激光测距仪-测距原理

合集下载

laser 测量原理

laser 测量原理

laser 测量原理
激光测距(laser distance measuring)是以激光器作为光源进行测距。

根据激光工作的方式,可以分为连续激光器和脉冲激光器。

激光测距的原理主要是基于光速和时间的关系,通过测量光在空气中传播的时间来计算距离。

对于脉冲激光测距,测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。

光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。

脉冲法测量距离的精度一般是在±10厘米左右,而测量盲区一般是1米左右。

此外,还有相位式激光测距,主要使用连续输出的氦氖、氩离子、氪镉等气体激光器。

相位式激光测距的原理是利用激光器的频率稳定度和传播速度,通过测量相位差来计算距离。

相位式激光测距的精度较高,可以达到毫米级别,但测量范围较小。

以上内容仅供参考,如需获取更多信息,建议查阅关于激光测距的资料或者咨询专业人士。

激光测距技术原理

激光测距技术原理

激光测距技术原理:1.激光的亮度高。

固体激光器的亮度更可高达1011W/cm2Sr这是因为激光虽然功率有限,但是由于光束极小,于是具有极高的功率密度,所以激光的亮度一般都大于我们所见所有光(包括可见光中的强者:太阳光),这也是激光可用于星际测量的根本原因所在;2.激光的单色性好。

这是因为激光的光谱频率组成单一。

3.激光的方向性好。

激光具有非常小的光束发散角,经过长距离的飞行以后仍然能够保持直线传输;4.激光的相干性好。

我们通常所见到的可见光是非相干光,激光可以做到他们都做不到的事情,比如说切割钢材。

在测距领域,激光的作用更是不容忽视,可以这样说,激光测距是激光应用最早的领域(1960年产生,1962年即被应用于地球与月球间距离的测量)。

测量的精确度和分辨率高、抗干扰能力强,体积小同时重量轻的激光测距仪受到了大多数有测距需求的企业、机构或个人的青睐,其市场需求空间大,应用领域广行业需求多,并且起着日益重要的作用。

一、相位法激光测距技术原理:当今市场上主流的激光测距仪是基于相位法的激光测距仪。

这是因为基于相位法的激光测距仪轻易地就可以克服超声波测距的一大缺陷:误差过大,使测量精度达到毫米级别。

而基于此法的激光测距仪主要的缺点在于电路复杂、作用距离较短(一百米左右,经过众多科学工作者的努力,现在也有作用距离在几百米的相位法激光测距仪)。

相位法激光测距技术,是采用无线电波段频率的激光,进行幅度调制并将正弦调制光往返测距仪与目标物间距离所产生的相位差测定,根据调制光的波长和频率,换算出激光飞行时间,再依次计算出待测距离。

该方法一般需要在待测物处放置反射镜,将激光原路反射回激光测距仪,由接收模块的鉴波器进行接收处理。

也就是说,该方法是一种有合作目标要求的被动式激光测距技术。

如下图所示:由图所显示的关系,我们可以知道,用正弦信号调制发射信号的幅度,通过检测从目标反射的回波信号与发射信号之间的相移φ,通过计算即可以得到待测距离。

激光测距仪工作原理

激光测距仪工作原理

激光测距仪工作原理
激光测距仪是一种利用激光技术进行距离测量的仪器。

它的工作原理基于光的传播速度恒定且极快的特性,利用发射出的激光脉冲的反射时间来确定距离。

当激光测距仪开始工作时,它会发出一束非常短暂且高能量的激光脉冲。

这束激光脉冲会以光速传播,在传播过程中碰撞到目标物体上并发生反射。

激光测距仪内置的接收器会接收到这个反射回来的激光脉冲。

接收器接收到反射的激光脉冲后,会记录下接收到激光脉冲的时间。

由于光的传播速度是已知的,因此可以根据从激光发射到接收到反射的激光脉冲所经历的时间来计算出距离。

计算距离的过程是简单而直接的。

首先,需要知道激光发射和接收的时间差,也就是从发射到接收的时间间隔。

然后,根据光的传播速度与时间差之间的关系,可以利用公式:距离 = (速度 ×时间差) / 2来计算出物体与激光测距仪之间的距离。

除了测量距离外,激光测距仪还可以通过测量激光脉冲的强度来提供更多的信息,比如反射物体的亮度或材料的透过率。

这些信息可以用来评估目标物体的性质和特性。

总之,激光测距仪利用发射出的激光脉冲的反射时间来测量距离。

通过测量激光脉冲的传播时间差,激光测距仪可以准确地计算出物体与测距仪之间的距离。

这种技术在工程、建筑、地质勘测等领域有着广泛的应用。

激光测距原理

激光测距原理

激光测距原理
激光测距原理是利用激光器发射出的激光束,经过被测物体反射回激光接收器的时间间隔来测量距离的一种技术。

具体原理如下:
1. 激光器发射激光束:激光器向被测物体发射一束激光束,激光束的频率通常为红外频段,能够在大气中传播且不易衰减。

2. 激光束反射:激光束照射到被测物体表面后,会被物体所反射或散射。

反射的激光束会朝着各个方向传播,其中一部分会返回到激光接收器。

3. 接收激光信号:激光接收器接收到反射回来的激光束,并将信号转换为电信号。

4. 时间测量:通过记录激光从发射到返回的时间间隔,可以确定激光在空气中的传播时间。

由于光速在空气中的传播速度已知,因此可以通过测量时间间隔来计算出激光从激光器到被测物体的往返距离。

5. 距离计算:利用光速和测量的时间间隔,可以通过简单的乘法运算得出激光到被测物体的距离。

公式为:距离 = 光速 ×时间间隔 / 2。

激光测距原理的优点在于其高精度、快速、非接触式的特点,广泛应用于测量、建筑、雷达等领域。

激光测距仪的原理与使用技巧

激光测距仪的原理与使用技巧

激光测距仪的原理与使用技巧激光测距仪,作为一种高精度、高效率的测距工具,广泛应用于建筑、工程、测绘等领域。

它通过发射一束激光,利用光波的传播速度来测量物体与测距仪之间的距离。

本文将介绍激光测距仪的原理以及使用技巧,希望能为读者提供一些有用的指导。

一、原理解析1.1 光波传播速度原理激光测距仪利用光波传播速度来测量物体距离的原理,是基于光波在真空中传播速度恒定的特性。

光速是一个被广泛认可的自然常数,约等于每秒300,000千米。

激光测距仪通过探测光波从发射器发射出去,到物体反射回来的时间差,并结合光速恒定的特性,从而计算出物体与测距仪之间的距离。

1.2 回波接受和测量激光测距仪的工作流程主要分为两个步骤:发射和接收。

首先,激光发射器会发送一束脉冲激光,该激光会在接近目标物体时被反射。

接着,激光接收器会接收到反射回来的光信号,并通过内置的计时器测量光波的传播时间。

最后,测距仪会根据光波传播速度和测量的时间差,计算出物体与测距仪之间的距离。

二、使用技巧2.1 环境适应能力在使用激光测距仪时,首先要考虑周围环境对其测量的影响。

例如,强烈的阳光、雨雪、灰尘等都可能干扰测量结果,因此应尽量选择在天气良好、光照充足的环境下使用。

此外,一些特殊材质(如玻璃、镜面等)的物体也可能会干扰测量过程,需要特别注意。

2.2 测量精度与范围激光测距仪在测量精度和测量范围上都有一定的限制。

一般来说,测距仪的精度会受到多种因素的影响,包括器件本身的精度、环境因素等。

在实际使用中,要注意选择合适的激光测距仪,根据需要的精度和测量范围进行选择。

2.3 对准和稳定性激光测距仪的测量结果受到对准和稳定性的影响。

要确保测距仪和目标物体之间的光波路径没有障碍物,以免影响测量结果。

在测量过程中,要尽量稳定测距仪,以减少手持时的抖动和因运动导致的误差。

2.4 数据处理和记录激光测距仪通常都配备了一些数据处理和记录的功能,如数据存储、数据传输等。

激光测距的原理

激光测距的原理

激光测距的原理
激光测距是一种利用激光技术来测量距离的方法。

其原理是利用激光束的特性,通过测量激光束从发射到接收所需的时间来计算出目标物体与测距仪之间的距离。

激光测距一般采用脉冲激光器发射一束短脉冲激光,激光束经由发射器发射出去,当遇到目标物体时会被目标物体散射或反射回来,再通过接收器接收到回波信号。

接收器会记录下激光束发射和接收之间的时间间隔,即回波的时间差。

根据光速恒定的原理,可以利用回波的时间差来计算出激光从发射到接收的路径长度,进而得出目标物体与测距仪之间的距离。

在实际激光测距过程中,还需要考虑到环境中的气候因素对激光传输的影响。

因为气压、气温和湿度等气象条件的变化会对激光的传播速度产生一定的影响,因此在测距之前需要对这些气象因素进行校正。

同时,还需考虑到激光束在传输过程中受到大气吸收、激光器本身的波长变化和散射等因素的影响,以提高测距的准确性。

总之,激光测距利用激光束的传输速度和回波时间差来计算目标物体与测距仪之间的距离,是一种精确而高效的测距方法。

激光测距仪的工作原理

激光测距仪的工作原理

激光测距仪的工作原理一、激光测距仪简介激光测距仪是一种利用激光束进行测量的仪器,它能够高精度地测量物体的距离。

激光测距仪在工业、建筑、测绘等领域广泛应用,它的工作原理基于激光束的发射、接收和测量时间的原理。

二、激光发射原理激光测距仪通过激光器发射激光束,激光器是将电能转换为激光光束的装置。

激光器通常采用半导体激光器,其工作原理是利用半导体材料的正向电流和外界光的作用下,通过自发辐射实现光放大,进而形成激光束。

三、激光束的特性激光束具有高集中度、高单色性、高相干性和高直线度等特性。

这些特性使得激光束在传输过程中能够保持较小的发散度,从而实现高精度的测量。

四、激光的传播和反射1.激光的传播激光发射后呈直线传播,其传播路径遵循光的直线传播规律。

激光测距仪通过测量激光束的时延,可以计算出被测物体与激光测距仪的距离。

2.激光的反射当激光束照射到物体上时,一部分光线被物体吸收,另一部分光线被物体反射。

激光测距仪通过接收到的反射光信号来计算被测物体的距离。

五、激光测距原理激光测距仪的测量原理是基于激光束发射和接收的时间差来计算距离的。

具体步骤如下:1.发射激光束激光测距仪发射激光束,激光束照射到被测物体上。

2.接收反射光信号被测物体上的激光束被反射后,激光测距仪接收到反射光信号。

3.计算时间差激光测距仪通过计算激光发射和接收的时间差来确定物体的距离。

这是因为激光在空气中传播的速度是已知的,通过测量时间差,可以根据速度和时间的关系计算出距离。

4.输出测量结果激光测距仪将计算得到的距离结果输出给用户。

六、激光测距仪的应用激光测距仪在工业、建筑和测绘等领域有着广泛的应用。

1.工业领域在工业领域,激光测距仪常用于测量物体的尺寸、距离和位置。

例如,在生产线上使用激光测距仪可以高精度地测量产品的尺寸,从而保证产品的质量。

2.建筑领域在建筑领域,激光测距仪可以用于测量建筑物的高度、长度和角度。

它可以帮助工程师和建筑师进行精确的测量,从而提高建筑物的设计和施工质量。

激光测距仪原理

激光测距仪原理

激光测距仪原理
激光测距仪原理:
激光测距仪通常使用时间差法来测量距离。

其原理基于光的速度恒定不变,并且利用激光器产生的脉冲激光束和物体反射回来的光信号之间的时间差来计算出待测目标与仪器之间的距离。

具体操作过程如下:
1. 发送脉冲激光束:激光测距仪通过内部的激光器产生一束高能量脉冲激光束,并通过透镜将它聚焦成一个极小的光斑。

2. 激光束照射目标:激光束被照射到待测目标上,并经过反射后返回测距仪。

3. 接收反射光信号:测距仪上的接收器接收到反射回来的光信号,并将其转化为电信号。

4. 计算时间差:测距仪内部的计算器开始计时,记录激光束发射和接收到反射光信号之间的时间差。

5. 计算距离:知道光在真空中的速度(约为3×10^8 m/s),测距仪使用时间差乘以光速的公式来计算目标与仪器之间的距离。

激光测距仪的测量精度通常在几毫米到几厘米之间,具有高精度、高灵敏度和非接触测量的特点。

它在工程测绘、建筑施工、地质勘探等领域具有广泛应用。

测距仪的工作原理

测距仪的工作原理

测距仪的工作原理测距仪是一种常见的测量工具,广泛应用于建筑、工程、地理、环境等领域。

它能够快速、简单地测量距离,并且具有较高的精度和可靠性。

下面将详细介绍测距仪的工作原理,包括激光测距仪和超声波测距仪两种类型。

一、激光测距仪的工作原理:1. 激光发射:激光测距仪通过内置的激光器发射一束激光束,通常使用红色或绿色激光。

2. 激光接收:激光束照射到被测物体上,部分激光经过散射、反射后被激光接收器接收。

3. 时间测量:激光接收器接收到反射的光后,通过内部的光电元件将光信号转化为电信号,并记录下该时刻。

4. 计算距离:测距仪根据激光发射与接收之间的时间差以及光在空气中的传播速度(一般采用光速)来计算出距离。

二、超声波测距仪的工作原理:1. 超声波发射:超声波测距仪通过内置的超声波传感器发射一束超声波。

2. 超声波接收:超声波照射到被测物体上后,部分超声波经过散射、反射后被超声波接收器接收。

3. 时间测量:超声波接收器接收到反射的超声波后,通过内部的压电元件将超声波信号转化为电信号,并记录下该时刻。

4. 计算距离:测距仪根据超声波发射与接收之间的时间差以及超声波在空气中的传播速度(一般约为340米/秒)来计算出距离。

三、激光测距仪与超声波测距仪的比较:1. 测量精度:激光测距仪的测量精度一般在几毫米左右,远高于超声波测距仪的测量精度(通常在几厘米到一米之间)。

2. 测量范围:激光测距仪的测量范围较广,可以达到几百米甚至上千米,而超声波测距仪的测量范围一般较短,通常在几米到几十米之间。

3. 测量环境:激光测距仪对环境条件要求较高,可在室内和室外使用。

而超声波测距仪对环境的影响较大,容易受到气温、湿度等因素的影响。

4. 使用方便性:激光测距仪体积小巧、操作简便,可以携带随时使用。

超声波测距仪体积较大,操作稍显复杂。

5. 应用领域:由于激光测距仪具备高精度、远距离和适应性广等特点,常被应用于建筑、测绘、工程勘察、地理测量等领域。

测距仪的原理及分类

测距仪的原理及分类

测距仪的原理及分类测距仪是一种用于测量目标与测距仪之间距离的设备。

它被广泛应用于军事、航空航天、建筑工程等领域,具有高精度、高可靠性和高效率的特点。

1.激光测距原理:激光测距是利用激光束在空间传播速度恒定的特性,通过测量激光束发射和接收的时间差来计算目标与测距仪之间的距离。

激光测距仪具有高精度和长测距范围的特点,广泛应用于地理测量、制图、建筑工程等领域。

2.超声波测距原理:超声波测距是利用超声波在空气中的传播速度约为340m/s的特性,通过测量超声波发射和接收的时间差来计算目标与测距仪之间的距离。

超声波测距仪广泛应用于工业、家用和机器人等领域。

3.电磁波测距原理:电磁波测距是利用电磁波在空间传播的特性,通过测量电磁波发射和接收的时间差来计算目标与测距仪之间的距离。

电磁波测距仪适用于不同频段的电磁波,常见的应用包括雷达、无线通信、航海导航等领域。

测距仪通常分为以下几类:1.激光测距仪:激光测距仪是利用激光测距原理进行测距的设备。

根据测距精度和测距范围的不同,可以分为短距离激光测距仪和远距离激光测距仪。

远距离激光测距仪通常应用于军事和航天领域,具有高精度和长测距范围的特点。

2.超声波测距仪:超声波测距仪是利用超声波测距原理进行测距的设备。

根据测距范围的不同,可以分为短距离超声波测距仪和远距离超声波测距仪。

短距离超声波测距仪通常应用于室内测量和机器人导航等领域,远距离超声波测距仪通常应用于工业和测绘等领域。

3.雷达测距仪:雷达测距仪是利用电磁波测距原理进行测距的设备。

根据测距范围和工作频段的不同,可以分为近距离雷达测距仪和远距离雷达测距仪。

远距离雷达测距仪通常应用于航空航天和海洋导航等领域,具有高精度和长测距范围的特点。

总的来说,测距仪的原理和分类多种多样,不同的测距仪适用于不同的环境和应用领域,具有各自的特点和优势。

随着科技的不断进步,测距仪的精度和测距范围不断提高,将为各个领域的应用提供更加可靠和高效的测量工具。

激光测距仪的工作原理

激光测距仪的工作原理

激光测距仪的工作原理一、激光测距仪的定义与分类激光测距仪是一种利用激光束进行距离测量的仪器,它可以通过发射一束激光束,然后接收反射回来的激光束并计算出距离。

根据其使用场景和测量范围的不同,激光测距仪可以分为多种类型,例如工业激光测距仪、建筑激光测距仪、医疗激光测距仪等。

二、激光测距仪的基本构成1. 激光发射器:产生单色、高亮度、方向性好的激光束。

2. 接收器:接收反射回来的激光信号,并将其转换成电信号。

3. 时钟:用于计算出从发射到接收所经过的时间。

4. 处理器:将接收到的电信号转换成数字信号,并计算出距离。

5. 显示器:显示所测得的距离值。

三、工作原理1. 激光发射器发出一束脉冲激光,该激光被物体表面反射后返回激光测距仪的接收器。

2. 接收器将接收到的激光信号转换成电信号,并将其传输到处理器。

3. 处理器通过计算发射和接收之间所经过的时间,来确定物体与激光测距仪之间的距离。

4. 最终结果显示在显示器上。

四、激光测距仪的精度和误差1. 精度:激光测距仪的精度主要受到以下因素影响:激光束直径、激光功率、接收器灵敏度、噪声等。

一般来说,工业激光测距仪的精度可以达到几微米级别,而建筑激光测距仪则为毫米级别。

2. 误差:由于环境因素和操作者技术水平等原因,使用激光测距仪时可能会产生误差。

常见误差包括系统误差、随机误差和人为误差等。

五、应用领域1. 工业制造:在机床加工、自动化生产线以及机器人控制等方面被广泛应用。

2. 建筑工程:用于测量建筑物的高度、长度和角度等。

3. 土木工程:用于测量道路、桥梁和隧道等的尺寸和形状。

4. 军事领域:用于测量目标距离和位置,以支持武器系统的精确打击。

5. 医疗领域:用于眼科手术等精细操作中的距离测量。

六、安全注意事项1. 使用激光测距仪时要避免直接照射人眼,以免造成眼睛损伤。

2. 在使用过程中应注意避免强烈的反射物,以免影响测量精度。

3. 使用前应认真阅读说明书,并按照要求进行操作,以确保安全。

激光测距原理与方法

激光测距原理与方法

激光测距原理与方法激光测距是一种常见的测量距离的方法,它基于激光的特性来实现高精度的测距。

激光测距广泛应用于建筑、工程、地质勘测等领域,具有快速、准确、非接触等优点。

本文将介绍激光测距的基本原理和常用的测距方法。

一、原理激光测距的基本原理是利用激光器发射出的激光束,并通过接收器接收反射回来的激光束,通过测量激光传播的时间来计算出距离。

具体来说,激光测距仪发射激光束后,激光束会在测量目标上产生反射,反射回来的激光束会被接收器接收到。

通过测量激光从发射到接收的时间间隔,再结合光速的知识,就可以计算出目标物体与测距仪之间的距离。

二、方法1. 直接测量法直接测量法是最常见的激光测距方法,它通过测量激光从发射到接收的时间来计算距离。

该方法适用于目标物体与测距仪之间没有障碍物的情况下。

具体操作上,测距仪会发射一束激光并计时,当激光束反射回来时停止计时,通过计算时间差并结合光速,即可得到距离。

2. 干涉测量法干涉测量法是一种高精度的激光测距方法,它利用激光的干涉现象来实现测量。

该方法适用于需要高精度测距的场景,如光学仪器的校准等。

干涉测量法的原理是将激光束分成两束,一束直接射向目标物体,另一束经过反射后再射向目标物体,通过比较两束激光的相位差来计算距离。

3. 相移测量法相移测量法是一种基于相位差的激光测距方法,它通过改变激光的相位来实现测量。

该方法适用于需要高精度测距和抗干扰能力的场景,如工业制造中的测量和定位。

相移测量法的原理是通过改变激光的相位,使得接收到的激光信号与参考信号之间产生相位差,通过测量相位差来计算距离。

4. 多点测量法多点测量法是一种基于三角测量原理的激光测距方法,它通过同时测量目标物体与测距仪之间的多个点来计算距离。

该方法适用于需要测量目标物体的形状和尺寸的场景,如建筑物的测量和勘测。

多点测量法的原理是通过测量目标物体多个点之间的距离,并结合三角测量原理计算出目标物体与测距仪之间的距离。

总结激光测距是一种高精度、快速、非接触的测量方法,它通过测量激光的传播时间或相位差来计算目标物体与测距仪之间的距离。

激光测距仪原理

激光测距仪原理

激光测距仪原理
激光测距仪原理是利用激光束的发射和接收时间差来计算目标物体与测距仪的距离。

其基本原理如下:
1. 激光发射:测距仪内部装有激光器,通过电路控制激光器发射一束高能激光束。

激光束在发出时具有很小的发散角度,可保持激光束的较小直径,以获得更高的测距精度。

2. 激光照射:发出的激光束照射到目标物体上,并被目标物体表面反射。

目标物体可以是墙壁、地面、物体等。

3. 激光接收:测距仪内部装有光电元件,通常是光敏二极管(Photodiode)。

当被照射物体反射的激光束到达测距仪后,光电元件会将激光束转换为电信号。

4. 电信号处理:测距仪内部的电路会对接收到的电信号进行处理和分析。

电路会检测激光发射和接收的时间差,即激光束从发射到反射回来的时间。

5. 距离计算:根据光在空气中的传播速度和激光的发射与接收时间差,可以计算出激光束从测距仪发射到目标物体反射回来所经历的时间。

通过时间乘以光速,可以得到目标物体与测距仪之间的距离。

激光测距仪的测量精度通常在毫米级别,并且具有较长的测距范围。

这使得激光测距仪在建筑、工程测量、地质勘察等领域有着广泛的应用。

激光测距仪原理图

激光测距仪原理图

激光测距仪原理图
激光测距仪是一种利用激光技术进行测距的仪器,其原理图如下所示:
1. 发射器。

激光测距仪的发射器部分主要包括激光发生器和光学系统。

激光发生器产生一
束高能激光,并通过光学系统将其聚焦成一束细线,以便于准确照射到目标物体上。

2. 接收器。

激光测距仪的接收器部分包括接收光电探测器和信号处理器。

接收光电探测器
接收被测物体反射回来的激光,并将其转换成电信号,然后通过信号处理器进行处理和放大,以便后续的测距计算。

3. 时间测量模块。

时间测量模块是激光测距仪的核心部分,它利用接收到的激光信号的时间差来
计算目标物体与测距仪之间的距离。

通过精确的时间测量,可以实现对目标物体距离的高精度测量。

4. 数据处理与显示模块。

数据处理与显示模块接收时间测量模块传递过来的距离数据,并进行进一步的
处理和计算,最终将测得的距离数据显示在仪器的显示屏上,以便用户进行观测和记录。

5. 电源模块。

激光测距仪的电源模块提供仪器所需的电能,以保证仪器正常工作。

通常采用
锂电池或者充电电池供电,以便于激光测距仪在户外环境下进行使用。

激光测距仪的原理图如上所述,通过发射器发射激光,接收器接收反射激光并
进行时间测量,最终通过数据处理与显示模块将测距结果显示出来。

激光测距仪在
工程测量、地质勘探、建筑施工等领域有着广泛的应用,其原理图的了解对于深入理解激光测距仪的工作原理具有重要意义。

激光测距仪原理

激光测距仪原理

激光测距仪原理激光测距仪,是利用激光对目标的距离进行准确测定的仪器。

激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时刻,计算出从观测者到目标的距离。

激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。

一.激光测距仪大体原理激光测距仪一样采纳两种方式来测量距离:脉冲法和相位法。

脉冲法测距的进程是如此的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光来回的时刻。

光速和来回时刻的乘积的一半,确实是测距仪和被测量物体之间的距离。

脉冲法测量距离的精度是一样是在+/- 1米左右。

另外,此类测距仪的测量盲区一样是15米左右。

激光测距是光波测距中的一种测距方式,若是光以速度c在空气中传播在A、B两点间来回一次所需时刻为t,那么A、B两点间距离D可用以下表示。

D=ct/2式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光来回A、B一次所需的时刻。

由上式可知,要测量A、B距离事实上是要测量光传播的时刻t,依照测量时刻方式的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。

相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光来回测线一次所产生的相位延迟,再依照调制光的波长,换算此相位延迟所代表的距离。

即用间接方式测定出光经来回测线所需的时刻,如下图。

相位式激光测距仪一样应用在周密测距中。

由于其精度高,一样为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。

假设调制光角频率为ω,在待测量距离D上来回一次产生的相位延迟为φ,那么对应时刻t 可表示为:t=φ/ω将此关系代入(3-6)式距离D可表示为D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ)=c/4f (N+ΔN)=U(N+)式中:φ——信号来回测线一次产生的总的相位延迟。

激光测距仪的原理

激光测距仪的原理

激光测距仪的原理
激光测距仪的原理是利用激光束的传播特性来测量目标物体与测距仪之间的距离。

具体原理如下:
1. 发射阶段:激光测距仪首先通过一个激光发射器产生一束激光束。

激光发射器发出的激光束通常是一束激光脉冲,其脉冲宽度很短,频率很高。

2. 发射与接收的同步:在发射激光脉冲的同时,激光测距仪还会启动一个高精度的计时器。

该计时器可以精确地记录激光脉冲发射的时间。

3. 反射阶段:激光束被发射后,会迅速地传播到目标物体上,并发生反射。

如果目标物体是光滑的(如镜面),则激光束很可能会直接反射回激光测距仪;如果目标物体是粗糙的,则激光束很可能会发生散射。

4. 接收阶段:激光测距仪上有一个接收器,用于接收反射回来的激光束。

接收器通常会过滤掉不必要的光线,并只接收与激光发射器发出的激光脉冲相对应的反射激光脉冲。

5. 时间测量:一旦接收到反射激光脉冲,激光测距仪的计时器就会停止计时。

通过计时器记录的时间,可以计算出激光脉冲从发射到接收的时间差Δt。

6. 距离计算:根据光在真空中的传播速度(约为每秒30万千米)和已知的Δt时间差,可以通过简单的公式计算出目标物
体与激光测距仪之间的距离。

公式为:距离 = (光速× Δt) / 2。

通过以上原理,激光测距仪可以实现非常精确的距离测量,适用于各种工程、建筑、测绘以及室内外等领域。

激光测距仪的原理及应用

激光测距仪的原理及应用

激光测距仪的原理及应用1. 激光测距仪的原理激光测距仪是一种利用激光技术进行测距的仪器。

它利用激光脉冲的传播时间和光速之间的关系,计算出目标物体与测距仪的距离。

激光测距仪的原理主要包括三个方面:激光器、接收器和计算系统。

1.1 激光器激光器是激光测距仪的核心部件,它产生一束狭窄、单色、相干性好的激光光束。

常用的激光器有二极管激光器和固态激光器。

二极管激光器体积小、功耗低,适合用于便携式测距仪。

固态激光器功率大、寿命长,适合用于工业测距仪。

1.2 接收器接收器用于接收激光脉冲信号。

当激光脉冲照射到目标物体上并返回时,接收器会接收到反射光信号。

接收器会将接收到的信号进行放大和滤波处理,并转换成电信号。

1.3 计算系统计算系统用于计算目标与测距仪之间的距离。

它会根据激光的发射时间和接收时间之间的差值,乘以光速来计算距离。

计算系统还可以通过对收到的信号进行处理,计算出目标物体的速度、加速度等信息。

2. 激光测距仪的应用激光测距仪具有精度高、快速测量、非接触式等特点,在多个领域得到了广泛的应用。

2.1 工业制造激光测距仪在工业制造中起到了重要作用。

它可以用于测量零件的尺寸、距离和位置,以确保产品质量的一致性。

激光测距仪还可以用于机械设备的安装、对位和调试过程中的测量任务。

2.2 建筑测量在建筑工程中,激光测距仪可以用于测量建筑物的长度、宽度、高度等尺寸参数。

它可以快速而精确地完成测量任务,提高测量的效率和准确性。

激光测距仪还可以用于地形测量、土地测量和建筑物的形状测量。

2.3 环境测量激光测距仪可以用于环境测量,例如测量湖泊、河流等水体的水位高度,测量山地的高度差等。

激光测距仪可以快速、准确地获取地理信息,为环境保护和规划提供支持。

2.4 智能交通在智能交通系统中,激光测距仪可以用于测量车辆与障碍物之间的距离。

它可以被应用在车辆碰撞预警系统、自动驾驶系统和停车辅助系统中,提高交通安全和驾驶的便利性。

2.5 军事应用激光测距仪在军事应用中具有重要作用。

激光测距仪的原理和应用

激光测距仪的原理和应用

激光测距仪的原理和应用1. 激光测距仪的原理激光测距仪是一种使用激光技术进行测量距离的设备。

它使用激光发射器发射一束激光束,通过检测激光束的时间和空间信息来确定目标物体与测量仪的距离。

1.1 阶段法激光测距仪使用的一种常见原理是阶段法。

阶段法基于测量激光光束从发射到接收的时间差来计算距离。

具体步骤如下:1.激光发射器发射出一束短时宽的激光脉冲。

2.激光脉冲照射到目标物体上并反射回来。

3.接收器接收到反射的激光脉冲。

4.通过测量激光脉冲的时间差,使用光速与时间的关系来计算目标物体与激光测距仪的距离。

1.2 相移法另一种常见的激光测距仪的原理是相移法。

相移法使用了激光光束的相位变化来计算距离。

具体步骤如下:1.激光发射器发射出一束激光光束。

2.激光光束照射到目标物体上并反射回来。

3.接收器接收到反射的激光光束。

4.在接收器中,激光光束与一个参考光束进行干涉,形成干涉条纹。

5.通过测量干涉条纹的变化,计算出目标物体与激光测距仪的距离。

2. 激光测距仪的应用激光测距仪广泛应用于各个领域,包括建筑、制造业、地质测量、机械加工等。

以下是激光测距仪的一些常见应用:2.1 建筑测量激光测距仪在建筑领域中起到了重要的作用。

它可以用来测量建筑物的长度、高度、宽度等尺寸。

在建筑设计和施工过程中,激光测距仪可以精确地确定建筑物的各个方面,提高施工的精度和效率。

2.2 制造业在制造业中,激光测距仪常常被用于测量机器零件的尺寸。

它可以快速、准确地测量零件的长度、宽度、高度等维度。

这对于制造精度高的产品至关重要,可以大大提高生产效率和质量。

2.3 地质测量地质测量中也经常使用激光测距仪。

它可以用来测量地质剖面、地层的厚度、地表与地下水位的距离等。

通过使用激光测距仪,地质学家可以更准确地了解地质环境,进行地质勘探和资源评估。

2.4 机械加工激光测距仪在机械加工过程中也有广泛的应用。

它可以用来测量机械零件的尺寸,确保零件的准确度和精度。

激光测距仪用什么的原理

激光测距仪用什么的原理

激光测距仪用什么的原理
激光测距仪是一种利用激光技术进行测距的仪器,它是利用激光器产生的激光束对目标进行测距的仪器。

激光测距仪的测距原理主要包括发射激光、接收反射光、计算反射时间等几个步骤。

首先,激光测距仪通过激光器产生一束激光,这种激光具有高能量、高方向性和高单色性的特点,能够在空气中迅速传播并精确的照射到目标上。

当激光束照射到目标表面时,部分激光能量被目标物体吸收,而大部分激光则会反射回来。

其次,激光测距仪接收到目标反射回来的激光,并通过专门的接收器将其接收下来。

在这一过程中,接收器会将接收到的激光能量转化为电信号,并传输给计时电路进行信号处理。

接下来,计时电路通过测量从激光测距仪发射激光到接收到目标反射光的时间差来计算出激光的往返时间。

由于激光在空气中的传播速度是已知的,因此通过计算出来的往返时间可以转换为目标物体与激光测距仪的距离。

总的来说,激光测距仪的工作原理是通过发射一束激光,接收目标反射的激光,最后通过计算反射时间来获取目标和激光测距仪之间的距离。

激光测距仪具有测距精度高、测距快速、非接触式测距等优点,因此在工程测量、地质测量、建筑测量等领域得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迪奥特激光测距仪-激光测距原理
测距距离,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。

相位式激光测距仪
相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。

即用间接方法测定出光经往返测线所需的时间,如下图所示
图示详注:
--------垂直向二维空间接线例行程序测跨距功能的说明(如上图3、4所示)
垂直向空间接线程序计算描述二维空间(连接矢量)中两点之间的距离和角度关系. 通过两点测量,即可获得并显示垂直向二维空间中两不可见点(或目标)间的直线距(SD)、水平距(HD),垂直距(VD),倾斜角(INC)或坡度值.该功能适用于不可见坡度的测定和从一个地点的高度变化.
该简单测量程序提示你对目标进行两次测量: "Shot 1”和“Shot 2”.图柏斯TruPulse 利用结果计算两点间的四个参数值: HD, VD, SD, INC.如上图3、4所示:
∙HD: 水平距: 不可见线的水平部分.
∙VD: 垂直距: 点#1 和点 #2之间的高度变化.
∙SD: 斜距: 不可见线的长度.
∙INC: 倾斜角: 点#1 和点 #2之间的倾斜角度
该产品现已在环保、电力、林业、电信、水利、矿业、地质、石油、测绘、科研院所、高校、安监局等行业及领域获得良好的口碑及很好的使用效果.。

相关文档
最新文档