郑州市实验高级中学七年级上册数学期末试卷-百度文库
七年级上册郑州市实验高级中学数学期末试卷测试卷(解析版)
七年级上册郑州市实验高级中学数学期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
郑州市人教版七年级上册数学期末试卷及答案百度文库
郑州市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 2.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=3.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3804.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式5.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个 B .2个 C .3个 D .4个6.下列各组数中,互为相反数的是( )A .2与12B .2(1)-与1C .2与-2D .-1与21-7.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t的值为( )A .2或2.5B .2或10C .2.5D .28.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1 9.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 10.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯11.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32b B .a =2b C .a =52b D .a =3b12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( )A .40分钟B .42分钟C .44分钟D .46分钟13.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元14.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .212515.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.18.36.35︒=__________.(用度、分、秒表示)19.9的算术平方根是________20.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.21.若a a-=,则a应满足的条件为______.22.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC=,若OC6=,则线段AB的长为______.23.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE的度数为___________.(用含α的式子表示)24.若α与β互为补角,且α=50°,则β的度数是_____.25.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.26.计算:3+2×(﹣4)=_____.27.用“>”或“<”填空:13_____35;223-_____﹣3.28.-2的相反数是__.29.一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm.30.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x,则这四个数的和为______(用含x的式子表示)三、压轴题31.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.33.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.34.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
郑州中学七年级上册数学期末试卷(带答案)-百度文库
A.-1+2=1B.-1-1=0C.(-1)2=-1D.-12=1
12.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()
A.2B.1
C.0D.-1
二、填空题
13.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.
14.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.
15.已知关于x的一元一次方程 ①与关于y的一元一次方程 ②,若方程①的解为x=2020,那么方程②的解为_____.
16.如图,数轴上点A与点B表示的数互为相反数,且AB=4则点A表示的数为______.
(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;
(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?
(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?
(1)过点P画BC的垂线,垂足为H;
(2)过点P画AB的垂线,交BC于Q;
(3)线段的长度是点P到直线BC的距离.
29.甲乙两站相距450km,一列慢车从甲站开出,每小时行驶65km,一列快车从乙站开出,每小时行驶85km.
(1)两车同时开出,相向而行,那么两车行驶多少小时相遇?
(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?
(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
郑州市七年级(上)期末数学试卷含答案
七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.相反数是A. B. 2 C. D.2.如图是一个表面分别标有“郑”、“州”、“中”、“心”、“城”、“市”字样的正方体展开图,则在原正方体中,与“州”相对的字是A. 中B. 心C. 城D. 市3.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”中国古代曾以腊月、十月等的月首为元旦,1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打8折后,再减少20元”若某商品的原价为x元,则购买该商品实际付款的金额是元.A. B. C. D.4.郑万铁路万州往郑州方向的首座隧道“天城隧道”于2018年11月30日贯通,早上品尝重庆小面,晚上享用北京烤鸭,以后这都不是梦,建造隧道的目的用下面哪个数学知识来解释最恰当A. 经过两点有且只有一条直线B. 过一点可以画多条直线C. 两点之间线段最短D. 连接两点之间线段的长度是两点之间的距离5.以下问题,不适合普查的是A. 了解一批灯泡的使用寿命B. 学校招聘教师,对应聘人员的面试C. 了解全班学生每周体育锻炼时间D. 进入地铁站对旅客携带的包进行的安检6.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是A. B.C. D.7.2018年10月19日,国家统计局网站发布消息称,初步核算,2018年前三季度国内生产总值650899亿元,同比增长数据650899亿元用科学记数法表示为A. 元B. 元C. 元D. 元8.如果过一个多边形的一个顶点的对角线有7条,则该多边形是A. 十边形B. 九边形C. 八边形D. 七边形9.下列解方程变形错误的是A. 由得B. 由得C. 由得D. 由去分母得10.如图,第个多边形由正三角形“扩展而来边数记为,第个多边形由正方形“扩展”而来,边数记为,第个多边形由五边形“扩展”而来,边数记为依此类推,由正n边形“扩展而来的多边形的边数记为,则结果是A. B. C. D.二、填空题(本大题共5小题,共15.0分)11.的绝对值是______.12.直线AB,BC,CA的位置关系如图所示,则下列语句:点B在直线BC上;直线AB经过点C;直线AB,BC,CA两两相交;点B是直线AB,BC的交点,以上语句正确的有______只填写序号13.已知,则______.14.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为______.15.有两根木条,一根AB长为100cm,另一根CD长为150cm,在它们的中点处各有一个小圆孔M、圆孔直径忽略不计,M、N抽象成两个点,将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN是______cm.三、计算题(本大题共1小题,共6.0分)16.计算:一个整式A与多项式的和是多项式.请你求出整式A;当时求整式A的值.四、解答题(本大题共6小题,共49.0分)17.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角一般指锐角请你在图中表示下列方向角可以用量角器射线OA表示西南方向;射线OC表示北偏西方向;射线OD表示南偏东方向.18.伴随着世界经济的飞速发展,信息化技术和互联网技术越来越多的影响着社会的各个方面“天元数学”是学生自主学习的网络平台,郑州某中学共有1800名学生,每人每周学习“天元数学”微课的数量都在~个这里的~表示大于或等于5同时小于,为进一步了解该校学生每周学习“天元数学”微课的情况,学校将收集来的全校学生学习“天元数学”微课的数量情况的数据整理后绘制成如下不完整的统计图,请你根据以上信息,解答下面问题在图1中补全条形统计图;计算:每周学习~个微课的学生人数对应的扇形圆心角的度数;请根据条形统计图,在图2中制作相应的扇形统计图,并在图中分别标出各部分所占的百分比精确到19.已知一个六棱柱,它的底面边长都是5厘米,侧棱长都是8厘米,请回答下列问题这个六棱柱一共有多少个面?一共有多少条棱?这些棱的长度之和是多少?沿一条侧棱将这个六棱柱侧面全部展开成一个平面图形,这个图形的面积是多少?20.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为______;如果设原来这张正方形纸片的边长为acm,所折成的无盖长方体盒子的高为hcm,那么,这个无盖长方体盒子的容积可以表示为______;如果设原来这张正方形纸片的边长为20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,请计算折成的无盖长方体盒子的容积下表中的m和n的值分别为______和______;观察表格可知,当小正方形的边长取______时,所得到的无盖长方体纸盒的容积最大.21.如图,已知,,OC平分,若,则______,______;若,则______,______;若,,请直接写出与之间的数量关系.22.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足求A,B两点之间的距离;若在数轴上存在一点C,且,求C点表示的数;若在原点O处放一个挡板,一个小球甲从点A处以1个单位秒的速度向左运动;同时另一小球乙从点B处以2个单位秒的速度也向左运动,在碰到挡板后忽略球的大小,可看作一点以原来的速度向相反的方向运动:设运动的时间为秒分别表示甲、乙两小球到原点的距离用t表示;求甲、乙两小球到原点的距离相等时经历的时间.答案和解析1.【答案】A【解析】解:的相反数是,故选:A.一个数的相反数就是在这个数前面添上“”号.的相反数是.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】C【解析】解:图中与“州”字所在的面不存在公共点的面是标有“城”字的面.故选:C.根据正方体的表面展开图,相对的面之间一定不存在公共点进行回答即可.本题主要考查的是正方体相对两个面上的文字,明确相对的面之间一定不存在公共点是解题的关键.3.【答案】A【解析】解:由题意可得,若某商品的原价为x元,则购买该商品实际付款的金额是:元,故选:A.根据题意可知,购买该商品实际付款的金额某商品的原价元,依此列式即可求解.本题考查列代数式,解答本题的关键明确题意,列出相应的代数式.4.【答案】C【解析】解:用哪个数学知识来解释最恰当的是两点之间线段最短,故选:C.根据线段的性质解答即可.本题考查了线段的性质两点之间线段最短,熟记线段的性质解题的关键.5.【答案】A【解析】解:A、了解一批灯泡的使用寿命,数目较多,具有破坏性,故适合抽查,不适合普查,故此选项正确;B、学校招聘教师,对应聘人员的面试,涉及到招聘,必须全面调查,故此选项错误;C、了解全班学生每周体育锻炼时间,人数不多,容易调查,因而适合普查,故此选项错误;D、进入地铁站对旅客携带的包进行的安检,涉及到安全,必须全面调查,故此选项错误.故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【答案】A【解析】解:设人数为x,则可列方程为:故选:A.根据“总钱数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.7.【答案】C【解析】解:数据650899亿元用科学记数法表示为元.故选:C.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】A【解析】解:设这个多边形边数为n,由题意得:,解得:.故选:A.根据n边形从一个顶点出发可引出条对角线进行解答即可.此题主要考查了多边形的对角线,关键是掌握n边形从一个顶点出发可引出条对角线.9.【答案】D【解析】解:A、由,得到,不符合题意;B、由,得到,不符合题意;C、由得,不符合题意;D、由去分母得,符合题意.故选:D.A、系数化为1即可求解;B、根据去括号法则计算即可求解;C、根据移项法则计算即可求解;D、根据去分母、去括号法则计算即可求解.本题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.10.【答案】D【解析】解:根据图形可知:,,,,,,故选:D.结合图形观察数字,发现:,,进一步得到;再代入求出即可.本题考查了等边三角形的性质和图形的变化类,能根据已知图形求出、、、的值是解此题的关键.11.【答案】5【解析】解:根据负数的绝对值是它的相反数,得.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解题的关键是掌握绝对值的性质.12.【答案】【解析】解:由图可得,点B在直线BC上,正确;直线AB不经过点C,错误;直线AB,BC,CA两两相交,正确;点B是直线AB,BC的交点,正确;故答案为:.依据点与直线的位置关系进行判断,即可得到正确结论.本题主要考查了点与直线的位置关系:点经过直线,说明点在直线上;点不经过直线,说明点在直线外.13.【答案】5【解析】解:当时,原式,故答案为:5.将整体代入原式计算可得.本题考查了代数式求值,利用整体思想求解是解题的关键.14.【答案】【解析】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,图中阴影部分的面积之和为故答案为:.设小长方形的长为xcm,宽为ycm,根据图形中给定的长度,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积和大长方形的面积个小长方形的面积,即可求出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.【答案】25或125【解析】解:当A与C重合或B与D重合时,设两根木条的小圆孔之间的距离MN是acm,,解得,,当A与D重合或B与C重合时,设两根木条的小圆孔之间的距离MN是bcm,,解得,,由上可得,两根木条的小圆孔之间的距离MN是25cm或125cm,故答案为:25或125.根据题意,可以列出相应的方程,从而可以求得两根木条的小圆孔之间的距离MN.本题考查一元一次方程的应用,解答本题的关键是明确题意,利用方程和分类讨论的方法解答.16.【答案】解:,;把代入上式,得:.【解析】根据题意列出关系式,去括号合并即可得到结果;把代入计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【答案】解:射线OA如图所示;射线OC如图所示;射线OD如图所示;【解析】根据方向角的定义作出射线OA,OC,OD即可;本题考查方向角,作图应用与设计等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【答案】解:每周学习~个微课的学生有:人,补全的条形统计图如右图所示;每周学习~个微课的学生人数对应的扇形圆心角的度数是:;~在扇形统计图中所占的百分比为:,~在扇形统计图中所占的百分比为:,~在扇形统计图中所占的百分比为:,~在扇形统计图中所占的百分比为:,制作的扇形统计图如右图所示.【解析】根据题目中的数据和统计图中的数据可以计算出~的人数,从而可以将条形统计图补充完整;根据条形统计图中的数据可以计算出每周学习~个微课的学生人数对应的扇形圆心角的度数;根据条形统计图中的数据可以计算出各段所占的百分比,从而可以制作出相应的扇形统计图.本题考查条形统计图、扇形统计图、近似数和有效数字,解答本题的关键是明确题意,利用数形结合的思想解答.19.【答案】解:这个六棱柱一共有个面;一共有条棱;这些棱的长度之和是厘米;侧面全部展开成一个平面图形,其面积为厘米.【解析】依据六棱柱的几何特征,即可得到面数、棱数以及棱长之和;依据侧面展开图是一个长方形,即可得其面积.本题主要考查了几何体的展开图,解决本题的关键是应理解六棱柱的构造特点.20.【答案】相等512 588 3cm【解析】解:由折叠可知,剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为相等;这个无盖长方体盒子的容积;故答案为:相等,;当剪去的小正方形的边长取2时,,当剪去的小正方形的边长取3时,,当剪去的小正方形的边长的值逐渐增大时,所得到的无盖长方体纸盒的容积的值先增大后减小,当剪去的小正方形的边长为3cm时,所得到的无盖长方体纸盒的容积最大.故答案为:512,588,3cm.根据长方体体积公式即可解答;将,3分别代入体积公式,即可求出m,n的值;再根据材料一定时长方体体积最大与底面积和高都有关,进而得出答案.此题主要考查了几何体的体积求法以及展开图问题,根据题意表示出长方体体积是解题关键.21.【答案】55 40 70 20【解析】解:;平分,,.故答案为:55,40;,平分,;.故答案为70,20;,,,平分,,,,即.根据余角的定义即可求出,根据角平分线的定义求出,即可求出;根据角的和差求出,再根据角平分线的定义即可求出,然后根据余角的定义即可求出;根据余角的定义表示出,再根据角平分线的定义表示出,然后根据角的和差即可得出与之间的数量关系.本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出注意利用数形结合的思想,熟练掌握角的和与差的关系.22.【答案】解:因为,所以,,所以,;所以AB的距离;设数轴上点C表示的数为c.因为,所以,即.因为,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.当C点在线段AB上时,则有,得,解得;当C点在线段AB的延长线上时,则有,得,解得.故当时,或;因为甲球运动的路程为:,,所以甲球与原点的距离为:;乙球到原点的距离分两种情况:Ⅰ当时,乙球从点B处开始向左运动,一直到原点O,因为,乙球运动的路程为:,所以乙球到原点的距离为:;Ⅱ当时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:;当时,得,解得;当时,得,解得.故当秒或秒时,甲乙两小球到原点的距离相等.【解析】先根据非负数的性质求出a、b的值,再根据两点间的距离公式求得A、B 两点之间的距离;分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;甲球到原点的距离甲球运动的路程的长,乙球到原点的距离分两种情况:Ⅰ当时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度乙球运动的路程即为乙球到原点的距离;Ⅱ当时,乙球从原点O处开始向右运动,此时乙球运动的路程的长度即为乙球到原点的距离;分两种情况:Ⅰ,Ⅱ,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.本题考查了一元一次方程的应用,非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.。
郑州中学七年级上册数学期末试卷(带答案)-百度文库
郑州中学七年级上册数学期末试卷(带答案)-百度文库一、选择题1.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b2.以下选项中比-2小的是()A.0 B.1 C.-1.5 D.-2.53.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.2064.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171 B.190 C.210 D.3805.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为() mA.2⨯D.51.0410-1.0410-⨯1.0410-⨯C.4⨯B.31.0410-6.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+57.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cmC .8cm 或2cmD .以上答案不对9.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60 C .300×0.2-x =60 D .300×0.8-x =60 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .212.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____. 15.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.16.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.17.分解因式: 22xyxy +=_ ___________18.因式分解:32x xy -= ▲ .19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____. 21.|﹣12|=_____. 22.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.23.计算:3+2×(﹣4)=_____.24.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.27.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.28.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a=①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.29.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.30.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.31.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由;(2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值32.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b , 故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D 【解析】 【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案. 【详解】 根据题意可得:2.52 1.501-<-<-<<, 故答案为:D. 【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.5.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.7.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.10.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解. 【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.15.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.16.【解析】【分析】根据题意列出含a的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.17.【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).19.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.21.【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 解析:12【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.22.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.23.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n 个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n 个图案中的基础图形个数表达式是解题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;(2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC +∠BOC +∠AOB =150°;答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x ,则∠1=3x +30°,∵∠1+∠2=90°,∴x +3x +30°=90°,∴x =15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.27.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x ﹣3x =22,解得:x =11,∴点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12×22=11; ②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++;()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯,()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 29.(1)图1中小于平角的角∠AOD,∠AO C ,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析.【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可; (3)将图中所有锐角求和即可求得所有锐角的和与∠AOE 、∠BOD 和∠BOD 的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD ,∠AOC ,∠AOB ,∠BOE ,∠BOD ,∠BOC ,∠COE ,∠COD ,∠DOE .(2)如图2,∵OB 平分∠AOE ,OD 平分∠COE ,∠AOC =108°,∠COE =n°(0<n <72),∴∠BOD =12∠AOD ﹣12∠COE+12∠COE =12×108°=54°; (3)如图3,∠AOE =88°,∠BOD =30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE =6∠BOC+6∠COD=4(∠AOE ﹣∠BOD )+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,30.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t , 解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-,解得:2t 3=;若点P和点Q在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:4t3 =,综合上述,当P出发23秒或43秒时,P和点Q相距1个单位长度;(3)①若点P和点Q在相遇前相距1个单位长度,此时点P表示的数为-3+2×23=-53,Q点表示的数为1-(1+23)=-23,设此时数轴上存在-个点C,点C表示的数为a,由题意得AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 -,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.31.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.。
七年级上册郑州数学期末试卷试卷(word版含答案)
七年级上册郑州数学期末试卷试卷(word 版含答案)一、选择题1.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4 B .4m 2n+2mn 2=6m 2n C .2x ﹣12x =32x D .2a 2﹣a 2=22.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mnB .23m nC .3m nD .32m n3.2018年10月26日,南通市城市轨道交通2号线一期工程开工仪式在园林路站举行.南通市城市轨道交通2号线一期工程线路总长约为21000m ,将21000用科学记数法表示为( ) A .2.1×104B .2.1×105C .0.21×104D .0.21×1054.-5的相反数是( ) A .15B .±5C .5D .-155.12-的倒数是( ) A .B .C .12-D .126.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元B .145元C .150元D .160元 7.化简:35xy xy -的结果是( ) A .2B .2-C .2xyD .2xy -8.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a9.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=210.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2B .-1C .1D .211.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°12.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A13.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( ) A .-1 B .-2C .1D .215.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.一个角的的余角为30°15′,则这个角的补角的度数为________.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.18.计算: x(x-2y) =______________19.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__. 20.多项式32ab b +的次数是______.21.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.22.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.23.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).24.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________三、解答题26.已知平面上点,,,A B C D .按下列要求画出图形: (1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________; (3)画出从点A 到CD 的垂线段AH ,垂足为H .27.如图所示的几何体是由若干个相同的小正方体组成的.(1)填空:这个几何体由 个小正方体组成;(2)画出它的三个视图.(作图必须用黑色水笔描黑) 28.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 29.解下列方程:(1)()5123x x -=- (2)143123y y ---= 30. a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值 (2)若1※x=3,求x 的值 (3)若(-2)※x=-2+x ,求x 的值.31.如图1,∠MON =90°,点A ,B 分别在射线OM 、ON 上.将射线OA 绕点O 沿顺时针方向以每秒9°的速度旋转,同时射线OB 绕点O 沿顺时针方向以每秒3°的速度旋转(如图2).设旋转时间为t (0≤t ≤40,单位秒). (1)当t =8时,∠AOB = °;(2)在旋转过程中,当∠AOB =36°时,求t 的值.(3)在旋转过程中,当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t 的值.32.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由. 33.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.四、压轴题34.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.35.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.38.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.39.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 40.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.41.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?42.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 43.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】 【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论, 【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B 、4m 2n 与2mn 2不是同类项,不能合并,故选项B 不符合题意;C.、2x -12x =32x ,故选项C 符合题意; D 、2a 2-a 2=a 2,故选项D 不符合题意; 故选C . 【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.2.C解析:C 【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.3.A解析:A 【解析】 【分析】根据科学记数法的定义判断即可. 【详解】根据科学记数法表示方法:21000=2.1×104. 故选A. 【点睛】本题考查科学记数法的表示方法,熟记科学记数法的定义是解题关键.4.C解析:C 【解析】解:﹣5的相反数是5.故选C .5.A解析:A 【解析】 【分析】根据倒数的概念求解即可. 【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A6.B解析:B【解析】【分析】根据售价-进价=利润这一等量关系,列方程求解即可.【详解】解:设标价为x元,依题意得:0.8x-100=16,解得x=145.即标价为145元.故答案选B.【点睛】本题考查了一元一次方程解应用题,解决本题的关键是找到题目中蕴含的等量关系. 7.D解析:D【解析】【分析】根据整式的加减运算法则即可求解.【详解】35xy xy-=2xy-故选D.【点睛】此题主要考查整式的运算,解题的关键是熟知整式的加减运算法则.8.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D 、∵从数轴可知:-3<a <-2,∴3<1 –a<4,故本选项不符合题意;故选:C .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a <-2是解此题的关键.9.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.【详解】解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.10.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.11.B解析:B【解析】【分析】由折叠的性质及平角等于180°可求出∠BEH 的度数,由AB ∥CD ,利用“两直线平行,内错角相等”可求出∠DHE 的度数,再利用对顶角相等可求出∠CHG 的度数.【详解】由折叠的性质,可知:∠AEF =∠FEH .∵∠BEH =4∠AEF ,∠AEF +∠FEH +∠BEH =180°,∴∠AEF =16×180°=30°,∠BEH =4∠AEF =120°. ∵AB ∥CD ,∴∠DHE =∠BEH =120°,∴∠CHG =∠DHE =120°.故选:B .【点睛】 本题考查了四边形的折叠问题,掌握折叠的性质以及平行的性质是解题的关键.12.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.13.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D 中∠1和∠2之和为90°,互为余角.故选D .【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.14.C解析:C【解析】【分析】根据同类项的定义即可求出m 和n 的值,然后代入即可.【详解】解:∵关于x y 、的单项式33n x y -与22m x y 的和是单项式∴33n x y -与22m x y 是同类项,∴m=3,n=2将m=3,n=2代入()nm n -中,得原式=()2312=-故选C .【点睛】此题考查的是同类项的定义,根据同类项的定义求各字母指数中的参数是解决此题的关键. 15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x −1)−2(2x +3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题16.120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为1解析:1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则.解析:x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:2(2)2x x y x xy -=-;故答案为:22x xy -.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 19.﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案.【详解】∵2amb4与-3ab2n 是同类项,∴m=1,2n=4,解得:m=1,n=2,则m ﹣n=1﹣2=﹣1.解析:﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案.【详解】∵2a m b 4与-3ab 2n 是同类项,∴m =1,2n =4,解得:m =1,n =2,则m ﹣n =1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查了同类项,正确把握同类项的定义是解题的关键.20.3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式的次数是3;故答案为:3.本题考查了多项式,正确把握多项式的次数定义是解题关键.解析:3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式32ab b 的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.21.两点之间,线段最短【解析】【分析】根据线段的性质,可得答案.【详解】连接AB ,则线段AB 与l 的交点P 即为抽水站的位置.其理由是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛解析:两点之间,线段最短【解析】【分析】根据线段的性质,可得答案.【详解】连接AB ,则线段AB 与l 的交点P 即为抽水站的位置.其理由是:两点之间,线段最短. 故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质,利用线段的性质是解题关键.22.25×108【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:25×108【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.23.<.【解析】【分析】先化简各值然后再比较大小.【详解】,,∵-0.4<0.4,∴<.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4, ∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.24.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 25.爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上解析:爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上的字.理解正方体的平面展开图的特点,是解决此题的关键.三、解答题26.(1)详见解析;(2)=,对顶角相等;(3)详见解析.【解析】【分析】(1)根据直线、射线的定义画出图形即可;(2)根据对顶角相等即可解决问题;(3)根据垂线段作法可作出垂线;【详解】(1)画直线AC ,射线BD ,交于点O ,图形如下图所示;(2)AOD ∠=BOC ∠,理由是对顶角相等,故答案为:=,对顶角相等;(3)画出从点A 到CD 的,垂足为H ,即垂线段AH 即为所求.【点睛】本题考查直线、射线、对顶角、垂线段等知识,解题关键是熟练掌握基本知识,属于中考常考题型.27.(1)7个,(2)图形见详解【解析】【分析】(1)前排有2个,后排有5个,据此解题,(2)主视图要将几何体从前往后压缩,使看到的面全部落在一个竖立的平面内;左视图要从正面的左面看,要正对着几何体,视线要与放置几何体的平面平行,并合理想象;俯视图要从正上方往下看,每一竖列的图形最顶的一个面,它们无高低之分使看到的面都落在同一个平面内.【详解】解:(1)前排有2个,后排有5个,∴这个几何体由7个小正方体组成,(2)如图【点睛】本题考查了图形的三视图,属于简单题,熟悉三视图的画法是解题关键.28.(1)①答案见解析;②答案见解析;③答案见解析;④答案见解析;(2)①垂直;②<,垂线段最短.【解析】【分析】(1)①画射线AC即可;②画线段BC即可;③过点B作AC的平行线BD即可;④过B作BE⊥AC于E即可;(2)①根据平行线的性质得到BD⊥BE;②根据垂线段最短即可得出结论.【详解】(1)①如图所示,射线AC就是所求图形;②如图所示,线段BC就是所求图形;③如图所示,直线BD就是所求图形;④如图所示,线段BE就是所求图形.(2)①∵BD∥AC,∠BEC=90°,∴∠DBE=180°-∠BEC=180°-90°=90°,∴BD⊥BE.故答案为:垂直.②∵BE⊥AC,∴BE<BC.理由如下:垂线段最短.故答案为:<,垂线段最短.【点睛】本题考查了作图﹣复杂作图、垂线、点到直线的距离、垂线段最短,解答本题的关键是充分利用网格.29.(1)1x =;(2)35y =-【解析】【分析】(1)先去括号,再移项合并同类项,系数化为1即可;(2)方程两边同时乘以6,先去分母再依次计算即可.【详解】解:(1)5162x x -=- 77x =1x =(2)33866y y --+=53y -=35y =- 【点睛】本题考查了解一元一次方程,熟练掌握一元一次方程的解法是解题的关键.30.(1)-8;(2)1;(3)65. 【解析】【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x ,(-2)2+2×(-2)x=-2+x ,4-4x=-2+x ,-4x-x=-2-4,-5x=-6, x=65. 【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.31.(1)42;(2)9t =或21t =;(3)t =7.5或12或30.【解析】【分析】(1)当t =8时,OA 转过的角度为8×9°=72°,OB 转过的角度为8×3°=24°, 再计算∠AOB 的值即可;(2)根据题意列出方程(903)936t t +-=,在解方程即可的解;(3)当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,有3种情况:ON 平分∠AOB 、OA 平分∠BON 、OB 平分∠AON ,分别根据每种情况列方程求解即可.【详解】(1) 当t =8时,OA 转过的角度为8×9°=72°,OB 转过的角度为8×3°=24°, ∴∠AOB=∠AON+∠NOB=90°-72°+24°=42°;(2)根据题意可得,(903)936t t +-=,解得9t =或21t =;(3) 当ON 、OA 、OB 三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,有以下3种情形:①当ON 平分∠AOB 时,3t =90-9t ,∴t =7.5;②当OA 平分∠BON 时,3t =2(9t -90),∴t =12;③当OB 平分∠AON 时,9t -90=2×3t ,∴t =30 ;综上,t 的值为7.5、12或30.【点睛】本题考查一元一次方程的应用,解题的关键是根据ON 平分不同的角时进行分类讨论. 32.(1) 51°48′,(2). OG 是EOB ∠的平分线,理由详见解析.【解析】【分析】(1)根据平角,直角的性质,解出∠BOG 的度数即可.(2)根据角平分线的性质算出答案即可.【详解】(1)由题意得:∠AOC=38°12′,∠COG=90°,∴∠BOG=∠AOB-∠AOC-∠COG=180°-38°12′-90°=51°48′.(2) OG 是∠EOB 的平分线,理由如下:由题意得:∠BOG=90°-∠AOC,∠EOG=90°-∠COE,∵OC 是∠AOE 的平分线,∴∠AOC=∠COE∴∠BOG=90°-∠AOC=90°-∠COE=∠EOG∴OG 是∠EOB 的平分线.【点睛】本题考查角度的计算,关键在于对角度认识及角度基础运算.33.(1)x=4;(2)x=2.【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项得:-5x+3x=-5-3合并得:﹣2x=﹣8,解得:x=4;(2)去括号得:4x﹣3+3x=11,移项得:4x+3x=11+3移项合并得:7x=14,解得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.四、压轴题34.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A、B两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a﹣6|+(b+12)2=0,∴a﹣6=0,b+12=0,∴a=6,b=﹣12,∴AB=6﹣(﹣12)=18;(2)设点A、B同时出发,运动时间为t秒,点A、B能够重合时,可分两种情况:①若相向而行,则2t+t=18,解得t=6;②若同时向右而行,则2t﹣t=18,解得t=18.综上所述,经过6或18秒后,点A、B重合;(3)在(2)的条件下,即点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动,设点A、B同时出发,运动时间为t秒,点A、B两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t )-(-12-2t )=20,解得:t=2;②若两点均向右,则(-12+2t )-(6+t )=20,解得:t=38;综上,经过2或38秒时,A 、B 相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用. 35.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,∴点A 表示的数为20,∴数轴上表示如下:AB 之间的距离为:20-(-10)=30;(2)∵线段OB 上有点C 且6BC =,∴点C 表示的数为-4,∵2PB PC =,设点P 表示的数为x ,则1024x x +=+,解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P 第一次移动后表示的数为:-1,点P 第二次移动后表示的数为:-1+3=2,点P 第三次移动后表示的数为:-1+3-5=-3,…,∴点P 第n 次移动后表示的数为(-1)n •n ,∵点A 表示20,点B 表示-10,当n=20时,(-1)n •n=20;当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.36.(1)2;(2)1cm ;(3)910秒或116秒 【解析】【分析】(1)将x =﹣3代入原方程即可求解;(2)根据题意作出示意图,点C 为线段AB 上靠近A 点的三等分点,根据线段的和与差关系即可求解;(3)求出D 和B 表示的数,然后设经过x 秒后有PD =2QD ,用x 表示P 和Q 表示的数,然后分两种情况①当点D 在PQ 之间时,②当点Q 在PD 之间时讨论即可求解.【详解】(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k ,解得:k =2;故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm ,∴AC =2cm ,BC =4cm ,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910②当点Q 在PD 之间时,∵PD =2QD ,。
七年级上册郑州数学期末试卷试卷(word版含答案)
B.对于任何正整数 ,
C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数
D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.
深入思考:
除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?
(3)试一试,将下列运算结果直接写成乘方(幂)的形式
(2)如图③,当a=11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为.(直接填写答案,结果保留π)
32.解方程(组)
(1)
(2)
(3)
33.运动场环形跑道周长400米,小红跑步的速度是爷爷的 倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?
A. B.
C. D.
15.对于任何有理数 ,下列各式中一定为负数的是()
A. B. C. D.
二、填空题
16.单项式 的次数为_________________
17.单项式-4x2y的次数是__.
18.已知关于x的方程 与方程 的解相同,则方程的解为_________.
19.若∠α=68°,则∠α的余角为_______°.
(1)求AC的长
(2)若点E在直线AD上,且EA=2cm,求BE的长
31.有三条长度均为a的线段,分别按以下要求画圆.
(1)如图①,以该线段为直径画一个圆,记该圆的周长为C1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C2,请指出C1和C2的数量关系,并说明理由;
A.AC=BCB.AB=2ACC.AC+BC=ABD.
郑州市实验高级中学七年级上册数学期末试卷-百度文库
郑州市实验高级中学七年级上册数学期末试卷-百度文库一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a - 5.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=- D .235a b ab +=6.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .17.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C.为了解某省中学生爱好足球的情况,采用普查的方式D.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式8.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱9.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠410.估算15在下列哪两个整数之间( )A.1,2 B.2,3 C.3,4 D.4,511.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元12.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.14.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是__.15.已知|x|=3,y2=4,且x<y,那么x+y的值是_____.16.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.17.若a a-=,则a应满足的条件为______.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.19.|﹣12|=_____.20.数字9 600 000用科学记数法表示为.21.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______.22.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.23.若x、y为有理数,且|x+2|+(y﹣2)2=0,则(xy)2019的值为_____.24.3.6=_____________________′三、压轴题25.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.26.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.27.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?29.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.30.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.31.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.32.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t =20,不符合t >30, 综上所述,当PB =12BQ 时,t =12或20,故③错误; 故选:C .【点睛】本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.3.A解析:A 【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.5.B解析:B 【解析】 【分析】根据整式的加减法法则即可得答案. 【详解】A.5x-3x=2x ,故该选项计算错误,不符合题意,B.2ab ab ab -=,计算正确,符合题意,C.-2a+3a=a ,故该选项计算错误,不符合题意,D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.6.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.7.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.11.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.15.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.16.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.17.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.18.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.21.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.22.18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.23.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x +2=0,y ﹣2=0,解得:x =﹣2,y =2,所以,(x y )2019=(22-)2019=(﹣1)2019=﹣1. 故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:3 36【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:3.630.63(0.660)'=︒+︒=︒+⨯=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.三、压轴题25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健26.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.27.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.28.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.。
郑州市七年级(上)期末数学试卷含答案
七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.用科学记数法表示30300,正确的是()A. 3.03×104B. 30.3×103C. 303×102D. 3.0342.下列调查中,适宜采用普查方式的是()A. 了解一批圆珠笔芯的使用寿命B. 了解郑州市在校初中生每周的运动时间C. 了解郑州市居民每月平均用水量D. 了解中牟五初中七(1)班学生的视力情况3.下列各式:①2x=1;②x=y;③-3-3=-6;④x+3x;⑤x-1=2x-3中,一元一次方程有()A. 1个B. 2个C. 3个D. 4个4.如图所示,半圆的直径为d,则图中阴影部分的面积为()A. B.C. D.5.如图是某几何体的表面展开图,则这个几何体的顶点有()A. 4个B. 6个C. 8个D. 10个6.某次足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.某支足球队共打了14场比赛,负5场,共得19分,那么在这次比赛中这支足球队胜了()A. 6场B. 5场C. 4场D. 3场7.下列说法中正确的是()A. 2是单项式B. 3πr2的系数是3C. 的次数是1D. 多项式5a2-6ab+12是四次三项式8.下列各数按从小到大的顺序排列正确的是()A. -0.54<(-0.2)3<(-0.3)4B. -0.54<(-0.3)4<(-0.2)3C. (-0.3)4<-0.54<(-0.2)3D. (-0.2)3<-0.54<(-0.3)49.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A. 20°或50°B. 20°或60°C. 30°或50°D. 30°或60°10.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:第1行1第2行-2 3第3行-4 5-6第4行7-8 9-10第5行11-12 13-14 15…按照上述规律排下去,那么第10行从左边数第5个数等于()A. 50B. -50C. 60D. -60二、填空题(本大题共5小题,共15.0分)11.按照“神舟”号飞船环境控制与生命保障分系统的设计指标,“神舟”六号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为______ ℃.12.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有______个面,______条棱,______个顶点.13.某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以统一标准划分成“不及格”“及格”和“优秀”三个等级.为了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次成绩的等级,并绘制成如图所示的统计图,请结合图中信息估计该校整个八年级学生中,培训后考试成绩的等级为“及格”和“优秀”的学生共有______名.14.早睡早起习惯好,小明养成了晚上21:00左右睡觉的好习惯.某天晚上小明睡觉前看了一下时间21:10,此时时钟上的分针与时针所成的角是______度.15.按照如图所示的操作步骤,若输入的值为5,则输出的值为______.三、计算题(本大题共1小题,共11.0分)16.(1)计算:;(2)计算:1-(-8)÷(-2)2+32×(-1)2018.四、解答题(本大题共7小题,共64.0分)17.解方程:x-=.18.已知:|x|=2y,y=,且xy<0,求代数式4(2x2y-xy2)-2(2xy2+3x2y)的值.19.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.20.在一个底面直径为5cm,高为16cm圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6cm,高为10cm的圆柱形玻璃杯中,能否完全装下?若装不下,求瓶内水面还有多高?若未能装满,求玻璃杯内水面离杯口的距离?21.某市一中学开通了空中教育互联网在线学习平台,为了了解学生使用情况,学校学生会干部把该平台使用情况分为A(经常使用)、B(偶尔使用)、C(不使用)三种类型,并设计了调查问卷,先后对该校七(1)班和七(2)班全体同学进行了问卷调查,并根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题.(1)此次调查该校七(1)班A类型有______人,七(2)班A类型有______人;(2)求此次该校被调查的总人数.(3)求扇形统计图中代表C类型的扇形的圆心角度数,并补全折线统计图.(4)若该校七年级有650人,请你估计七年级B类型的人数.22.探索规律:观察下面由组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请计算1+3+5+7+9+11=______;(2)请计算1+3+5+7+9+…+19=______;(3)请计算1+3+5+7+9+…+(2n-1)=______;(4)请用上述规律计算:21+23+25+ (99)23.如图,已知数轴上A,B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A,B两点重合),M为PA的中点,N 为PB的中点,当点P在射线BA上运动时,MN的长度是否发生改变?若不变,请你画出图形,并求出线段的长度;若改变,请说明理由.答案和解析1.【答案】A【解析】解:30300用科学记数法表示为3.03×104,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:A、了解一批圆珠笔芯的使用寿命,调查具有破坏性,适合抽样调查,故A错误;B、了解郑州市在校初中生每周的运动时间,调查范围广适合抽样调查,故B错误;C、了解郑州市居民每月平均用水量,调查范围广适合抽样调查,故C错误;D、了解中牟五初中七(1)班学生的视力情况,适合普查,故D正确;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】B【解析】解:①2x=1、⑤x-1=2x-3符合一元一次方程的定义,故正确;②x=y中含有两个未知数,属于二元一次方程,故错误;③-3-3=-6不是方程,故错误;④x+3x是代数式,不是等式,不是方程,故错误;故选:B.根据一元一次方程的定义判断即可.本题考查了一元一次方程的定义的应用,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.【答案】C【解析】解:阴影部分面积=•π()2=πd2.故选:C.观察发现:图中阴影部分的面积即为半圆面积的一半,即圆面积的四分之一.本题考查了扇形的面积,正确的识别图形是解题的关键.5.【答案】B【解析】解:由图可知,这是一个三棱柱的表面展开图,它的顶点数是6个.故选:B.由图可知,这是一个三棱柱的表面展开图,据此可知它的顶点数.此题考查几何体的展开图,注意培养空间想象能力.6.【答案】B【解析】解:设这个足球队共胜了x场,则平了(14-5-x)场,由题意得出:3x+(14-5-x)=19解得:x=5,答:这个足球队胜了5场.故选:B.先设出未知数,然后根据题中的等量关系列方程求解.本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,从而设共胜了x场,列方程解答即可.此题主要考查了一元一次方程的应用,此题从实际出发,有利于锻炼学生分析能力,提高学习兴趣.特别是要掌握总场数=胜的场数+平的场数+负的场数.7.【答案】A【解析】【分析】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式.根据单项式和多项式的概念逐一求解可得.【解答】解:A.2是单项式,此选项正确;B.3πr2的系数是3π,此选项错误;C.的次数是3,此选项错误;D.多项式5a2-6ab+12是二次三项式,此选项错误;故选A.8.【答案】A【解析】解:A、-0.54<(-0.2)3<(-0.3)4,正确,B、-0.54<(-0.2)3<(-0.3)4,错误,C、-0.54<(-0.2)3<(-0.3)4,错误,D、-0.54<(-0.2)3<(-0.3)4,错误,故选:A.根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.本题考查了有理数的大小比较法则的应用,注意:有理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.9.【答案】C【解析】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;故选:C.分为两种情况,当∠AOB在∠AOC内部时,当∠AOB在∠AOC外部时,分别求出∠AOM 和∠AOD度数,即可求出答案.本题考查了角平分线定义的应用,用了分类讨论思想.10.【答案】B【解析】解:第n行有n个数,此行第一个数的绝对值为+1,且奇数为正,偶数为负.所以从左边数第5个数等于-50.故选:B.分析可得:第n行有n个数,此行第一个数的绝对值为+1;且奇数为正,偶数为负;故第10行从左边数第1个数绝对值为46,故这个数为-46,那么从左边数第5个数等于-50.本题考查学生分析数据,总结、归纳数据规律的能力,要求学生要有一定的解题技巧.解题的关键是分析得到第n行有n个数,此行第一个数的绝对值为+1,且奇数为正,偶数为负.11.【答案】25【解析】解:返回舱的最高温度为:21+4=25℃.故答案为:25.根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃.±4℃指的是比21℃高4℃或低4℃.12.【答案】7;12;7【解析】解:长方体截去一角边长一个如图的新几何体,这个新几何体有7个面,有12条棱,7个顶点.故答案为7,12,7.新几何体与原长方体比较,增加一个面,棱的条数没有变化,顶点减少一个.本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.13.【答案】240【解析】解:抽到的考生培训后的及格与优秀率为(16+8)÷32=75%,由此,可以估计八年级320名学生培训后的及格与优秀率为75%.所以,八年级320名学生培训后的及格与优秀人数为75%×320=240名.故答案为:240先算出样本中“及格”与“优秀”的学生占32的百分比,然后乘以总数320即可.本题考查用样本估计总体及条形统计图的知识,解题的关键是能够仔细读图并从中整理出进一步解题的信息.学会用样本估计整体.14.【答案】145【解析】解:21点时分针与时针所成的角是90°,6°×10=60°,0.5°×10=5°,所以,21:10分针与时针所成的角为:90°+60°-5°=145°.故答案是:145.根据时针每分钟转0.5度,分针每分钟转6度计算即可.本题考查了钟面角的问题,掌握时针每分钟转0.5度,分针每分钟转6度是解题的关键.15.【答案】64【解析】解:把x=5代入(x2-9)×4=4×(25-9)=64,故答案为:64由程序框图将x=5代入(x2-9)×4计算可得.此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:(1)=-4-6+4-3=-9;(2)1-(-8)÷(-2)2+32×(-1)2018=1+8÷4+9×1=1+2+9=12.【解析】(1)根据乘法分配律和有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.【答案】解:去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项得,6x+2x-x=5+2,合并同类项,得7x=7,系数化为1,得x=1.【解析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.18.【答案】解:∵|x|=2y,y=,且xy<0,∴x=-1,4(2x2y-xy2)-2(2xy2+3x2y)=8x2y-4xy2-4xy2-6x2y=2x2y-8xy2=2×1×-8×(-1)×()2=1+2=3.【解析】根据题意求出x,根据整式的加减混合运算法则把原式化简,代入计算即可.本题考查的是整式的化简求值,掌握绝对值的性质、整式的加减混合运算法则是解题的关键.19.【答案】解:(1)如图所示:(2)如图所示:【解析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.【答案】解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2×16,解得x=,∵>10,∴不能完全装下.-10=(cm),16×=1.6(cm),答:装不下,那么瓶内水面还有1.6cm.【解析】设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据水的体积不变和圆柱的条件公式得到π•()2•x=π•()2×16,解得x=,然后把与10进行大小比较即可判断能否完全装下.本题考查了圆柱:圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长;圆柱的侧面积=底面圆的周长×高;圆柱的表面积=上下底面面积+侧面积;圆柱的体积=底面积×高.21.【答案】14 18【解析】解:(1)此次调查该校七(1)班A类型有14人;七(2)班A类型有18人;故答案为:14,18;(2)由扇形统计图知B类型人数所占比例为58%,从折线图知B类型总人数=26+32=58人,所以此次被调查的学生总人数=58÷58%=100人;(3)由折线图知A人数=18+14=32人,故A的比例为32÷100=32%,所以C类比例=1-58%-32%=10%,所以类型C的扇形的圆心角=360°×10%=36°,C类人数=10%×100-2=8人,折线图如下:(4)根据题意得:650×58%=377(人),答:估计七年级B类型的人数有377人.(1)根据折线统计图给出的数据直接解答即可;(2)先由折线统计图得到偶尔使用的学生有58人,再由扇形统计图得到了解很少的学生所占的百分比,然后用58除以这个百分比即可得到接受问卷调查的学生人数;(3)根据折线统计图给出的数据先求出A类型所占的比例,从而求出C类型所占的比例,再乘以360°即可得到C部分所对应扇形的圆心角的大小以及C类的人数,从而补全折线统计图;(4)用该校七年级的总人数乘以七年级B类型所占的百分比即可得出答案.本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图和用样本估计总体.22.【答案】(1)36(2)100(3)n2(4)21+23+25+…+99=(1+3+5+...+97+99)-(1+3+5+ (19)=502-102=2500-100=2400.【解析】解:(1)1+3+5+7+9+11=62=36;(2)1+3+5+7+9+…+19=102=100;(3)1+3+5+7+9+…+(2n-1)=n2;(4)21+23+25+…+99=(1+3+5+...+97+99)-(1+3+5+ (19)=502-102=2500-100=2400.(1)(2)(3)根据已知得出连续奇数的和等于数字个数的平方,得出答案即可;(4)利用以上已知条件得出21+23+25+…+99=(1+3+5+…+97+99)-(1+3+5+…+19),利用得出规律求出即可.此题主要考查了数字变化规律,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目的难点.23.【答案】解:(1)∵A,B两点所表示的数分别为-2和8,∴OA=2,OB=8∴AB=OA+OB=10;(2)线段MN的长度不发生变化,其值为5.分下面两种情况:①当点P在A、B两点之间运动时(如图甲).MN=MP+NP=PA+PB=(PA+PB)=5②当点P在点A的左侧运动时(如图乙).MN=NP-MP=BP-AP=AB=5.综上所述,线段MN的长度不发生变化,其值为5.【解析】(1)根据数轴与绝对值知,AB=|OB|+|OA|;(2)分两种情况进行讨论:①当点P在A、B两点之间运动时;②当点P在点A的左侧运动时.本题主要考查了数轴,两点间的距离,解答此题时,既采用了形象、直观的“数形结合”的数学思想,又利用了不至于漏解的分类讨论的数学思想.。
郑州市实验高级中学七年级上册期末数学模拟试卷及答案
郑州市实验高级中学七年级上册期末数学模拟试卷及答案一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×1062.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 3.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 4.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 5.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1126.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④7.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A.48°B.42°C.36°D.33°8.某个数值转换器的原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是()A.1010 B.4 C.2 D.19.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=010.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5二、填空题11.从一个n边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n的值是___________.12.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.13.根据下列图示的对话,则代数式2a+2b﹣3c+2m的值是_____.14.如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=_____.15.已知线段AB=8 cm,在直线AB上画线段BC,使得BC=6 cm,则线段AC=________cm.16.﹣213的倒数为_____,﹣213的相反数是_____. 17.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.18.五边形从某一个顶点出发可以引_____条对角线.19.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.20.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.三、解答题21.定义新运算“@”与“⊕”:@2a b a b +=,2a b a b -⊕= (1)计算()()()3@221---⊕-的值;(2)若()()()()()3@23,@329A b a a b B a b a b =-+⊕-=-+-⊕--,比较A 和B 的大小22.数学课上老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”。
郑州市人教版七年级上册数学期末试卷及答案-百度文库
郑州市人教版七年级上册数学期末试卷及答案-百度文库 一、选择题 1.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .42.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .15.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .34 6.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )4 a b c ﹣2 3 …A .4B .3C .0D .﹣28.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( )A .a >ab >ab 2B .ab >ab 2>aC .ab >a >ab 2D .ab <a <ab 29.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个 10.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对11.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.15.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.16.|-3|=_________;17.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.18.因式分解:32x xy -= ▲ .19.如果一个数的平方根等于这个数本身,那么这个数是_____.20.若∠1=35°21′,则∠1的余角是__.21.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 22.﹣225ab π是_____次单项式,系数是_____. 23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.解方程3142125x x -+=-. 26.先化简, 再求值. 已知222213,222A x xy yB x y =-+=- ()1求2A B -()2当3,1x y时,求2A B -的值 27.计算:(1)31324()864-⨯-- (2)43231[2(2)](3)5--⨯----28.解方程:(1)()()32324y y -=-;(2)13124x x +--=. 29.如图,线段AB 8=,点C 是线段AB 的中点,点D 是线段BC 的中点.()1求线段AD 的长; ()2在线段AC 上有一点E ,1CE BC 3=,求AE 的长.30.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.四、压轴题31.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.32.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)33.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键. 2.C解析:C【解析】【分析】根据AC 比BC 的14多5可分别求出AC 与BC 的长度,然后分别求出当P 与Q 重合时,此时t=30s ,当P 到达B 时,此时t=15s ,最后分情况讨论点P 与Q 的位置.【详解】 解:设BC =x ,∴AC =14x +5 ∵AC +BC =AB ∴x +14x +5=30, 解得:x =20, ∴BC =20,AC =10,∴BC =2AC ,故①成立,∵AP =2t ,BQ =t ,当0≤t ≤15时,此时点P 在线段AB 上,∴BP =AB ﹣AP =30﹣2t ,∵M 是BP 的中点∴MB =12BP =15﹣t ∵QM =MB +BQ ,∴QM =15,∵N 为QM 的中点, ∴NQ =12QM =152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.4.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B2﹣12,∴A,B22﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.5.B解析:B【解析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.6.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.7.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.8.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b<0,ab>0,∴ab2<0.∵-1<b<0,∴0<b2<1,∴ab2>a,∴a<ab2<ab.故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.9.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.10.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.11.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值.解:把x=5代入方程ax ﹣8=20+a得:5a ﹣8=20+a ,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值.解:把x=5代入方程ax ﹣8=20+a得:5a ﹣8=20+a ,解得:a=7.故答案为7.考点:方程的解.14.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.15.80°【解析】【分析】由轴对称的性质可得∠B′OG =∠BOG ,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG =∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG =解析:80°【解析】【分析】由轴对称的性质可得∠B ′OG =∠BOG ,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B ′OG =∠BOG又∠AOB ′=20°,可得∠B ′OG +∠BOG =160°∴∠BOG =12×160°=80°. 故答案为80°.【点睛】 本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 16.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.17.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =.故填12 5.【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.18.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).19.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.21.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-=9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 22.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.x =﹣17. 【解析】【分析】 解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1.【详解】解:去分母得:5(3x ﹣1)=2(4x +2)﹣10去括号得:15x ﹣5=8x +4﹣10移项得:15x ﹣8x =4﹣10+5合并同类项得:7x =﹣1系数化为得:x =﹣17. 【点睛】本题考查解一元一次方程,掌握计算步骤,正确计算是解题关键.26.(1)2264x xy y --+;(2)13.【解析】【分析】(1)将A,B 代入2A B -后化简即可;(2)将x,y 的值代入2A B -化简后的式子求值即可.【详解】 解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+(2264x xy y =--+;(2)当3,1x y 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=.【点睛】本题主要考查整式的化简求值,解题的关键是利用法则化简整式.27.(1)13;(2)-16.【解析】【分析】(1)直接运用乘法的分配律计算;(2)按照有理数混合运算的顺序,先乘方后乘除 最后算加减,有括号的先算括号里面的.【详解】(1)原式=-9+4+18=13;(2)原式=-1-6-9=-16.【点睛】本题考查的是有理数的运算能力.(1)要正确掌握运算顺序;(2)灵活地利用简便算法准确进行有理数的混合运算.28.(1)14y =;(2)1x =-. 【解析】【分析】 (1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y -3)=2(y -4);6928y y -=-.6298y y -=-.41y =.14y =. (2)13124x x +--=. 2(1)(3)4x x +--=.2234x x +-+=.-1x =.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.29.(1)6,(2)83. 【解析】【分析】 ()1根据AD AC CD =+,只要求出AC 、CD 即可解决问题;()2根据AE AC EC =-,只要求出CE 即可解决问题;【详解】解:()1AB 8=,C 是AB 的中点,AC BC 4∴==, D 是BC 的中点,1CD DB BC 22∴===, AD AC CD 426∴=+=+=.()12CE BC 3=,BC 4=, 4CE 3∴=,48∴=-=-=.AE AC CE433【点睛】本题考查两点间距离、线段的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.30.见解析【解析】【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.四、压轴题31.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C在中点的左边,点C在中点,点C在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB试题解析:(1))∵AB=12cm,∴AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm;(2) 设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;(3)①当OC在∠AOB内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
郑州市实验高级中学七年级上册数学期末试卷-百度文库
郑州市实验高级中学七年级上册数学期末试卷-百度文库一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109 D .1289×107 2.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .34.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( ) A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -6.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .37.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .38.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511C .﹣1023D .10259.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④10.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<011.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+112.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.16.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 17.计算:()222a-=____;()2323x x ⋅-=_____.18.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)19.化简:2x+1﹣(x+1)=_____.20.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题25.计算(1)()22315a a a a +⋅-⋅.(2)()2232246()x y x y xy -÷.26.某水果店用500元购进甲、乙两种水果共50kg ,这两种水果的进价、售价如下表所示 品名 甲种 乙种 进价(元/kg) 7 12 售价(元/kg)1016()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg ,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)27.解方程:131142x x x +-+=- 28.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?29.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点.(1)如图2,数轴上点A、B表示的数分别为-4、12,点D是线段AB的三等分点,求点D 在数轴上所表示的数;(2)在(1)的条件下,点P从点A出发以每秒1个单位长度的速度在数轴上向右运动;点Q从点B出发,在数轴上先向左运动,与点P重合后立刻改变方向与点P同向而行,且速度始终为每秒3个单位长度,点P、Q同时出发,设运动时间为t秒.①用含t的式子表示线段AQ的长度;②当点P是线段AQ的三等分点时,求点P在数轴上所表示的数.图130.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).四、压轴题31.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.32.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.33.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109. 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.D解析:D 【解析】 【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值. 【详解】解:∵方程2k-3x=4与x-2=0的解相同, ∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.3.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.C解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.6.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12, 故选C . 【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.7.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.8.D解析:D 【解析】 【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.9.B解析:B 【解析】 【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可. 【详解】圆锥,如果截面与底面平行,那么截面就是圆; 圆柱,如果截面与上下面平行,那么截面是圆; 球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度. 故选B .10.C解析:C 【解析】 【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断. 【详解】根据数轴可知:a <b <0<c ,且|a |>|c |>|b | 则A. a +b <0正确,不符合题意; B. a +c <0正确,不符合题意; C .a -b>0错误,符合题意; D. b -c<0正确,不符合题意; 故选C. 【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.11.B解析:B 【解析】 【分析】 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数. 故选:B 【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题13.【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元 解析:(23)a b +【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元. 故选C. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.80° 【解析】 【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答. 【详解】解:根据轴对称的性质得:∠B′OG=∠BOG 又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80° 【解析】 【分析】由轴对称的性质可得∠B ′OG =∠BOG ,再结合已知条件即可解答. 【详解】解:根据轴对称的性质得:∠B ′OG =∠BOG又∠AOB ′=20°,可得∠B ′OG +∠BOG =160°∴∠BOG =12×160°=80°. 故答案为80°.【点睛】 本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 16.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.17.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键18.270°-3α【解析】【分析】设∠DOE=x,根据OC 平分∠AOD,∠COE=α,可得∠COD=α-x ,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x 的一次方程解析:270°-3α【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.19.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.20.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解21.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.24.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、解答题25.(1)32a a -;(2)46x -【解析】【分析】(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.【详解】解:(1) 原式3335a a a =+-32a a =-;(2)原式()22322246x y x yx y =-÷46x =-.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.26.(1) 购进甲种水果20千克,乙种水果30千克;(2) 175元.【解析】【分析】(1)设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据总价格甲种水果单价×购进甲种水果质量+乙种水果单价×购进乙种水果质量即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=每千克甲种水果利润×购进甲种水果质量+每千克乙种水果利润×购进乙种水果质量,净利润=总利润-其它销售费用,代入数据即可得出结论.【详解】解:()1设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据题意得:()7x 1250x 500+-=,解得:x 20=,则50x 30-=.答:购进甲种水果20千克,乙种水果30千克;()()()-⨯+-⨯=元).210720*********(-⨯=元).1800.150175(答:水果店销售完这批水果获得的利润是175元.【点睛】本题考查一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题关键.27.x=-3【解析】【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【详解】去分母得,4+(1+3x)=4x-2(x-1),去括号得,4+1+3x=4x-2x+2,移项得,3x+2x-4x=2-4-1,合并同类项得,x=-3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.28.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.29.(1)43或203;(2)①4,16-3t或3t-8;②4-3或4-9或43【解析】【分析】(1)根据三等分点的定义,分两种情况:AD=13AB时;AD=23AB 时,分别在数轴上找到点D的位置即可;(2)①P、Q两点经过4秒相遇,分相遇前和相遇后两种情况讨论,分别表示出AQ即可;②根据①中的结论,分相遇前和相遇后两种情况,结合三等分点的定义,一共有四种情况,分别计算即可,最后总结所求结果.【详解】解:(1)根据题意,分情况讨论:当AD:BD=1:2时,AD=13AB=163,点D表示的数为-4+163=43;当AD:BD=2:1时,AD=23AB=323,点D表示的数为-4+323=203,所以,点D在数轴上所表示的数为43或203,故答案为:43或203;(2)①P、Q两点经过4秒相遇,相遇时,AP=4, P、Q相遇前,当t小于或等于4时,AQ=16-3t;P、Q相遇后,当t大于4时,AQ=4+3(t-4)=3t-8;②当P、Q相遇前:若AP=13AQ,则t=13(16-3t),t=83,此时点P表示的数为-43;若AP=23AQ,则t=23(16-3t),t=329,此时点P表示的数为-49;当P、Q相遇后:若AP=23AQ,则t=23(3t-8),t=163,此时点P表示的数为43;若AP=13AQ,则t=13(3t-8),无解,综上所述,点P为线段AQ的三等分点时,点P表示的数分别为4-3或4-9或43,故答案为:4-3或4-9或43.【点睛】本题考查了三等分点的定义,相遇问题,数轴上的动点问题,掌握数轴上的动点问题以及三等分点的定义是解题的关键.30.﹣323.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣8﹣23+5=﹣323.【点睛】此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键.四、压轴题31.(1)35°;(2)∠AOE﹣∠BOF的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+14)°,故3314202t t+=+,解方程即可求出t的值.【详解】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴11AOE AOC11022︒∠=∠=⨯=55°,11AOF BOD402022︒︒∠=∠=⨯=,∴∠AOE﹣∠BOF=55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.32.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6) 【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.33.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.。
郑州市人教版七年级上册数学期末试卷及答案-百度文库
郑州市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒2.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a - 3.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-24.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 7.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣1 8.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+ B .321x + C .22x x - D .3221x x -+ 9.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°10.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .11.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 15.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 16.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.A 学校有m 个学生,其中女生占45%,则男生人数为________. 20.4是_____的算术平方根.21.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.22.若2a﹣b=4,则整式4a﹣2b+3的值是______.23.若-3x2m+6y3与2x4y n是同类项,则m+n=______.24.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.三、解答题25.如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.26.化简:3(a2﹣2ab)﹣2(﹣3ab+b2)27.直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.28.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A.1.5小时以上;B.1~1.5小时;C.0.5~1小时;D.0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.29.解方程:()2(-2)-3419(1)x x x -=-30.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.四、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.33.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,102=20.4 524.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t 最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.2.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.3.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.4.A解析:A 【解析】 【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可. 【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.5.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.6.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.8.B解析:B【解析】A. 2x2x1-+是二次三项式,故此选项错误;B. 3+是三次二项式,故此选项正确;2x1C. 2x2x-是二次二项式,故此选项错误;D. 32-+是三次三项式,故此选项错误;x2x1故选B.9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.10.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 11.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.15.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.17.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.18.36【解析】【分析】根据题意和展开图,求出x和A的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面19.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m ,故答案是55%m .【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.20.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.21.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.22.11【解析】【分析】对整式变形得,再将2a﹣b=4整体代入即可.【详解】解:∵2a﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.23.2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x 2m+6y 3与2x 4y n 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.(1)面积为5,边长为;(2)详见解析.【解析】【分析】(1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)根据正方形的面积为10,可得这个正方形的边长为,根据格点的特征结合勾股定理画出边长为的正方形即可.【详解】(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5;边长=;(2)能,如图所示:边长=,.【点睛】本题考查了勾股定理,正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.正方形的面积是由组成正方形的面积的小正方形的个数决定的;边长为面积的算术平方根.26.3a 2﹣2b 2.【解析】【分析】原式去括号合并即可得到结果.【详解】原式=()()223a -6ab --6ab+2b22=3a 6ab 6ab 2b -+-223a -2b =【点睛】本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.27.(1)30°;(2)∠BOE 的补角有∠AOE 和∠DOE .【解析】【分析】(1)根据OC 平分∠BOF ,OE 平分∠COB .可得∠BOE =∠EOC =12∠BOC ,∠BOC =∠COF ,进而得出,∠EOF =3∠BOE =90°,求出∠BOE ;(2)根据平角和互补的意义,通过图形中可得∠BOE +∠AOE =180°,再根据等量代换得出∠BOE +∠DOE =180°,进而得出∠BOE 的补角.【详解】解:(1)∵OC 平分∠BOF ,OE 平分∠COB . ∴∠BOE =∠EOC =12∠BOC ,∠BOC =∠COF , ∴∠COF =2∠BOE ,∴∠EOF =3∠BOE =90°,∴∠BOE =30°,(2)∵∠BOE +∠AOE =180°∴∠BOE 的补角为∠AOE ;∵∠EOC +∠DOE =180°,∠BOE =∠EOC , ∴∠BOE +∠DOE =180°,∴∠BOE 的补角为∠DOE ;答:∠BOE 的补角有∠AOE 和∠DOE ;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.28.(1)本次一共调查了200名学生;(2)补图见解析;(3)学校有600人平均每天参加体育锻炼在1小时以下.【解析】【分析】(1)根据A类人数和占比即可求出总人数;(2)用总人数减去A类,C类,D类的人数得到B类人数,即可补全图形;(3)用3000乘以C、D类人数占比即可得出答案.【详解】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;(2)“B”有200﹣60﹣30﹣10=100人,如图所示;(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%;则3000×(15%+5%)=3000×20%=600人.因此学校有600人平均每天参加体育锻炼在1小时以下.【点睛】本题考查统计图知识,理解条形图和扇形图中数据的对应关系是解题的关键.29.−10【解析】【分析】分别按照一元一次方程的解法进行即可,即有去分母,去括号,移项,合并同类项,系数化成1.【详解】去括号得:2x−4−12x+3=9−9x,移项得:2x−12x+9x=9+4−3,合并同类项得:−x=10,解得:x=−10;【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.30.(1)-7,1.(2)经过43秒或83秒P,Q两点的距离为43.(3)在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数分别是-1,0,-2.【解析】【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t秒两点的距离为43,根据题意列绝对值方程求解即可;(3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇, 由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇, 由题意得:()1373z z +=---, ∴53z =, 表示的数是:57323-+⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【点睛】本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.四、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.33.(1)5 ;(2)点F表示的数是11.5或者-6.5;(3)127t=或6t=.【解析】 【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.。
郑州市人教版七年级上册数学期末试卷及答案百度文库
郑州市人教版七年级上册数学期末试卷及答案百度文库一、选择题 1.4 =( )A .1B .2C .3D .42.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠3.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π6.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或737.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+ B .321x + C .22x x - D .3221x x -+ 8.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=09.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限10.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.311.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0 12.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为()A.3.31×105B.33.1×105C.3.31×106D.3.31×107二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.15.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG的度数是_____.16.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
郑州中学七年级上册数学期末试卷(带答案)-百度文库
郑州中学七年级上册数学期末试卷(带答案)-百度文库一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.4 =( ) A .1 B .2 C .3 D .4 3.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒4.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .15.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上6.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个 7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -8.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y9.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)10.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 11.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )212.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .213.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯C .6510⨯D .510⨯14.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15015.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.18.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16乘坐公交¥ 4.00-10.17转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-19.若3750'A ∠=︒,则A ∠的补角的度数为__________. 20.已知23,9n mn aa -==,则m a =___________.21.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___22.计算:()222a -=____;()2323x x ⋅-=_____.23.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).24.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 25.52.42°=_____°___′___″.26.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.27.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.28.五边形从某一个顶点出发可以引_____条对角线.29.8点30分时刻,钟表上时针与分针所组成的角为_____度.30.如图,直线AB、CD相交于O,∠COE是直角,∠1=44°,则∠2=______.三、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.32.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
七年级上册郑州中学数学期末试卷练习(Word版 含答案)
七年级上册郑州中学数学期末试卷练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.2.点 O 是直线 AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.【答案】(1)解:①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α(2)解:∠DOE=∠AOC,理由如下:∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC【解析】【分析】(1)①由图可知∠COE=-∠DOE,而OE平分∠BOC,由角平分线的定义可得∠BOC=2∠COE,根据平角的意义可求得∠AOC的度数;②结合①的结论可得∠BOC=2∠COE=2(-),所以∠AOC=-∠BOC,把∠BOC 代入计算即可求解;(2)由互为余角的定义可得∠COE=-∠DOE,而OE平分∠BOC,由角平分线的定义可得∠BOC=2∠COE=2(-∠DOE),再由平角的意义可得∠AOC=-∠BOC,把∠BOC代入计算即可求解。
河南省郑州市郑州中学2021-2022年七年级期末试卷(含答案解析)
6.今年国庆期间,乐乐和爸爸妈妈一起去电影院观看了抗美援朝题材的电影《长津湖》,去致敬我们最可亲、可敬、可爱的志愿军战士.据猫眼实时数据显示,电影《长津湖》在全国上映74天时,国内累计票房突破57.56亿.这一数字用科学记数法表示为()
A. B. C. D.
7.乐乐爸爸的公司今年1—7月份的销售额在七个月之内增长率的变化状况如图所示.从图上看出,下列结论正确的是()
A.3时30分,时针与分针的夹角是90°B.6时30分,时针与分针重合
C.8时45分,时针与分针的夹角是30°D.9时整,时针与分针的夹角是90°
10.某学校老师分别住在A,B,C三个住宅区,A区有15人,B区有20人,C区有35人,三个小区在一条笔直的路上,位置如图所示.学校接送老师们上下班的班车打算在此区间的路上只设一个停靠点,要使所有老师步行到停靠点的路程总和最少,那么停靠点的位置应在()
∴图2中幻和=-2×3=-6.
解:由(1)知幻和为-6,当b=4,c=6时:
第二行第三列的数字为:-6-b-(-2)=-6-4+2=-8,
第一行第三列的数字为:-6-(-8)-c=-6+8-6=-4,
根据对角线可知:第一行第一列的数字为:-6-(-2)-6=-10,
∴a=-6-(-10)-(-4)=-6+10+4=8.
郑州中学2021—2022学年上期期末考试七年级数学
一、选择题
1.下列各数中最大的负整数是()
A.-2023B.-2022C.-2021D.2022
2.用一个平面截下列几何体,无论怎样截,截面形状都不发生改变的是()
A.正方体B.圆柱C.球D.圆锥
3.下面是乐乐在整理七年级上册课本的知识点时得出的一些结论,你认为正确的有()
郑州市实验高级中学七年级上册数学期末试卷-百度文库
郑州市实验高级中学七年级上册数学期末试卷-百度文库一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1393.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④6.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 7.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y8.点()5,3M 在第( )象限. A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .210.如图的几何体,从上向下看,看到的是( )A .B .C .D .11.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④12.若2m ab -与162n a b -是同类项,则m n +=( ) A .3B .4C .5D .7二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 15.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.化简:2xy xy +=__________. 18.单项式﹣22πa b的系数是_____,次数是_____.19.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.20.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.21.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.22.已知代数式235x -与233x -互为相反数,则x 的值是_______. 23.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
郑州中学七年级上册数学期末试卷(带答案)-百度文库
郑州中学七年级上册数学期末试卷(带答案)-百度文库一、选择题1.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.52.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109 D .1289×107 4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .55.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 326.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =17.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =138.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查9.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣410.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x ym m=,则x y = D .若x y =,则x y m m= 11.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 16. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.17.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.18.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.19.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 20.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 21.计算:3+2×(﹣4)=_____.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.23.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.27.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.28.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.29.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?30.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.31.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.32.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案. 【详解】 根据题意可得:2.52 1.501-<-<-<<, 故答案为:D. 【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错; D 中、43x y=,交叉相乘得到34x y =,故D 对.故答案为:D.【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.5.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.6.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.7.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.9.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.10.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y两边同时加3,可得到x+3=y+3,故A选项正确;B. -2x=-2y两边同时除以-2,可得到x=y,故B选项正确;C. 等式x ym m=中,m≠0,两边同时乘以m得x y=,故C选项正确;D. 当m=0时,x y =两边同除以m 无意义,则x ym m=不成立,故D 选项错误; 故选:D . 【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.11.B解析:B 【解析】 【分析】由题意直接根据互补两角之和为180°求解即可. 【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°. 故选:B . 【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.D解析:D 【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%, 视力不良的学生数:300×55%=165(人). 故选D.二、填空题 13.3 【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3. 故答案为3 考点:数轴.解析:3 【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离. 解:2﹣(﹣1)=3. 故答案为3 考点:数轴.14.【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元 解析:(23)a b【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元. 故选C. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.1 【解析】 【分析】把x=2代入转换成含有a 的一元一次方程,求解即可得 【详解】由题意可知2×(a+1)−4a=0 ∴2a+2−4a=0 ∴2a=2 ∴a=1故本题答案应为:1 【点睛】 解解析:1 【解析】 【分析】把x=2代入转换成含有a 的一元一次方程,求解即可得 【详解】由题意可知2×(a+1)−4a=0 ∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键16.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.17.-3【解析】【分析】根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 18.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3解析:5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3=8;∵点D 是AC 的中点,∴AD =8÷2=4;∵点E 是AB 的中点,∴AE =5÷2=2.5,∴ED =AD ﹣AE =4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.19.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.20.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.21.﹣5【解析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键23.【解析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x=-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解24.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.三、压轴题25.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 ,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.26.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部, ∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.27.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767. 【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A 为原点,若点B 对应的数恰好为10,则有 点C 对应的数为30,点D 对应的数为﹣30,MN =|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.28.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】 本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.29.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.30.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度,此时点P表示的数为-3+2×23=-53,Q点表示的数为1-(1+23)=-23,设此时数轴上存在-个点C,点C表示的数为a,由题意得AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 ,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 31.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.②3AC-4AB的值不变.当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州市实验高级中学七年级上册数学期末试卷-百度文库一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=-D .235a b ab +=4.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .346.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣19.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-10.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=yC .若x y m m =,则x y = D .若x y =,则x y m m= 11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+12.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .13.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5xD .5y 2-3y 2=214.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .115.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 17.若|x |=3,|y |=2,则|x +y |=_____.18.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.19.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
20.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.21.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.22.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.23.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.24.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.25.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 26.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 27.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 28.8点30分时刻,钟表上时针与分针所组成的角为_____度.29.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.30.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度. 33.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.34.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?35.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.36.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).37.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.3.B解析:B【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x,故该选项计算错误,不符合题意,B.2ab ab ab-=,计算正确,符合题意,C.-2a+3a=a,故该选项计算错误,不符合题意,D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.4.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.6.A解析:A【解析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.A解析:A 【解析】 【分析】将a ﹣3b =2整体代入即可求出所求的结果. 【详解】解:当a ﹣3b =2时, ∴2a ﹣6b =2(a ﹣3b ) =4, 故选:A . 【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.9.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.10.D解析:D 【解析】 【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.11.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】 方程212134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D .【点睛】 本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.13.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.14.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx 是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.18.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.19.6【解析】【分析】根据题意设原来乙桶中的油量为,甲桶中的油量为,则可列出方程求出答案. 【详解】设原来乙桶中的油量为,甲桶中的油量为第一次:把甲桶中的油倒出一半给乙桶,转移的油量为甲桶剩解析:6【解析】【分析】根据题意设原来乙桶中的油量为1,甲桶中的油量为x,则可列出方程求出答案.【详解】设原来乙桶中的油量为1,甲桶中的油量为x第一次:把甲桶中的油倒出一半给乙桶,转移的油量为1 2 x甲桶剩余油量:1122 x x x -=乙桶剩余油量:11 2x+第二次:把乙桶中的油倒出18给甲桶,转移的油量为1111182168x x⎛⎫+=+⎪⎝⎭甲桶剩余油量:11191 2168168 x x x⎛⎫++=+⎪⎝⎭乙桶剩余油量:11177 12168168x x x⎛⎫⎛⎫+-+=+ ⎪ ⎪⎝⎭⎝⎭此时甲乙桶中油量相等∴9177 168168 x x+=+∴6x=故原来甲桶中的油量是乙桶中的6倍【点睛】本题考查一元一次方程的应用,解题关键在于转移油量之后,要减去,然后联立方程求出倍数关系即可.20.10°.【解析】【分析】由对称性得:∠BPE=∠B′P E,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B ′PE+∠C ′PF =∠B ′PC ′+85°,∴2(∠B ′PC ′+85°)﹣∠B ′PC ′=180°,解得∠B ′PC ′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.21.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 22.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.23.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 24.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②;第二个方程所有字母都用a来表示可得b=2a-2,c=2a+3,d=4a,代入第一个方程得a=4,∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.25.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.26.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.27.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 28.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.29.6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm ,从而得到答案.【详解】解:∵AB=16cm ,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.30.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)4,16;(2)x =﹣28或x =52;(3)线段MN 的运动速度为9单位长度/秒.【解析】【分析】(1)由A 1A 2=A 2A 3=……=A 19A 20结合|a 1﹣a 4|=12可求出A 3A 4的值,再由a 3=20可求出a 2=16;(2)由(1)可得出a 1=12,a 2=16,a 4=24,结合|a 1﹣x|=a 2+a 4可得出关于x 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.33.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.34.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;。