数值计算_第6章 曲线拟合的最小二乘法

合集下载

第六章_曲线拟合的最小二乘法

第六章_曲线拟合的最小二乘法

25
24
o
1 2 3 4 5 6 7 8
t
(0 , 0 ) (0 , 1 ) a0 (0 , f ) ( , ) ( , ) a ( , f ) 1 1 1 1 1 0
计算系数
(0 , 0 ) 1 8
bt y
则矛盾方程组为:
1 1 1 1 1 0.669131 0.370370 0.390731 0.500000 a 0.621118 0.121869 b 0.309017 0.833333 0.980392 0.587785
例1. 对彗星1968Tentax的移动在某极坐标系下有如 下表所示的观察数据,假设忽略来自行星的干扰,坐 r 标应满足: 1 e p 其中:p为参数,e为偏心率, cos
试用最小二乘法拟合p和e。

r
2.70 480
2.00 670
1.61 830
1.20 1080
1.02 1260
得正则方程组为:
5.0 0.284929 0.284929 a 3.305214 b 0.314887 1.056242
解得: a 0.688617
b 0.483880
1 则: p 1.452186 e bp 0.702684 a 1.452186 则拟合方程为: r 1 0.702684 cos
第六章 曲线拟合的最小二乘法
§6.1 引言
§6.2 线性代数方程组的最小二乘解
§6.3 曲线最小二乘拟合
§1 引言
如果实际问题要求解在[a,b]区间的每一点都 “很好地” 逼近f(x)的话,运用插值函数有时就要 失败。另外,插值所需的数据往往来源于观察测量, 本身有一定的误差。要求插值曲线通过这些本身有误 差的点,势必使插值结果更加不准确。 如果由试验提供的数据量比较大,又必然使得插 值多项式的次数过高而效果不理想。 从给定的一组试验数据出发,寻求函数的一个近 似表达式y=(x),要求近似表达式能够反映数据的基 本趋势而又不一定过全部的点(xi,yi),这就是曲线拟 合问题,函数的近似表达式y=(x)称为拟合曲线。本 章介绍用最小二乘法求拟合曲线。

最小二乘拟合的概念-概述说明以及解释

最小二乘拟合的概念-概述说明以及解释

最小二乘拟合的概念-概述说明以及解释1.引言1.1 概述最小二乘拟合是一种常用的数据分析方法,通过最小化观测值与拟合值之间的残差平方和来求取最优拟合曲线或平面,从而描述数据的模式和趋势。

该方法被广泛应用于统计建模、机器学习、信号处理、金融分析等领域。

最小二乘法的核心思想是寻找一条曲线或平面,使得该曲线或平面与数据点的残差之和最小。

通过最小二乘法,我们可以得到最佳拟合曲线或平面,从而对数据进行更准确的描述和预测。

因此,最小二乘拟合在数据分析中具有重要的意义。

本文将详细介绍最小二乘拟合的定义、原理和应用,从而帮助读者更好地理解和运用这一重要的数据分析方法。

1.2 文章结构文章结构部分的内容如下:文章结构部分将介绍整篇文章的组织结构和主要内容安排,以便读者对文章的整体框架有一个清晰的认识。

在本文中,主要分为引言、正文和结论三个部分。

- 引言部分包括对最小二乘拟合的概念进行简要介绍,阐述本文撰写的目的和重要性。

- 正文部分将详细讨论最小二乘拟合的定义、原理和应用,以便读者全面了解这一重要的数据分析方法。

- 结论部分将对最小二乘拟合的重要性进行总结,探讨最小二乘法在数据分析中的价值,并展望最小二乘拟合在未来的发展趋势。

通过这样的结构安排,读者可以清晰地了解本文的主要内容和章节布局,有助于他们更好地理解和掌握最小二乘拟合的相关知识。

1.3 目的本文的主要目的是介绍最小二乘拟合这一重要的数学方法。

通过对最小二乘拟合的定义、原理和应用进行详细讨论,希望读者能够深入了解这一方法在数据分析和模型拟合中的重要性。

此外,本文还将探讨最小二乘法在实际问题中的应用,以及展望未来最小二乘拟合在数据分析领域的发展趋势。

通过阐述这些内容,旨在让读者更加深入地理解和应用最小二乘拟合方法,为其在数据分析和模型拟合中提供有效的工具和思路。

2.正文2.1 最小二乘拟合的定义最小二乘拟合是一种常用的数学方法,用于通过调整参数来拟合一个数学模型以最小化观测数据和模型之间的残差平方和。

曲线拟合最小二乘法

曲线拟合最小二乘法

曲线拟合最小二乘法
最小二乘法是统计学中最常用的数据拟合方法,也被称为**最小平方法**。

该方法在数学和统计学中已经有很长的历史,广泛应用于各种学科的科学研究和实际应用。

最小二乘法的主要思想是最小化所给数据点与目标曲线之间的误差平方和,以此来确定目标曲线的参数。

具体而言,最小二乘法是根据**基函数**与参数之间的函数关系,采用多元函数去拟合所给数据点,旨在最小化拟合数据点和多元函数之间误差平方和的拟合方法。

最小二乘法可以用来拟合任何形式的曲线,在各种应用中都大量应用。

比如在政治学、经济学和心理学中,研究者通过最小二乘法来拟合某种结果与输入变量之间的联系,以更好地理解呈现结果的背景机制;在数值计算中,最小二乘法可用来拟合数值计算数据,从而精确地求解各种方程;而在工程学中,最小二乘法常用来拟合统计数据,估计影响工作效率的各种自变量。

总之,最小二乘法是一种统计学中经久不衰的拟合方法,可以用来拟合任何形式的曲线,在广泛的应用领域有着重要地位。

第6章线性回归与曲线拟合

第6章线性回归与曲线拟合
求回归方程的方法,通常是用最小二乘法,其基本思想 就是从并不完全成一条直线的各点中用数理统计的方法 找出一条直线,使各数据点到该直线的距离的总和相对 其他任何线来说最小,即各点到回归线的差分和为最小, 简称最小二乘法。
2
6.1 散点图
要研究两个变量之间是否存在相关
关系,自然要先作实验,拥有一批实验
y=lncA 算得:
x=lnt
lncA ~lnt 的数表
Lnt
0.693 1.61
2.08
2.84
2.64
lncA -0.053 -1.09 -2.07 -0.289 -0.375
2.83 -0.446
3.296 -0.707
3.434 -0.821
3.555 -0.939
lnc
0 -0.2 0 -0.4 -0.6 -0.8
15
10
拉伸倍数x
15
7
6.2 回归方程的相关系数
因变量y与自变量x之间是否存在相关关系,在 求回归方程的过程中并不能回答,因为对任何 无规律的试验点,均可配出一条线,使该线离 各点的误差最小。为检查所配出的回归方程有 无实际意义,可以用相关关系,或称相关系数 检验法。
8
6.3 曲线拟合
在化工实验数据处理中,我们经常会遇到 这样的问题,即已知两个变量之间存在着函数 关系,但是,不能从理论上推出公式的形式, 要我们建立一个经验公式来表达这两个变量之 间的函数关系。
10
20
30
40
t
系列1
作 t ~lncA 的图, 作出图来,是一条很好的直线,说明这组实验数据,服从
cA=aebt 型经验方程。
对照一级反应动力学的积分式:
c=cA0e-kt

曲线拟合 最小二乘法

曲线拟合 最小二乘法

曲线拟合最小二乘法
曲线拟合是指通过已知数据点来推导出一条函数曲线,使得该曲线尽
可能地贴近这些数据点。

而最小二乘法(Least Squares Method)是求解
这种拟合问题的一种常用方法。

最小二乘法的核心思想是尽量减小误差平方和。

假设已知的数据点为$(x_i, y_i)$,曲线函数为 $y=f(x)$,我们希望找到一组参数 $\theta$,使得 $f(x_i;\theta)$ 与 $y_i$ 的差距最小,即:
$$\min_{\theta}\sum_{i=1}^n [y_i - f(x_i;\theta)]^2$$。

这个式子被称为目标函数,也叫做残差平方和(RSS)。

通过对目标
函数进行求导,可以得到最优参数 $\theta^*$ 的解析解:
$$\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T
\mathbf{y}$$。

其中,$\mathbf{X}$ 是一个 $n \times p$ 的矩阵,每一行代表一
个数据点的特征向量,$p$ 是曲线函数的参数个数。

$\mathbf{y}$ 是一
个 $n \times 1$ 的列向量,代表数据点的真实输出值。

最小二乘法在实际应用中有很广泛的应用。

例如,可以用它来构建多
项式回归模型、高斯过程回归模型等。

此外,在机器学习领域,最小二乘
法也被用于求解线性回归模型、岭回归模型等。

最小二乘法线性详细说明

最小二乘法线性详细说明
最小二乘法线性详细说明
1
在处理数据时,常要把实验获得的一系 列数据点描成曲线表反映物理量间的关系。 为了使曲线能代替数据点的分布规律,则 要求所描曲线是平滑的,既要尽可能使各 数据点对称且均匀分布在曲线两侧。由于 目测有误差,所以,同一组数据点不同的 实验者可能描成几条不同的曲线(或直线), 而且似乎都满足上述平滑的条件。那么, 究竟哪一条是最曲线呢?这一问题就是 “曲线拟合”问题。一般来说,“曲线拟 合”的任务有两个:
2.Y与X之间是否是直线关系(协方差或相关系 数)?若是,将用一条直线描述它们之间的关系。
3.什么是最好?—找出判断“最好”的原则。 最好指的是找一条直线使得这些点到该直线的纵 向距离的和(平方和)最小。
9
第一节 一元线性拟合
1. 函数形式已知
数学推证过程
1.已知函数为线性关系,其形式为:
大。
22
23
这时“最佳”二字只能说明数据点距这直线的总偏差 较小,但不能反映出数据点的分布规律。或者说,我 们事先的初步判断是错误的。数据点的分布规律不是 线形的,根本就不能用一条直线表示。
为了帮助我们理解这一点,我们再讨论极限情况。
当 R=0时(s 最大)sxy 0 , syy 0,sxx 0,所以
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。
24
起码相关系数 -- R0
R0 的值与数据点的个数n有关。书中P40表5-3 中给出了起码相关系数 R0的值。
如果有一组数据点初步观测为线性分布。那么, 为多大R 时,就可以用一条最佳直线来表示其分 布呢?
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。

数值计算_第6章 曲线拟合的最小二乘法-19页word资料

数值计算_第6章  曲线拟合的最小二乘法-19页word资料

第6章曲线拟合的最小二乘法6.1 拟合曲线通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。

此时,序列与是相等的。

如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。

按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。

图6.1 含有“噪声”的数据图6.2 一条直线公路与多个景点插值和拟合是构造逼近函数的两种方法。

插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。

向量与之间的误差或距离有各种不同的定义方法。

例如:用各点误差绝对值的和表示:用各点误差按模的最大值表示:用各点误差的平方和表示:或(6.1)其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。

按均方误差达到极小构造拟合曲线的方法称为最小二乘法。

本章主要讲述用最小二乘法构造拟合曲线的方法。

在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。

例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。

有材料表明高斯和勒让德分别独立地提出这种方法。

勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。

但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。

在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。

数值分析中的最小二乘法与曲线拟合

数值分析中的最小二乘法与曲线拟合

数值分析中的最小二乘法与曲线拟合数值分析是现代理论与实践密切结合的一门交叉学科,其中最小二乘法和曲线拟合是其中两个非常重要的概念。

最小二乘法是一种数学运算方法,用于求解一组方程组的未知参数,使得每个方程的误差平方和最小。

在实际应用中,最小二乘法广泛应用于数据拟合、信号处理、回归分析等领域。

在数据拟合中,最小二乘法是一种常见的方法,它可以用于拟合曲线和函数。

它通过延伸曲线以获得局部数据之间的交点,并通过在它们上进行平均化的方法来尝试匹配数据。

最小二乘法的概念为我们提供了一个理论基础,以便在一定程度上预测新的数据中对象的行为或趋势。

但是,即使在相对简单的问题中,最小二乘法可能并不是最佳选择。

曲线拟合是对一系列数据进行插值的过程,以便获得与原始数据点更准确相匹配的曲线或函数。

曲线拟合可以通过在相邻数据点之间进行插值来完成。

在曲线拟合中,只有在数据有很好的统计关系或在相邻数据点
有很好的相关性时,才会产生准确的结果。

否则,结果可能并不
准确,因为这些结果取决于数据点的数量和分布。

需要注意的是,曲线拟合和最小二乘法并不是一个可以代替另
一个的工具。

它们的适用范围不同。

曲线拟合适用于对离散数据
点进行联合分析,而最小二乘法适用于求解连续数据的线性模型。

总之,数值分析中的最小二乘法和曲线拟合是非常实用的概念,可以应用于各种领域。

它们作为现代数据分析的主要工具之一,
不断吸引着越来越多的学者和工程师投入到其中,将继续发挥重
要作用。

曲线拟合的最小二乘法

曲线拟合的最小二乘法

§7 曲线拟合的最小二乘法7-1 一般的最小二乘逼近(曲线拟合的最小二乘法)最小二乘法的一般提法是:对给定的一组数据(,)(0,1,,)i i x y i m =L ,要求在函数类01{,,,}n ϕϕϕϕ=L 中找一个函数*()y S x =,使误差平方和22*222()001[()]min [()]m m m i i i i iS x i i i S x y S x y ϕδδ∈=====−=−∑∑∑其中 0011()()()()()n n S x a x a x a x n m ϕϕϕ=+++<L 带权的最小二乘法: 2220()[()()]mi i i i x S x f x δω==−∑其中()0x ω≥是[a,b ]上的权函数。

用最小二乘法求曲线拟合的问题,就是在()S x 中求一函数*()y S x =,使22δ取的最小。

它转化为求多元函数20100(,,,)()[()()]m n n i j j i i i j I a a a x a x f x ωϕ===−∑∑L 的极小点***01(,,,)n a a a L 问题。

由求多元函数极值的必要条件,有002()[()()]()0m n i j j i i k i i j k I x a x f x x a ωϕϕ==∂=−=∂∑∑ ),,1,0(n k L =若记 0(,)()()()m j k ij i k i i x x x ϕϕωϕϕ==∑ 0(,)()()()mk i i k i k i f x f x x d ϕωϕ==≡∑ ),,1,0(n k L = 则上式可改写为0(,)n kj j k j a d ϕϕ==∑ ),,1,0(n k L =这个方程称为法方程,矩阵形式.Ga d =其中 0101(,,,),(,,,)T T n n a a a a d d d d ==L L ,0001010111011(,)(,)(,)(,)(,)(,)(,)(,)(,)n n n n n n G ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ− = LL L L L L L 由于01,,,n ϕϕϕL 线性无关,故0G ≠,方程组存在唯一解*(0,1,,),k k a a k n ==L从而得到函数()f x 的最小二乘解为****0011()()()()n n S x a x a x a x ϕϕϕ=+++L 可证 *2200()[()()]()[()()]m mii i i i i i i x S x f x x S x f x ωω==−≤−∑∑ 故*()S x 使所求最小二乘解。

曲线拟合的最小二乘法讲解

曲线拟合的最小二乘法讲解

实验三函数逼近与曲线拟合、问题的提出:函数逼近是指“对函数类A中给定的函数f(x),记作f(x)・A,要求在另一类简的便于计算的函数类B中求函数p(x)・A,使p(x)与f (x)的误差在某中度量意义下最小”函数类A通常是区间[a,b]上的连续函数,记作C[a,b],称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。

主要内容有:(1)最佳一致逼近多项式(2)最佳平方逼近多项式(3 )曲线拟合的最小二乘法实验要求:1、构造正交多项式;2、构造最佳一致逼近;3、构造最佳平方逼近多项式;4、构造最小二乘法进行曲线拟合;5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差;6、探讨新的方法比较结果。

三、实验目的和意义:1、学习并掌握正交多项式的MATLAB编程;2、学习并掌握最佳一致逼近的MATLAB实验及精度比较;3、学习并掌握最佳平方逼近多项式的MATLAB实验及精度比较;4、掌握曲线拟合的最小二乘法;5、最小二乘法也可用于求解超定线形代数方程组;6、探索拟合函数的选择与拟合精度之间的关系;四、算法步骤:1、正交多项式序列的生成{ \ ( X)}o •:设\ ( X)是[a,b]上首项系数数,如果多项式序列{ \ ( X)}o:满足关系式则称多项式序列{ \(X)}o:为在[a,b]上带权的n次正交多项式。

1 )输入函数「(x)和数据a,b;2) 分别求(x n, j(x)),C j (x), j(x))的内积;. . n 2 (X n,®j(X)), ,3) 按公式①;:o(X)=1, -(X) =X n j j(X)计算;:n(X),生成正交多项式;j鼻Wj(x),W j(x))流程图:开始a n=0的n次多项式,r(x)为[a,b]上权函;Q j秋A 0, jb(j, k)」(x) j(x) k(x)d(X> =a「(x)正交,称;:n (x)为[a,b]上带权「(x)cz>结束2、最佳一致逼近多项式f(x) C[a,b],若存在 R*(x) H n 使得.:(f,P ;^E n ,则称 P ; (x)是 f (x)在[a,b]上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。

excel拟合曲线用的最小二乘法

excel拟合曲线用的最小二乘法

Excel拟合曲线用的最小二乘法1. 介绍Excel作为一款常用的办公软件,被广泛应用于数据分析和处理,而拟合曲线是数据分析中常用的方法之一。

拟合曲线用的最小二乘法是一种常见的拟合方法,通过最小化数据点与拟合曲线之间的距离来找到最佳拟合曲线,从而对数据进行预测和分析。

在本文中,我将从深度和广度的角度来探讨Excel拟合曲线用的最小二乘法,带你深入探索这一主题。

2. 最小二乘法的原理在Excel中进行曲线拟合时,最小二乘法是一种常用的拟合方法。

其原理是通过最小化残差平方和来找到最佳拟合曲线。

残差是指每个数据点到拟合曲线的垂直距离,最小二乘法通过调整拟合曲线的参数,使得残差平方和最小化,从而得到最佳拟合曲线。

在Excel中,可以利用内置函数或插件来实现最小二乘法的曲线拟合,对于不同类型的曲线拟合,可以选择不同的拟合函数进行拟合。

3. Excel中的拟合曲线在Excel中进行拟合曲线时,首先需要将数据导入Excel,然后利用内置的数据分析工具或者插件来进行曲线拟合。

通过选择拟合函数、调整参数等操作,可以得到拟合曲线的相关信息,如拟合优度、参数估计值等。

可以根据拟合曲线的结果来对数据进行预测和分析,从而得到对应的结论和见解。

4. 个人观点与理解对于Excel拟合曲线用的最小二乘法,我认为这是一种简单而有效的数据分析方法。

它能够快速对数据进行拟合,并得到拟合曲线的相关信息,对于数据的预测和分析具有一定的帮助。

然而,也需要注意到拟合曲线并不一定能够准确描述数据的真实情况,需要结合实际背景和专业知识进行分析和判断。

在使用最小二乘法进行曲线拟合时,需要注意数据的可靠性和拟合结果的可信度,以避免出现不准确的结论和偏差的情况。

5. 总结通过本文的探讨,我们对Excel拟合曲线用的最小二乘法有了更深入的了解。

最小二乘法的原理、Excel中的实际操作以及个人观点与理解都得到了充分的展示和探讨。

在实际应用中,需要结合具体情况和专业知识来灵活运用最小二乘法进行曲线拟合,从而得到准确的分析和预测结果。

曲线拟合的最小二乘法

曲线拟合的最小二乘法

一、曲线拟合是什么?曲线拟合也就是求一条曲线,使数据点均在离此曲线的上方或下方不远处, 它既能反映数据的总体分布,又不至于出现局部较大的波动, 能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小。

设函数y=f(x)在m个互异点的观测数据为求一个简单的近似函数φ(x),使之“最好”地逼近f(x),而不必满足插值原则。

这时没必要取φ(xi) = yi, 而要使i=φ(xi)yi 总体上尽可能地小。

这种构造近似函数的方法称为曲线拟合,称函数y=φ(x)为经验公式或拟合曲线。

如下为一个曲线拟合示意图。

清楚什么是曲线拟合之后,我们还需要了解一个概念——残差。

曲线拟合不要求近似曲线严格过所有的数据点,但使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到总体上尽可能地小。

若令(1-1)则为残向量(残差)。

“使(1-1)尽可能地小”有不同的准则(1)残差最大值最小(2)残差绝对值和最小(绝对值的计算比较麻烦)(3)残差平方和最小(即最小二乘原则。

计算比较方便,对异常值非常敏感,并且得到的估计量具有优良特性。

)二、最小二乘法是什么?个人粗俗理解:按照最小二乘原则选取拟合曲线的方法,称为最小二乘法。

百度百科:最小二乘法(又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

三、求解最小二乘法(包含数学推导过程)我们以最简单的线性模型来解释最小二乘法。

什么是线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。

回归分析中,n个自变量,且因变量和自变量之间是线性关系,则称为一/多元线性回归分析。

数值分析论文--曲线拟合的最小二乘法

数值分析论文--曲线拟合的最小二乘法

曲线拟合的最小二乘法姓名:学号:专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是y的误差。

设 x 和 y 的函数关系由理论公式y=f(x;c1,c2,……cm)(0-0-1)给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。

对于每组观测数据(xi,yi)i=1,2,……,N。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取 m 组测量值代入式(0-0-1),便得到方程组yi = f (x ;c1 ,c2 ,……cm)(0-0-2)式中 i=1,2,……,m.求 m 个方程的联立解即得 m 个参数的数值。

显然N<m 时,参数不能确定。

y 2 y 在 N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则 y 的观测值 yi 围绕着期望值 <f (x ;c1,c2,……cm)> 摆 动,其分布为正态分布,则 yi 的概率密度为p y i1 exp,式中i是分布的标准误差。

为简便起见,下面用 C 代表(c1,c2,……cm )。

曲线拟合--最小二乘法

曲线拟合--最小二乘法

曲线拟合--最小二乘法1:已知平面上四个点:(0,1)、(1,2.1)、(2,2.9)和(3,3.2),求出一条直线拟合这四个点,使得偏差平方和变为极小。

解:设直线方程为:0 1 0 01 2.1 1 2.12 2.9 4 5.83 3.2 9 9.6Sum=6 Sum=9.2 Sum=14 Sum=17.5 代入正规方程:,编程求解上方程组:>> eq1='14*A+6*B=17.5';>>eq2='6*A+4*B=9.2';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A)0.74>> disp(B)1.19所以直线方程为:2:已知数据如下表所示1 2 4 610 5 2 1试求(1)用抛物线拟合这些数据使得偏差平方和最小;(2)用型如的函数来拟合这些数据使得偏差平方和最小。

(3)比较这两种拟合结果。

解:(1)设抛物线方程为:1 10 1 1 1 10 102 5 4 8 16 10 20 4 2 16 64 256 8 326 1 36 216 1296 6 36 Sum=13 Sum=18 Sum=57 Sum=289 Sum=1569 Sum=34 Sum=98代入正规方程:得到系数A,B,C的方程组:编程求解上方程组:>>eq1='1569*A+289*B+57*C=98';>>eq2='289*A+57*B+13*C=34';>>eq3='57*A+13*B+4*C=18';>> [A,B,C]=solve(eq1,eq2,eq3,'A,B,C');>> disp(A); disp(B); disp(C)102/199-1048/1992848/199>> A=102/199; disp(A) 0.5126>> B=-1048/199; disp(B) -5.2663>> C=2848/199; disp(C) 14.3116所以得到抛物线的方程为:(2)设函数1 10 1 1 102 5 1/2 1/4 5/24 2 1/4 1/16 1/26 1 1/6 1/36 1/6Sum=13 Sum=18 Sum=23/12 Sum=193/144 Sum=79/6 得到系数A,B的方程组:编程求解上方程组:>> eq1='4*A+23*B/12=18';>>eq2='23*A/12+193*B/144=79/6';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A); disp(B)-160/243872/81>> A=-160/243; disp(A)-0.6584>> B=827/81; disp(B)10.2099所以得到的函数为:(3)比较(1)和(2)两种方法拟合的方程:编程画出抛物线的图像为:>> x=-2:0.1:12;>> y=0.5126*x.^2-5.2663*x+14.3116;plot(x,y);grid on(a)再编程画出的图像为:>> x=-2:0.1:12;>> y=-0.6584+10.2099*(x.^(-1));>> plot(x,y);grid on>> x=-1:0.01:1;>> y=-0.6584+10.2099*(x.^(-1));plot(x,y);grid on(b)比较两图像可知,图像(b)在点(0,0)处不连续。

曲线拟合的最小二乘法

曲线拟合的最小二乘法

作业
P89习题三:1
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
解之得 a 0 4 .71 ,a 14 2 3 .78 ,a 25 0 .7 5000
所求的多项式为 y4.71 4 2.738x 50.7 50x2 00
(4)可化为线性拟合的非线性拟合 对于一个实际的曲线拟合问题,一般先按观测值在直 角坐标平面上描出散点图,看一看散点的分布同哪类 曲线图形接近,然后选用合适的拟合函数。 非线性拟合函数可以通过变量替换转化为线性拟合问 题,按线性拟合解出后再还原为原变量所表示的曲线 拟合方程。
1
1
e2 im 1
i2 2 m i 1
(x i)f(xi)2 2 ( 均 方 误 差 )
m
m
2
即 e2 2
i2 (xi)f(xi)
i 1
i 1
为最小。这种要求误差(偏差)平方和最小的拟 合称为曲线拟合的最小二乘法。
一般曲线拟合的 最小二乘法的求法
n
设 拟 合 函 数 为 : ( x) a00 ( x) a11( x) an n ( x) akk ( x) k 0
从总体上来说其偏差按某种方法度量达到最小。
图3.1 曲线拟合示意图
y




••
•• ••

• •
•• •
o

最小二乘法曲线拟合算法

最小二乘法曲线拟合算法

最小二乘法曲线拟合算法
最小二乘法是一种常见的曲线拟合算法,其原理是通过计算样本点与拟合曲线的误差平方和最小化,得到最佳的曲线拟合结果。

以下是最小二乘法曲线拟合算法的步骤:
步骤一:选择合适的拟合函数。

通常情况下,拟合函数的选择取决于数据集的特性和需要得到的拟合效果。

例如,对于线性拟合,拟合函数可采用一次多项式函数y=kx+b;对于非线性拟合,拟合函数可能需要采用高次多项式函数或指数函数等。

步骤二:确定误差函数。

误差函数的目的是衡量样本点与拟合曲线的偏差程度。

最常用的误差函数是均方误差,即将每个样本点的实际值与相应拟合函数的输出值之间的平方误差求和,得到样本点的一般均方误差。

公式为:E = Σ(yi-f(xi))^2。

步骤三:最小化误差函数。

最小二乘法的核心就是通过求解误差函数的最小值来得到最佳的拟合曲线。

最小化误差函数可以采用梯度下降法或牛顿法等优化算法进行求解。

步骤四:得到最佳的拟合曲线。

在得到最小化误差函数的解后,即可获得最佳的拟合曲线,该曲线可用于对数据集进行预测、分类或回归等任务。

步骤五:评估拟合效果。

为了验证最佳拟合曲线的精度和泛化能力,需要将新的数据样本输入到该曲线中进行预测,并通过各种评估指标(例如均方根误差、相关系数等)来评估拟合效果。

最小二乘法曲线拟合算法是数据分析领域中的重要算法之一,可用于各种领域中的数据拟合和模型预测任务,例如气象科学、金融投资、信号处理等。

在应用过程中,需要根据实际情况灵活选择拟合函数和误差函数,同时对拟合结果进行合理的评估和优化,以获得更好的预测效果。

第6章 线性回归与曲线拟合讲解

第6章 线性回归与曲线拟合讲解
Lxx (xi x)2 , i 1
n
Lyy ( yi y)2 , i 1
n
Lxy (xi x)( yi y) 。 i 1
b Lxy , Lxx
a y bx 。
Y=a+bx
这就是说回归直线一定通过(x, y )这一点,
即由各数据的平均值组成的点,这一点对作图是很重要的。
每个实验点(xi,yi)相对于回归直线存在着误差 yi Yi yi (a bxi ) ,
求误差平方和的最小值
令 Q 代表各实验点误差的平方和,则有:
n
n
Q ( yi Yi2 ) = ( yi a bxi )2 ,
i 1
i 1
使 Q 值最小,只需将上式对 a,b 求偏微分,并令其为零,
则 y Yi b(x xi ) ,
yi Yi ( yi y) b(xi x) ,
n
n
2
( yi Yi )2 ( yi y) b(xi x) ,
i 1
i 1
经变换、化简,
n
n
n
( yi Yi )2 ( yi y)2 b2 (xi x)2 ,
求回归方程的方法,通常是用最小二乘法,其基本思想 就是从并不完全成一条直线的各点中用数理统计的方法 找出一条直线,使各数据点到该直线的距离的总和相对 其他任何线来说最小,即各点到回归线的差分和为最小, 简称最小二乘法。
2
6.1 散点图

要研究两个变量之间是否存在相关
关系,自然要先作实验,拥有一批实验

L2xy

n
(yi y)2
n

曲线拟合 最小二乘法

曲线拟合 最小二乘法

曲线拟合的线性最小二乘法拟合是已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。

线性最小二乘法曲线拟合问题的提法是,已知一组(二维)数据,即平面上的n 个点(,),i i x y 1,2,,i n =⋅⋅⋅,i x 互不相同,寻求一个函数(曲线)()y f x =,使()f x 在某种准则下与所有数据点最为接近,即曲线拟合的最好。

线性最小二乘法是解决曲线拟合最常用的方法,基本思路是,令1122()()()(),m m f x a r x a r x a r x =++⋅⋅⋅+其中:()k r x 是事先选定的一组线性无关的函数;k a 是待定系数(1,2,,;k m =⋅⋅⋅)m n <。

拟合准则是使(1,2,,)i y i n =⋅⋅⋅与()i f x 的距离i δ的平方和最小,称为最小二乘准则。

1.系数k a 的确定 记[]221211(,,,)()nnm i i i i i J a a a f x y δ====-∑∑为求12,,,m a a a ⋅⋅⋅使J 达到最小,只需利用极值的必要条件0jJa ∂=∂(1,2,,)j m =⋅⋅⋅,得到关于12,,,m a a a ⋅⋅⋅的线性方程组11()[()]0,1,2,,n mjik kiii k r x a r x y j m ==-==∑∑,即111[()()](),1,2,,.m n nkjikijiik i i a r x r x r x y j m =====∑∑∑ (1.1)记1111()()()()m n m n n mr x r x R r x r x ⨯⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ [][]TT1212,,,,,,,m n A a a a Y y y y =⋅⋅⋅=⋅⋅⋅方程(1.1)可表为T T .R RA R Y = (1.2) 当{}12(),(),,()m r x r x r x ⋅⋅⋅线性无关时,R 列满秩,T R R 可逆,于是方程组(1.2)有唯一解()1TT .A R R R Y -=2.函数()k r x 的选取面对一组数据(,),1,2,,i i x y i n =⋅⋅⋅,用线性最小二乘法作曲线拟合时,首要的也是关键的一步是恰当地选取12(),(),,()m r x r x r x ⋅⋅⋅。

数值计算_第6章曲线拟合的最小二乘法

数值计算_第6章曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法6.1 拟合曲线通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。

此时,序列与是相等的。

如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。

按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。

图6.1 含有“噪声”的数据图6.2 一条直线公路与多个景点插值和拟合是构造逼近函数的两种方法。

插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。

向量与之间的误差或距离有各种不同的定义方法。

例如:用各点误差绝对值的和表示:用各点误差按模的最大值表示:用各点误差的平方和表示:或(6.1)其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。

按均方误差达到极小构造拟合曲线的方法称为最小二乘法。

本章主要讲述用最小二乘法构造拟合曲线的方法。

在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。

例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。

有材料表明高斯和勒让德分别独立地提出这种方法。

勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。

但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。

在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章曲线拟合的最小二乘法6.1 拟合曲线通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。

此时,序列与是相等的。

如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。

按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。

图6.1 含有“噪声”的数据图6.2 一条直线公路与多个景点插值和拟合是构造逼近函数的两种方法。

插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。

向量与之间的误差或距离有各种不同的定义方法。

例如:用各点误差绝对值的和表示:用各点误差按模的最大值表示:用各点误差的平方和表示:或(6.1)其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。

按均方误差达到极小构造拟合曲线的方法称为最小二乘法。

本章主要讲述用最小二乘法构造拟合曲线的方法。

在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。

例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。

有材料表明高斯和勒让德分别独立地提出这种方法。

勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。

但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。

在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。

例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。

设景点的坐标为点列;设主干路为一条直线,即拟合函数是一条直线。

通过计算均方误差最小值而确定直线方程(见图6.2)。

6.2线性拟合和二次拟合函数线性拟合给定一组数据,做拟合直线,均方误差为(6.2)是二元函数,的极小值要满足整理得到拟合曲线满足的方程:(6.3)或称式(6.3)为拟合曲线的法方程。

用消元法或克莱姆法则解出方程:a==例6.1下表为P. Sale及R. Dybdall在某处作的鱼类抽样调查,表中为鱼的数量,为鱼的种类。

请用线性函数拟合鱼的数量和种类的函数关系。

解:设拟合直线,并计算得下表:将数据代入法方程组(6.3)中,得到:解方程得:= 8.2084,= 0.1795拟合直线为:= 8.2084 + 0.1795二次拟合函数给定数据序列,用二次多项式函数拟合这组数据。

设,作出拟合函数与数据序列的均方误差:(6.4)由多元函数的极值原理,的极小值满足整理得二次多项式函数拟合的法方程:(6.5)解此方程得到在均方误差最小意义下的拟合函数。

方程组(6.5)称为多项式拟合的法方程,法方程的系数矩阵是对称的。

当拟保多项式阶时,法方程的系数矩阵是病态的,在计算中要用双精度或一些特殊算法以保护解的准确性。

例6.2给定一组数据,如下表。

用二次多项式函数拟合的这组数据。

解:设,由计算得下表:将数据代入式(6.5),相应的法方程为:解方程得:=0.66667,=-1.39286,=-0.13095 ∴= 0.66667-1.39286-0.13095拟合曲线的均方误差:=3.09524 结果见图6.3。

图6.3 拟合曲线与数据序6.3解矛盾方程组在6.2节中用最小二乘法构造拟合函数,本节中用最小二乘法求解线性矛盾方程组的方法构造拟合函数。

给定数据序列,作拟合多项式,如果要求过这些点,那么有矛盾方程组:即:(6.6)我们作一辅助函数这是自变量为的多元函数,要使达到最小值,采用多元函数求权值的方法,对每一个自变量的偏导数为0。

整理成以为未知数的线性方程组整理成矩阵形式,其中:这是一个的对称方程组,称为法方程。

只要非奇异,就可以得出唯一解。

这就是矛盾方程组的最小二乘解。

有什么快捷的方法来求法方程的解?把矛盾方程组(6.6)写成矩阵形式,其中容易验证,法方程就是。

例如,拟合直线的矛盾方程组的形式如下:化简得到与(6.3)相同的法方程:在线性代数中,我们知道,关于方程组,若秩秩,则方程组无解,这时方程组称为矛盾方程组。

在数值代数中对矛盾方程计算的是在均方误差极小意义下的解,也就是在最小二乘法意义下的矛盾方程的解。

定理6.1将证明,方程组的解就是矛盾方程组在最小二乘法意义下的解。

定理6.11.为行列的矩陈,为列向量,秩,称为矛盾方程的的法方程,法方程恒有解。

2.是的解,当且仅当满足,即是法方程的解。

证明:1)对作行初等变换,使,∴秩而秩秩秩∴方程组有解而且解惟一存在。

2)设满足,任取,则由于是任取的,故法方程组的解为极小问题的解。

事实上,对离散数据作次多项式曲线拟合,要计算的极小问题。

这与解矛盾方程组或求的极小问题是一回事。

在这里故对离散数据所作的次拟合曲线,可通过解下列方程组求得:例6.3给定一组数据,见下表,用二次多项式函数拟合这组数据。

解:记二次拟合曲线为,形成法方程:而=====得到:解方程得:= 0.66667,= -1.39286,= -0.13095∴ = 0.66667-1.39286 -0.13095例6.4给出一组数据,见下表。

用最小二乘法求形如的经验公式。

解:列出法方程:===法方程为:解方程得到:=10.675,= 0.137拟合曲线为:10.678+0.137有些非线性函数经过转换以后可化为线性函数计算。

例如,令,则化拟合曲线为:。

例6.5求一个形如的经验函数公式,使它能够和下列数据相拟合。

解:化经验公式为线性形式,对经验公式的两边取自然对数有由矛盾方程组得到法方程组即解方程组得:∴拟合曲线的均方误差为:计算结果见图6.4。

图6.4 拟合曲线图示例6.6解矛盾方程组解:写出法方程组,即得解法方程得: 1.5917,0.5899,0.7572。

6.4权有的实际问题中,已知数据不一定都是一次观测的结果,对于不同的可能观测次数不同,在矛盾方程组中,一组确定一个方程,而最小二乘解对每个方程来说都还存在误差,这样,把每对都同等看待就不太合理,希望观测次数多的(即可靠性大些的)数据在矛盾方程组中占的比重大些。

为了使问题的提法更有一般性,通常把最小二乘法中偏差平方和改为加权平方和,使最小,其中称作权。

同样,可由误差函数求极值,得到法方程,其中,事实上,只需对矛盾方程组作一些修改,每个方程乘上,得到,其中这样,就使,仍然可用前面的方法,对,左乘用求得最小二乘解。

6.5用正交多项式作最小二乘拟合我们不仅可用多项式来拟合函数,还可用一般的函数来拟合。

定义6.1若,如果当且仅当时成立,则称在上线性无关,称为上线性无关族。

最小二乘法的一般提法为:对给定的一组数据,要求在函数类中找一个函数,使加权平地均和,其中这里是线性无关的函数族,是上的权函数,点处的表示该点数据的重要程度。

求误差函数的极小值点,由多元函数极值的必要条件得:这是个未知数个方程的方程组,称为法方程式。

定义6.2:称为与关于点集的内积。

这样,法方程式可简写为,记为,其中称为克莱姆行列式,记作。

定理6.2的充要条件是线性无关。

证明:若存在使对此式两边分别取与的内积得:这是一个以为未知数的齐次方程组,有非零解的充要条件是系数矩阵行列式等于零,于是的充要条件是方程有全零解,即全为0,所以线性无关。

证毕。

由于法方程有惟一解的充要条件是,因而线性无关也是法方程有惟一解的充要条件。

特别当取为时,由于是在中的线性无关函数族,因而必有最小二乘解。

用上的多项式拟合,需要解一个的线性方程组,且当取得大一此时,法方程的系数矩阵会出现病态。

从系数矩阵B的形式看,里面的元素都是些内积,是否能取某些函数族,使对非对角元素全变为0?如果有这样的函数族,那么方程容易解,病态也得到改善。

定义6.3函数族如果在点集上满足称为点集带权的正交函数族。

例6.7 三角函数族上是正交函数族(权).实际上,而如果拟合函数在上取,且是正交函数族,则法方程式成为:直接可得到,不用解线性方程组了。

且容易估算,是否病态也容易判断。

完成以上工作的关键在于如何构造正交函数族。

正交多项式是最简单的正交函数族。

常用的正交多项式如:Chebyshev(切比雪夫)多项式、Legendre(勒让德)多项式等。

现在我们根据给定结点及权函数,造出带权正交的多项式族,用递推公式表示如下:其中这样给出的是正交的,这一点可以用归纳法证明。

例6.8 已知函数表,利用正交多项式求拟合多项。

解:设所以:所以:所以:得:6.6程序示例程序6.1用线性函数拟合给定数据。

算法描述输入值,及。

解方程组:输出。

程序源码////////////////////////////////////////////// purpose:(x_i,y_i)线性拟合函数//////////////////////////////////////////////# include <stdio.h># define MAX_N 25 //(x_i,y_i)的最大维数typedef struct tagPOINT // 点的结构{ double x;double y;} POINT;int main ( ){int m;int i;POINT points [MAX_N ];static double u11,u12,u21,u22,c1,c2;double a,b,tmp;print f (“\ nInput n value:”); // 输入点数mscanf (“% d”,&m);if (m>MAX_N ){printf (“The input n is larger then MAX_N,please redefine the MAX_N.\ n”);return 1;}if (m<= 0){ printf (“Please input a number between 1 and % d. \ n”,MAX_N );return 1;}printf (“Now input the(x_i,y_i),i=0,…,% d: \ n”,m-1); // 输入点for (i=0;i<= m;i++){scanf (“% lf”,&tmp);printf [i].x=tmp;scanf (“%lf ”,& tmp);printf [i].y=tmp;// scanf (“%lf %lf ”,& printf [i].x,& printf [i].y);}for (i=0;i<= n;i++) // 列出方程U(a,b)T = c{u21+ = points [i].x;u22+ = points [i].x points [i].x;c1+ = points [i].y;c2+ = points [i].y points [i].y;}u12 = u21;u11 = m;// 求解a = ( cl u22-c2u12) / (u11 u22-u12u21);b = ( cl *u21-c2u11) / (u21 u12-u22u11);printf(“Solve:p(x) = %f +%f x \ n”,a,b);// 输出return 0;} // ----------End of File---------计算实例用线性函数拟合下列数据(例6.1)。

相关文档
最新文档