高考物理必考难点秒杀技法(5)速度关联类问题求解-速度的合成与分解(含解析)

合集下载

高三物理难点 破解连接体中速度、位移及加速度关联

高三物理难点 破解连接体中速度、位移及加速度关联

难点6破解连接体中速度、位移及加速度关联在学习了运动的合成与分解后,我们经常会碰到涉及相互关联的物体的速度求解。

这样的几个物体或直接接触、相互挤压,或借助其他媒介(如轻绳、细杆)等发生相互作用。

在运动过程中常常具有不同的速度表现,但它们的速度却是有联系的,我们称之为“关联”速度。

解决“关联”速度问题的关键有两点:一是物体的实际运动是合运动,分速度的方向要按实际运动效果分解,二是沿着相互作用的方向(如沿绳、沿杆)的分速度大小相等。

下面通过三种关联媒介来破解连接体中的关联物理量的问题。

连接媒介之一:绳杆连接物体的关联 对于绳子或杆连接的两个物体,轻杆与轻绳均不可伸长,绳连或杆连物体的速度在绳或杆的方向上的投影相等。

求绳连或杆连物体的速度关联问题时,首先要明确绳连或杆连物体的速度,然后将两物体的速度分别沿绳或杆的方向和垂直于绳或杆的方向进行分解,令两物体沿绳或杆方向的速度相等即可求出。

【调研1】【2011年高考上海卷第11题】如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。

当绳与河岸的夹角为α,船的速率为A 、v sin αB 、v sin αC 、v cos αD 、v cos α 【解析】本题考查运动的合成与分解。

本题难点在于船的发动机是否在运行、河水是否有速度。

依题意船沿着绳子的方向前进,即船的速度就是沿着绳子的,根据绳子连接体的两端物体的速度在绳子上的投影速度相同,即人的速度v 在绳子方向的分量等于船速,故v 船=v cos α,C 对。

【答案】C 【规律总结】绳端速度的分解是绳端物体(绳端连接体如本题小船)实际速度(对地)的分解,实际速度产生两个效果:一是绳的缩短或伸长;二是绳绕滑轮的转动,且转动线速度垂直于绳。

绕过滑轮的轻绳力的特点是两端拉力相等,速度特点是沿绳的伸长或缩短方向速度相等。

因此绳子关联的物体的分解方法有两种,①将实际速度分解为沿着绳子方向和垂直绳子方向;②绳子两端的速度在绳子上的投影速度相同,比如本题中绳子左端的速度就是拉力的速度与绳子与船连接端的小船在绳子方向上的投影速度大小相等。

2010年高考物理难点突破:难点4 速度关联类问题求解

2010年高考物理难点突破:难点4   速度关联类问题求解

难点4 速度关联类问题求解·速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场.如1图4-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.如图4-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收 [例1]如图4-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?缩的速度按图4-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图4-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD①由速度的定义:物体移动的速度为v 物=tBC t s ∆=∆∆1 ②人拉绳子的速度v =tBD t s ∆=∆∆2 ③由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图4-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.图4-1图4-2 图4-4 图4-5图4-6图4-3v所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos图4-7[例2]一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图4-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B级要求.错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.如图4-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.如图4-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图4-9 图4-103.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图4-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.如图4-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图4-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.如图4-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

高考物理计算题复习《关联速度问题》(解析版)

高考物理计算题复习《关联速度问题》(解析版)

《关联速度》一、计算题1.如图所示,竖直平面内放一直角杆,杆的各部分均光滑,水平部分套有质量为m A=3kg的小球A,竖直部分套有质量为m B=2kg的小球B,A、B之间用不可伸长的轻绳相连。

在水平外力F的作用下,系统处于静止状态,且OA=3m,OB=4m,重力加速度g=10m/s2.(1)求水平拉力F的大小和水平杆对小球A弹力F N的大小;(2)若改变水平力F大小,使小球A由静止开始,向右做加速度大小为4.5m/s2的匀拉力F所做的功。

加速直线运动,求经过23s2.如图所示,某人用绳通过定滑轮拉小船,绳某时刻与水平方向夹角为α.求:(1)若人匀速拉绳的速度为v o,则此时刻小船的水平速度v x为多少?(2)若使小船匀速靠岸,则通过运算分析拉绳的速度变化情况?3.如图,足够长光滑斜面的倾角为θ=30°,竖直的光滑细杆到定滑轮的距离为a=3m,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,已知M=5.5kg,m=3.6kg,g=10m/s2.(1)求m下降b=4m时两物体的速度大小各是多大?(2)若m下降b=4m时恰绳子断了,从此时算起M最多还可以上升的高度是多大?4.如图所示,水平光滑长杆上套有一个质量为m A的小物块A,细线跨过O点的轻小光滑定滑轮一端连接小物块A,另一端悬挂质量为m B的小物块B,C为O点正下方杆上一点,滑轮到杆的距离OC=ℎ.开始时小物块A受到水平向左的拉力静止于P 点,PO与水平方向的夹角为30°.(1)求小物块A受到的水平拉力大小;(2)撤去水平拉力,求:①当PO与水平方向的夹角为45°时,物块A的速率是物块B的速率的几倍?②物块A在运动过程中的最大速度.5.如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平,O点为球心,碗的内表面及碗口光滑。

曲线运动之速度合成和分解

曲线运动之速度合成和分解

关联速度问题解析:本类题的关键,是找到物体的实际速度,然后,将物体的速度按实际作用效果加以分解。

比如下面的两个实例:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.再如:下图中A点的实际速度是绕转轴做圆周运动的。

它的运动可以分解为水平向右和竖直向下的两种运动。

1.如图所示,AB杆水平固定,另一细杆可绕固定轴O转动,O轴在AB杆上方h高处,两杆均被套在光滑圆环P上,当细杆绕O轴以角速度ω顺时针方向转至与竖直方向30°时,环的运动速度为___.2.如图所示,AB绕杆A点以一定的角速度ω由竖直位置开始顺时针匀速旋转,并带动套在水平杆上的光滑小环运动.则小环在水平杆上运动时速度大小的变化情况是( )A.保持不变B.一直增大C.一直减小D.先增大后减小3.如图,正方形滑块高H,它以恒定速度v0匀速向右运动,长为L的轻杆一端固定在地面上且可以自由转动,另一端连接小球搭在正方体上,当杆转动到与水平地面夹角为θ时,那么小球的速度为______4.距离河岸500m 处有一艘静止的船,船上的探照灯以1min r 的转速水平转动.若河岸看成直线,当光束与岸边成60°角时,光束沿岸边移动的速率为( )A. 52.3m sB. 69.8m sC. 666.7m sD.180m s5.如图所示,长为L 的直杆一端可绕固定轴O 无摩擦转动,另一端靠在以水平速度ν匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A 的线速度为A.sin vθB. sin v θC. cos v θD. cos v θ6如图所示,长为L 的直棒一端可绕固定轴o 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )。

7.如图所示,有两条位于同一竖直平面内的水平轨道,相距为h.轨道上有两个物体A 和B,它们通过一根绕过定滑轮O 的不可伸长的轻绳相连接.物体A 在下面的轨道上以匀速率v 运动.在轨道间的绳子与轨道成30°角的瞬间,绳子BO 段的中点处有一与绳相对静止的小水滴P 与绳子分离,设绳长BO 远大于滑轮直径,求:(1)小水滴P 脱离绳子时速度的大小和方向; (2)小水滴P 离开绳子落到下面轨道所需要的时间.8.如图所示,长为L 的轻杆的下端用铰链固接在水平地面上,上端固定一个质量为m 的小球,轻杆处于竖直位置,同时与一个质量为M 的长方体刚好接触。

物理速度的合成与分解的易错题以及解析

物理速度的合成与分解的易错题以及解析

物理速度的合成与分解的易错题以及解析(实用版)目录一、速度合成与分解的概念二、速度合成与分解的常见错误三、速度合成与分解的解析方法四、实际应用举例正文一、速度合成与分解的概念速度合成与分解是物理学中常见的概念,它涉及到物体运动速度的向量相加与分解。

速度合成是指将多个物体的速度向量相加,得到它们的合速度;而速度分解是指将一个物体的速度向量拆分成多个分速度。

二、速度合成与分解的常见错误在解决速度合成与分解问题时,学生常犯以下错误:1.不按照平行四边形定则进行速度向量的相加,导致合成速度错误。

2.在进行速度分解时,没有考虑到物体的实际运动情况,导致分解结果不符合实际。

三、速度合成与分解的解析方法1.速度合成:在合成速度时,应严格按照平行四边形定则进行速度向量的相加,确保合速度的准确性。

2.速度分解:在分解速度时,需要根据物体的实际运动情况进行分析,找出合适的分解方向。

例如,在分析物体在圆周运动中的分速度时,需要考虑到物体在圆周上的切向速度和径向速度。

四、实际应用举例假设有一个物体在平直道路上做匀加速直线运动,其速度为 v。

现在将该物体放入一个半径为 R 的圆周轨道上,使其在圆周轨道上做匀速圆周运动。

请问物体在圆周轨道上的速度 v"是多少?解析:在此问题中,物体在平直道路上的速度 v 可以看作是物体在圆周轨道上的切向速度 v"和径向速度 v_r 的合成。

根据平行四边形定则,可得 v"^2 = v^2 + v_r^2。

由于物体在圆周轨道上做匀速圆周运动,所以 v_r = Rω,其中ω为角速度。

运动的合成与分解——“关联”速度问题

运动的合成与分解——“关联”速度问题

运动的合成与分解——“关联”速度问题●问题概述:绳、杆等有长度的物体,在运动过程中,其两端点的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。

关联速度的关系——沿杆(或绳)方向的速度分量大小相等。

●关键点:1.绳子末端运动速度的分解,应按运动的实际效果进行。

2.速度投影定理:不可伸长的杆(或绳),尽管各点速度不同,但各点速度沿绳方向的投影相同。

●例题:如图所示,人用绳子通过定滑轮拉物体A,当人以速度v0匀速前进时,物体A将做( )A.匀速运动B.加速运动B.C.匀加速运动 D.减速运动解题探究:①物体A的运动有两个运动效果,分别是什么?②将该物体的速度沿哪两个方向分解?●规律总结求解绳(杆)拉物体运动的合成与分解问题的思路和方法:①先明确合运动的方向:物体的实际运动方向②然后弄清运动的实际效果:沿绳或者杆的伸缩效果;使绳子或者杆转动的效果。

③再确定两个分运动的方向:沿着绳子(杆)、垂直于绳子(杆)●常见的模型●巩固练习1、如图所示,人以水平速度v跨过定滑轮匀速拉动绳子,当拉小车的绳子与水平地面的夹角为β时,小车沿水平地面运动的速度为( )A.V B.vcosβC.vsinβD.v cosβ2、如图所示,纤绳以恒定速率v1沿水平方向通过定滑轮牵引小船靠向岸边,设小船速度为v2,则小船靠岸过程的运动情况是( )A.加速靠岸,v2>v1 B.加速靠岸,v2<v1C.减速靠岸,v2>v1 D.匀速靠岸,v2<v13、两根光滑的杆互相垂直地固定在一起,上面分别穿有一个小球,小球a、b间用一细直棒相连,如图所示。

当细直棒与竖直杆夹角为θ时,两小球实际速度大小之比为( )A.sinθB.cosθC.tanθD.cotθ4、如图所示,物体A以速度v沿杆匀速下滑,A用细绳通过定滑轮拉物体B,当绳与水平夹角为θ时,B的速度为()A.v cosθ B.v sinθC.v/cosθ D.v/sinθ5、(不定项)如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻速度分别为1v 和2v ,绳子对物体的拉力为T ,物体所受重力为G ,则下面说法正确的是( )A .物体做匀速运动,且v 1=v 2B .B .物体做加速运动,且v 1>v 2C .物体做加速运动,且T>GD .物体做匀速运动,且T =G6、如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连。

速度关联类问题求解速度的合成与分解

速度关联类问题求解速度的合成与分解

精心整理速度关联类问题求解·速度的合成与分解 编辑杨国兴运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点1.为α和β2.●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解: 设经长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =cos BD图图图图①由速度的定义:物体移动的速度为v物=tBCt s ∆=∆∆1 ②人拉绳子的速度v =tBDt s ∆=∆∆2 ③由①②③解之:v 物=θcos v系v ⊥=点转动人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).B B A .因为1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ. 令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .图●锦囊妙计一、分运动与合运动的关系 1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.1.2.终不变3.4.度关系●歼灭难点训练 一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.. S 为平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点S ′在屏上移动图图图的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在AC.设A 速度为绳Q 6.劈B (1(2与地面作用中机械能的损失忽略不计)参考答案: [难点] 1.v B =0cos cos v βα2.略 [歼灭难点训练] 1.v =αcos 10+v2.v A =v B tan α;a A =a B tan α3.(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即22B °应有: ∠m 2速度E 减′m 2下滑平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°.选取光点S ′为连结点,因为光点S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度图5′—图沿光线OS ′及垂直于光线OS ′的两个方向分解,由速度矢量分解图5′—1可得: v 1=v sin60°,v 2=v cos60° 又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω. 则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL . 5.以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点v Q E k2=21拉力T h =W G 即W T =416.当A 和为零,所以系统机械能守恒.mg (h -r )=2mv A 2+2mv B 2①由图中几何知识知:h =cot30°·r =3r ②A 、B 的运动均可分解为沿斜面和垂直斜面的运动,如图5′—3所示。

速度关联类问题求解

速度关联类问题求解

速度关联类问题求解·速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.如图4-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.如图4-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]如图4-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图4-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图4-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =①由速度的定义:物体移动的速度为v 物=②人拉绳子的速度v =③由①②③解之:v 物=解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图4-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.θcos BDtBCt s ∆=∆∆1t BDt s ∆=∆∆2θcos v 图4-1图4-2图4-3图4-4图4-5图4-6所以v 物=解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=图4-7[例2]一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图4-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B 级要求.错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h .故A 的线速度v A =ωL =vL sin 2θ/h .●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练θcos v θcos v一、选择题1.如图4-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A v .沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度2.如图4-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图4-9 图4-103.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图4-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.如图4-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图4-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.如图4-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

高中物理关联速度的合成与分解教学内容

高中物理关联速度的合成与分解教学内容

速度关联类问题求解·速度的合成与分解●难点1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD①由速度的定义:物体移动的速度为v 物=tBCt s ∆=∆∆1 ②人拉绳子的速度v =tBD t s ∆=∆∆2③由①②③解之:v 物=θcos v解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动. 所以v 物=θcos v解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物=θcos v图5-1图5-2图5-3图5-4图5-5图5-6图5-7[例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方向.解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的v 的关系不明显).因为B 点在物块上,该点运动方向不变且与物块运动方向一致,故B 点的合速度(实际速度)也就是物块速度v ;B 点又在棒上,参与沿棒向A 点滑动的速度v 1和绕O 点转动的线速度v 2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v 2=v sin θ.设此时OB 长度为a ,则a =h /sin θ.令棒绕O 点转动角速度为ω,则:ω=v 2/a =v sin 2θ/h . 故A 的线速度v A =ωL =vL sin 2θ/h . ●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性. 二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系. ●歼灭难点训练 一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另图5-8一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图5-10所示.试求:(1)m 2在下滑过程中的最大速度. (2)m 2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

速度的合成与分解(冼)

速度的合成与分解(冼)

速度的合成与分解—速度关联问题(牵连体的速度合成与分解)
【例1】 二直杆交角为θ,交点为A ,若两䩞各以垂直于自身的速度V 1、V 2沿纸面平动,则交点A 的运动速度的大小是多少?(图一)(本题为第二届全国中学生力学竞赛试题)
分析与解 解法一:
经过单位时间后,1l 的位移大小为
V 1,2l 的位移大小为V 2,如图2所示。

2
cos V A C θ
'=
1cot BC V θ=

2
V AA '=====
解法二:将1l 的移动速度向着1l 和2l (又称2l 的切向)方向分解,其中分速度21l t V 以叫做速度V 1在2l 方向(又叫做在另一条直线的切线方
向的分速度)。

再将2l 的移动速
度V 2向着1l 和2l 的方向分解,其中V 2在1l 方向的分速度12l t V 叫做V 2在1l 切向方向的分速度。

再将11l t V 和21l t V 合成起来,则它们的合速度就是A 点移动的速度。

(如图4) 由图3得:
21
1cos l t V V θ= 122cos l t
V V θ
= 由图4,根据余弦定理:
结论:线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和. 方法三:令杆1l 不动,杆2l 以速度V 2垂直杆2l 运动,交点在杆1l 上滑行的速度:
22sin A
v
v θ
=; 令杆2l 不动,杆1
l 以速度V 1垂直杆1l 运动,交点在杆2l 上滑行滑行的速度:1
1sin A v v θ
=
V ===
A 点对纸面的速度V 1A 与V 2A 的合速度,根据图5,其大小为:
2A v ==。

高中物理专题复习---关联体速度的合成与分解

高中物理专题复习---关联体速度的合成与分解

微专题17 关联体速度的合成与分解【核心要点提示】关联体:通过绳子、轻杆或者其他之间联系的两个相互作用的物体【核心方法点拨】(1)如果物体是通过杆或者绳子关联,由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题的原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.(2)若两物体是通过接触面接触的,则将物体的实际速度沿平行与垂直接触面方向进行分解,在垂直接触面方向上速度相等。

【微专题训练】如图所示,长为L的直杆一端可绕固定轴O无摩擦转动,另一端靠在以水平速度v匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A的线速度为()A.vsin θB.v sin θ C.vcos θD.v cos θ【解析】将直杆端点A的线速度进行分解,如图所示,由图中的几何关系可得:v0=vcos θ,选项C正确,选项A、B、D错误.【答案】C自行车转弯时,可近似看成自行车绕某个定点O(图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A、B相距L,虚线表示两轮转弯的轨迹,OB距离为3L,前轮所在平面与车身夹角θ=30°,此时轮轴B的速度大小v2=3 m/s.则轮轴A的速度v1大小为()A.332m/s B .2 3 m/s C. 3 m/s D .3 3 m/s【解析】绳(或杆)端速度的分解法此时轮轴A 的速度产生两个效果,一是与轮轴B 同向运动,二是以B 为圆心向右转,分解如图(a)所示,因此v 1cos θ=v 2,θ=30°,解得v 1=2 3 m/s ,B 项正确.【答案】B一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是( )A .hω B.hωcos θ C.hωcos 2θD .hωtan θ 【解析】当光束转到与竖直方向夹角为θ时,云层底面上光点转动的线速度为hωcos θ.设云层底面上光点的移动速度为v ,则有v cos θ=hωcos θ,解得云层底面上光点的移动速度v =hωcos 2θ,选项C 正确.【答案】C。

2024高考物理复习重难点解析—运动的合成与分解、抛体运动

2024高考物理复习重难点解析—运动的合成与分解、抛体运动

2024高考物理复习重难点解析—运动的合成与分解、抛体运动这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是运动的合成与分解、动量、动能定理的内容结合起来考查,考查时注重物理思维与物理能力的考核.命题趋势有平抛运动和斜抛运动,而且三维坐标系考查三维立体空间的分解能力增多。

例题1.(2022·山东·高考真题)如图所示,某同学将离地1.25m 的网球以13m/s 的速度斜向上击出,击球点到竖直墙壁的距离4.8m 。

当网球竖直分速度为零时,击中墙壁上离地高度为8.45m 的P 点。

网球与墙壁碰撞后,垂直墙面速度分量大小变为碰前的0.75倍。

平行墙面的速度分量不变。

重力加速度g 取210m/s ,网球碰墙后的速度大小v 和着地点到墙壁的距离d 分别为()A .5m/s v =B .v =C . 3.6m =dD . 3.9m=d【答案】BD【解析】设网球飞出时的速度为0v ,竖直方向20=2()v g H h -竖直代入数据得012m/sv =竖直则05m/sv =水平排球水平方向到P 点的距离0006m v x v t v g==⋅=竖直水平水平水平根据几何关系可得打在墙面上时,垂直墙面的速度分量0044m/s5v v =⋅=水平⊥水平平行墙面的速度分量0033m/s5v v =⋅=水平∥水平反弹后,垂直墙面的速度分量'00.753m/sv v =⋅=水平⊥水平⊥则反弹后的网球速度大小为v 水平网球落到地面的时间' 1.3s t ===着地点到墙壁的距离'' 3.9md v t ⊥==水平故BD 正确,AC 错误。

故选BD 。

例题2.(2022·全国·高考真题)将一小球水平抛出,使用频闪仪和照相机对运动的小球进行拍摄,频闪仪每隔0.05s 发出一次闪光。

某次拍摄时,小球在抛出瞬间频闪仪恰好闪光,拍摄的照片编辑后如图所示。

高中物理曲线运动速度的合成与分解牵连运动中的速度分解

高中物理曲线运动速度的合成与分解牵连运动中的速度分解

牵连运动问题中的速度分解1、微移法处理牵连运动这类问题,可以从实际情况出发.设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间的速度大小的关系.例1、如图1-1所示,人用绳子通过定滑轮将水中的小船系住,并以3m/s的速度将绳子收短,此时绳与水面夹角30°角,求此时小船的速度.解:设船在Δt内由A移到B,位移为ΔS2,如图1(a),取OC=OB,则绳子缩短ΔS1,绳子端点横向摆动ΔS3,合位移ΔS2可以分解为ΔS1和ΔS3两个分位移.当Δt→0,ΔS2→0,∠ACB→90°,此时:ΔS1=ΔS2cos30°,即有:,即:所以有:2、速度的分解法此题也可直接由速度分解的方法进行.船的实际速度V2是合速度,水平向左,认为绳不可伸长,分速度V1为沿绳方向的速度,即等于将绳子收短的速度3m/s,分速度V3为绕O点以OA为半径的绕滑轮向内偏的圆周运动的速度,垂直于绳的方向,画出速度分解的矢量图如图1(b)所示,从而求出3、沿绳的速度相等法中学物理对于绳子的形变一般都不计,因此,绳拉紧时绳上各点的速度大小必定相等.例2、一根绳通过定滑轮两端分别系着两个物体A和B,如图2所示,物体A 在外力作用下向左以匀速运动,某一时刻连A的绳子与水平方向成角,连B的绳子与水平方向成角,求此时物体B的速度的大小.解:物体A的实际速度大小为,方向向左,把沿绳方向和垂直于绳的方向分解,沿绳子方向的分速度设物体B的实际速度为,则沿绳子方向的分速度由于沿绳上各点的速度大小相等,所以:,即:4、功率法中学物理对于绳子的质量和形变一般都不计,因此,绳子没有动能,重力势能、弹性势能、内能,即绳子没有能量,不能和外界交换能量,只能传递能量,所以绳子两端的瞬时功率必定相等.例3:如图3所示,一轻绳的一端通过光滑的定滑轮O与处在光滑的倾角为300的斜面上的物体A连接,A的质量为m,轻绳的另一端和套在竖直光滑直杆上的物体B连接,B的质量为M,OB绳水平且距离S=m,当B由静止释放下降h=1m时,A的速率由多大?解:设A的速度大小为,方向沿斜面向上,B的速度大小为,方向竖直向下,此时绳子与杆的夹角为,由几何关系可得;由机械能守恒得:设绳子得张力为T,由绳子两端的瞬时功率相等,即有:即:联立(1)(2)两式可得:〖例3〗在光滑的水平面上,放一质量为M,高度为a的木块,支承一长L的轻质杆,杆的一端固定着质量为m的小球,另一端用O点绞链着,如图1-5所示。

2020-2021学年高考名师推荐物理--速度的合成与分解(解析版).doc

2020-2021学年高考名师推荐物理--速度的合成与分解(解析版).doc

2020-2021学年高考名师推荐物理--速度的合成与分解(解析版)姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分1. (知识点:运动的合成与分解,曲线运动,力的合成与分解)一个带正电的粒子,在平面内以速度从0点进入一匀强电场,重力不计。

粒子只在电场力作用下在平面内沿图中实线轨迹运动到A点,且在A点时的速度方向与y轴平行,则电场强度的方向可能的是A.沿x轴正方向B.沿x轴负方向C.沿y轴负方向D.沿y轴正方向【答案】C【解析】分析粒子的运动情况,判断其受力情况,来确定电场可能的方向,粒子在A点时的速度方向与x轴平行,说明y轴方向粒子做减速运动.若电场的方向沿x轴方向,粒子沿y轴方向做匀速直线运动,到达A点时速度不可能与x轴平行.故AB错误.C、若电场方向沿-y方向,粒子所受的电场力沿-y方向,粒子在y轴方向上做减速运动,x轴方向做匀速直线运动,到达A点时y轴方向的分速度减至零时,速度方向能与x轴平行.故C正确.D、若电场方向沿+y方向,粒子所受的电场力沿+y方向,粒子在y轴方向上做加速运动,x轴方向做匀速直线运动,到达A点时y轴方向有分速度,速度方向不可能与x轴平行.故D错误.在杂技表演中,猴子沿竖直杆向上做初速度为0、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示.关于猴子的运动情况,下列说法中正确的是评卷人得分A.相对地面的运动轨迹为直线B.相对地面做变加速曲线运动C.t时刻猴子对地速度的大小为v0+atD.t时间内猴子对地的位移大小为【答案】D【解析】猴子在水平方向上做匀速直线运动,竖直方向上做初速度为零的匀加速直线运动,猴子的实际运动可以看做类平抛运动,其运动轨迹为抛物线;因为猴子受到的合外力恒定(因为加速度恒定),所以相对地面猴子做的是匀变速曲线运动;t时刻猴子对地速度的大小为;t时间内猴子对地的位移大小为,选项D对.一带负电荷的质点,在电场力作用下沿曲线abc从a运动到c,已知质点的速率是递减的.关于b点电场强度E的方向,下列图示中可能正确的是(虚线是曲线在b点的切线)A.B.C.D.【答案】D【解析】带电质点所受的电场力指向曲线的凹侧,由此知选项A、C错误;又由于速率是递减的,则电场力与速度的夹角大于90°,选项D正确,选项B错误.答案 DA、B两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A以的速度向右匀速运动,当绳被拉成与水平面夹角分别是、时,如图所示.物体B的运动速度为(绳始终有拉力)【答案】【解析】设物体B的运动速度为,此速度为物体B合运动的速度,根据它的实际运动效果两分运动分别为:沿绳收缩方向的分运动,设其速度为v ;垂直绳方向的圆周运动,速度分解如图1所示,则有.物体A的合运动对应的速度为v1,它也产生两个分运动效果,分别是:沿绳伸长方向的分运动,设其速度为垂直绳方向的圆周运动,它的速度分解如图2所示,则有绳由于对应同一根绳,其长度不变,故:.根据上述三式解得:.选项D正确.质量为2 kg的物体在xy平面上做曲线运动,在x方向的速度图像和y方向的位移图像如图所示,下列说法正确的是A.质点的初速度为B.质点所受的合外力为C.质点初速度的方向与合外力方向垂直D.末质点速度大小为【答案】AB【解析】由图像可知,,,质点的初速度,选项A 正确;物体的加速度,由,得,选项B正确;质点初速度的方向与合外力方向夹角为,如图所示,选项C错误;2 s末,,选项D错误.一个物体以初速度从A点开始在光滑水平面上运动.一个水平力作用在物体上,物体运动轨迹如图中实线所示,图中B为轨迹上一点,虚线是过A、B两点并与该轨迹相切的直线,虚线和实线将水平面划分为图示的5个区域.则关于对该施力物体位置的判断,下列说法有:①如果这个力是引力, 则施力物体一定在(4)区域;②如果这个力是引力,则施力物体一定在(2)区域;③如果这个力是斥力,则施力物体一定在(2)区域;④如果这个力是斥力,则施力物体可能在(3)区域.以上说法正确的是A.如果这个力是引力,则施力物体一定在(4)区域B.如果这个力是引力,则施力物体一定在(2)区域C.如果这个力是斥力,则施力物体一定在(2)区域D.如果这个力是斥力,则施力物体一定在(3)区域【答案】AC【解析】如果这个力是引力,则施力物体一定在(4)区域,这是因为做曲线运动物体的轨迹一定处于合外力与速度方向之间且弯向合外力这一侧.如果这个力是斥力,将(1)(2)(3)(5)区域内任何一点分别与A、B两点相连并延长,可发现(1)(3)(5)区域的点,其轨迹不在合外力方向和速度方向之间,而(2)区域的点的轨迹都在合外力方向和速度方向之间,因此③正确.故选项AC正确.如图所示,人沿平直的河岸以速度 v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为时,船的速率为A.B.C.D.【答案】C【解析】人在行走的过程中,小船前进的同时逐渐靠岸,将人的运动沿着绳子方向和垂直绳子方向正交分解,由于绳子始终处于绷紧状态,故小船的速度等于人沿着绳子方向的分速度,根据平行四边形定则,将人的速度v分解后,可得结论.将人的运动速度v沿着绳子方向和垂直绳子方向正交分解,如图,由于绳子始终处于绷紧状态,因而小船的速度等于人沿着绳子方向的分速度根据此图得,故选C.本题关键找到人的合运动和分运动,然后根据正交分解法将人的速度分解即可;本题容易把v船分解而错选D,要分清楚谁是合速度,谁是分速度.。

高考专题01 关联速度-高考物理一轮复习专题详解 Word版含解析

高考专题01 关联速度-高考物理一轮复习专题详解 Word版含解析

高考重点难点热点快速突破绳、杆相牵连物体的速度关系的分析方法两物体用绳、杆相牵连时,将物体(绳头或杆头)的速度沿绳、杆和垂直于绳、杆方向分解,两物体沿绳、杆方向的分速度大小相等.规律方法解决运动合成和分解的一般思路(1)明确合运动或分运动的运动性质.(2)明确是在哪两个方向上的合成或分解.(3)找出各个方向上已知的物理量(速度、位移、加速度).(4)运用力与速度的关系或矢量的运算法则进行分析求解典例讲解:【例1】 (多选)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将小环从定滑轮等高的A 处由静止释放,当小环沿直杆下滑的距离也为d 时(图中B 处),下列说法正确的是( )A .小环刚释放时轻绳中的张力一定大于2mgB .小环到达B 处时,重物上升的高度也为dC .当小环在B 处时,小环与重物的速度大小之比等于 2D .当小环在B 处时,小环与重物的速度大小之比等于22【答案】 AC【解析】 由题意,小环释放时向下加速运动,则重物将加速上升,对重物,由牛顿第二定律可知绳中的张力一定大于重力2mg ,故A 正确;小环到达B 处时,重物上升的高度应为绳子缩短的长度,即h =2d -d =(2-1)d ,故B 错误;根据题意,小环沿绳子方向的速度与重物的速度大小相等,将小环A 的速度沿绳子方向与垂直于绳子方向正交分解应满足v 环cos45°=v 物,即得小环在B 处的速度与重物上升的速度大小之比v 环v 物=21,故C 正确,D 错误.【例2】. (2017年新疆生产建设兵团第二中学高三上学期第二次月考)如图所示,一根长为L 的轻杆OA ,O 端用铰链固定,轻杆靠在一个高为h 的物块上,某时杆与水平方向的夹角为θ,物块向右运动的速度为v ,则此时A 点速度为( )A.Lv sin θhB.Lv cos θhC.Lv sin 2θhD.Lv cos 2θh【答案】:C 【解析】:根据运动的效果可知物块向右运动的速度,如图所示.专题练习1.如图所示,开始时A 、B 间的细绳呈水平状态,现由计算机控制物体A 的运动,使其恰好以速度v 沿竖直杆匀速下滑,经细绳通过定滑轮拉动物体B 在水平面上运动,则下列v -t 图像中,最接近物体B 的运动情况的是( )【答案】 A【解析】将与物体A 相连的绳端速度v 分解为沿绳伸长方向的速度v 1和垂直于绳方向的速度v 2,则物体B 的速度v B =v 1=vsin θ,在t =0时刻θ=0°,v B =0,C 项错误;之后随θ增大,sin θ增大,B 的速度增大,但开始时θ变化快,速度增加得快,图线的斜率大,若绳和杆足够长,则物体B 的速度趋近于A 的速度,A 项正确.2.如图所示,AB 杆以恒定的角速度ω绕A 点在竖直平面内顺时针方向转动,并带动套在固定水平杆OC 上的小环M 运动,AO 间距离为h.运动开始时AB 杆在竖直位置,则经过时间t(小环仍套在AB 和OC 杆上)小环M 的速度大小为( )A.ωh cos 2(ωt ) B.ωh cos (ωt ) C .ωh D .ωhtan(ωt)【答案】 A3.如图所示,有一个直角支架AOB ,OA 水平放置,OB 竖直向下,OA 上套有小环P ,OB 上套有小环Q ,两环间由一根质量不计、不可伸长的细绳相连,小环P 受水平向右外力作用使其匀速向右平动,在P平动过程中,关于Q的运动情况以下说法正确的是( )A.Q匀速上升B.Q减速上升C.Q匀加速上升D.Q变加速上升【答案】D4.在不计滑轮摩擦和绳子质量的条件下,当小车以速度v匀速向右运动到如图所示位置时,物体P的速度为( )A.vB.vcos θC.D.vcos2 θ【答案】B【解析】如图所示,绳子与水平方向的夹角为θ,将小车的速度分解为沿绳子方向和垂直于绳子方向,沿绳子方向的速度等于P的速度,根据平行四边形定则得,v P=vcos θ.故B正确,A、C、D错误.5.如图所示,水平面上固定一个与水平面夹角为θ的斜杆A.另一竖直杆B以速度v 水平向左匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为()A.水平向左,大小为vB.竖直向上,大小为vtan θC.沿A杆向上,大小为v/cos θD.沿A杆向上,大小为vcos θ【答案】C6.(多选)如图所示,轻质不可伸长的细绳绕过光滑定滑轮C与质量为m的物体A连接,A放在倾角为的光滑斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现BC连线恰沿水平方向,从当前位置开始B以速度v0匀速下滑.设绳子的张力为F T,在此后的运动过程中,下列说法正确的是()A.物体A做加速运动B.物体A做匀速运动C.FT可能小于mgsin θD.FT一定大于mgsin θ【答案】AD【解析】由题意可知,将B的实际运动分解成两个分运动,如图所示,根据平行四边形定则,可有:v B sin α=v绳;因B以速度v0匀速下滑,又α在增大,所以绳子速度在增大,则A处于加速运动,根据受力分析,结合牛顿第二定律,则有:F T >mgsin θ,故A、D正确,B、C错误;故选A、D.7.(多选)如图所示,在不计滑轮摩擦和绳子质量的条件下,小车匀速地从B点运动到M 点,再运动到N点的过程中,关于物体A的运动和受力情况,下列说法正确的是( )A.物体A也做匀速直线运动B.物体A的速度可能为零C.绳的拉力总是等于A的重力D.绳的拉力总是大于A的重力【答案】BD8.一辆车通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始车在滑轮的正下方,绳子的端点离滑轮的距离是H.车由静止开始向左做匀加速运动,经过时间t,绳子与水平方向的夹角为θ,如图所示,试求:(1)车向左运动的加速度的大小;(2)重物m在t时刻速度的大小.【答案】(1)(2)9. 如图所示,水平面上有一汽车A,通过定滑轮用绳子拉同一水平面上的物体B,当拉至图示位置时,两绳子与水平面的夹角分别为α、β,二者速度分别为v A和v B,则v A和v B 的比值为多少?【答案】cos β∶cos α【解析】物体B实际的运动(合运动)水平向右,根据它的实际运动效果可知,两分运动分别为沿绳方向的分运动(设其速度为v1)和垂直绳方向的分运动(设其速度为v2).如图甲所示,有v1=v B cos β①汽车A实际的运动(合运动)水平向右,根据它的实际运动效果,两分运动分别为沿绳方向的分运动(设其速度为v3)和垂直绳方向的分运动(设其速度为v4).如图乙所示,则有v3=v A cos α②又因二者沿绳子方向上的速度相等,即v1=v3③由①②③式得v A∶v B=cos β∶cos α.。

高考物理必考难点秒杀技法(5)速度关联类问题求解-速度的合成与分解(含解析)

高考物理必考难点秒杀技法(5)速度关联类问题求解-速度的合成与分解(含解析)

高考物理必考难点 速度关联类问题求解·速度的合成与分解 运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD ①由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =tBD t s ∆=∆∆2 ③ 由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在图5-1 图5-2 图5-3 图5-4图5-5 图5-6水平面上运动的速度v物是合速度,将v物按如图5-6所示进行分解.其中:v=v物cosθ,使绳子收缩.vv⊥=v物sinθ,使绳子绕定滑轮上的A点转动.所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos图5-7例2](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B级要求.错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v 分、s 分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-9 图5—10 3.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图5-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.图5-8 图5-114.(★★★★)如图5-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

高一物理速度的合成与分解试题答案及解析

高一物理速度的合成与分解试题答案及解析

高一物理速度的合成与分解试题答案及解析1.在一光滑水平面内建立平面直角坐标系,一物体从t=0时刻起,由坐标原点O(0,0)开始运动,其沿x轴和y轴方向运动的速度—时间图象如图甲、乙所示,下列说法中正确的是 ()A.前2 s内物体沿x轴做匀加速直线运动B.后2 s内物体继续做匀加速直线运动,但加速度沿y轴方向C.4 s末物体坐标为(4 m,4 m)D.4 s末物体坐标为(6 m,2 m)【答案】AD【解析】由甲乙图像可知,前2 s内物体沿x轴做匀加速直线运动,在沿y方向静止,选项A 正确;后2 s内物体在x方向以2m/s做匀速运动,在y方向做初速为零的匀加速运动,其合运动为匀变速曲线运动,选项B错误;4 s末物体在x方向的位移为,y方向的位移为,则物体的位置坐标为(6 m,2 m) ,选项D 正确。

【考点】运动的合成;v-t图像。

2.如图所示为北京奥运会火炬接力过程,假如当时的风速为零,可燃气体从火炬喷出的速度为3m/s,火苗向后的偏角为53°(相对竖直方向).那么火炬手的运动速度大约为().A.5 m/s B.4 m/s C.3 m/s D.6 m/s【答案】B【解析】在无风、静止的情况下火焰应是竖直方向的.当火炬手运动时,火焰会受到向后的风的作用.在向上和向后两股气流的共同作用下,形成斜向后上的燃烧情形.分析如图,故向后的风速为v′=vtan 53°=3×m/s=4 m/s.3.某人骑自行车以10 m/s的速度在大风中向东行驶,他感到风正以同样大小的速率从北方吹来,实际上风的速度是().A.14 m/s,方向为北偏西45°B.14 m/s,方向为南偏西45°C.10 m/s,方向为正北D.10 m/s,方向为正南【答案】A【解析】如右图所示,人的速度为v人,风的速度为v风,在人的行驶方向上感觉不到风,说明风在人的行驶方向上与人同速,仅感觉到从北方吹来的风,则v人=v风sin θ,v=v风cos θ,tan θ==1,θ=45°,v风=v人=14 m/s.4.如图所示,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连。

高考物理重点难点5 速度关联类问题求解

高考物理重点难点5 速度关联类问题求解

高考物理重点难点5 速度关联类问题求解速度的合成与分解运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点●难点磁场1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究[例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B 级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cosθ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度. 由图可知:BC =θcos BD ①由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =t BD t s ∆=∆∆2③由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-1图5-2图5-3 图5-4图5-5其中:v=v物cosθ,使绳子收缩.v⊥=v物sinθ,使绳子绕定滑轮上的A点转动.v所以v物=θcos解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=θcos图5-7[例2](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).命题意图:考查综合分析及推理能力.B级要求.错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B 、D.BC 段水平,当以速度v 0拉绳子自由端时,A 沿水平面前进,求:当跨过B 的两段绳子夹角为α时A 的运动速度v .2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图5-10所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速度v 为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点5 速度关联类问题求解·速度的合成与分解●难点磁场1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?●案例探究例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ.解题方法与技巧:解法一:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC =θcos BD ① 由速度的定义:物体移动的速度为v 物=t BC t s ∆=∆∆1 ②人拉绳子的速度v =tBD t s ∆=∆∆2③ 由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系 绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物=θcos v 图5-1 图5-2 图5-3 图5-4 图5-5 图5-6解法三:应用能量转化及守恒定律由题意可知:人对绳子做功等于绳子对物体所做的功.人对绳子的拉力为F,则对绳子做功的功率为P1=Fv;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为P2=Fv物cosθ,因为P1=P2所以vv物=cos图5-7例2](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A(此时杆与水平方向夹角为θ).错解分析:①不能恰当选取连结点B来分析,题目无法切入.②无法判断B点参与的分运动方向.解题方法与技巧:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.设此时OB长度为a,则a=h/sinθ.令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h.故A的线速度v A=ωL=vL sin2θ/h.●锦囊妙计一、分运动与合运动的关系1.一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(v分、s分)互不干扰,即:独立性.2.合运动与分运动同时开始、进行、同时结束,即:同时性.3.合运动是由各分运动共同产生的总运动效果,合运动与各分运动总的运动效果可以相互替代,即:等效性.二、处理速度分解的思路1.选取合适的连结点(该点必须能明显地体现出参与了某个分运动).2.确定该点合速度方向(通常以物体的实际速度为合速度)且速度方向始终不变.3.确定该点合速度(实际速度)的实际运动效果从而依据平行四边形定则确定分速度方向.4.作出速度分解的示意图,寻找速度关系.●歼灭难点训练一、选择题1.(★★★)如图5-8所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A 沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v.2.(★★★★★)如图5-9所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小.图5-9 图5—103.(★★★★)一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m.物体m2由静止从AB连线为水平位置开始下滑1 m时,m1、m2恰受力平衡如图5-10所示.试求:(1)m2在下滑过程中的最大速度.(2)m2沿竖直杆能够向下滑动的最大距离.4.(★★★★)如图5-11所示,S为一点光源,M为一平面镜,光屏与平面镜平行放置.SO是垂直照射在M上的光线,已知SO=L,若M以角速度ω绕O点逆时针匀速转动,则转过30°角时,光点S′在屏上移动的瞬时速度v为多大?5.(★★★★★)一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,图5-8图5-11图5-12图5-13如图5-12所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H .提升时,车加速向左运动,沿水平方向从A 经B 驶向C.设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.6.(★★★★★)如图5-13所示,斜劈B 的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r 的球A 放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中(1)斜劈的最大速度.(2)球触地后弹起的最大高度。

(球与地面作用中机械能的损失忽略不计)参考答案:难点磁场]1.v B =0cos cos v βα2.略 歼灭难点训练]1.v =αcos 10+v 2.v A =v B tan α;a A =a B tan α3.(1)由图可知,随m 2的下滑,绳子拉力的竖直分量是逐渐增大的,m 2在C 点受力恰好平衡,因此m 2从B 到C 是加速过程,以后将做减速运动,所以m 2的最大速度即出现在图示位置.对m 1、m 2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE 增=ΔE 减,即21m 1v 12+21m 22v 2+m 1g (A C -A B )sin30°=m 2g ·B C 又由图示位置m 1、m 2受力平衡,应有:T cos ∠ACB =m 2g ,T =m 1g sin30°又由速度分解知识知v 1=v 2cos ∠ACB ,代入数值可解得v 2=2.15 m/s, (2)m 2下滑距离最大时m 1、m 2速度为零,在整个过程中应用机械能守恒定律,得: ΔE 增′=ΔE 减′图5′—1即:m 1g (AB AB H -+22)sin30°=m 2gH 利用(1)中质量关系可求得m 2下滑的最大距离H =343m=2.31 m4.由几何光学知识可知:当平面镜绕O 逆时针转过30°时,则:∠SOS ′=60°,OS ′=L /cos60°.选取光点S ′为连结点,因为光点 S ′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v ;光点S ′又在反射光线OS ′上,它参与沿光线OS ′的运动.速度v 1和绕O 点转动,线速度v 2;因此将这个合速度沿光线OS ′及垂直于光线 OS ′的两个方向分解,由速度矢量分解图5′—1可得:v 1=v sin60°,v 2=v cos60°又由圆周运动知识可得:当线OS ′绕O 转动角速度为2ω.则:v 2=2ωL /cos60°vc os60°=2ωL /cos60°,v =8ωL .5.以物体为研究对象,开始时其动能E k1=0.随着车的加速运动,重物上升,同时速度也不断增加.当车子运动到B 点时,重物获得一定的上升速度v Q ,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量,如图5′-2,即v Q =v B 1=v B c os45°=22v B 于是重物的动能增为 E k2 =21mv Q 2=41mv B 2 在这个提升过程中,重物受到绳的拉力T 、重力mg ,物体上升的高度和重力做的功分别为h =2H-H=(2-1)H W G =-mgh =-mg (2-1)H于是由动能定理得 W T +W G =ΔE k =E k2-E k1 即WT -mg (2-1)H =41mv B 2-0 所以绳子拉力对物体做功W T =41mv B 2+mg (2-1)H 6.(1)A 加速下落,B 加速后退,当A 落地时,B 速度最大,整大过程中,斜面与球之间弹力对球和斜面做功代数和为零,所以系统机械能守恒.mg (h -r )=2mv A 2+2mv B 2① 由图中几何知识知:h =cot30°·r =3r ②A 、B 的运动均可分解为沿斜面和垂直斜面的运动,如图5′—3所示。

图5′—2图5′—3由于两物体在垂直斜面方向不发生相对运动,所以v A 2=v B 2 即v A cos30°=v B sin30°③ 解得v A =2)13(gr - v B =2)13(3gr - (2)A 球落地后反弹速度v A ′=v A做竖直上抛运动的最大高度:H m =4)13(22r g v A -='。

相关文档
最新文档