实验4动态分区存储管理

合集下载

分区存储管理模拟实验报告

分区存储管理模拟实验报告

分区存储管理模拟实验报告分区存储管理模拟实验报告1.实验目的了解动态分区存储管理方式中的数据结构和分配算法,加深对动态分区存储管理方式及其实现技术的理解。

2. 实验内容▪用C语言或Pascal语言分别实现采用首次适应算法和最佳适应算法的动态分区分配过程Allocate()和回收过程Free()。

其中,空闲分区采用空闲分区链来组织,内存分配时,优先使用空闲区低地址部分的空间。

▪假设初始状态,可用内存空间为640KB,作业请求序列如下(也可以编程从键盘输入,R 表示请求,F表示释放):✧作业1请求130 KB。

✧作业2请求60 KB。

✧作业3请求100 KB。

到第一个足以满足要球的空闲块就停止查找,并把它分配出去;如果该空闲空间与所需空间大小一样,则从空闲表中取消该项;如果还有剩余,则余下的部分仍留在空闲表中,但应修改分区大小和分区始址。

最佳适应算法:当要分配内存空间时,就查找空闲表中满足要求的空闲块,并使得剩余块是最小的。

然后把它分配出去,若大小恰好合适,则直按分配;若有剩余块,则仍保留该余下的空闲分区,并修改分区大小的起始地址。

内存回收:将释放作业所在内存块的状态改为空闲状态,删除其作业名,设置为空。

并判断该空闲块是否与其他空闲块相连,若释放的内存空间与空闲块相连时,则合并为同一个空闲块,同时修改分区大小及起始地址。

typedef struct freearea{}ElemType;定义一个空闲区说明表结构,每申请一个作业,改作业便具有此结构体typedef struct DuLNode{}DuLNode,*DuLinkList;定义一个双向链表Status Initblock(){}开创带头结点的内存空间链表,通过双向链表把申请的作业链接起来,作业的插入和删除,和链表中节点的插入和删除类似。

双向链表如图1所示Status First_fit(int ID,int request){}传入作业名及申请量采用首次适应算法实现动态内存分区分配的模拟,初始态640KB,只是一个虚态,每申请成功一个作业,便相应的640KB做相应的减少,同过双向链表模拟主存的分配情况。

动态分区存储管理方式的主存分配回收实验参考

动态分区存储管理方式的主存分配回收实验参考

动态分区存储管理方式的主存分配回收实验参考 The Standardization Office was revised on the afternoon of December 13, 2020动态分区存储管理方式的主存分配回收实验报告一、实验目的深入了解动态分区存储管理方式的主存分配回收的实现。

二、实验要求编写程序完成动态分区存储管理方式的主存分配回收的实现。

实验具体包括:首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配,完成主存空间的回收;最后编写主函数对所作工作进程测试。

三、实验原理:存储管理中动态分区的管理方式。

四、实验程序设计1.数据结构已分分区表的数据结构定义#define n 10 能函数设计1)系统数据初始化free_table[0].address=10240;free_table[0].length=102400;free_table[0].flag=1;lag=0;lag='0';2)分配函数void CExp3Dlg::allocate(CString J, float xk) ength>=xk&&free_table[i].flag==1)if(k==-1||free_table[i].length<free_table[k].length)k=i;if(k==-1) ength-xk<=minisize){free_table[k].flag=0;ad=free_table[k].address;xk=free_table[k].length;}else{free_table[k].length=free_table[k].length-xk;ad=free_table[k].address+free_table[k].length;}lag!='0' && i<m) lag==0) lag=1;else ength=free_table[k].length+xk;return;}else ddress=ad;used_table[i].length=xk;used_table[i].flag=J;}return;}3)回收函数void CExp3Dlg::reclaim(CString J) lag!=J||used_table[s].flag=='0')&&s<n) s++;if(s>=n) lag='0';ddress;L=used_table[s].length;j=-1;k=-1;i=0;lag==0){if(free_table[i].address+free_table[i].length==S)k=i; ddress==S+L)j=i;ength=free_table[j].length+free_table[k].length+L;free_table[j].flag=0;}else ength=free_table[k].length+L;elseif(j!=-1) ddress=S;free_table[j].length=free_table[j].length+L;}else lag==1&&t<MMM)t++;if(t>=MMM) lag=J;return;}free_table[t].address=S;free_table[t].length=L;free_table[t].flag=1;}return;}4)按钮函数设计【分配】按钮void CExp3Dlg::OnButtonAlloc(){this->UpdateData(true);CString name;float size;name=this->m_EDIT_NAME;size=this->m_EDIT_SIZE;allocate(name,size);}◆【回收】按钮void CExp3Dlg::OnButtonReclaim(){this->UpdateData(true);CString name;name=this->m_EDIT_NAME;this->reclaim(name);}◆【显示分配区】按钮void CExp3Dlg::OnButtonAllocate(){CString str,xx;CListBox *L;L=&m_LIST_ALLOC;L->ResetContent();L->InsertString(0,"起始地址分区长度标志");for(int j=0;j<10;j++){str="";("%",used_table[j].address);str+=xx+" ";("%",used_table[j].length);str+=xx+" ";("%s",used_table[j].flag);str+=xx;L->InsertString(j+1,str);}}◆【显示回收区】按钮void CExp3Dlg::OnButtonFree(){ddress);str+=xx+" ";("%",free_table[j].length);str+=xx+" ";("%5d",free_table[j].flag);str+=xx;L->InsertString(j+1,str);}}3.界面设计本程序的界面力求简洁、友好,每一步需要用户操作的提示以及每一次用户操作产生的调度结果都以中文的形式显示在屏幕上,使用户对要做什么和已经做了什么一目了然。

实验四 存储管理

实验四 存储管理

实验四存储管理背景知识耗尽内存是Windows 2000/XP系统中最常见的问题之一。

当系统耗尽内存时,所有进程对内存的总需求超出了系统的物理内存总量。

随后,Windows 2000/XP必须借助它的虚拟内存来维持系统和进程的运行。

虚拟内存机制是Windows 2000/XP操作系统的重要组成部分,但它的速度比物理内存慢得多,因此,应该尽量避免耗尽物理内存资源,以免导致性能下降。

解决内存不足问题的一个有效的方法就是添加更多的内存。

但是,一旦提供了更多的内存,Windows 2000/XP很可以会立即“吞食”。

而事实上,添加更多的内存并非总是可行的,也可能只是推迟了实际问题的发生。

因此,应该相信,优化所拥有的内存是非常关键的。

1. 分页过程当Windows 2000/XP求助于硬盘以获得虚拟内存时,这个过程被称为分页(paging) 。

分页就是将信息从主内存移动到磁盘进行临时存储的过程。

应用程序将物理内存和虚拟内存视为一个独立的实体,甚至不知道Windows 2000/XP使用了两种内存方案,而认为系统拥有比实际内存更多的内存。

例如,系统的内存数量可能只有16MB,但每一个应用程序仍然认为有4GB内存可供使用。

使用分页方案带来了很多好处,不过这是有代价的。

当进程需要已经交换到硬盘上的代码或数据时,系统要将数据送回物理内存,并在必要时将其他信息传输到硬盘上,而硬盘与物理内存在性能上的差异极大。

例如,硬盘的访问时间通常大约为4-10毫秒,而物理内存的访问时间为60 us,甚至更快。

2. 内存共享应用程序经常需要彼此通信和共享信息。

为了提供这种能力,Windows 2000/XP必须允许访问某些内存空间而不危及它和其他应用程序的安全性和完整性。

从性能的角度来看,共享内存的能力大大减少了应用程序使用的内存数量。

运行一个应用程序的多个副本时,每一个实例都可以使用相同的代码和数据,这意味着不必维护所加载应用程序代码的单独副本并使用相同的内存资源。

动态内存分配实验报告

动态内存分配实验报告

Free[free_p].len=length;
free_p++;
//
sort(Free,Free+free_p,cmp);
for(j=0;j<free_p;j++)
{
1].address)
if(j + 1 < free_p&&Free[j].address+Free[j].len==Free[j +
if(used[i].run_id==id) {
int add=used[i].address; int length=used[i].len; used_p--; for(j=i;j<used_p;j++) {
used[j]=used[j+1]; }
Free[free_p].address=add;
Free[i].address+=len; Free[i].len-=len; } else { free_p--;
for(j=i;j<free_p;j++) {
Free[j]=Free[j+1]; } } break; } }
} void reclaim(int id) {
int i,j,k; for(i=0;i<used_p;i++) {
{ Free[j].len+=Free[j + 1].len; free_p--; for(k =j + 1; k < free_p;k++) { Free[k]=Free[k+1]; }
}
}
} }
} void show() {

实验四动态分区分配算法

实验四动态分区分配算法

实验容:存储器管理实验一、实验目的采用首次适应算法〔FF〕,最正确适应算法〔BF〕,最坏适应算法〔WF〕三种不同的算法,实现对系统空闲区的动态分区分配。

二、实验题目给予顺序搜索的动态分区算法的程序。

三、实验要求读懂给出的核心代码,进展适当的修改,编译通过后,完成实验报告。

四、核心代码#include <stdio.h>#include <stdlib.h>#include <malloc.h>//常量定义#define PROCESS_NAME_LEN 32#define MIN_SLICE 10#define DEFAULT_MEM_SIZE 1024#define DEFAULT_MEM_START 0#define MA_FF 1#define MA_BF 2#define MA_WF 3int mem_size=DEFAULT_MEM_SIZE;int ma_algorithm = MA_FF;static int pid = 0;int flag = 0;struct free_block_type{int size;int start_addr;struct free_block_type *next;};struct free_block_type *free_block;//描述已分配的存块struct allocated_block{int pid; int size;int start_addr;char process_name[PROCESS_NAME_LEN];struct allocated_block *next;};struct allocated_block *allocated_block_head = NULL;//函数声明struct free_block_type* init_free_block(int mem_size);void display_menu();int set_mem_size();void set_algorithm();void rearrange(int algorithm);int rearrange_FF();int rearrange_BF();int rearrange_WF();int new_process();int allocate_mem(struct allocated_block *ab);void kill_process();int free_mem(struct allocated_block *ab);int dispose(struct allocated_block *free_ab);int display_mem_usage();void do_exit();struct allocated_block *find_process(int pid);int main(){char choice; pid=0;free_block= init_free_block(mem_size); //初始化空闲区while(1) {display_menu(); //显示菜单fflush(stdin);choice=getchar(); //获取用户输入switch(choice){case '1': set_mem_size(); break; //设置存大小case '2': set_algorithm();flag=1; break;//设置算法case '3': new_process(); flag=1; break;//创立新进程case '4': kill_process(); flag=1; break;//删除进程case '5': display_mem_usage(); flag=1; break; //显示存使用case '0': do_exit(); exit(0); //释放链表并退出default: break;}}return 1;}struct free_block_type* init_free_block(int mem_size){struct free_block_type *fb;fb=(struct free_block_type *)malloc(sizeof(struct free_block_type));if(fb==NULL){printf("No mem\n");return NULL;}fb->size = mem_size;fb->start_addr = DEFAULT_MEM_START;fb->next = NULL;return fb;}void display_menu(){printf("\n");printf("1 - Set memory size (default=%d)\n", DEFAULT_MEM_SIZE);printf("2 - Select memory allocation algorithm\n");printf("3 - New process \n");printf("4 - T erminate a process \n");printf("5 - Display memory usage \n");printf("0 - Exit\n");}int set_mem_size(){int size;if(flag!=0){ //防止重复设置printf("Cannot set memory size again\n");return 0;}printf("T otal memory size =");scanf("%d", &size);if(size>0) {mem_size = size;free_block->size = mem_size;}flag=1;return 1;}void set_algorithm(){int algorithm;while(1) {printf("\t1 - First Fit\n");printf("\t2 - Best Fit \n");printf("\t3 - Worst Fit \n");scanf("%d", &algorithm);if(algorithm>=1 && algorithm <=3) {ma_algorithm = algorithm;break;}elseprintf("输入有误,请重新输入!\n");}//按指定算法重新排列空闲区链表rearrange(ma_algorithm);}void rearrange(int algorithm){switch(algorithm){case MA_FF: rearrange_FF(); break;case MA_BF: rearrange_BF(); break;case MA_WF: rearrange_WF(); break;}}//首次适应算法int rearrange_FF(){struct free_block_type *temp;//使用头插法,thead为临时头,p为最小地址的数据块的前一个结点struct free_block_type *thead=NULL,*p=NULL;//当前的最小地址int min_addr = free_block->start_addr;temp = free_block;while(temp->next!=NULL) {if(temp->next->start_addr<min_addr) {min_addr = temp->next->start_addr;p = temp;}temp = temp->next;}if(NULL!=p) {temp = p->next;p->next = p->next->next;temp->next = free_block;free_block = temp;}thead = free_block;p = free_block;temp = free_block->next;while(thead->next!=NULL) {min_addr = thead->next->start_addr;while(temp->next!=NULL) {if(temp->next->start_addr<min_addr) {min_addr = temp->next->start_addr;p = temp;}temp = temp->next;}if(p->next!=thead->next) {temp = p->next;p->next = p->next->next;temp->next = thead->next;thead->next = temp;}thead = thead->next;p = thead;temp = thead->next;}return 1;}//最正确适应算法int rearrange_BF(){struct free_block_type *temp;//使用头插法,thead为临时头,p为最小存的数据块的前一个结点struct free_block_type *thead=NULL,*p=NULL;//当前的最小存int min_size = free_block->size;temp = free_block;while(temp->next!=NULL) {if(temp->next->size<min_size) {min_size = temp->next->size;p = temp;}temp = temp->next;}if(NULL!=p) {temp = p->next;p->next = p->next->next;temp->next = free_block;free_block = temp;}thead = free_block;p = free_block;temp = free_block->next;while(thead->next!=NULL) {min_size = thead->next->size;while(temp->next!=NULL) {if(temp->next->size<min_size) {min_size = temp->next->size;p = temp;}temp = temp->next;}if(p->next!=thead->next) {temp = p->next;p->next = p->next->next;temp->next = thead->next;thead->next = temp;}thead = thead->next;p = thead;temp = thead->next;}return 1;}//最坏适应算法int rearrange_WF(){struct free_block_type *temp;//使用头插法,thead为临时头,p为最大存的数据块的前一个结点struct free_block_type *thead=NULL,*p=NULL;//当前的最大存int max_size = free_block->size;temp = free_block;while(temp->next!=NULL) {if(temp->next->size>max_size) {max_size = temp->next->size;p = temp;}temp = temp->next;}if(NULL!=p) {temp = p->next;p->next = p->next->next;temp->next = free_block;free_block = temp;}thead = free_block;p = free_block;temp = free_block->next;while(thead->next!=NULL) {max_size = thead->next->size;while(temp->next!=NULL) {if(temp->next->size>max_size) {max_size = temp->next->size;p = temp;}temp = temp->next;}if(p->next!=thead->next) {temp = p->next;p->next = p->next->next;temp->next = thead->next;thead->next = temp;}thead = thead->next;p = thead;temp = thead->next;}return 1;}int new_process(){struct allocated_block *ab;int size;int ret;ab = (struct allocated_block *)malloc(sizeof(struct allocated_block));if(!ab) exit(-5);ab->next = NULL;pid++;sprintf(ab->process_name, "PROCESS-d", pid);ab->pid = pid;while(1) {printf("Memory for %s:", ab->process_name);scanf("%d", &size);if(size>0) {ab->size=size;break;}else printf("输入大小有误,请重新输入\n");}ret = allocate_mem(ab);if((ret==1) &&(allocated_block_head == NULL)){allocated_block_head=ab;return 1;}else if (ret==1) {ab->next = allocated_block_head;allocated_block_head = ab;return 2; }else if(ret==-1){printf("Allocation fail\n");pid--;free(ab);return -1;}return 3;}int allocate_mem(struct allocated_block *ab){struct free_block_type *fbt, *pre,*head,*temp,*tt;struct allocated_block *tp;int request_size=ab->size;int sum=0;int max;head = (struct free_block_type *)malloc(sizeof(struct free_block_type));pre = head;fbt = free_block;pre->next = fbt;if(ma_algorithm==MA_WF) {if(NULL==fbt||fbt->size<request_size)return -1;}else {while(NULL!=fbt&&fbt->size<request_size) {pre = fbt;fbt = fbt->next;}}if(NULL==fbt||fbt->size<request_size) {if(NULL!=free_block->next) {sum = free_block->size;temp = free_block->next;while(NULL!=temp) {sum += temp->size;if(sum>=request_size)break;temp = temp->next;}if(NULL==temp)return -1;else {pre = free_block;max = free_block->start_addr;fbt = free_block;while(temp->next!=pre) {if(max<pre->start_addr) {max = pre->start_addr;fbt = pre;}pre = pre->next;}pre = free_block;while(temp->next!=pre) {tp = allocated_block_head;tt = free_block;if(pre!=fbt) {while(NULL!=tp) {if(tp->start_addr>pre->start_addr)tp->start_addr = tp->start_addr - pre->size;tp = tp->next;}while(NULL!=tt) {if(tt->start_addr>pre->start_addr)tt->start_addr = tt->start_addr - pre->size;tt = tt->next;}}pre = pre->next;}pre = free_block;while(pre!=temp->next) {if(pre!=fbt)free(pre);pre = pre->next;}free_block = fbt;free_block->size = sum;free_block->next = temp->next;if(free_block->size - request_size < MIN_SLICE) {ab->size = free_block->size;ab->start_addr = free_block->start_addr;pre = free_block;free_block = free_block->next;free(pre);}else {ab->start_addr = fbt->start_addr;free_block->start_addr = free_block->start_addr + request_size;free_block->size = free_block->size - request_size;}}}elsereturn -1;}else {//将存块全局部配if(fbt->size - request_size < MIN_SLICE) {ab->size = fbt->size;ab->start_addr = fbt->start_addr;if(pre->next==free_block) {free_block = fbt->next;}elsepre->next = fbt->next;free(fbt);}else {ab->start_addr = fbt->start_addr;fbt->start_addr = fbt->start_addr + request_size;fbt->size = fbt->size - request_size;}}free(head);rearrange(ma_algorithm);return 1;}void kill_process(){struct allocated_block *ab;int pid;printf("Kill Process, pid=");scanf("%d", &pid);ab = find_process(pid);if(ab!=NULL){free_mem(ab);dispose(ab);}else {printf("没有pid为%d的进程!\n",pid);}}struct allocated_block *find_process(int pid) {struct allocated_block *ab=NULL;ab = allocated_block_head;while(NULL!=ab&&ab->pid!=pid)ab = ab->next;return ab;}int free_mem(struct allocated_block *ab){int algorithm = ma_algorithm;struct free_block_type *fbt, *pre=NULL,*head;fbt=(struct free_block_type*) malloc(sizeof(struct free_block_type));pre=(struct free_block_type*) malloc(sizeof(struct free_block_type));if(!fbt) return -1;// 进展可能的合并,根本策略如下// 1. 将新释放的结点插入到空闲分区队列末尾// 2. 对空闲链表按照地址有序排列// 3. 检查并合并相邻的空闲分区// 4. 将空闲链表重新按照当前算法排序head = pre;fbt->start_addr = ab->start_addr;fbt->size = ab->size;fbt->next = free_block; //新释放的结点插入到空闲分区链表的表头free_block = fbt;rearrange_FF(); //对空闲链表按照地址有序排列pre->next = free_block; //求的pre为fbt的前一个结点pre->size = 0;while(pre->next->start_addr!=fbt->start_addr)pre = pre->next;//左右分区都存在if(0!=pre->size&&NULL!=fbt->next) {//左右分区都可合并if((pre->start_addr+pre->size)==fbt->start_addr && (fbt->start_addr+fbt->size)==fbt->next->start_addr) {pre->size = pre->size + fbt->size + fbt->next->size;pre->next = fbt->next->next;free(fbt->next);free(fbt);}//左分区可合并else if((pre->start_addr+pre->size)==fbt->start_addr) {pre->size = pre->size + fbt->size;pre->next = fbt->next;free(fbt);}//右分区可合并else if((fbt->start_addr+fbt->size)==fbt->next->start_addr) {fbt->size = fbt->size + fbt->next->size;fbt->next = fbt->next->next;free(fbt->next);}}//左分区不存在else if(0==pre->size) {if((fbt->start_addr+fbt->size)==fbt->next->start_addr) {fbt->size = fbt->size + fbt->next->size;fbt->next = fbt->next->next;free(fbt->next);}}//右分区不存在else if(NULL==fbt->next) {if((pre->start_addr+pre->size)==fbt->start_addr) {pre->size = pre->size + fbt->size;pre->next = fbt->next;free(fbt);}}rearrange(algorithm);free(head);return 1;}int dispose(struct allocated_block *free_ab){struct allocated_block *pre, *ab;if(free_ab == allocated_block_head) {allocated_block_head = allocated_block_head->next;free(free_ab);return 1;}pre = allocated_block_head;ab = allocated_block_head->next;while(ab!=free_ab){ pre = ab; ab = ab->next; }pre->next = ab->next;free(ab);return 2;}int display_mem_usage(){struct free_block_type *fbt=free_block;struct allocated_block *ab=allocated_block_head;if(fbt==NULL) return(-1);printf("----------------------------------------------------------\n");printf("Free Memory:\n");printf(" s s\n", " start_addr", " size");while(fbt!=NULL){printf(" d d\n", fbt->start_addr, fbt->size);fbt=fbt->next;}printf("\nUsed Memory:\n");printf("s s s s\n", "PID", "ProcessName", "start_addr", " size");while(ab!=NULL){printf("d s d d\n", ab->pid, ab->process_name, ab->start_addr, ab->size);ab=ab->next;}printf("----------------------------------------------------------\n");return 0;}void do_exit() {}。

动态分区算法实验报告

动态分区算法实验报告

动态分区算法实验报告动态分区算法实验报告一、引言计算机操作系统是现代计算机系统中的核心组成部分,它负责管理计算机硬件资源,并提供各种服务。

内存管理是操作系统的重要功能之一,它负责管理计算机的内存资源,为进程提供运行环境。

在内存管理中,动态分区算法是一种常用的内存分配策略。

本实验旨在通过实践,深入了解动态分区算法的原理和实现。

二、实验目的1. 了解动态分区算法的基本原理和实现方式;2. 掌握动态分区算法的实验环境搭建和使用方法;3. 分析动态分区算法的优缺点,并比较不同算法的性能差异。

三、实验环境本实验使用C语言编程实现,实验环境如下:1. 操作系统:Windows 10;2. 开发工具:Visual Studio 2019;3. 编程语言:C语言。

四、实验过程1. 实验准备在开始实验之前,我们首先需要了解动态分区算法的基本原理。

动态分区算法根据进程的内存需求,将内存划分为若干个不同大小的分区,并按照进程的请求进行分配和释放。

常用的动态分区算法有首次适应算法、最佳适应算法和最坏适应算法等。

2. 实验设计本实验选择实现首次适应算法,并设计以下几个函数:- 初始化内存空间:初始化一块指定大小的内存空间,将其划分为一个个的分区,并设置分区的状态;- 分配内存:根据进程的内存需求,在内存空间中找到合适的分区进行分配,并更新分区的状态;- 释放内存:将已分配的内存空间进行释放,并更新分区的状态;- 显示内存状态:打印当前内存空间的分区状态。

3. 实验实现根据上述设计,我们使用C语言实现了动态分区算法的相关函数。

通过调用这些函数,我们可以模拟动态分区算法的运行过程,并观察分区的分配和释放情况。

4. 实验结果经过实验,我们得到了以下结果:- 动态分区算法可以有效地管理内存资源,根据进程的需求进行灵活的内存分配;- 首次适应算法在内存分配效率和速度方面表现良好,但可能会导致内存碎片的产生;- 释放内存时,及时合并相邻的空闲分区可以减少内存碎片的数量。

操作系统-动态分区分配算法实验报告

操作系统-动态分区分配算法实验报告

实验题目:存储器内存分配设计思路:1.既然是要对内存进行操作,首先对和内存相关的内容进行设置我使用的是用自定义的数据结构struct来存放内存中一个内存块的内容包括:始地址、大小、状态(f:空闲u:使用e:结束)之后采用数组来存放自定义的数据类型,这样前期的准备工作就完成了2.有了要加工的数据,接下来定义并实现了存放自定义数据类型的数组的初始化函数和显示函数,需要显示的是每个内存块的块号、始地址、大小、状态3.接着依此定义三种动态分区分配算法首次适应算法、最佳适应算法和最差适应算法4.对定义的三种算法逐一进行实现①首次适应算法:通过遍历存放自定义数据类型的数组,找到遍历过程中第一个满足分配大小的内存块块号i,找到之后停止对数组的遍历,将i之后的块号逐个向后移动一个,然后将满足分配大小的内存块i分为两块,分别是第i块和第i+1块,将两块的始地址、大小、状态分别更新,这样便实现了首次适应算法②最佳适应算法:和首次适应算法一样,首先遍历存放自定义数据类型的数组,找到满足分配大小的内存块后,对内存块的大小进行缓存,因为最佳适应是要找到最接近要分配内存块大小的块,所以需要遍历整个数组,进而找到满足分配大小要求的而且碎片最小的块i,之后的操作和首次遍历算法相同③最差适应算法:和最佳适应算法一样,区别在于,最佳适应是找到最接近要分配内存块大小的块,而最差适应是要找到在数组中,内存最大的块i,找到之后的操作和最佳适应算法相同,因此不在这里赘述。

5.定义并实现释放内存的函数通过块号找到要释放的内存块,把要释放的内存块状态设置成为空闲,查看要释放的块的左右两侧块的状态是否为空闲,如果有空闲,则将空闲的块和要释放的块进行合并(通过改变块的始地址、大小、状态的方式)6.定义主函数,用switch来区分用户需要的操作,分别是:①首次适应②最佳适应③最差适应④释放内存⑤显示内存⑥退出系统实验源程序加注释:#include<bits/stdc++.h>#define MI_SIZE 100 //内存大小100typedef struct MemoryInfomation//一个内存块{int start; //始地址int Size; //大小char status; //状态 f:空闲 u:使用 e:结束} MI;MI MList[MI_SIZE];void InitMList() //初始化{int i;MI temp = { 0,0,'e' };for (i = 0; i < MI_SIZE; i++){MList[i] = temp;}MList[0].start = 0; //起始为0MList[0].Size = MI_SIZE;//大小起始最大MList[0].status = 'f'; //状态起始空闲}void Display() //显示{int i, used = 0;printf("\n---------------------------------------------------\n");printf("%5s%15s%15s%15s", "块号", "始地址", "大小", "状态");printf("\n---------------------------------------------------\n");for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].status == 'u'){used += MList[i].Size;}printf("%5d%15d%15d%15s\n", i, MList[i].start, MList[i].Size, MList[i].status == 'u' ? "使用" : "空闲");}printf("\n----------------------------------------------\n");}void FirstFit(){int i, j, flag = 0;int request;printf("最先适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f') {if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request; MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';flag = 1;}break;}}if (flag != 1 || i == MI_SIZE || MList[i].status == 'e'){printf("没有足够大小的空间分配\n");}Display();}void BadFit(){int i, j = 0, k = 0, flag = 0, request;printf("最坏适应算法:请问你要分配多大的内存\n");scanf("%d", &request);for (i = 0;i < MI_SIZE - 1 && MList[i].status != 'e';i++){if (MList[i].Size >= request && MList[i].status == 'f') {flag = 1;if (MList[i].Size > k){k = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else{for (j = MI_SIZE - 2;j > i;j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}void M_Release() //释放内存{int i, number;printf("\n请问你要释放哪一块内存:\n");scanf("%d", &number);if (MList[number].status == 'u'){MList[number].status = 'f';if (MList[number + 1].status == 'f')//右边空则合并{MList[number].Size += MList[number].Size;for (i = number + 1; i < MI_SIZE - 1 && MList[i].status != 'e'; i++) { //i后面的每一个结点整体后移if (i > 0){MList[i] = MList[i + 1];}}}if (number > 0 && MList[number - 1].status == 'f')//左边空则合并{MList[number - 1].Size += MList[number].Size;for (i = number; i < MI_SIZE - 1 && MList[i].status != 'e'; i++){MList[i] = MList[i + 1];}}}else{printf("该块内存无法正常释放\n");}Display();}void BestFit(){int i, j = 0, t, flag = 0, request;printf("最佳适应算法:请问你要分配多大的内存\n");scanf("%d", &request);t = MI_SIZE;for (i = 0; i < MI_SIZE && MList[i].status != 'e'; i++){if (MList[i].Size >= request && MList[i].status == 'f'){flag = 1;if (MList[i].Size < t){t = MList[i].Size;j = i;}}}i = j;if (flag == 0){printf("没有足够大小的空间分配\n");j = i;}else if (MList[i].Size - request <= 0){MList[i].status = 'u';}else {for (j = MI_SIZE - 2; j > i; j--){MList[j + 1] = MList[j];}MList[i + 1].start = MList[i].start + request;MList[i + 1].Size = MList[i].Size - request;MList[i + 1].status = 'f';MList[i].Size = request;MList[i].status = 'u';}Display();}int main(){int x;InitMList();while (1){printf(" \n"); printf(" 1.首次适应\n");printf(" 2.最佳适应\n");printf(" 3.最差适应\n"); printf(" 4.释放内存\n"); printf(" 5.显示内存\n"); printf(" 6.退出系统\n"); printf("请输入1-6:");scanf("%d", &x);switch (x){case 1:FirstFit();break;case 2:BestFit();break;case 3:BadFit();break;case 4:M_Release();break;case 5:Display();break;case 6:exit(0);}}return 0;}实验测试结果记录:1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存10---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 90 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 65 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存15---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 50 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:1最先适应算法:请问你要分配多大的内存20---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 使用1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 使用3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:4请问你要释放哪一块内存:2---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 10 空闲1 10 25 使用2 35 15 空闲3 50 20 使用4 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:2最佳适应算法:请问你要分配多大的内存5---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 30 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:3最坏适应算法:请问你要分配多大的内存25---------------------------------------------------块号始地址大小状态---------------------------------------------------0 0 5 使用1 5 5 空闲2 10 25 使用3 35 15 空闲4 50 20 使用5 70 25 使用6 95 5 空闲----------------------------------------------1.首次适应2.最佳适应3.最差适应4.释放内存5.显示内存6.退出系统请输入1-6:总结与自评:总结:分区存储管理是操作系统进行内存管理的一种方式。

实验四 操作系统存储管理实验报告

实验四  操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。

二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。

离散分配:分页存储管理、分段存储管理、段页式存储管理。

2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。

最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。

最坏适应算法:选择最大的空闲分区进行分配。

3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。

四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。

输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。

2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。

输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。

3、离散内存分配实验实现分页存储管理的地址转换功能。

输入逻辑地址,程序计算并输出对应的物理地址。

4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。

记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。

五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。

内存状态显示清晰,分区的使用和空闲情况一目了然。

动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。

2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。

操作系统实验3-动态分区存储管理

操作系统实验3-动态分区存储管理

实验三动态分区存储管理一:实验目的了解动态分区存储管理方式中的数据结构和分配算法,加深对动态分区存储管理方式及其实现技术的理解。

二:实验内容用C语言或Pascal语言分别实现采用首次适应算法和最佳适应算法的动态分区分配过程Allocate()和回收过程Free()。

其中,空闲分区采用空闲分区链来组织,内存分配时,优先使用空闲区低地址部分的空间。

三:实验类别动态分区存储管理四:实验类型模拟实验五:主要仪器计算机六:结果和小结七:程序#include<stdio.h>#include<time.h>#include<stdlib.h>#define SIZE 640 // 内存初始大小#define MINSIZE 5 // 碎片最小值struct memory{struct memory *former;//前向指针int address;//地址int num;//作业号int size;//分配内存大小int state;//状态0表示空闲,1表示已分配struct memory *next;//后向指针}linklist;void intmemory()// 初始化空闲分区链{memory *p=(memory *)malloc(sizeof(memory));// 分配初始分区内存p->address=0;// 给首个分区赋值p->size=SIZE;p->state=0;p->num=-1;p->former=&linklist;p->next=NULL;linklist.former=NULL;// 初始化分区头部信息linklist.next=p;}int firstFit(int num, int size)// 首次适应算法{memory *p = linklist.next;while(p != NULL){if(p->state == 0 && p->size >= size) // 找到要分配的空闲分区{if(p->size - size <= MINSIZE)// 整块分配{p->state = 1;p->num = num;}else // 分配大小为size的区间{memory *node=(memory *)malloc(sizeof(memory));node->address=p->address + size;node->size=p->size-size;node->state=0;node->num=-1;// 修改分区链节点指针node->former=p;node->next=p->next;if(p->next !=NULL){p->next->former=node;}p->next = node;// 分配空闲区间p->size = size;p->state = 1;p->num = num;}printf("内存分配成功!\n");return 1;}p = p->next;}printf("找不到合适的内存分区,分配失败...\n");return 0;}int bestFit(int num, int size)// 最佳适应算法{memory *tar=NULL;int tarSize=SIZE + 1;memory *p=linklist.next;while(p!=NULL){if(p->state==0 && p->size >= size && p->size < tarSize) //寻找最佳空闲区间{tar=p;tarSize=p->size;}p=p->next;}if(tar!=NULL){if(tar->size - size <= MINSIZE) //找到要分配的空闲分区{tar->state = 1;// 整块分配tar->num=num;}else // 分配大小为size的区间{memory *node = (memory *)malloc(sizeof(memory));node->address = tar->address + size;node->size = tar->size - size;node->state = 0;node->num = -1;// 修改分区链节点指针node->former = tar;node->next = tar->next;if(tar->next != NULL){tar->next->former = node;}tar->next = node;// 分配空闲区间tar->size = size;tar->state = 1;tar->num = num;}printf("内存分配成功!\n");return 1;} else{// 找不到合适的空闲分区printf("找不到合适的内存分区,分配失败!!\n");return 0;}}int freememory(int num)// 回收内存{int flag=0;memory *p=linklist.next, *pp;while(p!=NULL){if(p->state==1 && p->num==num){flag = 1;if((p->former!= &linklist && p->former->state == 0) && (p->next != NULL && p->next->state == 0)){// 情况1:合并上下两个分区// 先合并上区间pp=p;p=p->former;p->size+=pp->size;p->next=pp->next;pp->next->former=p;free(pp);// 后合并下区间pp=p->next;p->size+=pp->size;p->next=pp->next;if(pp->next!=NULL){pp->next->former=p;}free(pp);}else if((p->former==&linklist || p->former->state==1)&& (p->next!=NULL&&p->next->state ==0)) {// 情况2:只合并下面的分区pp=p->next;p->size+=pp->size;p->state=0;p->num=-1;p->next=pp->next;if(pp->next!= NULL){pp->next->former=p;}free(pp);}else if((p->former!=&linklist&&p->former->state==0)&& (p->next==NULL || p->next->state==1)) {// 情况3:只合并上面的分区pp=p;p=p->former;p->size+=pp->size;p->next=pp->next;if(pp->next != NULL) {pp->next->former = p;}free(pp);}else{// 情况4:上下分区均不用合并p->state=0;p->num=-1;}}p=p->next;}if(flag==1){// 回收成功printf("内存分区回收成功...\n");return 1;}else{// 找不到目标作业,回收失败printf("找不到目标作业,内存分区回收失败...\n");return 0;}}// 显示空闲分区链情况void showmemory(){printf(" 当前的内存分配情况如下:\n");printf("*********************************************\n");printf(" 起始地址| 空间大小| 工作状态| 作业号\n");memory *p=linklist.next;while(p!=NULL){printf("******************************************\n");printf("**");printf("%5d k |", p->address);printf("%5d k |", p->size);printf(" %5s |", p->state == 0 ? "0" : "1");if(p->num > 0) {printf("%5d ", p->num);} else {printf(" ");}p = p->next;}}int main(){int option, ope, num, size;// 初始化空闲分区链intmemory();// 选择分配算法l1: while(1){printf("***************************************\n");printf("请选择要模拟的分配算法:\n1表示首次适应算法\n2表示最佳适应算法\n");printf("***************************************\n");scanf("%d", &option);system("cls");if(option==1) {printf("你选择了首次适应算法,下面进行算法的模拟\n");break;} else if(option==2) {printf("你选择了最佳适应算法,下面进行算法的模拟\n");break;}else {printf("错误:请输入0/1\n\n");}}// 模拟动态分区分配算法while(1){printf("\n");printf("*********************************************\n");printf("1:分配内存\n 2:回收内存\n 3:返回上一级菜单\n\n");printf("*********************************************\n");scanf("%d", &ope);system("cls");if(ope==0) break;if(ope==1){// 模拟分配内存printf("请输入作业号:");scanf("%d", &num);printf("请输入需要分配的内存大小(KB):");scanf("%d", &size);if(size<=0){printf("错误:分配内存大小必须为正值\n");continue;}// 调用分配算法if(option==0){firstFit(num, size);}else{bestFit(num, size);}// 显示空闲分区链情况showmemory();}else if(ope==2){// 模拟回收内存printf("请输入要回收的作业号:");scanf("%d", &num);freememory(num);// 显示空闲分区链情况showmemory();}else if(ope==3){goto l1;}else{printf("错误:请输入0/1/2\n");}}printf("分配算法模拟结束\n");return 0;}。

计算机操作系统动态分区存储管理方式下的内存空间的分配与回收实验报告DOC.doc

计算机操作系统动态分区存储管理方式下的内存空间的分配与回收实验报告DOC.doc

计算机操作系统实验报告实验二实验题目:存储器管理系别:计算机科学与技术系班级:姓名:学号:2一、实验目的深入理解动态分区存储管理方式下的内存空间的分配与回收。

二、实验内容编写程序完成动态分区存储管理方式下的内存分配和回收的实现。

具体内容包括:确定用来管理内存当前使用情况的数据结构;采用首次适应算法完成内存空间的分配;分情况对作业进行回收;编写主函数对所做工作进行测试。

三、实验原理分配:动态分区存储管理方式把内存除OS占用区域外的空间看作一个大的空闲区。

当作业要求装入内存时,根据作业需要内存空间的大小查询内存中各个空闲区,当从内存中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业要求划出一个分区装入该作业。

回收:作业执行完后,它所占用的内存空间被收回,成为一个空闲区。

如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。

四、实验方法实现动态分区的分配与回收,主要考虑三个问题:第一、设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域(利用结构体类型数组来保存数据);第二、在设计的数据表格基础上设计内存分配算法(采用首次适应算法找合适的分区(对空闲分区表进行排序),分配时要考虑碎片问题);第三、在设计的数据表格基础上设计内存回收算法(分四种情况进行回收(上邻、下邻、上下邻和无相邻分区)。

五、实验步骤第一,设计记录内存使用情况的数据表格●已分配分区表:起始地址、长度、标志(0表示“空表项”,1表示“已分配”)●空闲分区表:起始地址、长度、标志(0表示“空表项”,1表示“未分配”)struct used_table {float address; //已分分区起始地址float length; //已分分区长度,单位为字节int flag; //已分配表区登记栏标志,用0表示空栏目,char zuoyename;}; //已分配区表Struct free_table[ {float address; //空闲分区起始地址float length; //空闲分区长度,单位为字节int flag; //空闲分区表登记栏目用0表示空栏目,1表示未配}; //空闲分区表第二,在设计的表格上进行内存分配●首次适应算法:为作业分配内存,要求每次找到一个起始地址最小的适合作业的分区(按起始地址递增排序)。

存储器管理——动态分区的分配与回收

存储器管理——动态分区的分配与回收

计算机与信息工程系实验报告
班级计算机
1001
姓名李双贺时间2011.11.09 地点A504
实验名称存储器管理——动态分区的分配与回收
实验目的
目的是在学习操作系统理论知识的基础上,对操作系统整体的一个模拟。

研究计算机操作系统的基本原理和算法,掌握操作系统的存储器管理的首次适应算法、循环首次适应算法、最佳适应算法的基本原理和算法。

提高运用操作系统知识和解决实际问题的能力;并且锻炼自己的编程能力、创新能力以及开发软件的能力。

使学生掌握基本的原理和方法,最后达到对完整系统的理解。

实验内容
内存调度策略可采用首次适应算法、循环首次适应算法和最佳适应法等,并对各种算法进行性能比较。

为了实现分区分配,系统中必须配置相应的数据结构,用来描述空闲区和已分配区的情况,为分配提供依据。

常用的数据结构有两种形式:空闲分区表和空闲分区链。

为把一个新作业装入内存,须按照一定的算法,从空闲分区表或空闲分区链中选出一个分区分配给该作业。

实验结果。

动态分区存储管理

动态分区存储管理

实验四动态分区存储管理
实验目的:熟悉并掌握动态分区分配的各种算法。

熟悉并掌握动态分区中分区回收的各种情况,并能够实现分区合并。

实验内容:用高级语言模拟实现动态分区存储管理,要求:
1、分区分配算法至少实现首次适应算法、最佳适应算法和最坏适应算法中的至
少一种。

熟悉并掌握各种算法的空闲区组织方式。

2、分区的初始化——可以由用户输入初始分区的大小。

(初始化后只有一个空
闲分区,起始地址为0,大小是用户输入的大小)
3、分区的动态分配过程:由用户输入作业号和作业的大小,实现分区过程。

4、分区的回收:用户输入作业号,实现分区回收,同时,分区的合并要体现出
来。

(注意:不存在的作业号要给出错误提示!)
5、分区的显示:任何时刻,可以查看当前内存的情况(起始地址是什么,大小
多大的分区时空闲的,或者占用的,能够显示出来)
要求考虑:(1)内存空间不足的情况,要有相应的显示;
(2)作业不能同名,但是删除后可以再用这个名字;
(3)作业空间回收是输入作业名,回收相应的空间,如果这个作业名不存在,也要有相应的提示。

操作系统实验四实验报告动态分区分配算法

操作系统实验四实验报告动态分区分配算法

操作系统实验四【实验题目】:动态分区分配算法【实验学时】:4学时【实验目的】通过这次实验,加深对动态分区分配算法的理解,进一步掌握首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的实现方法。

【实验内容及要求】问题描述:设计程序模拟四种动态分区分配算法:首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的工作过程。

假设内存中空闲分区个数为n,空闲分区大小分别为P1, … ,P n,在动态分区分配过程中需要分配的进程个数为m(m≤n),它们需要的分区大小分别为S1, … ,S m,分别利用四种动态分区分配算法将m个进程放入n个空闲分区,给出进程在空闲分区中的分配情况。

程序要求:1)利用首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法四种动态分区分配算法模拟分区分配过程。

2)模拟四种算法的分区分配过程,给出每种算法进程在空闲分区中的分配情况。

3)输入:空闲分区个数n,空闲分区大小P1, … ,P n,进程个数m,进程需要的分区大小S1, … ,S m。

4)输出:首次适应算法,循环首次适应算法,最佳适应算法,最坏适应算法,最终内存空闲分区的分配情况。

实现源代码:#include<iostream>#include<fstream>#include<iomanip>#include<string>#define max 100using namespace std;int work_num;int zone_num;struct Data{int data;char name;};Data *d=new Data[max];struct Table{int data;char array[max];int length;};Table *T=new Table[max];Table *temp=new Table[max];void Init(){ifstream inf("DTFQ.txt");int i,j;char ch;inf>>work_num;cout<<"作业数:"<<work_num<<endl;inf>>zone_num;cout<<"空闲分区数:"<<zone_num<<endl;cout<<" 作业为:";for(j=0;j<work_num;j++){inf.get(ch);d[j].name=ch;cout<<setw(4)<<d[j].name;}cout<<endl;cout<<"作业大小:";for(i=0;i<work_num;i++){.inf>>d[i].data;cout<<setw(4)<<d[i].data;}cout<<endl;cout<<"空闲分区:";for(j=0;j<zone_num;j++){inf>>T[j].data;temp[j].data=T[j].data;T[j].length=0;temp[j].length=0;cout<<setw(4)<<T[j].data;}cout<<endl;}void renew(){int j;for(j=0;j<zone_num;j++){T[j].data=temp[j].data;T[j].length=temp[j].length;}}void re(){int i;for(i=0;i<zone_num;i++){T[i].array[T[i].length]='#';}}void show(){int i,j;re();for(i=0;i<zone_num;i++){if(T[i].data==temp[i].data)cout<<setw(4)<<T[i].data;else{cout<<setiosflags(ios::right)<<setw(4)<<T[i].data<<setw(1);for(j=0;j<T[i].length;j++){if(T[i].array[j]=='#')break;elsecout<<setiosflags(ios::right)<<T[i].array[j];}}}cout<<endl;}void first_fit(){renew();cout<<"fist fit:";int i,j;int tag=0;for(i=0;i<work_num;i++){for(j=0;j<zone_num;j++){if(d[i].data<=T[j].data){T[j].data=T[j].data - d[i].data;T[j].array[T[j].length]=d[i].name;T[j].length++;tag=0;break;}elsetag=1;}if(tag==1){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void next_fit(){renew();cout<<"next fit:";int i,j;int m=0,tag=0,count=0;for(i=0;i<work_num;i++){for(j=m;j<zone_num;j++){if(d[i].data<=T[j].data){T[j].data=T[j].data - d[i].data;T[j].array[T[j].length]=d[i].name;T[j].length++;tag=0;m=j;break;}else{tag=1;count++;}}while(tag==1 && count<zone_num){for(j=0;j<m;j++){if(d[i].data<=T[j].data){T[j].data=T[j].data - d[i].data;T[j].array[T[j].length]=d[i].name;T[j].length++;tag=0;break;}else{tag=1;count++;}}}if(tag==1 && count==zone_num){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void best_fit(){renew();cout<<"best fit:";int i,j,k,temp,m;int tag=0,n=0;for(i=0;i<work_num;i++){for(j=0;j<zone_num;j++){if(d[i].data<=T[j].data){temp=T[j].data;m=j;int tag1=0;for(k=m+1;k<=zone_num;k++){if(T[k].data<temp){if(T[k].data>=d[i].data){temp=T[k].data;n=k;tag1=1;}}else if(tag1==0)n=j;}T[n].data=temp - d[i].data;T[n].array[T[n].length]=d[i].name;T[n].length++;tag=0;break;}elsetag=1;}if(tag==1){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void worst_fit(){renew();cout<<"worst fit:";int i,j,k,temp,m;int tag=0,n=0;for(i=0;i<work_num;i++){for(j=0;j<zone_num;j++){if(d[i].data<=T[j].data){int tag1=0;temp=T[j].data;m=j;for(k=m+1;k<=zone_num;k++){if(T[k].data>temp){if(T[k].data>=d[i].data){temp=T[k].data;n=k;tag1=1;}}else if(tag1==0)n=j;}T[n].data=temp - d[i].data;T[n].array[T[n].length]=d[i].name;T[n].length++;tag=0;break;}elsetag=1;}if(tag==1){cout<<"作业太大,无满足条件分区!"<<endl;break;}}//re();}void main(){Init();first_fit();show();next_fit();show();best_fit();show();worst_fit();show();system("pause");}实验截图:如有侵权请联系告知删除,感谢你们的配合!。

计算机操作系统动态分区存储管理方式下的内存空间的分配与回收实验报告

计算机操作系统动态分区存储管理方式下的内存空间的分配与回收实验报告

计算机操作系统动态分区存储管理方式下的内存空间的分配与回收实验报告第一篇:计算机操作系统动态分区存储管理方式下的内存空间的分配与回收实验报告计算机操作系统实验报告实验二实验题目:存储器管理系别:计算机科学与技术系班级:姓名:学号:2一、实验目的深入理解动态分区存储管理方式下的内存空间的分配与回收。

二、实验内容编写程序完成动态分区存储管理方式下的内存分配和回收的实现。

具体内容包括:确定用来管理内存当前使用情况的数据结构;采用首次适应算法完成内存空间的分配;分情况对作业进行回收;编写主函数对所做工作进行测试。

三、实验原理分配:动态分区存储管理方式把内存除OS占用区域外的空间看作一个大的空闲区。

当作业要求装入内存时,根据作业需要内存空间的大小查询内存中各个空闲区,当从内存中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业要求划出一个分区装入该作业。

回收:作业执行完后,它所占用的内存空间被收回,成为一个空闲区。

如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。

四、实验方法实现动态分区的分配与回收,主要考虑三个问题:第一、设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域(利用结构体类型数组来保存数据);第二、在设计的数据表格基础上设计内存分配算法(采用首次适应算法找合适的分区(对空闲分区表进行排序),分配时要考虑碎片问题);第三、在设计的数据表格基础上设计内存回收算法(分四种情况进行回收(上邻、下邻、上下邻和无相邻分区)。

五、实验步骤第一,设计记录内存使用情况的数据表格λ已分配分区表:起始地址、长度、标志(0表示“空表项”,1表示“已分配”)λ空闲分区表:起始地址、长度、标志(0表示“空表项”,1表示“未分配”)struct used_table { float address;//已分分区起始地址float length;//已分分区长度,单位为字节int flag;//已分配表区登记栏标志,用0表示空栏目,char zuoyename;};//已分配区表Struct free_table[ { float address;//空闲分区起始地址float length;//空闲分区长度,单位为字节int flag;//空闲分区表登记栏目用0表示空栏目,1表示未配};//空闲分区表第二,在设计的表格上进行内存分配λ首次适应算法:为作业分配内存,要求每次找到一个起始地址最小的适合作业的分区(按起始地址递增排序)。

分区式存储管理实验报告

分区式存储管理实验报告

操作系统实验报告(四)分区式存储器管理专业:XXX姓名:XXX班级:XXX学号:XXX指导老师:XXX2013/12/3实验三:分区式存储器管理实验一.实验目的模拟实现一个简单的固定(或可变)分区存储管理系统,进一步加深对分区分配方案设计思想的理解。

二.实验内容(1)建立相关的数据结构,作业控制块、已分配分区及未分配分区;(2)实现一个分区分配算法,如最先适应分配算法、最优或最坏适应分配算法;(3)实现一个分区回收算法;(4)给定一批作业/进程,选择一个分配或回收算法,实现分区存储的模拟管理;(5)将整个过程可视化显示出来。

三.实验步骤(1)任务分析:1、本实验虽然不以前面实验为基础,但建议在其界面中继续增加分区存储管理功能。

2、数据结构:分区说明表,用数组实现。

3、存储管理:建议采取固定分区法管理内存。

编写内存分配、内存回收算法。

(2)程序设计:数据结构设计程序中自由链队列的结点类型可描述如下:structemptylist{intlen, address;//len为分区长度;address为分区起始地址structemptylist *next;//下一个节点};内存占用区用链表描述,其结点类型描述如下:structbusylink{char name;//进程名称intlen , address;//len为分区长度;address为分区起始地址structbusylink *next;//下一个节点};设全程量,设置一个自由链队列和一个占用区队列。

structemptylist *empty_head=NULL; //自由链队列(带头结点)队首指针structbusylink *busy_head=NULL//占用区队列队(带头结点)首指针structbusylink*busy_tail=NULL;// 占用区队列队尾指针(3)程序结果:分配几个内存后,显示其内部的分配进程如下:其中进程S是系统默认分配的进程,内存长度为5.回收过2,4以后显示如下:(4)调试与测试四.实验总结本次实验采用最佳适应算法来分配内存,然后分别输出未进行内存回收时和进行回收时,内存分配情况,进行对比。

实验四连续动态存管理模拟实现.ppt

实验四连续动态存管理模拟实现.ppt

for(i=0;i<m;i++) /*寻找空间大于xk的最小空闲区登记项k*/ if(free_table[i].length>=x&&free_table[i].flag==1) if(k==-1||free_table[i].length<free_table[k].length) k=i; if(k==-1)/*未找到可用空闲区,返回*/ { printf("无可用空闲区\n"); return; } /*找到可用空闲区,开始分配:若空闲区大小与要求分配的空间差小于msize大小,则空闲区全部分配;若空闲区大小与要求分配 的空间差大于minisize大小,则从空闲区划出一部分分配*/ if(free_table[k].length-x<=minisize) { free_table[k].flag=0; ad=free_table[k].address; x=free_table[k].length; } else { free_table[k].length=free_table[k].length-x; ad=free_table[k].address+free_table[k].length; } /*修改已分配区表*/ i=0;
实验四 连续动态存管理模拟实现
一、实验目的 1) 理解内存管理相关理论; 2) 掌握连续内存管理理论; 3) 掌握动态连续内存管理理论。
二、实验内容 本实验主要针对操作系统中内存管理相关理论进行 实验,要求实验者编写一个程序,该程序管理一块虚 拟内存,实现内存分配和回收功能。 1) 模拟管理 64M 的内存块; 2) 设计内存分配函数; 3) 设计内存回收函数; 4) 实现动态分配和回收操作; 5) 可动态显示每个内存块信息。

动态分区存储管理

动态分区存储管理

动态分区存储管理动态分区存储管理方式的主存分配回收一、实验目的深入了解动态分区存储管理方式主存分配回收的实现。

二、实验预备知识存储管理中动态分区的管理方式。

三、实验内容编写程序完成动态分区存储管理方式的主存分配回收的实现。

实验具体包括:首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配和回收;最后编写主函数对所做工作进行测试。

四、提示与讲解动态分区管理方式预先不将主存划分成几个区域,而把主存除操作系统占用区域外的空间看作一个大的空闲区。

当作业要求装入主存时,根据作业需要主存空间的大小查询主存内各个空闲区,当从主存空间中找到一个大于或等于该作业大小的主存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装入该作业。

作业执行完后,它所占的主存分区被收回,成为一个空闲区。

如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。

实现动态分区的分配和回收,主要考虑的问题有三个:第一,设计记录主存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计主存分配算法;第三,在设计的数据表格基础上设计主存回收算法。

首先,考虑第一个问题:设计记录主存使用情况的数据表格,用来记录空闲区和作业占用的区域。

由于动态分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随主存分配和回收变动。

总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。

由于分区长度不同,因此设计的表格应该包括分区在主存中的起始地址和长度。

由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收主存分区时,可能会合并空闲分区,这样如果整个主存采用一张表格记录已分分区和空闲区,就会使表格操作繁琐。

主存分配时查找空闲区进行分配,然后填写已分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。

由此可见,主存的分配和回收主要是对空闲区的操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四、动态分区存储管理(一)、实验目的和要求为了进一步提高主存的利用率,使存储空间划分更加适应不同的作业组合,人们设计可变式分区方案。

本实验要求模拟放置与回收策略算法,加深对动态分区存储管理的理解。

(二)、实验内容本实验模拟了最佳适应算法分配算法,最坏适应算法、首次适应算法同学们可以据此自己实现。

实验原理:放置策略:首次适应算法的表是按空闲区首址升序的(即空闲区表是按空闲区首址从小到大)方法组织的。

最佳适应算法是将申请者放入与其大小最接近、切割后的空闲区最小的空闲区中。

若系统中有与申请区大小相等的空闲区。

最坏适应算法的空闲区表是按空闲区大小降序的方法组织的(从大到小的顺序)。

回收算法当一个进程(或程序)释放某内存区时,要调用存储区释放算法release,它将首先检查释放区是否与空闲区表(队列)中的其它空闲区相邻,若相邻则合并成一个空闲区,否则,将释放的一个空闲区插入空闲区表(或队列)中的适当位置。

空闲释放区与空闲区相邻有四种情况。

上邻空闲区下上邻空闲区上、下邻空闲区上、下邻已分配区(三)、实验环境1、pc2、vc++(四)、程序源代码:#include<stdio.h>#include <dos.h>#include<stdlib.h>#include<conio.h>#define n 10#define m 10#define minisize 100struct{float address;float length;int flag;}used_table[n];struct{float address;float length;int flag;}free_table[m];void allocate(char J,float xk){int i,k;float ad;k=-1;for(i=0; i<m; i++)if(free_table[i].length>=xk&&free_table[i].flag==1) if(k==-1||free_table[i].length<free_table[k].length) k=i;if(k==-1){printf("无可用空闲区\n");return;}if(free_table[k].length-xk<=minisize){free_table[k].flag=0;ad=free_table[k].address;xk=free_table[k].length;}else{free_table[k].length=free_table[k].length-xk;ad=free_table[k].address+free_table[k].length;}i=0;while(used_table[i].flag!=0&&i<n)i++;if(i>=n){printf("无表目填写已分分区,错误\n");if(free_table[k].flag==0)free_table[k].flag=1;else{free_table[k].length=free_table[k].length+xk; return;}}else{used_table[i].length=xk;used_table[i].flag=J;}return;}void reclaim(char J){int i,k,j,s,t;float S,L;s=0;while((used_table[s].flag!=J||used_table[s].flag==0)&&s<n)s++;if(s>=n){printf("找不到该作业\n");return;}used_table[s].flag=0;S=used_table[s].address;L=used_table[s].length;j=-1;k=-1;i=0;while(i<m&&(j==-1||k==-1)){if(free_table[i].flag==1){if(free_table[i].address+free_table[i].length==S)k=i;if(free_table[i].address==S+L)j=i;}i++;}if(k!=-1)if(j!=-1) /* 上邻空闲区,下邻空闲区,三项合并*/{free_table[k].length=free_table[j].length+free_table[k].length+L; free_table[j].flag=0;}else/*上邻空闲区,下邻非空闲区,与上邻合并*/free_table[k].length=free_table[k].length+L;else if(j!=-1) /*上邻非空闲区,下邻为空闲区,与下邻合并*/ {free_table[j].length=free_table[j].length+L;}else /*上下邻均为非空闲区,回收区域直接填入*/{/*在空闲区表中寻找空栏目*/t=0;while(free_table[t].flag==1&&t<m)t++;if(t>=m) /*空闲区表满,回收空间失败,将已分配表复原*/{printf("主存空闲表没有空间,回收空间失败\n");used_table[s].flag=J;return;}free_table[t].address=S;free_table[t].length=L;free_table[t].flag=1;}return;}/*主存回收函数结束*/int main( ){printf("\n\n\t\t*********************************************\t\t\n");printf("\t\t\t\t实验三存储管理实验\n");printf("\n\t\t\t可变式分区分配(最佳适应算法)\n");printf("\t\t*********************************************\n");int i,a;float xk;char J;/*空闲分区表初始化:*/free_table[0].address=10240; /*起始地址假定为10240*/free_table[0].length=10240; /*长度假定为10240,即10k*/free_table[0].flag=1; /*初始空闲区为一个整体空闲区*/for(i=1; i<m; i++)free_table[i].flag=0; /*其余空闲分区表项未被使用*//*已分配表初始化:*/for(i=0; i<n; i++)used_table[i].flag=0; /*初始时均未分配*/while(1){printf("功能选择项:\n1。

显示主存\n2。

分配主存\n3。

回收主存\n4。

退出\n"); printf("请选择相应功能1--4 :");scanf("%d",&a);switch(a){case 4:exit(0); /*a=4程序结束*/case 2: /*a=2分配主存空间*/printf("输入作业名J(字符)");scanf("%*c%c",&J);printf("输入作业所需空间xk: ");scanf("%f",&xk);allocate(J,xk); /*分配主存空间*/break;case 3: /*a=3回收主存空间*/printf("输入要回收分区的作业名");scanf("%*c%c",&J);reclaim(J); /*回收主存空间*/break;case 1: /*a=1显示主存情况*//*输出空闲区表和已分配表的内容*/printf("输出空闲区表:\n起始地址分区长度标志\n");for(i=0; i<m; i++)printf("%6.0f%9.0f%6d\n",free_table[i].address,free_table[i].length, free_table[i].flag); printf(" 按任意键,输出已分配区表\n");getch();printf(" 输出已分配区表:\n起始地址分区长度标志\n");for(i=0; i<n; i++)if(used_table[i].flag!=0)printf("%6.0f%9.0f%6c\n",used_table[i].address,used_table[i].length, used_table[i].flag); elseprintf("%6.0f%9.0f%6d\n",used_table[i].address,used_table[i].length, used_table[i].flag); break;default:printf("没有该选项\n");}/*case*/}/*while*/return 1;}。

相关文档
最新文档