光纤通信技术的发展史及其现状_论文[1]
光纤通信技术发展历程及趋势
光纤通信技术发展历程及趋势光纤通信技术是二十世纪末开始普及的通信技术,其独特的优势和快速的发展速度,使得它成为了现代社会最重要的通信技术之一。
本文将会阐述光纤通信技术的发展历程,并且对未来的趋势进行探讨。
一、光纤通信技术的发展历程1960年代,光纤通信技术的概念首次被提出。
但是,由于当时无法制造出高质量的光纤,这项技术一直处于实验室阶段。
直到20世纪70年代,美国贝尔实验室首次成功制造出了质量优良的光纤,使得光纤通信技术才开始出现了真正的应用。
比较典型的是,1977年美国AT&T公司在美国第一次开通了一条光纤通信线路,同时也标志着光纤通信技术进入了商业化运营的阶段。
20世纪80年代,光纤通信技术迅速发展。
国外厂商加强了对光纤技术的研究和开发,并成立了多个光纤通信领域的国际标准组织,比如ITU和FSAN等。
国内也于1984年开始进入光纤通信技术的领域,并发起了“863计划”,同时成立了多家研究机构和起步公司,加快了国内的光纤通信技术的发展。
20世纪90年代,在无线通信和传统有线通信技术的双重推动下,光纤通信技术得到了更广泛的应用。
比如,在网络终端之间的传输和银行间仪表的交换等领域,光纤通信技术的应用得到了广泛的推广。
此外,同时成立的一些国际合作组织,如CORBA、WAP等,也为光纤通信技术的发展提供了更加优质的平台。
二、光纤通信技术的现状与趋势目前,光纤通信技术已经成为现代化电信网络的基石,且持续不断地得到进一步的扩展和升级。
因此,我们现在需要了解的是光纤通信技术未来的趋势和现状。
1. 高速化和可靠化对于当前的光纤通信技术来说,高速化和可靠化是最重要的趋势。
从20世纪90年代以来,光纤通信技术经过了多次升级和更新,使得光纤传输速度提高了许多倍。
未来,光纤通信技术还将进一步提高传输速度和可靠性,以满足不断增长的通信需求。
2. 光纤无源器件的发展光纤无源器件是光纤通信技术中的关键部件,包括了二分束器、可控式衰减器、晶格光纤等等。
光纤通信技术发展前瞻与趋势
光纤通信技术发展前瞻与趋势当前,在现代化建设、信息化推进的背景下,通信技术作为现代社会的重要基础设施之一,发挥了至关重要的作用。
其中,光纤通信技术的发展与应用,更是推动了信息时代的到来。
随着科技的不断进步和全球经济的发展,光纤通信技术也在不断地演化,它的应用范围也在不断扩大。
本文将从光纤通信技术的历史以及现状出发,展望未来其发展趋势与前景。
一、光纤通信技术的历史以及现状光纤通信技术的诞生可以追溯到20世纪60年代。
当时,英国的工程师Clive Hedges在一个实验中发现了光纤通信的原理,这也是对现代光纤通信技术的奠基。
经过长期的研究与实践,光纤通信技术被证明是一种高速率、大容量、可靠性和低噪声性能优良的通信技术。
如今,光纤通信技术已经成为了全球通信技术中不可或缺的一部分。
其主要应用在长途通信和数据中心内部通信领域。
而在智能手机和物联网逐渐发展壮大的今天,光纤通信技术也开始渗透到了更广泛的领域。
例如,在基于云计算的大数据中心以及互联网电视等领域,光纤通信技术的应用也变得越来越广泛。
二、光纤通信技术的发展趋势光纤通信技术的不断发展,主要受制于技术瓶颈、成本以及市场需求等方面因素。
然而,在这些因素的影响下,光纤通信技术仍然向前发展,并在不断进化与创新中,逐渐形成了若干新的趋势。
1. 高速传输技术的发展当前,随着互联网的规模日益增大,互联网业务的需求也越来越多样化、高速化。
因此,高速传输技术也成为了当今通信技术发展的热门话题。
而光纤通信技术,正是高速传输技术中最为重要的手段之一。
在未来,随着高清视频、VR/AR等多样化应用的逐渐普及,高速传输技术的需求还将会增加。
因此,光纤通信技术也将在高速传输技术领域发挥重要作用。
2. 全新应用场景的拓展如今,在智能家居、AR/VR等领域中,光纤通信技术的应用已经开始成为新的趋势。
在未来,这些全新的应用场景也将对光纤通信技术的发展方向产生重要影响。
例如,在智能家居领域,光纤通信技术可以用于连接智能家居设备与控制中心,而在AR/VR领域,其作用也可以得到充分发挥。
光纤通信技术的发展历程及广泛应用的论文
光纤通信技术的发展历程及广泛应用的论文•相关推荐光纤通信技术的发展历程及广泛应用的论文一、光纤通信技术发展的现状1.1波分复用技术波分复用技术原理是依据不同频率和波长的光波将光纤的损耗窗口分成许多信道,利用低损耗的单模光纤来节约宽带资源,同时以光波作为信号的载体,利用波分复用器将不同的信号光载波并在一起通过发送端口传输出去,之后利用波分复用器通过接收端接受不断不同的光载波信号。
1.2光纤接入技术光纤接入网在信息高速公路的发展中实现了高速化的信息传输,主干传输的宽带网络和用户接入部分迎合了大众的基本需求。
根据不同的到达位置,光纤接入的类型可以分为四种,分别是FTIB、FTIC、FTTCab和FTTH。
1.3掺铒光纤放大器掺铒光纤放大器工作原理包括三个环节:首先是用来分析光纤通信前端发射机的输出光线,其次是对发射往各个方向的光线进行进一步的优化分配,第三个环节是在发射前端介入掺铒光纤放大器,从而能够发挥线路放大的功能,完成在传输中的分支损耗。
当前,正是由于掺铒光纤放大器所具有的独特的补偿能力,使得其在光纤通信技术中得到了极为广泛的应用。
二、光纤通信技术具有的特点2.1光纤通信容量大且频带宽光纤具有容量大和频带宽的特点。
光纤和以往的微波技术相比较,光纤的传输信号比微波的'传输信号容量大几十倍,光纤和以往的电波频率进行比较,光纤的光波频率比电波的光波频率高出几倍甚至十几倍。
所以综合通信容量和频度宽度来讲,光纤所具备的传输信息容量大和传输距离远的优势是其他通信技术所不能匹敌的。
2.2光纤损耗低,可为企业降低施工成本在日常生活中,常见的光纤就是石英光纤,这是由于石英光纤相比较其他光纤损耗较低,比较经济,能够降低企业施工成本。
同时,由于玻璃材质具有特殊的电器性质和石英光纤在施工时由于其绝缘性能够不安装接地和回路设施,这又一程度上的降低了企业的施工成本。
从理论的角度上来考虑,石英光纤还具有降低施工成本的潜质,这一潜质希望在不久的将来因为技术的突破能够实现。
光纤通信技术的研究与进展
光纤通信技术的研究与进展随着科技的不断进步,光纤通信技术在现代通信领域中扮演着越来越重要的角色。
它以光发射、接收及传输信号的方式,将数据传输效率提高到极致,改变了全球通信的面貌。
本文将介绍光纤通信技术的发展历程、现有技术状况以及未来的发展趋势。
一、光纤通信技术的发展历程光纤通信技术起源于20世纪60年代。
当时,美国贝尔实验室的研究人员发现了一种能够将光传输到远距离的光纤。
在1977年,最早的商用光传输系统问世,并开始运用于电话网络中,这便是光纤通信技术的起点。
在此之后,光纤通信技术经历了不断的升级和改进,采用了更高速的传输方式和更完善的设备。
在1988年,欧洲国家共同体的一家公司开发出了第一款1.7 Gbps的光通信系统,创造了当时世界上最快的传输速度。
随后,国际标准化组织在1991年制定了一个适用于全球的光纤通信标准。
这个标准将不同厂家的设备进行了统一,加速了光纤通信技术的普及。
二、光纤通信技术现有技术状况现在的光纤通信技术已经非常成熟,传输速度已经提高到每秒数百Gbps或更高,而且还得到广泛应用,如移动通信、互联网、电视广播等领域。
其中,光纤通信的主要技术包括激光发射、光纤降噪、光纤耦合、光纤放大、光接收等方面。
此外,光纤通信技术还涉及到光纤连接、光纤布线、光纤分配、光纤测试等方面。
与传统的通信方式相比,光纤通信技术具有高传输速度、低耗能、重量轻、体积小、信号稳定等优点,从而满足了现代人对高速、大容量和可靠通信的需求。
三、光纤通信技术的未来发展趋势随着科技的飞速发展,人们对于通信的要求也越来越高。
未来的光纤通信技术将会继续不断地进步,在传输速度、功耗、信号增强等方面都有不同的优化方案。
例如,目前有人们尝试使用新型材料、新的光谱技术和更高效的接收器来强化光信号,以进一步提高数据传输的速度。
同时,也有人尝试着在细节上进行改善,如通过先进的控制系统消除信号的干扰、提高传输距离。
除此之外,人们还在研究光量子通信技术,研究光信息的安全性,为未来的信息安全提供保障。
光纤通信技术的发展及应用前景
光纤通信技术的发展及应用前景随着社会的发展,新兴科技技术的应用不断涌现。
其中,光纤通信技术由于其高传输速率、高带宽、低能耗等优点,被广泛应用于网络、通信、电子商务等领域。
本文将从光纤通信技术的发展历程、应用现状以及未来前景三个方面,对其进行探讨。
一、发展历程光纤通信技术指利用光学传输介质进行高速数据通信的技术。
它的发展历程可以追溯到20世纪60年代初,当时人们对光纤材料的光学性质进行了研究。
20世纪70年代,研究者们成功制造出了最早的光纤通信设备。
20世纪80年代,随着数字技术和光纤材料技术的不断发展,光纤通信技术迅猛发展。
1990年,全球首个基于光纤通信的全球性公用网络建成,标志着光纤通信技术进入了实用化阶段。
直至今天,光纤通信技术已经成为最重要、最先进的通信技术之一。
二、应用现状今天,光纤通信技术已经被广泛应用于各种领域,比如:互联网、通信、电视、无线网络等。
在互联网方面,光纤通信技术的高速传输特性使得信息传输更加迅速,更加高效。
在通信方面,高速传输的光纤通信技术可满足人们在通信方面的快速、稳定和安全性需求。
在电视方面,光纤通信技术的高质量传输特性,可为用户提供更高质量、更清晰的电视画面。
在无线网络方面,光纤通信技术可大幅提高无线网络的传输速度和质量,为用户提供更高的上网体验。
此外,光纤通信技术也开始逐步应用于智能家居、智能交通等领域。
三、未来前景随着互联网的普及和应用多元化,对光纤通信技术的需求也随之增加。
未来几年,光纤通信技术的发展前景仍然非常广阔。
比如,基于光纤通信的5G网络已经开始商业化运营,它能够提供更高速度、更低延迟、更广覆盖的网络体验。
此外,光纤通信技术还可以用于大数据中心、云计算、人工智能等领域。
在智能家居、智能交通等领域,也有广泛的应用前景。
总之,光纤通信技术的发展历程、应用现状以及未来前景都显示出它在现代交通和通信领域中的重要地位。
作为一种高速、高质量、低能耗的通信技术,它为不同领域的应用提供了广阔的空间。
光纤通信技术的发展现状
光纤通信技术的发展现状光纤通信技术是指利用光纤作为信号传输介质进行信息通信的方式。
相较于传统的电信技术来说,光纤通信技术具有传输距离远、带宽大、信噪比高、能耗低等优点。
随着信息技术的迅猛发展以及各个行业对高速网络的需求不断增加,光纤通信技术得到了广泛的应用。
本文将对光纤通信技术的发展现状进行探讨。
一、光纤通信技术的历史光纤通信技术的起源可以追溯到19世纪末,当时的科学家们开始研究光的性质以及光在介质中的行为。
20世纪初,人们开始使用光纤进行通信实验,并在1960年代末期开始进行商业应用。
70年代,光纤通信系统的传输距离已经达到了几千米。
1980年代,随着光纤通信技术的日益成熟,大规模商用化的光纤通信网络开始兴起。
现在,光纤通信技术已经成为信息通信领域中使用最广泛的通信技术之一。
二、光纤通信技术的原理光纤通信技术采用光纤作为通信介质,通过光信号进行信息传输。
当向光纤中注入光信号时,光信号会在光纤中以光的形式传播。
光信号可以在光纤中将光能量限制在一个小的空间范围内,从而减少了信号传输中的能量损耗,使信号传输更加稳定和可靠。
此外,光信号的传播速度非常快,传输距离也很远。
在光纤通信系统中,光信号首先被光纤传输到目标地点,然后再通过光电转换器将光信号转换为电信号,进而呈现出用户需要的信息。
三、光纤通信技术的发展趋势从技术层面来看,光纤通信技术的发展趋势主要表现为以下几点:1. 宽带化:随着网络带宽需求的不断增大,光纤通信技术也在不断提高其带宽。
光纤通信技术在数据传输方面有着相当强的优势,同时可谓是无线网络的一大强力竞争对手。
2. 高速化:随着信息技术的不断进步,人们对信息传输的速度和稳定性要求越来越高。
在未来,光纤通信技术的速度将会不断提高,从而满足人们对高速、稳定的信息传输的需求。
3. 光通量提高:在光纤通信技术中,光通量是指光纤内的光强度。
随着技术的不断进步,光通量将会不断提高,从而提高光纤通信技术的传输距离和信号质量等参数。
光纤通信技术的发展现状分析
光纤通信技术的发展现状分析第一章、光纤通信技术的发展历程随着信息时代的到来,对通信技术的要求越来越高。
光纤通信技术作为传输速度最快、抗干扰能力最强的一种通信技术,被广泛应用于数据传输、视频通信、卫星通信等领域,成为信息时代的重要标志之一。
光纤通信技术得到了快速发展,以下是其发展历程:1. 20世纪60年代,光纤的概念首次提出。
2. 20世纪70年代,实现了光纤的光学放大器技术。
3. 20世纪80年代,开发了激光器和探测器,实现了长距离光纤通信。
4. 20世纪90年代,光纤通信开始大规模应用,实现了高速率、低成本的通信系统。
5. 21世纪以来,光纤通信技术得到了进一步发展,实现了光学波长分复用技术、智能光纤传感技术等。
第二章、光纤通信技术的应用领域光纤通信技术具有传输速度快、带宽大、抗干扰能力强等优点,被广泛应用于以下领域:1. 数据传输:光纤通信技术在数据传输领域中的应用非常广泛,例如互联网、局域网、广域网等。
2. 视频通信:光纤通信技术优越的带宽和传输速度,使其在视频通信领域中得到广泛应用。
如数字影院、高清视频等。
3. 卫星通信:由于卫星的覆盖面积广,信号传输距离远,应用光纤通信技术可以提高卫星通信的传输速度和稳定性。
4. 军事通信:光纤通信技术在军事通信领域中应用广泛,因其抗干扰能力强,保密性好等优势。
第三章、光纤通信技术的技术原理光纤通信技术是利用光在光纤中传输信息信号的技术。
其基本原理是将电信号转换为光信号,经过光纤传输后再将光信号转换为电信号。
光在光纤中传输的原理是光纤中的光通过全反射在光纤内部传输。
1. 光源:光源是产生光信号的基本部件,常用激光器和发光二极管等光源产生光信号。
2. 光纤:光纤是用来将光信号传输到目的地的基本部件,主要分为单模光纤和多模光纤两种。
3. 处理装置:处理装置是将电信号转换为光信号或将光信号转换为电信号的部件,通常包括激光驱动器、光调制器、探测器等。
第四章、光纤通信技术的未来发展1. 光电子集成技术:光电子集成技术可以将光源、调制器、检测器、灵敏电路等全部集成在一起,形成高度集成化的全光电路,从而实现更快、更大容量的数据传输。
光纤通信技术的发展与趋势
光纤通信技术的发展与趋势随着信息时代的到来,信息传输的速度和质量变得尤为重要,光纤通信技术随之应运而生。
相比于传统的电信传输方式,光纤通信具有传输距离远、带宽大、速度快、信号损失小等诸多优势。
本文将从光纤通信技术的发展历程和未来趋势两方面探讨该技术的前沿进展。
一、光纤通信技术的发展历程1960年代,光纤的材料和制备工艺还处于萌芽阶段,但已经出现了第一条光纤原型,并且初步验证了其光学传输性能。
1970年代,一系列光通信器件的诞生使得光纤通信进入实用化阶段。
1980年代,光纤传输系统的技术逐渐成熟。
随着光功率放大器、数字化光传输系统、激光器等新技术的问世,光电子技术的应用范围不断拓展。
1990年代至今,光纤通信技术的传输速度不断提高、光通信系统规模不断扩大。
二、光纤通信技术的未来趋势1.5G波长突破传统的光纤通信技术利用的是1.3G波长,但部分数据中心和企业已经开始使用1.5G波长的光纤设备。
1.5G波长比1.3G波长更适合传输高清视频和图像等大数据,因此将成为未来主流的波长。
2.光电混合集成技术光电混合集成技术是一种集成了微波及光学部件的传输网络,可实现高速、低信号失真、低能耗的通信。
未来,光电混合集成技术将应用在5G通信、人工智能和虚拟现实等领域。
3.光通信系统引入新技术光通信系统将引入全新技术,包括自适应光纤控制系统、光纤惯性导航技术、无源光网络技术等。
这些技术将使得光通信系统的使用范围更广,应用领域更加广泛。
4.量子通信时代的到来量子通信是指在量子态下进行的通信。
由于它具有难以破解的安全性质,因此成为未来加密通信的发展方向。
在量子通信时代,光纤通信技术将发挥巨大的作用。
总之,光纤通信技术在迅速发展,未来将引入更多新技术和新应用。
这些新技术和新应用将使得光纤通信技术的传输速度和质量更佳,应用领域更加广泛。
相信光纤通信技术将成为信息时代中不可或缺的重要角色。
光纤通信技术的发展趋势和前景
光纤通信技术的发展趋势和前景光纤通信技术是现代通讯技术的重要组成部分,其发展一直以来都是稳步推进的。
未来的几年里,光纤通信技术的发展将会趋向更加成熟、完善,而且拥有更广阔的应用前景。
一、光纤通信技术的历史回顾光纤通信技术是利用光的传输方式,将信息在光纤中传播,并通过光接收器将光信号转换成电信号的一种通讯技术。
它的发展始于20世纪60年代,当时美国贝尔实验室的研究人员发明了光纤传输技术。
在20世纪70年代初期,光纤通信技术开始商业化研发,随着技术的不断进步,光纤通信技术在20世纪90年代飞速发展。
尤其是随着Internet的出现,光纤通信技术被广泛应用于各个领域,包括互联网、计算机、电视、电话等等。
二、光纤通信技术的现状分析目前,光纤通信技术已被广泛应用于商业领域,成为当今通讯行业最重要的组成部分之一。
根据行业数据显示,全球光纤通信市场的规模已经超过了数千亿美元,在未来的几年里,这一市场仍有增长的潜力。
除此之外,目前光纤通信技术的应用也不断扩大,包括汽车、健康医疗、能源、管道传输和安保等多个领域。
尤其是随着智能家居、智能城市等的兴起,光纤通信技术也将成为这些领域的重要支撑。
三、光纤通信技术的发展趋势介绍1. 光纤通信技术的高速化光纤通信技术的高速化是趋势之一。
未来几年,随着十几甚至数十Gbps网络应用的广泛出现,高速化成为了行业共识。
在此背景下,新的光通信设备和技术不断涌现,光通信芯片有了更高的网速,光通信系统也已经可以提供更快更稳定的信号传输速度。
2. 光纤通信技术的智能化光纤通信技术的智能化也是未来的趋势之一。
因为智能化可以提升信息传输的效率和准确度。
光纤通信技术的智能化体现在数据的自动化处理和分析,并且通过人工智能技术实现对网络的自修复和自检测。
3. 光纤通信技术的绿色可持续化光纤通信技术的绿色可持续化是未来的趋势之一。
这一概念是指,减少光纤设备的能耗,降低光纤对环境造成的影响。
随着对环境保护的重视,光纤通信技术的绿色可持续化将成为制定规划的重要考虑因素,并将在技术创新上得到更加重视。
光纤通信技术的发展历程与未来趋势
光纤通信技术的发展历程与未来趋势一、引言随着信息时代的到来,通讯技术的发展成了人们关注的热点话题。
光纤通信技术作为当前通讯技术中的一种主要技术,不断呈现出愈发强劲的发展势头。
本文旨在从光纤通信技术的发展历程入手,探讨这一技术的未来趋势。
二、光纤通信技术的发展历程光纤通信技术的应用历经了数十年的发展历程。
而其历史起点始于20世纪60年代末期,斯隆研究所(MIT)的研究小组中,第一个提出了利用光纤进行长距离通信的设想。
光纤通信技术的出现,重大地改变了通信的形式,提供了一种可靠、高速的通信技术。
自光纤通信技术推出以来,该技术经历了几个主要的发展阶段:1、单模光纤80年代,单模光纤的发明是光纤通信技术发展历程中的一个重要阶段。
单模光纤技术的出现,使得光纤传输的距离可以大幅度提高,同时传输速度也大幅度提升。
单模光纤技术的应用过程中,稳频激光器的出现加快了单模光纤技术的发展进程。
2、光放大器90年代,光放大器的发展则是光纤通信技术发展中的另一个重要阶段。
光放大器在激光器的基础上设计,能够实现光信号的增强,进而达到信号的延迟和放大。
由此,提高了信号传输距离和曲速度。
3、密集波分复用技术21世纪初,密集波分复用技术的出现,则是又一个从技术层面实现带宽网络的重要进展。
密集波分复用技术通过同时采用多个波长信号在一根光纤中进行数据传输,从而大大提高了通信采用覆盖面积、传输速度等数据指标。
4、全光网络服务2010年起,全光网络服务成为了新一代光纤通信技术的主流趋势,其基本思路是要建立一种从任何东西到任何东西的全光网络服务体系,实现“数字万物互联”。
全光网络服务为客户提供了卓越性能的网络服务,使得人们的信息互联更具广阔的前景与可持续性。
三、光纤通信技术的未来趋势随着科学技术的不断进步和发展,光纤通信技术未来还有许多可期的趋势,包括:1、纳秒级别低延迟传输技术:该技术可以优化公网的时延,从而更加精准地将信息传输到需要地地方。
光纤通信技术的研究现状与发展趋势
光纤通信技术的研究现状与发展趋势随着信息时代的到来,通信技术的发展已成为国家战略和经济发展的重要支撑。
在众多通信技术中,光纤通信技术以其巨大的通信带宽和高速可靠的传输速度,成为目前最为先进的通信技术之一,广泛应用于通信网络、数据中心、高清视频传输等领域。
一、光纤传输技术的发展历程光纤通信技术起源于20世纪60年代初期,当时科学家们开始尝试利用光信号传输信息。
1970年代,光纤通信得到进一步发展,其通信速度更是达到了每秒数百兆位的水平,再到80年代,光纤通信技术已经成为商用网络的通信标准。
而在90年代末期,光纤通信技术则被大规模使用于互联网、手机网络和有线电视领域,8兆,34兆,155兆三种速率牢牢占据了主流地位。
而时至今日,光纤传输技术已经发展到了每秒T范围,甚至更高的级别,将传输速度推向了前所未有的高度。
二、光纤通信技术的技术优势相比于传统的有线传输技术,光纤通信技术得到了极大的发展和新突破。
光纤传输技术具有传输速度快、带宽大、抗电磁干扰、可靠性高、保密性好等优势,主要包括以下几个方面:1、高速率:光纤传输技术可以在非常短的时间内通过巨大的带宽进行数据传输,这一优势为整个数字社会的前进提供了重要的支撑。
2、稳定可靠:光纤传输技术能够实现长距离的传输,而不受距离影响;同时,它还不会受电磁干扰和同轴电缆的交叉干扰。
3、生命长,性价比高:光纤传输技术的寿命长达数十年,这相比于其他传输技术具备极大的优势;同时它需要更少的维护和更少的能源,更加节省地球上的宝贵资源。
三、光纤传输技术发展趋势在当今数字时代,信息的产生、传输、存储和计算的速度都在不断加快。
因此,如何提高通信传输速度和数据传输的效率成为新时期光纤通信技术的关键问题。
从技术角度,光纤传输技术未来的发展趋势主要有以下几个方面:1、以太网技术的升级:随着视频、云计算、物联网革命的不断推进,以太网技术也必须不断升级。
例如结合40GBASE-SR4带宽的高速光纤通信技术,将是未来数据中心十分优秀的选择;2、光子编码技术的推广:随着量子信息技术的发展,依托光子编码技术的数据传输方式正在变得越来越重要。
光纤通信技术的演变与未来
光纤通信技术的演变与未来随着现代通信技术的发展,光纤通信越来越得到人们的青睐,成为通讯业的热门话题。
其速度快、传输距离长、带宽宽广的特点,使其在多个应用领域都有着重要的作用。
但是,在光纤通信技术的演变过程中,我们也经历了许多的进步和不断的挑战。
本文将从历史发展、现状及未来发展等方面来探讨光纤通信技术的演变与未来。
一、历史发展20世纪60年代初,光纤通信技术被人们所熟知,这也是硅光纤被发现的时期。
早期的光纤通信技术被用于军事和政府应用,但由于技术条件限制,成本较高,限制了其发展和应用范围。
直到70年代末期,随着光纤材料、制备、光纤接口、光源和检测器等技术的进步,光纤通信技术才得以真正得到广泛的运用,成为新时代的通信利器。
在此期间,美国贝尔实验室的研究者们通过实验室的基础研究在光纤领域做出了突破性的成果。
1977年,他们成功地推出了第一条光纤通信线路,为光纤通信技术的发展打下了坚实的基础。
二、现状目前,光纤通信技术已经普及到人们的生活中,各种领域的应用逐渐发展,涉及到环保、医疗、教育等多个领域。
光纤通信技术也取代了传统通信方式,成为了市场需求的主流方案。
光纤通信业务已经形成了以光纤传输为基础的通信总体架构。
除普及的光纤通信网络外,光纤传感、光电子、光存储等应用领域也开始渐渐出现。
例如,在医疗领域,光纤被应用在内窥镜上,实现了内窥镜可以同时进行观察和治疗的效果;在环保领域,光纤被应用于监测工厂的污水、工业废气的排放,进行远距离实时监控。
三、未来发展未来,光纤通信技术将会有更广阔的发展空间。
技术的进步和人们的需求不断变化,光纤通信技术也会从此继续发展。
1. 5G技术的普及5G技术是近年来兴起的通信技术。
在5G的发展和应用过程中,光纤通信技术也会有更加广阔的应用和市场空间。
在5G基站与基站之间的互联中,光纤将能够发挥其高速率、低延迟、大容量等特点,甚至还可以应用于5G小区的最后一公里传输,在未来的5G网络中,光纤通信将会成为不可或缺的组成部分。
光纤通信技术的发展趋势与前景研究
光纤通信技术的发展趋势与前景研究一、背景介绍随着信息技术的发展,光纤通信技术在现代社会中发挥着越来越重要的作用,成为了高速、高带宽、远距离数据传输的主要手段之一。
然而,随着时代的变迁,光纤通信技术也需要持续不断地更新和改进,以更好地适应不断变化的需求。
因此,本文将从光纤通信技术的发展历程、目前的发展状况和未来的发展趋势三方面进行探讨,旨在分析光纤通信技术的前景和未来发展方向。
二、光纤通信技术的发展历程上世纪六十年代初,人们开始探索光纤通信技术的研究,这一技术的发展源于经典物理学的研究。
最早应用于通信领域的光纤是多模光纤。
1977年,英国南安普顿大学的学者麦克吉克和帕斯特提出了单模光纤的概念,并成功地制造出了单模光纤。
此后,单模光纤开始成为光纤通信技术的主流。
上世纪九十年代末,光通信在世界范围内得到了快速的发展,光纤通信技术开始迅速地普及和应用于工业生产、民用通信和国防领域等多个领域。
2000年代,光纤通信技术进一步发展,大容量光通信网络开始构建,2008年我国正式进入光纤时代,这标志着光纤通信技术在中国的普及和应用进入了一个全新的阶段。
三、现阶段光纤通信技术的发展状况目前,光纤通信技术已成为人们日常生活和工作中必不可少的一部分,它涉及着电话、电视、互联网等多个领域,要想了解现阶段的光纤通信技术发展状况,我们需要从以下几个方面进行分析:1.传输速度当前,光纤通信技术的传输速度已经达到了最高的数百Gbps,这远远超出了传统通信手段的传输速度,同时也为高速数据传输提供了可靠的解决方案。
2.网络稳定性目前,光纤通信技术的网络稳定性得到了大幅度提升,纤芯直径细,电磁干扰较小,抗外界干扰能力更强,保障了网络通信质量和稳定性。
3.应用范围光纤通信技术的应用广泛,它不仅支撑着网络通信和数据传输,还用于机房架构、视频会议、联网家电等领域,成为现代信息化社会的重要基础设施。
四、光纤通信技术未来的发展趋势与前景未来,光纤通信技术还将继续向更快、更稳定、更智能化的方向发展,下面从以下几个方面进行探讨:1.提高传输带宽和速度未来光纤通信技术需要不断提高传输带宽和速度,以满足更多、更快的通信需求。
光纤通信技术的发展
光纤通信技术的发展随着数字化和信息化的加速发展,通信技术的创新已成为全球科技领域的热点之一。
其中光纤通信作为一种高效、高速、安全和稳定的通信方式,已成为当前通信技术的主流之一。
本文旨在探讨光纤通信技术的发展历程及未来发展方向。
一、光纤通信技术的发展历程光纤通信技术起源于上世纪60年代初,当时的主要应用领域是激光器、照明、成像和医学。
到了1970年,美国贝尔实验室率先开发了光纤通信实验系统,并于1975年开始商用化。
自此之后,光纤通信技术经历了多次技术突破和应用创新,从传输速率、光导纤维材料、传输方式到网络结构,都在不断更新换代。
1. 传输速率的提高:从几百千比特到几百兆比特/秒光纤通信系统最初的传输速率只有几百千比特/秒。
随着时间的推移,随着半导体技术进步和光学器件的发展,传输速率得到了显著提高。
1980年,Alcatel公司研制成功了第一代155Mb/s光纤通信系统,并在1984年首次商业化应用,标志着光纤通信技术的商业化大规模应用的开始。
另一方面,如何提高光信号传输距离也是一个非常关键的问题,1988年日本NEC公司成功研发出了EDFA(Erbium-doped fiber amplifier)光纤放大器,使得信号传输距离得到了较大提高。
到了1990年代,随着SONET/SDH技术和波分复用技术的应用,光纤通信系统的传输速率从Gbit/s发展为近10Gbit/s。
2000年左右,尝试将WDM和EDFA技术结合起来,使得光纤通信的传输速率达到40Gbit/s。
如今,光纤通信已发展到了100Gbit/s,200Gbit/s和400Gbit/s水平。
2. 光纤材料的改进:从多模至单模光纤的发展早期的光导纤维主要是多模光纤,其直径比较大,容易发生色散和模间干扰。
为了提高传输质量和传输距离,研究人员开始研发单模光纤。
单模光纤的直径较小,信号传输距离较远,适用于高速数据传输和通信线路建设。
在材料制备方面,早期的光导纤维主要是硅酸盐光纤。
光纤通信技术的发展史及其现状_论文[1]
光纤通信技术的发展史及其现状【内容摘要】光纤通信符合了高速度、大容量、高保密等要求,但是,光纤通信能实际应用到人类传输信息中并不是一帆风顺的,其发展中经历了很多技术难关,解决了这些技术难题,光纤通信才能进一步发展。
本文从光源及传输介质、光电子器件、光纤通信系统的发展来展示光纤通信技术的发展。
【关键词】光纤通信技术光纤光缆光有源器件光无源器件光纤通信系统【正文】光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。
光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。
作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。
将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。
一、光纤通信技术的形成(一)、早期的光通信光无处不在,这句话毫不夸张。
在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。
打手势是一种目视形式的光通信,在黑暗中不能进行。
白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。
另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。
望远镜的出现则又极大地延长了这类目视形式的光通信的距离。
这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。
近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。
这种光电话利用太阳光或弧光灯作光源,通过透镜把光束聚焦在送话器前的振动镜片上,使光强度随话音的变化而变化,实现话音对光强度的调制。
在接收端,用抛物面反射镜把从大气传来的光束反射到硅光电池上,使光信号变换为电流传送到受话器。
光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。
光纤通信技术的发展历程及广泛应用
光纤通信技术的发展历程及广泛应用提纲:1. 光纤通信技术的发展历程2. 光纤通信技术广泛应用的领域3. 光纤通信技术对建筑行业的影响4. 光纤通信技术的优势与不足5. 光纤通信技术的未来发展趋势一、光纤通信技术的发展历程光纤通信是指在光纤中使用光信号传输信息的一种通信技术。
在20世纪60年代初,科学家们开始研制光波导传输系统,但是由于技术不成熟导致传输距离短、光衰减大等问题,使得光传输技术难以实际应用。
这种情况一直持续到20世纪70年代中期,当时一种叫做单模光纤的新型光纤问世,使得光纤通信技术迎来了发展的春天。
在1977年,美国贝尔实验室成功地进行了一次长距离传输试验,使得光纤通信技术进一步得到了证明。
此后,随着光纤通信技术不断地完善,其安装和维护费用也逐渐降低,从而进一步促进了光通信技术的发展。
到了20世纪80年代,光通信技术经历了一次重大的技术革新,这一革新使得光传输距离、信号传输速度等指标都得到了显著的提升。
随后,光纤通信技术开始被广泛应用于电信行业,在21世纪的今天,光纤通信技术已经成为了全球通信网络的核心技术。
二、光纤通信技术广泛应用的领域光纤通信技术已经成为了现代通信领域最为广泛应用的技术之一,具体的应用领域包括但不限于以下几个方面:1. 数字通信领域。
光纤通信技术以其高速率、宽带、低延迟等特性,被广泛应用于数字通信领域。
如今许多电话、移动、宽带电视等业务都采用了光纤通信技术。
2. 汽车工业。
随着汽车制造工艺技术的不断提高,现代汽车的仪表盘、后视镜、车内娱乐系统等都需要使用到高速稳定的通信传输技术,因此在汽车工业中也广泛应用了光纤通信技术。
3. 医疗保健。
现代医疗设备需要实时传输病历、照片等信息,因此也需要高速、稳定的通信技术,光纤通信就是满足这种需求的最佳选择。
4. 其他。
光纤通信技术还被广泛应用于激光医疗、军事防卫、工程制造等领域。
三、光纤通信技术对建筑行业的影响随着数码化时代的到来,现代建筑在设计与实施过程中也越来越需要使用到先进技术,光纤通信技术就是其中一个不可或缺的部分。
论述光纤通信技术发展的现状和前景
论述光纤通信技术发展的现状和前景【摘要】光纤通信技术作为信息通信领域的重要组成部分,已经经历了多年的发展历程。
本文从光纤通信技术的重要性和发展历程入手,探讨了其当前应用领域和技术优势。
分析了光纤通信技术的发展趋势和未来应用前景,指出其在信息通信行业中的重要作用和发展潜力。
挑战与发展方面,提出了光纤通信技术在技术革新、安全性等方面需要不断改进和完善的问题。
总结指出,光纤通信技术的重要性不断凸显,其未来前景广阔,并将继续推动信息通信行业的进步。
通过该文章的论述,读者可以更清晰地了解光纤通信技术的现状和前景,以及其在信息通信领域的重要性和作用。
【关键词】光纤通信技术, 发展, 现状, 前景, 应用领域, 技术优势, 发展趋势, 未来应用前景, 挑战, 结论, 重要性, 进步1. 引言1.1 光纤通信技术的重要性光纤通信技术作为信息通信领域的重要组成部分,其在现代社会中扮演着至关重要的角色。
光纤通信技术可以实现高速的数据传输,将海量的信息以光的速度传输,大大提高了通信效率,使得人们可以更快地获取到所需的信息。
光纤通信技术具有较高的安全性,光信号在传输过程中不易被窃取或干扰,有效保护了信息的安全性,特别适用于军事、金融等对信息安全性要求极高的领域。
光纤通信技术还具有较低的能耗和占地面积,相比传统的电信网络,光纤通信技术在资源利用和环境保护方面表现出色。
光纤通信技术的重要性不仅体现在其促进信息传输的效率和安全性上,同时也体现在其对资源和环境的保护方面,是信息通信领域不可或缺的关键技术。
1.2 光纤通信技术的发展历程光纤通信技术的发展历程可以追溯到20世纪60年代,当时科学家们开始探索如何利用光纤作为信息传输的媒介。
在接下来的几十年里,随着光纤通信技术的不断突破和创新,其应用领域也逐渐扩大。
1970年代,第一根商用光纤被成功制造出来,开始在电话和电视传输领域得到应用。
到了1980年代,光纤通信技术逐渐取代了传统的铜缆、微波和卫星通信,成为主流通信技术。
光纤通信技术的发展与挑战
光纤通信技术的发展与挑战随着信息时代的到来,人们对于通讯方式的要求也越来越高,光纤通信技术应运而生。
光纤通信技术可以说是目前最为先进的通讯技术之一,它凭借着宽带、高速、光纤互联等优势,已经逐渐成为主流通信技术。
然而,在光纤通信技术的发展道路上,也面临着不少的挑战。
一、光纤通信技术的发展历程光纤通信技术是从20世纪60年代开始引起人们的关注,起初仅仅用于实验室和研究领域。
直到20世纪80年代,光纤通信技术才开始走上商业化的道路。
此后,光纤通信技术得到了长足的发展,目前已经成为主流通信技术之一。
其中,在技术发展方面,主要经历了三个时期:(一)第一代光纤通信技术时期(1970-1980年代)第一代光纤通信技术的时期,主要围绕光源、调制器、放大器、探测器、光纤等核心元件进行技术研究和开发。
光源主要采用的是气体激光器和半导体激光器技术;调制器主要采用的是电吸收调制器和电光调制器技术;放大器主要采用二极管或半导体激光放大器技术。
(二)第二代光纤通信技术时期(1990-2000年代)第二代光纤通信技术的时期,主要在光纤通信系统总体结构、光纤传输技术、光源和探测器技术、调制器和放大器技术等方面进行技术创新。
其核心技术包括:光纤模式色散补偿技术、波分复用技术、光放大器技术、光放大器、光多路复用与解复用、光解调技术等。
(三)第三代光纤通信技术时期(2000年至今)第三代光纤通信技术的时期,主要围绕高速率的光通信、多波长复用技术、光网络技术和光交换技术等领域进行技术创新和开发。
目前,多波长复用技术已经成为当前最为主流的光纤通信技术,使用波分复用技术可以实现多路信号同时传输,大大提高了光纤通信带宽和传输速度。
二、光纤通信技术的优势光纤通信技术具有多重优势,包括高速率、大容量、长传输距离、可靠性高等。
(一)高速率光纤通信技术具有极高的传输速率,采用当前最为先进的技术,光纤通信每秒可传输的数据量可以达到几Tbps(万亿比特每秒)。
光纤通信技术发展历程、特点及现状
光纤通信技术发展历程、特点及现状(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--学号:013本科学年论文学院物理电子工程学院专业电子科学与技术年级 2008级姓名王震论文题目光纤通信技术发展历程、特点及现状指导教师张新伟职称讲师成绩2012年1月10日目录摘要 (1)Abstract (1)绪论 (1)1光纤通信发展历程 (1)世界光纤通信发展史 (1)中国光纤通信发展史 (2)2 光纤通信技术的特点 (3)频带极宽,通信容量大 (3)损耗低,中继距离长 (3)抗电磁干扰能力强 (3)无串音干扰,保密性好 (3)3 不断发展的光纤通信技术 (3)SDH系统 (3)不断增加的信道容量 (3)光纤传输距离 (4)向城域网发展 (4)互联网发展需求与下一代全光网络发展趋势 (4)4 结束语 (4)参考文献 (4)光纤通信技术发展历程、特点及现状摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。
光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。
关键词:光纤通信;发展历程;特点;发展现状绪论光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。
光电子技术将继微电子技术之后再次推动人类科学技术的革命。
有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。
光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信技术的发展史及其现状【内容摘要】光纤通信符合了高速度、大容量、高保密等要求,但是,光纤通信能实际应用到人类传输信息中并不是一帆风顺的,其发展中经历了很多技术难关,解决了这些技术难题,光纤通信才能进一步发展。
本文从光源及传输介质、光电子器件、光纤通信系统的发展来展示光纤通信技术的发展。
【关键词】光纤通信技术光纤光缆光有源器件光无源器件光纤通信系统【正文】光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。
光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。
作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。
将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。
一、光纤通信技术的形成(一)、早期的光通信光无处不在,这句话毫不夸张。
在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。
打手势是一种目视形式的光通信,在黑暗中不能进行。
白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。
另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。
望远镜的出现则又极大地延长了这类目视形式的光通信的距离。
这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。
近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。
这种光电话利用太阳光或弧光灯作光源,通过透镜把光束聚焦在送话器前的振动镜片上,使光强度随话音的变化而变化,实现话音对光强度的调制。
在接收端,用抛物面反射镜把从大气传来的光束反射到硅光电池上,使光信号变换为电流传送到受话器。
光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。
其所利用的自然光为非相干光,方向性不好,不易调制和传输;而以空气作为传输介质,损耗会很大,无法实现远距离传输,又易受天气影响,通信极不稳定可靠。
如此看来,这种光电话并没有太大的实际应用价值,然而,我们不得不说,光电话仍是一项伟大的发明,它的出现证明了用光波作为载波传输信息是可行的,因此,把贝尔光电话称为现代光通信的雏形毫不过分。
(二)、 现代光纤通信技术的形成随着社会的发展,信息传输与交换量与日俱增,传统的通信方式已不能满足人们的需要。
为了扩大通信容量,通信方式从中波、短波发展到微波、毫米波,这实际上就是通过提高通通信载波频率来扩大通信容量的。
继续提高频率,达到光波波段,光波是人们最熟悉的电磁波,其波长在微米级,而频率则为1410Hz 数量级,这比常用的微波频率高410~510倍。
如此看来,用光波作为载波进行通信,通信容量将大大超过传统通信方式。
要发展光通信,最重要的问题就是要寻找适用于光通信的光源和传输介质。
1970年,光纤和激光器这两个科研成果同时问世,拉开了光纤通信的帷幕,所以我们把1970年称为光纤通信的“元年”。
1、 光源1960年,美国的梅曼(T.H.Maiman )发明了红宝石激光器,它可以产生单色相干光,使高速信息的光调制成为可能。
和普通光相比,激光具有波谱宽度窄,方向性极好,亮度极高,以及频率和相位较一致的良好特性。
激光是一种高度相干光,它的特性和无线电波相似,是一种理想的光载波。
但是,红宝石激光器发出的光束不容易耦合进光纤中传输,其耦合效率是极低的,因此需要研制小型化的激光光源。
1970年,美国贝尔实验室、日本电气公司(NEC )和前苏联先后突破了半导体激光器在低温(-200 C ︒)或脉冲激励条件下工作的限制,研制成功室温下连续工作的镓铝砷(GaAlAs )双异质结半导体激光器(短波长)。
虽然寿命只有几个小时,但其意义是重大的,它为半导体激光器的发展奠定了基础。
1973年,半导体激光器寿命达到10万小时(约11.4年),外推寿命达到100万小时,完全满足实用化的要求。
在这个期间,1976年日本电报电话公司研制成功发射波长为1.3 m μ的铟镓砷磷(InGaAsP )激光器,1979年美国电报电话(AT&T )公司和日本电报电话公司研制成功发射波长为1.55m μ的连续振荡半导体激光器。
激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。
2、 传输介质1) 大气1961~1970年,人们主要研究利用大气传输光信号。
美国麻省理工学院利用He-Ne 激光器和2CO 激光器进行了大气激光通信试验。
试验证明用承载信息的光波通过大气的传播实现点对点的通信是可行的,但是大气传输光通信存在很多严重的问题:(1) 通信能力和质量受气候影响十分严重。
由于雨、雾、雪和大气灰尘的吸收和散射,光波能量衰减很大。
例如,雨能造成30dB/km 的衰减,浓雾衰减高达120dB/km 。
(2) 大气的密度和温度很不均匀,造成折射率的变化,加上大气湍流的影响,光束位置可能会发生偏移和抖动。
因而通信的距离和稳定性都受到极大的限制,不能实现“全天候”通信。
(3)大气传输设备要求设在高处,收、发设备必须直线可见。
这种地理条件使得大气传输通信的适用范围具有很大的局限性。
虽然,固体激光器(例如掺钕钇铝石榴石(Nd:YAG)激光器)的发明大大提高了发射光功率,延长了传输距离,使大气激光通信可以在江河两岸、海岛之间和某些特定场合使用,但是大气激光通信的稳定性和可靠性仍然没有解决。
为了克服气候对激光通信的影响,人们自然想到把激光束限制在特定的空间内传输。
因而提出了透镜波导和反射镜波导的光波传输系统。
透镜波导是在金属管内每隔一定距离安装一个透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。
反射镜波导和透射镜波导相似,是用与光束传输方向成45︒角的两个平行反射镜代替透镜而构成的。
这两种波导从理论上讲是可行的,但在实际应用中遇到了不可克服的困难。
首先,现场施工中校准和安装十分复杂;其次,为了防止地面活动对波导的影响,必须把波导深埋或选择在人车稀少的地区使用。
由于没有找到稳定可靠和低损耗的传输介质,对光通信的研究曾一度走入了低潮。
2)光纤为了发展光通信技术,人们又考虑和尝试了各种传输介质,其中包括利用玻璃材料制成光导纤维来传输光信号,但是当时最好的光学玻璃材料的损耗在1000dB/km以上,这么高的传输损耗根本就无法用于通信。
1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了光纤通信的基础。
1970年,光纤研制取得了重大突破。
美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。
因此,光纤通信开始可以和同轴电缆通信竞争,世界各国相继投入大量人力物力,把光纤通信的研究开发推向一个新阶段。
1972年,随着光纤制备工艺中的原材料提纯、制棒和拉丝技术水平的不断提高,进而将梯度折射率多模光纤的衰减系数降至4dB/km。
1973年,美国贝尔实验室研制的光纤损耗降低到2.5dB/km。
1974年降到了1.1dB/km。
1976年日本电报电话(NTT)公司等单位将光纤损耗降低到0.47dB/km(波μ)。
长1.2mμ波长处的光纤损耗(如图2所示):1979年是在以后的10年中, 1.55m20dB/km,1984年是0.157dB/km,1986年是0.154dB/km,接近了光纤最低损耗的理论极限。
图105101520251970197219731974年图20510152025197919841986年dB/km1976年,在进一步设法降低玻璃中的OH -(氢氧根)含量时,发现光纤的衰减在长波长区有1.31m μ和1.55m μ两个低损耗窗口。
1976年,美国在亚特兰大进行了世界上第一个实用光纤通信系统的现场试验,系统采用GaAlAs 激光器作为光源,多模光纤作为传输介质,速率为44.736Mbit/s 、传输距离约10km ,这一试验使光纤通信向实用化迈出了第一步。
1980年,原材料提纯和光纤制备工艺得到不断完善,从而加快了光纤的传输窗口由0.85m μ移至1.31m μ和1.55m μ的进程。
特别是制出了低衰减光纤,其在1.55m μ的衰减系数为0.20dB/km ,已接近理论值。
与此同时,为促进光纤通信系统的实用化,人们又及时地开发出适用于长波长的光源,即激光器、发光管和光检测器。
应运而生的光纤成缆、光无源器件、性能测试及工程应用仪表等技术的日趋成熟,都为光纤光缆作为新的通信传输媒质奠定了良好的基础。
1981年以后,世界各发达国家将光纤通信技术大规模地推入商用。
历经20余年的突飞猛进的发展,光纤通信速率已由1978年的45Mbit/s (例如美国MCI 于1991年开通了Chicago 至St.Louis 全长275英里的4×10Gbit/s 的商用光纤通信系统等)。
二、 光纤通信技术现状及其发展从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分。
(一)、 光纤光缆光纤本身所固有的优点及其技术的进步使其成为当今社会信息传输的主要媒介。
图3展示了北美消费的光缆较多,占了全球近25%,其次为欧洲。
全球光纤的消费额逐年增加,由此看出,光纤的市场需求量在增加,其应用越来越广。
亿美元年图3 光纤消费地域分布情况亿美元年图4 单模、多模光纤消费情况图5 1998年光纤消费情况图6 预计2008年光纤消费情况图4展示了单模、多模光纤的消费额总体在增加,结合图5、图6又可以知道单模光纤的市场份额有所下降,多模光纤的应用则变得较为广泛。
(二)、 光电子器件1、 光有源器件1) 光检测器常见的光检测器包括:PN 光电二极管、PIN 光电二极管和雪崩光电二极管(APD )。
目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW 左右。
为了得到较大的信号电流,人们希望灵敏度尽可能的高。
光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。
随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。
由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。
因此,光电检测器的噪声要求很小。
另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。