.(本小题满分14分)如图8所示,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,底面边长为a ,E 是PC 的中点.(1)求证:PA ∥平面BDE ; (2)求证:平面PAC ⊥平面BDE ;(3)若二面角E ­BD ­C 为30°,求四棱锥P ­ABCD 的体积. 16【解】(1)证明:连结OE ,如图所示. ∵O ,E 分别为AC ,PC 的中点, ∴OE ∥PA .∵OE ⊂平面BDE ,P A ⊄平面BDE ,∴P A ∥平面BDE . (4)(2)证明:∵PO ⊥平面ABCD ,∴PO ⊥BD . 在正方形ABCD 中,BD ⊥AC . 又∵PO ∩AC =O ,∴BD ⊥平面PAC .又∵BD ⊂平面BDE ,∴平面P AC ⊥平面BDE . (8)(3)取OC 中点F ,连结EF .∵E 为PC 中点, ∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD , ∴EF ⊥BD ,∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO , ∴OE ⊥BD ,∴∠EOF 为二面角E ­BD ­C 的平面角, ∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a . ∴V P ­ABCD =13×a 2×66a =618a 3. (14)17.(本小题满分14分)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程.【解】 (1)当横截距、纵截距均为零时,设所求的直线方程为y =kx , 将(-5,2)代入y =kx 中,得k =-25,此时直线方程为y=-25x,即2x+5y =0 (6)(2)当横截距、纵截距都不是零时,设所求直线方程为x2a+ya=1,将(-5,2)代入所设方程,解得a=-12,此时直线方程为x+2y+1=0 (12)综上所述,所求直线方程为x+2y+1=0或2x+5y=0 (14)18.(本小题满分16分)如图,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?18.解由题意知AB=5(3+3)海里,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理,得DBsin∠DAB=ABsin∠ADB,∴DB=AB·sin∠D ABsin∠ADB=53+3·sin45°sin105°=53+3·sin45°sin45°cos60°+cos45°sin60°=533+13+12=103(海里). (6)又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=203(海里),在△DBC中,由余弦定理,得CD2=BD2+BC2-2BD·BC·cos∠DBC=300+1 200-2×103×203×12=900,∴CD=30(海里), (12)∴需要的时间t=3030=1(小时). (14)答:救援船到达D点需要1小时. (16)19.(本小题满分16分)已知过点A(0,1),且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M,N两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·O N →=12,求k 的值.【解】 (1)∵直线l 过点A (0,1)且斜率为k ∴直线l 的方程为y =kx +1. 由|2k -3+1|k 2+1<1,得4-73<k <4+73 (6)(2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1, 得(1+k 2)x 2-4(1+k )x +7=0, ∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, (10)∴OM →·O N →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1. ∴4k (1+k )1+k 2+8=12, ∴4k (1+k )1+k 2=4,解得k =1. (16)20.(本小题满分16分)已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B .(1) 当直线l 与圆1C 相切时,求切点的横坐标; (2) 求线段AB 的中点M 的轨迹C 的方程;(3) 是否存在实数k ,使得直线:(4)l y k x =-与曲线C 只有一个交点?若存在,求出k 的取 值范围;若不存在,说明理由. 20. 解析 (1)设则由得2132=+k k,解得552±=k , 将xy 552±=与()2234x y -+=联立得0)53(2=-x ,即35=x所以切点横坐标为35;……5 (2)设(),M x y .因为点M 为弦AB 中点,即1C M AB ⊥,所以11C M AB k k =-g ,即13y y x x =--g ,所以线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=< ⎪ ⎪⎝⎭⎝⎭…;……10 (3)由(2)知点M 的轨迹是以3,02C ⎛⎫⎪⎝⎭为圆心,32r =为半径的部分圆弧EF (不包括两端点),且525,33E ⎛⎫⎪ ⎪⎝⎭,525,33F ⎛⎫- ⎪ ⎪⎝⎭.又直线():4l y k x =-过定点()4,0D , 当直线l 与圆C 相切时,由223402321k k ⎛⎫-- ⎪⎝⎭=+得34k =±. 又25025543DEDFkk ⎛⎫-- ⎪⎝⎭=-=-=-,所以当332525,,44k ⎡⎤⎧⎫∈--⎨⎬⎢⎥⎩⎭⎣⎦U 时, 直线():4l y k x =-与曲线C 只有一个交点. (16)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省苏州市中考数学试卷考试时间:120分钟 满分:130分{题型:1-选择题}一、选择题:本大题共10小题,每小题3分,合计30分.{题目}1.(2019年苏州T1)5的相反数是( )A .15B .15- C .5 D .5- {答案}D{}本题考查了实数的相反数,只有符号不同的两个数互为相反数.5的相反数是﹣5,因此本题选D . {分值}3{章节: [1-1-2-3]相反数}{考点:相反数的定义}{类别:常考题}{难度:1-最简单}{题目}2.(2019年苏州T2)有一组数据:2,2,4,5,7这组数据的中位数为( ) A .2 B .4 C .5 D .7{答案}B{}本题考查了中位数.一组数据中按照从大到小(或从小到大)的顺序排列,若有奇数个数据,则最中间的那个数就是中位数,若有偶数个数据,则中间两个数的平均数是中位数.本题的数据从小到大的顺序排列为:2,2,4,5,7,所以中位数为4,因此本题选B .{分值}3{章节:[1-20-1-2]中位数和众数 }{考点:中位数}{{类别:常考题}{难度:1-最简单}{题目}3.(2019年苏州T3)苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( )A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯{答案}D{}本题考查了科学记数法表示较大的数.把一个绝对值小于1或绝对值大于10的数表示成a ×10n 的形式(1≤a <10,n 为不等于0的整数),这种记数数的方法叫做科学记数法.26 000 000=2.6×107,因此本题选D .{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年苏州T4)如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=( )A .126oB .134oC .136oD .144o{答案}A{}本题考查了平行线的性质.如答图,根据对顶角相等得到1354∠=∠=o ,根据“两直线平行,同旁内角互补”得到32180∠+∠=o ,所以218054126∠=-=o o o ,因此本题选A .{分值}3{章节:[1-5-3]平行线的性质}{考点:中位数}{考点:对顶角、邻补角}{考点:两直线平行同旁内角互补}{类别:常考题}{难度:2-简单}{题目}5.(2019年苏州T5)如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与O ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o{答案}D{}本题考查了切线的性质、三角形的内角和定理及三角形外角的性质等知识点.由切线的性质得到90BAO ∠=o ,所以903654AOB ∠=-=o o o ,由OD OA =,可得OAD ODA ∠=∠,而AOB OAD ODA ∠=∠+∠,所以27ADC ADO ∠=∠=o ,因此本题选D . {分值}3{章节:[1-24-2-2]直线和圆的位置关系}{考点:三角形的外角}{考点:三角形内角和定理}{考点:切线的性质}aaDB{类别:常考题}{难度:2-简单}{题目}6.(2019年苏州T6)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A .15243x x =+B .15243x x =-C .15243x x =+D .15243x x =- {答案}A{}本题考查了分式方程的应用,列方程的关键是找出等量关系,本题的等量关系为“小明购买的软面笔记本数=小丽购买的硬面笔记本数”,所以可列方程:15243x x =+,因此本题选A . {分值}3{章节:[1-15-3]分式方程}{考点:其他分式方程的应用}{类别:常考题}{难度:2-简单}{题目}7.(2019年苏州T7)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x >{答案}D{}本题考查了解一元一次不等式组以及不等式组解集,根据题意可以画出如下图图像,观察图像易得不等式1kx b +>的解为1x >,因此本题选D .{分值}3{章节:[1-19-3]一次函数与方程、不等式}{考点:一次函数与一元一次不等式}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年苏州T8)如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角x为30o ,则教学楼的高度是( )A .55.5mB .54mC .19.5mD .18m{答案}C{}本题考查了解直角三角形的应用.如答图,过D 作DE AB ⊥交AB 于E ,DE =BC=,在Rt △ADE 中,tan30AE DE=o,所以18m AE ==,所以AB =18+1.5=19.5m ,因此本题选C . {分值}3{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用—测高测距离}{类别:常考题}{难度:3-中等难度}{题目}9.(2019年苏州T9)如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( )A .6B .8C .10D .12{答案}C{}本题考查了菱形的性质、平移的性质以及勾股定理.由菱形的性质得28AO OC CO BO OD B O '''======,,90AOB AO B ''∠=∠=o ,即AO B ''V 为直角三角形,所以10AB '==,因此本题选C .{分值}3C EB{章节:[1-18-2-2]菱形}{考点:勾股定理}{考点:平移的性质}{考点:菱形的性质}{类别:易错题}{难度:3-中等难度}{题目}10.(2019年苏州T10)如图,在ABC V 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )A.B .4 C. D .8 {答案}B{}本题考查了三角形相似的判定和性质.由于,AB AD DE AD ⊥⊥,可得出:90BAD ADE ∠=∠=o ,所以//AB DE ,易证CDE V ∽CBA V ,所以12DC DE BC BA ==,即12DC BD DC =+;由题意可得BD =,所以DC =,容易求出ABC V,所以11422ABC S BC =⨯=⨯=V ,因此本题选B . {分值}3{章节:[1-27-1-1]相似三角形的判定}{考点:由平行判定相似}{{考点:相似三角形的性质}{类别:常考题}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共8小题,每小题3分,合计24分.{题目}11.(2019年苏州T11)计算:23a a =g .{答案}5a{}本题考查了同底数幂的运算法则.同底数幂相乘,底数不变,指数相加,所以23a a =g 5a ,因此本题答案为5a .{分值}3{章节:[1-14-1]整式的乘法}{考点:全等三角形的判定ASA,AAS}{考点:同底数幂的乘法}{类别:常考题}{难度:1-最简单}{题目}12.(2019年苏州T12)因式分解:2x xy -= .{答案}()x x y -{}本题考查了提公因式法分解因式,2x xy -=()x x y -,因此本题答案为()x x y -.DB C{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{类别:常考题}{难度:1-最简单}{题目}13.(2019年苏州T13x 的取值范围为 .{答案}x ≥6{}本题考查了二次根式有意义的条件.当二次根式的被开方数为非负数时,该二次根式有意义,所以x -6≥0,即x ≥6,因此本题答案为x ≥6.{分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件}{类别:常考题}{难度:1-最简单}{题目}14.(2019年苏州T14)若28,3418a b a b +=+=,则a +b 的值为 .{答案}5{}本题考查了运用整体思想求代数式的值.(3a +4b )-(a +2b )=2(a +b )=18-8,所以a +b 的值为5,因此本题答案为5.{分值}3{章节:[1-2-2]整式的加减}{考点:整式加减}{类别:常考题}{难度:2-简单}{题目}15.(2019年苏州T15)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长10 cm 的正方形薄板分成7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).{答案 {}本题考查了“七巧板”以及勾股定理的有关知识,观察“七巧板”图案可知,阴影部分的正方形的边长等于大正方形对角线的14,所以阴影部分的正方形的边长为14=2,因此本题答案为. {分值}3{章节:[1-17-1]勾股定理}{考点:勾股定理}{类别:常考题}{难度:2-简单}{题目}16.(2019年苏州T16)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 .{答案}827{}本题考查了求简单事件的概率.由题意可知大正方体被分割成27个棱长为1的小正方体,其中有8个(大正方体每个顶点处的)小正方体恰好有三个面涂有红色,因此本题答案为827. {分值}3{章节:[1-25-1-2]概率}{考点:一步事件的概率}{类别:常考题}{{难度:2-简单}{题目}17.(2019年苏州T17)如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为 . {答案}5{}本题考查了等腰直角三角形的性质以及勾股定理的应用.由题意可知AC =CD =1,连接OP ,设该扇形的半径为r ,由勾股定理可列方程:32+(r -1)2=r 2,解得r =5,因此本题答案为5. {分值}3{章节:[1-17-1]勾股定理}{考点:勾股定理的应用}{类别:常考题}{难度:3-中等难度}{题目}18.(2019年苏州T18)如图,一块含有45︒角的直角三角板,外框的一条直角边长为10 cm ,,则图中阴影部分的面积为 cm (结果保留根号).{答案}14+{}本题考查了等腰直角三角形、勾股定理、三角函数等知识.如答图:过顶点A 作AB 垂直于大直角三角形底边,由题意得:AB =10×sin45°=AE =EC =BD所以AC =2,CD=(2+=2,所以内外两个等腰直角三角形面积分别为:S 外=10×10÷2=50,S 内=CD 2=()22=36-,所以阴影S =50-(36-)=14+14+{分值}3{章节:[1-2-1]整式}{考点:规律-数字变化类}{类别:常考题}{难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共8小题,合计69分.{题目}19.(2019年苏州T19)计算:()2022π+---.{}本题考查了实数的运算.先分别计算出2=3,2-=2,()02-π=1,再从左至右计算. {答案}解:321=+-原式4=.{分值}5{章节:[1-16-1]二次根式}{难度:2-简单}{类别:常考题}{考点:绝对值的性质}{考点:零次幂}{考点:平方根的性质}{题目}20.(2019年苏州T20)()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组:. {}本题考查了解一元一次不等式组.分解出不等式组中的每个不等式,再取它们解集的公共部分. {答案}解:解不等式①得:4x <;解不等式②得:1x <不等式组的解集为1x <.{分值}5{章节:[1-9-3]一元一次不等式组}{难度:2-简单}{类别:常考题}{考点:解一元一次不等式组}{题目}21.(2019年苏州T21)先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =.{}本题考查了分式的化简求值.先化简分式,再代入求值. CD{答案}解:原式()233633x x x x -+-=÷++()23333x x x x --=÷++()23333x x x x -+=⋅-+ 13x =+当3x =时,原式==2. {分值}6{章节:[1-15-2-2]分式的加减}{难度:2-简单}{类别:常考题}{考点:分式的混合运算}{题目}22.(2019年苏州T22)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).{}本题考查了概率的简单应用.(1)这4张卡片中标有奇数的卡片有2张,所以恰好抽到标有奇数卡片的概率是12,(2)通过画树状图或列表求出两步事件的概率,注意本问是不放回的. {答案}解:(1)12(2)82123P ==. 答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12,抽取的2张卡片标有数字之和大于4的概率为23. {分值}6{章节:[1-25-2]用列举法求概率}{难度:2-简单}{类别:常考题}{考点:一步事件的概率}{考点:两步事件不放回}{题目}23.(2019年苏州T23)某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小组.要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计÷样本(3)选择“围棋”课外兴趣小组的人数为()241200=192150⨯人 答:参加问卷调查的学生人数为150人,36,16m n ==,选择“围棋”课外兴趣小组的人数为192人. {分值}8{章节:[1-10-1]统计调查}}{难度:2-简单}{类别:常考题}{考点:扇形统计图}{考点:条形统计图}{考点:用样本估计总体}{题目}24.(2019年苏州T24)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.1)要证EF =BC ,可通过FGC 的度数.{答案}解:(1)CAF BAE ∠=∠Q BAC EAF ∴∠=∠AE AB AC AF ==Q 又, ()BAC EAF SAS ∴△≌△ EF BC ∴=(2)65AB AE ABC =∠=︒Q , 18065250BAE ∴∠=︒-︒⨯=︒ 50FAG ∴∠=︒BAC EAF Q 又△≌△ 28F C ∴∠=∠=︒ 502878FGC ∴∠=︒+︒=︒. {分值}8{章节:[1-13-2-1]等腰三角形} {难度:3-中等难度} {类别:常考题}{考点:全等三角形的判定SAS} {考点:等边对等角} {考点:等角对等边} {考点:三角形的外角}{题目}25.(2019年苏州T25)如图,A 为反比例函数ky x=()0x >其中图像上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB ,且OA AB == (1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数ky x=()0x >其中的图像于点C ,连接OC 交AB 于点D ,求AD DB的值.{}本题考查了反比例函数及相似三角形的有关性质.(1)运用等腰三角形的“三线合一”的性质及勾股定理求出点A 的坐标,再待定系数法直接求反比例函数的表达式;(2)运用平行线得相似的方法,判断出两组三角形相似,再运用相似三角形的性质求出ADDB的值.{答案}解:(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M .4OA AB OB ===Q ,2OH ∴=,6AH ∴=,()2,6A ∴,12k ∴=; (2)124x y x==将代入,()4,3D 得,3BC ∴=.由平行线分线段成比例,所以1322MH BC ==,92AM ∴=AH x BC x ⊥⊥Q 轴,轴,AH BC ∴∥,ADM BDC ∴△∽△,32AD AM BD BC ∴==.{分值}8{章节:[1-27-1-2]相似三角形的性质} {难度:3-中等难度} {类别:常考题} {考点:三线合一} {考点:勾股定理}{考点:反比例函数的式} {考点:由平行判定相似} {考点:相似三角形的性质}{题目}26.(2019年苏州T26)如图,AB 为O e 的直径,D 是弧BC 的中点,BC 与AD ,OD 分别交于点E ,F .(1)求证:DO AC ∥;(2)求证:2DE DA DC ⋅=;(3)若1tan 2CAD ∠=,求sin CDA ∠的值.HMA{}本题考查了垂径定理的逆定理,圆中的角、平行线的判定,相似三角形的判定、三角函数等知识,属于圆的综合题.(1)垂径定理的逆定理、“直径所对的圆周角是直角”以及平行线的判定定理等知识可以证出;(2)运用“两个角对应相等的两个三角形相似”可以证出△ACD ∽△CED ,在运用相似三角形的性质可以证出2DE DA DC ⋅=;(3)利用(2)的结论以及三角函数的有关知识可求出sin CDA ∠的值.{答案}解:(1)证明:∵D 为弧BC 的中点,OD 为O e 的半径 ∴OD BC ⊥又∵AB 为O e 的直径 ∴90ACB ∠=︒ ∴AC OD ∥(2)证明:∵D 为弧BC 的中点∴»»CDBD = ∴DCB DAC ∠=∠ ∴DCE DAC ∆∆∽ ∴DC DE DA DC=即2DE DA DC ⋅=(3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠= ∴12CD DE CE DA DC AC === 设CD =2a ,则DE =a ,4DA a = 又∵AC OD ∥ ∴AEC DEF ∆∽ ∴3CE AE EF DE== 所以83BC CE =又2AC CE =∴103AB CE =即3sin sin 5CA CDA CBA AB ∠=∠==.{分值}10{章节:[1-28-3]锐角三角函数} {难度:4-较高难度} {类别:常考题} {考点:垂径定理}{考点:直径所对的圆周角} {考点:圆心角、弧、弦的关系}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质} {考点:三角函数的关系}{题目}27.(2019年苏州T27)已知矩形ABCD 中,AB =5 cm ,点P 为对角线AC 上的一点,且AP =.如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 cm/s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为v (cm/s).已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm .①求动点N 运动速度v (cm/s)的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.{}本题考查了函数图像、动点的行程问题以及二次函数等知识,属于动态几何的综合题.(1)根据题意,观察图像可得当点M 运动到B 点时,t =2.5,当点M 运动到C 点(不包含C 点),t =7.5,因此可以求出M 点的运动速度和BC 的长;(2)①点M 、N在边BC 上相遇,且不包含C 点,运用极端原理考虑,在B 点处相遇时,则N 点的运动时间为2.5秒,在C 点处相遇时(不包含C 点),则N 点的运动时间为7.5秒,运用不等式组可以求出v 的取值范围;②分别用含x 的代数式表示出S 1和S2,在计算12S S ⋅,得到一个关于x 的二次函数,运用二次函数的性质求出最大值即可.{答案}解:(1)2;10(2)①∵在边BC 上相遇,且不包含C 点,点M 、N 的运动时间相同,由题意可列不等式组:57.515 2.5<vv⎧⎪⎪⎨⎪≥⎪⎩解得263<v ≤;②如答图,12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形 ()()5152525751022x x ⨯-⨯-=---=15,过M 点作MH ⊥AC ,则12MH CM == ,∴ ,∴2S =15-(﹣2x +15)=2x ,()122152S S x x ⋅=-+⋅ =2430x x -+=215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.{分值}10{章节:[1-22-3]实际问题与二次函数}①(图)PBCDAS (cm²)t (s )②图O2.57.5112152S MH AP x =⋅=-+15-2x2x-5(N ){难度:4-较高难度} {类别:常考题}{考点:一元一次方程的应用(行程问题)} {考点:动点问题的函数图象} {考点:几何图形最大面积问题} {考点:其他二次函数综合题}{题目}28.(2019年苏州T28)如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6. (1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.(图①) (图②){}本题考查了二次函数与一元二次方程、三角形外接圆的圆心以及等腰三角形的判定等知识,属于二次函数的综合题.(1)令y =0,求出x 的值,x 的值就是二次函数的图像与x 轴交点的横坐标;(2)根据圆的轴对称性,可知圆心就是边AB 和边AC 垂直平分线的交点,通过轴对称性求解;(3)先求出△ABP 的面积,发现△ABP 的面积与△QBP 的面积相等,得出AQ ∥BP ,再根据“等角对等边”得出AP =QB ,通过勾股定理列出方程可求出点Q 的坐标.{答案}解:(1)解:由题意得()0,C a -,且2(1)y x a x a =-++-=()()1x x a --- 由图知:0a <,令y =0 ,则x 1=1,x 2=a , 所以A (,0a ),()1,0B ,()0,C a -()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍 ∴3a =-;(2)由(1)得A (-3,0),()1,0B ,()0,3C ,所以AO =OC =3,且∠AOC =90°, ABC ∆外接圆圆心就是线段AB 和AC 垂直平分线的交点,很显然线段AC 的垂直平分线与∠AOC 的角平分线所在的直线y x =-重合, 又∵AB 的垂直平分线为1x =- , ∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(﹣1,1). (3)解:过点P 作PD ⊥x 轴 由题意得:PD =d ,∴12ABP S PD AB ∆=⋅ =12×4·d =2d ,∵QPB ∆的面积为2d ,∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等 ∴AQ PB ∥设PB 直线式为y x b =+,且它经过点(1,0)B ∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩, 解得45x y =-⎧⎨=⎩ 或1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由于PAQ AQB ∠=∠,AQ ∥BP ,所以PBQ APB ∠=∠, 设BQ 于AP 交于点G ,则AG =QG ,BG =PG ,所以AP =QB , ∴BQ =AP直线AC 的表达式为y =x +3, 设点Q (m ,-m +3)(0m <), ∴()()221326m m -++= 4m =-或2(舍去) ∴Q ()4,1- .{分值}10{章节:[1-22-2]二次函数与一元二次方程} {难度:5-高难度} {类别:常考题}{考点:抛物线与一元二次方程的关系} {考点:三角形的外接圆与外心} {考点:待定系数法求一次函数的式} {考点:等角对等边} {考点:代数综合}。

相关文档
最新文档