LoRa调制总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

1.Chirp信号 (2)

2.LoRa调制 (3)

3 LoRa调制的具体方案 (5)

3.1 数据速率 (5)

3.2调制 (6)

3.3扩频调制的数学表示 (8)

LoRa调制是基于这个调制方案,但是具体的实现我还是有些谜。 (9)

1.Chirp信号

LoRa调制使用基于线性调频扩频调制(chirp Spread Spectrum,CSS)方案的调制。chirp信号是sine信号,其频率随着时间线性增加(upchirp)或随着时间线性减小(downchirp)。即chirp=cos(x(t));x(t)为时间t的二次函数。如下式所示s ( t ) = a(t) cos [θ(t)]

a(t)是s(t)的包络,在(0,T)范围之外的取值为零。

这样,信号扫过的带宽B=|u|*T

s(t)=a(t)cos(2*π*fc*t+ π*u*t^2+∅)

这样,定义信号扫过的带宽BW=|u|*T

Chirp(upchirp)信号如下所示:

Chirp信号的频谱

Chirp信号的频率随时间的变化关系图。

最基础的基于 chirp信号扩频调制是upchirp代表1,downchirp代表0.

2.LoRa调制

LoRa调制信号的频率随时间变化的关系(以upchirp信号为例)

LoRa调制中的每一个符号都可以表示为sine信号,频率在时间周期内变化如上图所示,fc为中心信号扫过频率范围的中心频率,频带范围为[fc-BW/2,fc+BW/2],LoRa符号持续时间为Ts,从频率范围内的某一个初始频率开始上升,到最高频率fc+BW/2,然后回落到最低频率fc-BW/2,继续开始上升,知道符号的持续时间Ts,所以在一个Ts时间内,LoRa符号的频率一定会扫过整个频带范围。符号频率的初始值可能为2^SF,SF为传播因子。(论文上有这样提到,但是我感觉有点不像呀,因为SF的最大值也不过12,BW的常用带宽是125kHz,

250kHz,500kHz好像比较少用,但是一定有,信息映射会提到)。传播因子SF 定义了每一个LoRa符号里面携带比特的数量。

因为使用了前向纠错码,所以信息比特速率会稍微降低一些,加上以上给出的信息,我们可以得到信息比特速率计算如下:

Rb=(SF/Ts)*CR,其中CR为编码率。

符号持续时间有SF和带宽BW共同确定:Ts=2^SF/BW,

所以 Rb=(SF*BW/2^SF)*CR,

由以上式子可以看出,SF越大,符号持续时间越长,空中传播时间越长,bite速率越小。

因此,参数:带宽 BW,传播因子SF,和编码率CR,决定了LoRa点对点链路的bite速率。大的传播因子意味着更低的bite速率,但是同时获得了更高的敏感度(是否可以理解成持续时间长了,然后能量就大了,而接收端匹配滤波,使得能量聚集)。

LoRa调制有着一个显著的优势就是这种调制方式和编码方案使得LoRa设备可以正确的接收在同一个信道两路相互交叠传输的信号,只要他们的SF不一样。

同时,就算是两路完全一样的信号,有着相同的SF,也能够接收信号强度更大的信号。(这是供应商声称,实际上怎么样,我也不确定。)

BW,SF参数的选择以及对应的码率,bite rate 如下表所示(在频段863—880MHz):

3 LoRa调制的具体方案

Chirp扩频调制基本上有两种方式::二进制正交键控(BOK:Binary Orthogonal Keying)、和直接调制(DM:Direct Modulation)。BOK是利用不同的Chirp脉冲来表示不同的数据,如用从低到高的线性频率变化(up-chirp)表示1,从高到低的线性频率变化(down-chirp)表示0。由于Chirp扩频的处理增益由信号的时间带宽积(TB)所决定,为了得到良好的增益,TB应远大于1,从而导致通信速度不可能太高。DM是在其他方式调制(如DPSK、DQPSK等)后的信号上乘以一个Chirp信号,以达到扩频的目的。在这种情况下,Chirp信号类似于DSSS的PN序列,这种调制方式结构简单,易于实现,而且整个系统可以只用一种Chirp信号,接收处理也方便。802.15.4a定义的Chirp扩频就是采用了DM的方式。

(具体的方案细节,还没有找到,我也有很大疑问)

在ieee 802.15.4a中的6.5.1 2450MHz PHY chirp spread spectrum(CSS)给出了这种调制方案,也明确表示过,LoRaWAN也是采用基于CSS的专用物理层,但是具体是如何改善应用的具体细节我没有找到。所以以下讲述以ieee 802.15.4a的的调制方式为蓝本

3.1 数据速率

CSS(2450MHz)PHY数据速率为1Mb/s,另外一种可选的速率是250kb/s.结合使用了CSS和差分正交相移键控,分别有8进制和64进制正交化码,分别对应着上面两种数据速率。

3.2调制

与一般的处理流程一样,首先将输入的二进制流分成I和Q两个比特流,基本是按照逐位交错分配:第一个比特输入到I流,则第二个比特输入到Q流。如若输入二进制流为:010110,则I流为:001,Q流为110。

然后就是符号映射:在串并变换(S/P)处理,是将输入的I、Q两个子流中的二进制数据以3个比特为单位(以数据速率1Mb/s为例)分别转化为符号流(也即3bit的数据对应一个symbol)。

但这样生成的符号流并不直接用于传输,而是进行一次数据符号(data symbol)到双正交码字(bi-orthogonal codeword)的变换。采用双正交码字可以减少互相干扰和多径效应的影响,在802.15.4a中为数据速率1Mb/s的传输定义了以下的符号转化表。

相关文档
最新文档