第二十章数据的分析复习题含答案

合集下载

《好题》初中八年级数学下册第二十章《数据的分析》经典练习(含答案)

《好题》初中八年级数学下册第二十章《数据的分析》经典练习(含答案)

一、选择题1.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,22C解析:C 【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22. 故选C.2.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数 B .方差C .平均数D .中位数D解析:D 【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析. 【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少. 故选:D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 3.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6 B .210C .6,0.4D .210D 解析:D【分析】根据平均数和方差公式直接计算即可求得. 【详解】 解:()12312n x x x x x n=+++⋯+=, ∴()1231424242424226n x x x x n -+-+-+⋯+-=⨯-=, ()()()()22222123122220.1n S x x x x n ⎡⎤=-+-+-+⋯+-=⎣⎦,()()()()22222421231426426426426x n S x x x x n -⎡⎤=--+--+--+⋯+--⎣⎦ 0.116=⨯1.6=,∴42x S -=故选:D . 【点睛】本题考查了方差和平均数,灵活利用两个公式,进行准确计算是解答的关键. 4.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”C 解析:C 【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论. 【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确, 所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A 不正确; 因为B 中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3, 所以选项B 说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定, 所以甲组数据比乙组数据稳定,故选项C 说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上” 故选项D 说法不正确. 故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学 80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.6.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是9D解析:D【解析】【分析】根据中位数,众数、极差、标准差的定义即可判断.【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+=;极差是31-22=9,标准差是:故D正确,故选:D【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据7.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》第二十章数据的分析-数据的集中趋势考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7 份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1 )___________ ,___________ ;(2 )从方差的角度看, ___________ 种西瓜的得分较稳定(填“ 甲” 或“ 乙” );(3 )小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.知识点:数据的集中趋势【答案】(1 )a =88 ,b =90 ;(2 )乙;(3 )见解析【分析】(1 )根据中位数、众数的意义求解即可;(2 )根据数据大小波动情况,直观可得答案;(3 )从方差、中位数、众数的比较得出答案.【详解】解:(1 )甲品种西瓜测评得分从小到大排列处在中间位置的一个数是 88 ,所以中位数是 88 ,即a =88 ,将乙品种西瓜的测评得分出现次数最多的是90 分,因此众数是 90 ,即b =90 ,故答案为:a =88 ,b =90 ;(2 )由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S 乙2<S 甲2,故答案为:乙;(3 )小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.2、现有一组数据4 、 5 、 5 、 6 、 5 、 7 ,这组数据的众数是 ___ .知识点:数据的集中趋势【答案】5【分析】根据众数的意义求解即可.【详解】这组数据中出现次数最多的是5 ,共出现 3 次,因此众数是 5 ,故答案为: 5 .【点睛】本题考查的是众数:一组数中出现次数最多的数,熟练掌握众数的意义是解决本题的关键.3、一组数据:5,7,10,5,7,5,6. 这组数据的中位数和众数()A . 7 和 10B . 7 和 5C . 7 和 6D . 6 和 5知识点:数据的集中趋势【答案】D【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【详解】将这组数据重新排列为5 、 5 、 5 、 6 、 7 、 7 、 10 ,所以这组数据的众数为5 、中位数为 6 ,故选D .【点睛】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4、在5 月 31 日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“ 关爱健康,远离香烟” 的知识竞赛,两个年级分别有 500 人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100 分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 7977 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 1 00 99 78 79 87 85 79第二步:整理、描述数据第三步:分析数据第四步:应用数据(1 )直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2 )在此次测试中,七年级甲学生的成绩为 89 分,八年级乙学生成绩为 90 分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3 )若成绩在 90 分至 99 分之间(含 90 分, 99 分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.知识点:数据的集中趋势【答案】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )甲的成绩在自己年级中更靠前;(3 )七、八年级一共获得二等奖的学生总人数为 300 人.【分析】(1 )根据众数的定义分别进行解答即可;(2 )把甲、乙两人的成绩与各自年级的中位数比较即可得到结论;(3 )七、八年级的总人数乘以 90 分至 99 分之间(含 90 分, 99 分)的学生数所占的百分比即可的结论.【详解】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )∵七年级同学的成绩的中位数是 88 ,八年级同学的成绩的中位数是 92 ,∴甲的成绩在自己年级中更靠前;(3 ) 1000×=300 人,答:七、八年级一共获得二等奖的学生总人数为300 人【点睛】本题主要考查了平均数、众数、中位数在实际问题中的正确应用,熟练掌握定义和计算公式是解题的关键.5、北京市6 月某日 10 个区县的最高气温如下表: ( 单位:℃)则这10 个区县该日最高气温的中位数是() .A . 32B . 31C . 30D . 29知识点:数据的集中趋势【答案】A【详解】∵从小到大排列后,排在中间位置的两个数都是 32 ,∴中位数是 32.故选A.6、某小组个人在一次数学小测试中,有个人的平均成绩为,其余个人的平均成绩为,则这个小组的本次测试的平均成绩为 ________.知识点:数据的集中趋势【答案】89【分析】先求出总成绩,再运用求平均数公式即可求出平均成绩.【详解】∵有 3 个人的平均成绩为 96 ,其余 7 个人的平均成绩为 86 ,∴这个小组的本次测试的总成绩为: 3×96+7×86=890 ,∴这个小组的本次测试的平均成绩为: 890÷10=89 .【点睛】本题主要考查的是平均数的求法,属于基础题型.熟记计算公式是解决本题的关键.7、甲、乙、丙、丁四人10 次随堂测验的成绩如图所示,从图中可以看出这 10 次测验平均成绩较高且较稳定的是()A .甲B .乙C .丙D .丁知识点:数据的集中趋势【答案】C【分析】利用平均数和方差的意义进行判断.【详解】解:由折线统计图得:丙、丁的成绩在92 附近波动,甲、乙的成绩在 91 附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C .【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.8、某校开展了以“爱我家乡”为主题的艺术活动,从九年级 5 个班收集到的艺术作品数量(单位:件)分别为 48 , 50 , 47 , 44 , 50 ,则这组数据的中位数是()A . 44B . 47C . 48D . 50知识点:数据的集中趋势【答案】C【分析】根据中位数的意义,排序后处在中间位置的数即可.【详解】解:将这五个数据从小到大排列后处在第3 位的数是 48 ,因此中位数是 48 ;故选:C.【点睛】本题考查中位数的意义,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.9、在庆祝中国共产党成立100 周年的“红色记忆”校园歌咏比赛中, 15 个参赛班级按照成绩(成绩各不相同)取前 7 名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这 15 个参赛班级成绩的()A .平均数B .中位数C .众数D .方差知识点:数据的集中趋势【答案】B【分析】由于比赛取前7 名参加决赛,共有 15 名选手参加,根据中位数的意义分析即可.【详解】解:15 个不同的成绩按从小到大排序后,中位数之后的共有 7 个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.10、已知一组数据,,的平均数为5 ,方差为 4 ,那么数据,,的平均数和方差分别为__ .知识点:数据的集中趋势【答案】3 , 4【分析】根据平均数,方差定义进行解答即可.【详解】解:数据,,的平均数为5 ,,,数据,,的平均数是3 ;数据,,的方差为4 ,,,,的方差.故答案为:3 , 4 .【点睛】本题考查了平均数和方差,解题的关键是灵活运用平均数和方差.11、为了纪念建党100 周年,学校组织了“建党 100 周年党史知识竞赛”,张同学根据评分为小李的分数制作了如下表格:如果去掉一个最高分和最低分,那么下列哪个数据不会发生变化()A .众数B .平均数C .中位数D .方差知识点:数据的集中趋势【答案】C【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数,故选C .【点睛】本题主要考查了中位数,解决本题的关键是掌握中位数定义.12、已知一组数据,,,,的平均数是4 ,方差是 5 ,将这组数据中的每个数据都减去 2 ,得到一组新数据,则这组新数据的方差是 ______ .知识点:数据的集中趋势【答案】5【分析】根据一组数据的平均数与方差的定义和性质即可求解.【详解】解:由题意得:数据,,,,的平均数是4 ,方差是 5 ,新数据是,,,,,所以新数据的平均数是4-2=2 ,方差是:==5 .故答案为:5 .【点睛】本题考查了平均数和方差,解题的关键是掌握平均数和方差的变换特点.13、如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1 )根据图中信息分别求出上午和下午四个整点时间的平均气温.(2 )请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.知识点:数据的集中趋势【答案】(1 ) 24 , 24 ;(2 )上午的气温更加稳定,理由见解析.【分析】(1 )根据平均数的定义进行求解即可;(2 )分别求出上午和下午四个整点时间的方差然后进行比较即可.【详解】解:(1 )∴∴上午的气温更加稳定.【点睛】本题主要考查了平均数与方差,解题的关键在于能够熟练掌握相关知识进行求解.14、车间有22 名工人,某一天他们生产的零件个数统计如下:(1 )求这一天 22 名工人生产零件的平均个数.(2 )为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,请你确定这个“定额”,并说明理由.知识点:数据的集中趋势【答案】(1 ) 13 个;(2 )如果我是管理者,会将 13 个作为“定额”,因为平均数、众数、中位数都是 13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【分析】(1 )根据平均数的计算方法进行计算即可;(2 )求出中位数、众数、平均数,从大多数员工能够完成任务为标准“定额”.【详解】解:(1 )(个)∴这一天 22 名工人生产零件的平均个数为 13 个.(2 )如果我是管理者,会将 13 个作为“定额”.因为平均数、众数、中位数都是13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【点睛】本题考查平均数、中位数、众数,理解中位数、众数、平均数的意义和计算方法是正确解答的关键.15、开学前,根据学校防疫要求,小芸同学连续14 天进行了体温测量,结果统计如下表:这14 天中,小芸体温的众数是 ____________.知识点:数据的集中趋势【答案】36.6【分析】根据众数的定义就可解决问题.【详解】根据表格数据可知众数是36.6℃,故答案为:36.6 .【点睛】本题主要考查了众数的求解,正确理解众数的意义是解决本题的关键.16、东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为: 85 , 87 , 89 , 91 , 85 , 92 , 90 .则这组数据的中位数为 ______ .知识点:数据的集中趋势【答案】89【分析】根据中位数的定义即可得.解:将这组数据按从小到大进行排序为,则中位数为89 ,故答案为:89 .【点睛】本题考查了中位数,熟记定义是解题关键.17、“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动. 6 名志愿者参加劳动的时间(单位:小时)分别为: 3 , 2 , 2 , 3 , 1 , 2 ,这组数据的中位数是 ______ .知识点:数据的集中趋势【答案】2【分析】根据中位数的求解方法求解即可.【详解】解:将所给6 个数据从小到大排列: 1 , 2 , 2 , 2 , 3 , 3 ,则中位数为=2 ,故答案为:2 .【点睛】本题考查中位数,熟练掌握中位数的求解方法是解答的关键.18、在2021 年初中毕业生体育测试中,某校随机抽取了 10 名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A .中位数是 10.5B .平均数是 10.3C .众数是 10D .方差是 0.81知识点:数据的集中趋势【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9 , 9 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 12 ;位于最中间的两个数是10 , 10 ,它们的平均数是 10 ,所以该组数据中位数是10 ,故 A 选项符合题意;该组数据平均数为:,故B 选项不符合题意;该组数据10 出现次数最多,因此众数是 10 ,故 C 选项不符合题意;该组数据方差为:,故D 选项不符合题意;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.19、某学校八年级(2 )班有 20 名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 ___ .知识点:数据的集中趋势【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:=95.5 ,故答案为:95.5 .【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.20、如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11 岁,最大为 15 岁,根据统计图所提供的数据,该小组组员年龄的中位数为 ________ 岁.知识点:数据的集中趋势【答案】13【分析】直接根据中位数定义求解即可.【详解】解:根据题意排列得:11 , 11 , 12 , 12 , 12 , 13 , 13 ,13 , 13 , 13 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 ,个数为偶数,中间的两个数为:13 , 13 ,∴中位数为 13 ,故答案为:13【点睛】本题主要考查中位数的定义,将一组数据按照从小到大( 或从大到小 ) 的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。

人教版初中八年级数学下册第二十章《数据的分析》经典题(含答案解析)(1)

人教版初中八年级数学下册第二十章《数据的分析》经典题(含答案解析)(1)

一、选择题1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.2.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变A解析:A【解析】试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.3.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A.1999年B.2004年C.2009年D.2014年C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是()A.平均数是-2 B.中位数是-2 C.众数是-2 D.方差是5D解析:D【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断.【详解】解:A、平均数是-2,结论正确,故A不符合题意;B、中位数是-2,结论正确,故B不符合题意;C、众数是-2,结论正确,故C不符合题意;D、方差是203,结论错误,故D符合题意;故选:D.【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.6.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.1D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.7.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27 D.该班学生这次考试成绩的中位数是27分B 解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.8.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.9.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A.S2甲<S2乙B.S 2甲=S2乙C.S 2甲>S2乙D.无法比较S 2甲和S2乙的大小C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大D 解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题11.已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的方差是___________.4【分析】根据方差的意义分析原数据都乘2则方差是原来的4倍数据都加3方差不变【详解】解:设样本x1x2x3…xn 的平均数为m 则其方差为则样本2x1+32x2+32x3+3…2xn +3的平均数为2m +解析:4 【分析】根据方差的意义分析,原数据都乘2,则方差是原来的4倍,数据都加3,方差不变. 【详解】解:设样本x 1,x 2,x 3,…,x n 的平均数为m , 则其方差为22221121...1n S x mx mx mn ,则样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的平均数为2m +3, 其方差为222144S S ,故选:D . 【点睛】本题考查方差的计算公式及其运用:一般地设有n 个数据,x 1,x 2,…x n ,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.12.已知一组数据:3,3,x ,5,5的平均数是4,则这组数据的方差是___________.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0 解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差. 【详解】 根据题意得: 3+3+x+5+5=4×5, 解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8. 【点睛】考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:__.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷解析:甲 【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定. 【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高, 又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲. 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.有一组数据如下:2,3,3,4,则这组数据的方差是____________.【分析】先由平均数的公式计算出平均数再根据方差的公式计算即可【详解】2334的平均数是(2+3+3+4)4=3;【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数 解析:12【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可. 【详解】2,3,3,4的平均数是(2+3+3+4) ÷4= 3;2222211(32)(33)(33)(43)42S ⎡⎤=-+-+-+-=⎣⎦ 【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数.15.数据-1,2,0,1,-2的方差是____.2【分析】先由平均数的公式计算出这组数的平均值再根据方差的公式S2=计算【详解】设这组数的平均值为则:∴方差S2=故答案为:2【点睛】本题考查的是方差:一般地设n 个数据x1x2…xn 的平均数为则方差解析:2 【分析】先由平均数的公式计算出这组数的平均值,再根据方差的公式S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦计算.【详解】设这组数的平均值为x ,则:1201205x -+++-==∴方差S 2=()()()()()222221020001020215⎡⎤--+-+-+-+--=⎣⎦⨯ 故答案为:2. 【点睛】本题考查的是方差:一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.16.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可. 【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5, ∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6,∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.17.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是______.9【解析】【分析】根据平均数的定义先求出x 的值再根据中位数的定义即可得出答案【详解】根据平均数的定义可知(5+10+15+x+9)÷5=8解得:x=1把这组数据从小到大的顺序排列为1591015处于解析:9 【解析】 【分析】根据平均数的定义先求出x 的值,再根据中位数的定义即可得出答案. 【详解】根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为9.【点睛】考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x甲=82分,⎺x乙=82分,S2甲=245,S2乙=190.那么成绩较为整齐的是__________班乙【解析】【分析】根据方差的意义方差反映了一组数据的波动大小根据方差越小波动越小故可由两班的方差得到结论【详解】∵S2甲>S2乙∴成绩较为稳定的是乙故答案为乙【点睛】本题考查了方差的意义:反映了一组解析:乙【解析】【分析】根据方差的意义,方差反映了一组数据的波动大小,根据方差越小,波动越小,故可由两班的方差得到结论.【详解】∵S2甲>S2乙∴成绩较为稳定的是乙.故答案为乙.【点睛】本题考查了方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x2-2y=_________.=15结合众数为50分中位数为60分分情况讨论即可确定xy之值从而求出x2-2y之值【详解】∵全班共有38人∴x+y=38-(解析:50【分析】由于全班共有38人,则x+y=38-(2+3+5+6+3+4)=15,结合众数为50分,中位数为60分,分情况讨论即可确定x、y之值,从而求出x2-2y之值.【详解】∵全班共有38人,∴x+y=38-(2+3+5+6+3+4)=15,又∵众数为60分,∴x≥8,当x=8时,y=7,中位数是第19,20两个数的都为70分,则中位数为70分,符合题意;当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(60+70)÷2=65分,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于70分,不符合题意.则x=8,y=7.则x2-2y=64-14=50.故答案为50.【点睛】此题主要考查了中位数和众数的应用,关键是根据众数的人数和中位数的数值进行分类讨论x、y的取值.20.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低两次成绩.详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.解析:(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a、c的值,根据平均数的定义计算出b的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a=60;乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68;乙组学生成绩的中位数为70702+=70,即b=68,c=70;故填:60,68,70;(2)选择乙组.理由如下:乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.22.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.解析:(1)85;(2)最终候选人E将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:952803905235⨯+⨯+⨯++=88(分),E的平均成绩是:852903905235⨯+⨯+⨯++=89(分),∴88<89,∴最终候选人E将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义.23.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.解析:(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义.24.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?解析:(1)4%;(2)72°;(3)落在B 等级内;(4)380人 【分析】(1)先求出总人数,再求D 成绩的人数占的比例;(2)C 成绩的人数为10人,占的比例=10÷50=20%,表示C 的扇形的圆心角=360°×20%=72°, (3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A 级和B 级的学生数=(13+25)÷10%=380人, 【详解】(1)总人数为25÷50%=50人,D 成绩的人数占的比例:2÷50=4%; (2)表示C 的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A 成绩人数为13人,C 成绩人数为10人,D 成绩人数为2人,而B 成绩人数为25人,故该班学生体育测试成绩的中位数落在B 等级内;(4)这次考试中A 级和B 级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人). 【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键. 25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分). 甲 9582 88 81 93 79 84 78乙83 75808090 859295(1)请你计算这两组数据的平均数、中位数.(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.解析:(1)甲、乙两组数据的平均数都是85分,中位数分别为83分、84分;(2)派乙参赛更合适.理由见解析. 【分析】(1)根据平均数、中位数的计算方法分别计算即可; (2)从平均数、中位数、方差以及数据的变化趋势分析. 【详解】()1()19582888193798478858x =+++++++=甲(分),()18375808090859295858x =+++++++=乙 将甲工人的测试成绩从小到大排序,处在第45、位的平均数为()8284283+÷=(分), 因此甲工人测试成绩的中位数是83分,将乙工人的测试成绩从小到大排序,处在第45、位的平均数为()8385284+÷=(分), 因此乙工人测试成绩的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.()2(答案不唯一,合理即可)()()()2222195858285...788535.58S =-+-+⎤⎣⎦=⎡+-甲(分2) ()()()2222183857585...9585418S =-+-+-⎡⎤⎣⎦+=乙(分2)①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲; ③从方差来看,因为22S S <甲乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力.综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势, 所以派乙参赛更合适. 【点睛】考查平均数、中位数、方差的意义及计算方法,从多角度分析数据的发展趋势是一项基本的能力.26.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环 中位数/环 众数/环 方差 甲a771.2(1)写出表格中a ,b 的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理. 解析:(1)7,7.5;(2)甲,理由略. 【分析】(1)利用加权平均数的计算公式、中位数的概念解答即可; (2)根据方差的性质判断即可. 【详解】解:∵甲队员的射击成绩为:5,6,6,7,7,7,7,8,8,9,∴甲队员的射击成绩平均数为:a=(5+6×2+7×4+8×2+9)÷10=7∵乙队员的射击成绩为:3,6,4,8,7,8,7,8,10,9,从小数到大数依次排列为:3,4,6,7,7,8,8,8,9,10, ∴乙队员射击成绩的中位数为:b=7.5 ∴a=7, b=7.5(2)从方差的角度看,选派甲队员去参赛,理由是: 从表中可知:S 甲2=1.2,S 乙2=4.2, ∴S 甲2<S 乙2∴甲队员的射击成绩较稳定, ∴选甲队员去参赛 【点睛】本题考查的是加权平均数、中位数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.27.根据重庆轨道集团提供的日客运量统计,2019年2月21日重庆轨道交通首次日客运量突破300万乘次,其中近期开通的重庆轨道交通环线日客运量为21.5万乘次.据了解,某工作日上午7点至9点轨道环线四公里站有20列列车进出站,每列车进出站时,将上车和下车的人数记录下来,各得到20个数据,并将数据进行整理,绘制成了如下两幅不完整统计图.(数据分组为:A 组:170180x ≤<,B 组:180190x ≤<,C 组:190200x ≤<,D 组:200210x ≤<,E 组:210220x ≤≤)I .上车人数在C 组的是:190,190,191,192,193,193,195,196,198,198,198,198;II .上车人数的平均数、中位数如下表:根据以上信息,回答下列问题: (1)请补全频数分布直方图;(2)表中a=________,扇形统计图中m=_________,扇形统计图中E组所在的圆心角度数为________度;(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.解析:(1)补图见解析;(2)193,30,36;(3)19400人.【分析】(1)用20减去A、C、D、E组的数量得到B组数量,据此即可补全直方图;(2)利用中位数的概念可求得a的值,用100%减去B、C、D、E组所占的百分比求得A 组所占的百分比可求得m的值,用360度乘以E组所占的比例即可求得相应圆心角的度数;(3)用样本的平均数乘以这一时间段的进站车数再乘以天数即可得.【详解】(1)B组的数量为:20-2-12-2-1=3,补全频数直方图如图所示:(2)20个数据从小到大排列后位于中间的应该是第10、第11个数据,A、B、C、D、E组的数据是从小到大进行的,A、B组共有5个数据,C组有12个数据,从小到大排列为:190,190,191,192,193,193,195,196,198,198,198,198,C组中的第5个数据是总数据的第10个,为193,C组中的第6个数据是总数据的第11个,为193,所以中位数为:(193+193)÷2=193,即a=193;。

《常考题》初中八年级数学下册第二十章《数据的分析》知识点总结(含答案解析)

《常考题》初中八年级数学下册第二十章《数据的分析》知识点总结(含答案解析)

一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是()A.6℃B.6.5℃C.7℃D.7.5℃2.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,223.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.1004.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.50 B.52 C.48 D.25.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.甲乙丙丁平均分85909085方差50425042A .甲B .乙C .丙D .丁7.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数8.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6B .2,2105C .6,0.4D .6,21059.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年10.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( ) 年龄 13 14 15 16 人数2341A .15,15B .14,15C .14,14.5D .15,14.5 11.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x =( )A .2B .3C .5D .712.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数13.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁14.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126则这45名同学一天的生活费用中,平均数是( ) A .15B .20C .21D .2515.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题16.一组数据2,3,4,x ,6的平均数是4,则x 是_______.17.若一组数据3、4、5、x 、6的平均数是5,则这组数据的方差为_____18.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________. 19.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.20.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.21.某样本数据是:2,2,x ,3,3,6如果这个样本的众数为2,那么这组数据的方差是______22.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.23.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________. 24.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.25.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元) 1 2 3 4 5 人 数25896则这30名同学每天使用的零花钱的中位数是_____元.26.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).三、解答题27.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):第1次 第2次 第3次 第4次 第5次甲 86 83 90 80 86 乙 7882848992中位数 平均数 方差甲 ▲ 85 ▲ 乙 848524.828.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 甲乙射击成绩统计表平均数 中位数 方差 命中10环的次数 甲7乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.29.如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北AC 米.八位环卫工人分别测得的BC长度如下表:和正东方向,40甲丁丙丁戊戌申辰BC (单位:8476788270848680 m)他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图2.(1)表中的中位数是、众数是;(2)求表中BC长度的平均数x;(3)求A处的垃圾量,并将图2补充完整;(4)用(2)中的x作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.30.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8 4.2(1)写出表格中a,b的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理.。

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳单选题1、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.=6,解得:a=5;解:由题意得:10+3+a+7+55故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.2、某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()答案:D分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=21+22,2∴x=3、y=2,=22,则这组数据的众数为21,平均数为19+20+21×3+22×2+24×2+2610×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,所以方差为110故选D.小提示:本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.3、一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.72答案:C分析:根据求平均数公式即得出关于x的等式,解出x即可.根据题意可知40+37+x+644=53,解得:x=71.故选C.小提示:本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键.4、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.x甲=x乙,s甲2>s乙2B.x甲=x乙,s甲2<s乙2C.x甲>x乙,s甲2>s乙2D.x甲<x乙,s甲2<s乙2答案:A分析:分别计算平均数和方差后比较即可得到答案.解:(1)x甲=110(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴x甲=x乙,s甲2>s乙2,故选:A.小提示:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数答案:D分析:分别计算前后数据的平均数、中位数、众数,比较即可得出答案.(5+3+6+5+10)=5.8;解:追加前的平均数为:15从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:1(5+3+6+5+20)=7.8;5从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.小提示:本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.6、小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8答案:C分析:先求出已知数组的中位数和众数,再根据中位数和众数的定义逐项判断即可.数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A项,去掉5之后,数列的众数不再是5,故A项错误;B项,去掉5之后,数列的众数不再是5,故B项错误;C项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C项正确;D项,去掉7和8之后,新数列的中位数为6,发生变化,故D项错误,故选:C.小提示:本题考查了中位数和众数的知识,掌握中位数和众数的定义是解答本题的关键.7、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81,该组数据的中位数是()A.78B.81C.91D.77.3答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:将这组数据重新排列为:56、61、70、75、75、81、81、91、91、92,=78,则其中位数为75+812故选:A.小提示:本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.9、在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差答案:B分析:去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据中间的数产生影响,即中位数故选B.小提示:本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.10、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.填空题11、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.答案:15.5 15分析:根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.解:这些队员年龄的平均数=13×2+14×6+15×8+16×3+17×2+18×1=15.52+6+8+3++1这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,∴中位数为15小提示:本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.12、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.13、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG ,则DG 的长为__________.答案:√192分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长.解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC .∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=√22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.14、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)答案:甲分析:先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.=(7+6+9+6+7)÷5=7(环),解:x̅甲x̅=(5+9+6+7+8)÷5=7(环),乙=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,s2甲s2=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,所以答案是:甲.小提示:本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.15、在一组数据1, 0, 4, 5, 8中插入一个数据x,使该组数据中位数为3,则插入数据x的值为________.答案:2分析:根据中位数的定义得到数据-1,0,4,5,8中插入一个数据x,共有6个数,最中间的数只能为x和4,然后根据计算它们的中位数为3求出x.解:∵数据-1,0,4,5,8中插入一个数据x,∴数据共有6个数,而4为中间的一个数,∵该组数据的中位数是3,∴x+4=3,2解得x=2.所以答案是:2.小提示:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答题16、绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时,为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.答案:(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.分析:(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售 26 万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),∴总人数为:20÷50%=40(人),∴不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,∴“优秀”人数为:40×15%=6(人),∴得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.小提示:考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.17、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表(其中图①中“10分”所在扇形圆心角为90°).甲校成绩统计表人数11 0 8(1)在图1中,求“7分”所在扇形的圆心角度数:并将2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请求出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?答案:(1)144°,图见解析(2)甲的平均数为8.3分,中位数为7分;乙的平均数为8.3分,中位数为8分;乙校成绩较好;(3)甲校分析:(1)求出“7分”占的百分比,乘以360即可得到结果,根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(2)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(3)利用两校满分人数,比较即可得到结果.(1)解:根据题意得:“7分”所在扇形的圆心角等于360°×(1−25%−20%−15%)=144°;8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(2)×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;解:甲校:平均分为120乙校:平均分为:1×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,20平均数相同,乙校中位数较大,故乙校成绩较好;(3)解:因为甲校有8人满分,而乙校有5人满分,应该选择甲校.小提示:本题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.18、2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:90≤x≤100;B:80≤x<90;C:70≤x<80;D:60≤x<70;E:0≤x<60.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20% ;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:= =(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?答案:(1)74,32,补全条形统计图见解析(2)八年级的学生对防自然灾害知识掌握较好,理由见解析(3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人分析:(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;(2)根据表格中的数据,由中位数和众数的大小判断即可;(3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.(1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,(1−16%−16%−4%)÷2=32%,∴m=32,七年级学生中,测评成绩A级有50×16%=8人,B级有50×16%=8人,C级有50×32%=16人,D级有50×32%=16人,E级有50×4%=2人,测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,可知七年级测评成绩中位数为a=74+74=74,2所以答案是:74,32;八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,故补全条形统计图如图:(2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;=400(人)(3)解:1000×16%+1200×1050答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.小提示:本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.。

八年级数学下册第二十章数据的分析知识点汇总(带答案)

八年级数学下册第二十章数据的分析知识点汇总(带答案)

八年级数学下册第二十章数据的分析知识点汇总单选题1、北京今年6月某日部分区县的高气温如下表:则这10个区县该日最高气温的众数和中位数分别是().答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中32是出现次数最多的,故众数是32;把数据按从小到大的顺序排列后,处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32.故选:A.小提示:本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、二次根式√2x+4中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2答案:D分析:根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.由题意,得2x+4≥0,解得x≥-2,故选:D.小提示:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3、若x1,x2,x3,⋯,x n的平均数为8,方差为2,则关于x1+2,x2+2,x3+2,……,x n+2,下列结论正确的是()A.平均数为8,方差为2B.平均数为8,方差为4C.平均数为10,方差为2D.平均数为10,方差为4答案:C分析:根据平均数、方差随数据的变化规律进行判断,将一组数的每个数据都增加n,所得到的新一组数据的平均数就增加n,而方差不变.解:样本x1+2,x2+2,x3+2,…x n+2,对于样本x1,x2,x3,…x n来说,每个数据均在原来的基础上增加了2,根据平均数、方差的变化规律得:平均数较前增加2,而方差不变,即:平均数为8+2=10,方差为2,故选:C.小提示:本题考查平均数、方差的意义以及受数据变化的影响,掌握规律,理解意义是解决问题的关键.4、如果x1与x2的平均数是5,那x1−1与x2+5的平均数是()A.4B.5C.6D.7答案:D分析:根据x1与x2的平均数是5,求出x1+x2=10,再根据平均数的计算公式求出答案.解:∵x1与x2的平均数是5,∴x1+x1=2×5=10,∴x1−1与x2+5的平均数是x1−1+x2+52=x1+x2+42=7,故选:D.小提示:此题考查了平均数的计算公式,熟记公式是解题的关键.5、自去年9月《北京市打赢蓝天保卫战三年行动计划》发布以来,北京市空气质量呈现“优增劣减”特征,“蓝天”含金量进一步提高,下图是今年5月17日至31日的空气质量指数趋势图.(说明:空气质量指数为0﹣50、51﹣100、101﹣150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优良的天数占45;②在此次统计中,空气质量为优的天数多于轻度污染的天数;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.所有正确结论的序号是()A.①B.①②C.②③D.①②③答案:D分析:根据折线统计图的数据,逐一进行分析即可.解:①在此次统计中,空气质量为优良的天数占1215=45,此项正确;②在此次统计中,空气质量为优的天数5天,多于轻度污染的天数3天,此项正确;③20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,此项正确.故选:D.小提示:本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6、抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差答案:A分析:7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.小提示:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.7、根据下表中的信息解决问题:4个C.5个D.6个答案:C分析:直接利用a=1、2、3、4、5、6分别得出中位数,进而得出符合题意的答案.当a=1时,有19个数据,最中间是:第10个数据,则中位数是38;当a=2时,有20个数据,最中间是:第10和11个数据,则中位数是38;当a=3时,有21个数据,最中间是:第11个数据,则中位数是38;当a=4时,有22个数据,最中间是:第11和12个数据,则中位数是38;当a=5时,有23个数据,最中间是:第12个数据,则中位数是38;当a=6时,有24个数据,最中间是:第12和13个数据,则中位数是38.5;因为该组数据的中位数不大于38,则符合条件的正整数a的取值共有:5个.故选C.小提示:本题考查中位数,频数(率)分布表.8、新冠肺炎疫情期间,某市实施静态管理,九年级某班组建了若干个数学学习互助小组,其中一个9人小组进行数学线上学习效果的自测,九名学生的平均成绩为73分,若将他们的成绩从高分到低分排序后,前五名学生的平均成绩为85分,后五名学生的平均成绩为63分,则这九名学生成绩的中位数是()A.84B.83C.74D.73答案:B分析:设将他们的成绩从高分到低分排序后,前四名学生的总成绩为a 分,第五名学生的成绩为x 分,后四名学生的总成绩为b 分,则这九名学生成绩的中位数是x ,再根据平均数的计算公式建立方程组,解方程组即可得.解:设将他们的成绩从高分到低分排序后,前四名学生的总成绩为a 分,第五名学生的成绩为x 分,后四名学生的总成绩为b 分,则这九名学生成绩的中位数是x ,由题意得:{ a+x+b 9=73①a+x 5=85②x+b 5=63③, 由②+③得:a+2x+b 5=148,即a +x +b =740−x ④,将④代入①得:740−x 9=73, 解得x =83, 即这九名学生成绩的中位数是83,故选:B .小提示:本题考查了中位数和平均数,熟记中位数的定义和平均数的计算公式是解题关键.9、某校为了了解学生在校一周体育锻炼时间,随机抽查了11名学生,调查结果如下,这11名学生在校一周体育锻炼时间的众数和中位数分别为( ).6.5h ,6h答案:A分析:根据中位数的意义得出中位数是排列后的第6个数据,再求出平均数即可;根据众数的意义求出众数即可.解:11个数据按大小顺序排列,第6个数据是6,故中位数 是6h ,∵锻炼时间为6h 的人数最多,是4人,∴众数是6h ,故选:A .小提示:本题考查了众数和中位数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.10、小明将自己家1月份至6月份的用水量绘制成了如图所示的折线统计图,那么小明家这6个月用水量的平均数和中位数分别是()A.10吨,12.5吨B.10吨,9.5吨C.9吨,10.5吨D.8吨,9.5吨答案:B分析:从图中得到6个月用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量,再将6个数据按从小到大的顺序排列,中间两个数的平均数就是中位数.解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10(吨),把这组数据按从小到大的顺序排列为:6,8,9,10,12,15,中位数为:(9+10)÷2=9.5(吨)故选:B.小提示:此题主要考查了折线图的应用以及平均数和中位数求法,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.填空题11、已知2、3、4、x1、x2、x3的平均数是5,则x1、x2、x3的平均数是______.答案:7分析:先根据2、3、4、x1、x2、x3的平均数是5得出2+3+4+x1+x2+x3=30,据此可知x1+x2+x3= 21,再根据平均数的定义进一步计算即可.解:∵2、3、4、x1、x2、x3的平均数是5,∴2+3+4+x1+x2+x3=30,∴x1+x2+x3=21,则x1、x2、x3的平均数是21÷3=7,所以答案是:7.小提示:本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.12、某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:__________小时.答案:6.6分析:根据加权平均数的定义解答即可.=6.6小时.解:这10名同学一周在校参加体育锻炼时间的平均数=5×1+6×4+7×3+8×210所以答案是:6.6.小提示:本题考查了加权平均数的计算,属于基础题型,熟练掌握计算的方法是解题关键.13、已知一组数据3,7,9,10,x,12的众数是9,则这组数据的中位数是______.答案:9分析:先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:∵众数是9,∴x=9,∴从小到大排列此数据为:3,7,9,9,10,12,∵处在第3、4位的数都是9,∴9为中位数.故答案为9.小提示:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14、某小组6名学生的平均身高为a cm,规定超过a cm的部分记为正数,不足a cm的部分记为负数,他们的身高与平均身高的差值情况记录如下表:答案:(a+1)##(1+a)分析:根据题意身高差值和为0,即可求解.解:∵平均身高为a cm,规定超过a cm的部分记为正数,不足a cm的部分记为负数,∴2+x+3−1−4−1=0.解得x=1∴2号学生的身高为(a+1)cm.所以答案是:(a+1)小提示:本题考查了根据平均数求未知,理解题意是解题的关键.15、有甲、乙两组数据,如表所示:s 甲2,s乙2,则s甲2______________s乙2(填“>”,“<”或“=”).答案:>分析:根据甲、乙两组数据分别求出甲、乙的平均数,然后再利用方差公式进行求解比较即可.解:由题意得:x 甲=11+12+13+14+155=13,x乙=12+12+13+14+145=13,∴s甲2=[(11−13)2+(12−13)2+(13−13)2+(14−13)2+(15−13)2]5=2,s 乙2=[(12−13)2+(12−13)2+(13−13)2+(14−13)2+(14−13)2]5=45,∴2>45,∴s甲2>s乙2;故答案为>.小提示:本题主要考查平均数及方差,熟练掌握平均数及方差的计算是解题的关键.解答题16、2022年5月25、26日国家实施义务教育质量监测.监测部门从某校八年级全体学生中任意抽取40名学生,平均分成甲、乙两个小组参加艺术测试.根据测试成绩绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表人数 3 9 3 5请根据上面的信息,解答下列问题:(1)m=____________,甲组成绩的众数是____________;乙组成绩的中位数是____________.(2)请你计算出甲组的平均成绩.2=1.05,乙组的平均成绩是8.5,请计算出乙组成绩的方差,并判断哪个小组的成(3)已知甲组成绩的方差S甲绩更均衡?答案:(1)3,8,8(2)8.5(3)0.75;乙更均衡分析:(1)根据统计表、中位数和众数的定义即可确定;(2)根据平均数的计算方法运算即可;(3)计算出乙组的方差,再比较甲、乙两组的方差大小即可.(1)解:m =20-2-9-6=3;有统计表可知:甲组成绩的众数是8;乙组的中位数是第10,11位数的平均数,由图可知是8;(2)甲组平均成绩为:120(7×3+8×9+9×3+10×5)=8.5; (3)S 乙2=120[2×(7−8.5)2+9×(8−8.5)2+6×(9−8.5)2+3×(10−8.5)2] =120×(2×2.25+9×0.25+6×0.25+3×2.25) =120×(5×2.25+15×0.25) =120×(11.25+3.75) =0.75∵S 甲2=1.05∴S 甲2>S 乙2∴乙更均衡.小提示:本题考查统计表与条形统计图、方差、中位数、众数、平均数的相关内容,注意从图中获取信息,分析图中数据之间的数量关系,掌握常见统计运算方法是解题的关键.17、某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0⩽x<0.5),第二组(0.5⩽x<1),第三组(1⩽x<1.5),第四组(1.5⩽x<2),第五组(x⩾2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.答案:(1)第二组(2)175人(3)该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量分析:(1)根据中位数的定义求解即可;(2)根据扇形统计图求出C所占的比例再计算即可;(3)根据统计图反应的问题回答即可.(1)1200人的中位数是按从小到大排列后第600和601位的平均数,而前两组总人数为308+295=603∴本次调查中,中小学生每周参加家庭劳动时间的中位数落在第二组;(2)由扇形统计图得选择“不喜欢”的人数所占比例为1−43.2%−30.6%−8.7%=17.5%而扇形统计图只统计不足两小时的人数,总人数为1200-200=1000∴选择“不喜欢”的人数为1000×17.5%=175(人)(3)答案不唯一、言之有理即可.例如:该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量;③学校开设劳动拓展课程:等等.小提示:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18、某公司的午餐采用自助的形式,并倡导员工“适度取餐,减少浪费”该公司共有10个部门,且各部门的人数相同.为了解午餐的浪费情况,从这10个部门中随机抽取了A,B两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称“每日餐余重量”(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息.a.A部门每日餐余重量的频数分布直方图如下(数据分成6组:0≤x<2,2≤x<4,4≤x<6,6≤x<8,8≤x<10,10≤x≤12):b.A部门每日餐余重量在6≤x<8这一组的是:6.1 6.6 7.0 7.0 7.0 7.8c.B部门每日餐余重量如下:1 .4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8d. A,B两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下:(1)写出表m,n中的值;(2)在A,B这两个部门中,“适度取餐,减少浪费”做得较好的部门是________(填“A”或“B”),理由是____________;(3)结合A,B这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量.答案:(1)m=6.8,n=6.9;(2) A,A部门每日餐余重量的平均数和中位数都小于B部门每日餐余重量的平均数和中位数(3)15600kg.分析:(1)根据频数(率)分布直方图中数据即可得到结论;(2)根据表中数据即可得到结论;(3)根据A、B两个部门这20个工作日每日餐余量的平均数即可得到结论.=6.8,n=6.9;(1)m=6.6+7.02(2)在A,B这两个部门中,“适度取餐,减少浪费”做得较好的部门是A,理由是A部门每日餐余重量的平均数和中位数都小于B部门每日餐余重量的平均数和中位数;故答案为A,A部门每日餐余重量的平均数和中位数都小于B部门每日餐余重量的平均数和中位数.=15600kg,(3)10×240×6.4+6.62答:估计该公司(10个部门)一年(按240个工作日计算)的餐余重量15600kg.小提示:本题考查了频数(率)分布直方图,用样本估计总体,求中位数和众数等等,正确的理解题意是解题的关键.。

八年级数学下册《第二十章 数据的分析》解答题练习-附答案(人教版)

八年级数学下册《第二十章 数据的分析》解答题练习-附答案(人教版)

八年级数学下册《第二十章数据的分析》解答题练习-附答案(人教版) 1.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:(1)这个班级捐款总数是多少元?(2)求这30名同学捐款的平均数.2.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?3.某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到如图的条形统计图,根据图形解答下列问题:(1)这次共抽查了名学生;(2)所抽查的学生一周平均参加体育锻炼多少小时?(3)已知该校有1 200名学生,估计该校有多少名学生一周参加体育锻炼的时间超过6小时?4.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:依据以上统计信息,解答下列问题:(1)求得m=________,n=__________;(2)这次测试成绩的中位数落在______组;(3)求本次全部测试成绩的平均数.5.在上学期的几次测试中,小张和小王的几次数学成绩(单位:分)如下表:平时成绩期中成绩期末成绩小张82 85 91小王84 89 86(1)小张可能是根据什么来判断的?小王可能是根据什么来判断的?(2)你能根据小张的想法设计一种方案使小张的成绩比小王的高吗?写出你的方案.6.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.7.某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)餐厅所有员工的平均工资是多少?(2)所有员工工资的中位数是多少?(3)用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当?(4)去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?8.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.9.为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图分数段频数50≤x<60 260≤x<70 670≤x<80 980≤x<90 1890≤x≤100 15(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?10.某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?11.某中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图所示为根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3∶4∶5∶8∶6,又知此次调查中捐款25元和30元的学生一共有42人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,请估计全校学生的总捐款数.12.某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(1)在图①中,m的值为,表示“2小时”的扇形的圆心角为度;(2)求统计的这组学生户外运动时间的平均数、众数和中位数.13.某教育局为了解本地八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)α=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该地共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?14.中考低于测试前,某区教育局为了了解选报引体向上的九年级男生的成绩情况,随机抽查了本区部分选报引体向上项目的九年级男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,本次抽测中,成绩为6个的学生有名.(2)求这次抽测中,测试成绩的平均数,众数和中位数;(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考选报引体向上的男生能获得满分的有多少名?15.迎接学校“元旦”文艺汇演,八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.16.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队 178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示: 整理、描述数据: 平均数 中位数 众数 方差 甲队 178 178 b 0.6 乙队178a178c(1)表中a = ,b = ,c = ;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.17.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):运动员 \ 环数 \ 次数12 345甲 10 8 9 10 8 乙10 9 9ab某同学计算出了甲的成绩平均数是9,方差是s 2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来; (2)若甲、乙射击成绩平均数都一样,则a +b = ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a,b 的所有可能取值,并说明理由.18.我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率七年级m 3.41 90% 20%八年级7.1 n 80% 10%(1)观察条形统计图,可以发现:八年级成绩的标准差,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=,n=;(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.19.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.质量(g) 73 74 75 76 77 78甲的数量 2 4 4 3 1 1乙的数量 2 3 6 2 1 1根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.73.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?20.甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙7 b 8 c(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?参考答案1.解:(1)这个班级捐款总数为5×11+10×9+15×6+20×2+25×1+30×1=330(元).(2)这个班级捐款总数是330元,这30名同学捐款的平均数为11元.2.解:(1)18×(33+32+28+32+25+24+31+35)=30(听). (2)181×30=5 430(听).3.解:(1)60(2)4×15+5×10+7×15+8×2060=6.25(时); (3)1 200×15+2060=700(名). 4.解:(1)30,19%. (2)B(或70<x ≤80).(3)本次全部测试成绩的平均数为:1200×(2 581+5 543+5 100+2 796)=80.1(分). 5.解:(1)小张可能是根据加权平均数来判断的,小王可能是根据算术平均数来判断的.(2)参考方案:平时成绩、期中成绩、期末成绩所占的百分比分别为30%,30%,40%,这样小张的综合成绩就是86.5分,小王的综合成绩就是86.3分.6.解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次).因为100.8>100所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.7.解:(1)平均工资为4350元(2)工资的中位数为2000元(3)由(1)(2)可知,用中位数描述该餐厅员工工资的一般水平比较恰当(4)去掉经理和厨师甲的工资后,其他员工的平均工资是2062.5元,和(3)的结果相比较,能反映餐厅员工工资的一般水平8.解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额所以去掉周六、日的营业额对平均数的影响较大故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额当月的营业额为30×780=23400(元).9.解:(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90∴这次抽取的学生成绩的中位数在80≤x<90的分数段中这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%故答案为:80≤x<90,12%;(3)105.答:该年级参加这次比赛的学生中成绩“优”等的约有105人.10.解:(1)∵总人数为18÷45%=40人∴C等级人数为40﹣(4+18+5)=13人则C对应的扇形的圆心角是117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级故答案为:B.(4)估计足球运球测试成绩达到A级的学生有30人.11.解:(1)设捐款25元的有8x人,则捐款30元的有6x人.根据题意列方程,得8x +6x =42,解得x =3∴他们一共调查了3x +4x +5x +8x +6x =78(人).(2)由图象可知,众数为25元.由于本组数据的个数为78,按从小到大的顺序排列,处于中间位置的两个数都是25元,故中位数为25元.(3)全校学生的总捐款数约为(3×3×10+3×4×15+3×5×20+3×8×25+3×6×30)×156078=34200(元).12.解:(1)m%=1﹣40%﹣25%﹣15%=20%,即m 的值是20表示“2小时”的扇形的圆心角为:360°×15%=54°故答案为:20、54;(2)这组数据的平均数是:=众数是:1,中位数是:1.13.解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%圆心角的度数为360°×10%=36°;(2)众数是5天,中位数是6天;(3)2000×(25%+10%+5%)=800(人).答:估计“活动时间不少于7天”的学生人数大约有800人.14.解:(1)a=1﹣30%﹣15%﹣10%﹣20%=25%成绩为6的学生有:20÷10%×25%=50(名)故答案为:25,50;(2)平均数是:3×10%+4×15%+5×30%+6×25%+7×20%=5.3众数是:5个,中位数是:5个;(3)1800×(25%+20%)=810(名)答:该区体育中考选报引体向上的男生能获得满分的有810名.15.解:(1)∵15÷30%=50∴该班共有50人;(2)∵∵捐15元的同学人数为50﹣(10+15+5+)=20∴学生捐款的众数为10元又∵第25个数为10,第26个数为15∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为36°.故答案为:50,15,12.5,36.16.解:(1)乙队共10名队员,中位数落在第3组,为178,即a =178;甲队178出现的次数最多,故众数为178,即b =178;c =110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8; (2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.17.解:(1)如图所示;(2)[由题意,知15(10+9+9+a +b)=9,∴a +b =17.] (3)在(2)的条件下,a,b 的值有四种可能:第①种和第②种方差相等:s 2乙=15(1+0+0+4+1)=1.2>s 2甲 ∴甲比乙的成绩较稳定.第③种和第④种方差相等:s 2乙=15(1+0+0+0+1)=0.4<s 2甲 ∴乙比甲的成绩稳定.因此,a=7,b=10或a=10,b=7时,甲比乙的成绩较稳定.18.解:(1)∵八年级成绩的方差=110[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41∴八年级成绩的标准差<年级成绩的标准差;七年级成绩为3,6,6,6,6,6,7,8,9,10∴中位数为6,即m=6;八年级成绩为5,5,6,7,7,8,8,8,8,9∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好.19.解:(1)75;75.(2)解:=(73×2+74×4+75×4+76×3+77+78)÷15=75=≈1.87∵=,>∴两家加工厂的鸡腿质量大致相等,但乙加工厂的鸡腿质量更稳定.因此快餐公司应该选购乙加工厂生产的鸡腿.20.解:(1)a=7,b=7.5,c=4.2(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参赛的话,可选择乙参赛,因为乙获得高分的可能更大。

八年级数学(下)第二十章《数据的分析》测试题含答案

八年级数学(下)第二十章《数据的分析》测试题含答案

八年级数学(下)第二十章《数据的分析》测试题(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.某班第一小组6名女生在测仰卧起坐时,记录下她们的成绩(单位:个/分):45,48,46,50,50,49.这组数据的平均数是()A.49 B.48 C.47 D.462.有一组数据如下:3,6,5,2,3,4,3,6.那么这组数据的中位数是()A.3或4 B.4 C.3 D.3.53.A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41度 B.42度 C.45.5度 D.46度4.某小组10个女生做仰卧起坐,仰卧起坐次数的测试数据如下表,则这组数据的众数和中位数分别是()次数35 38 40 41 42人数 1 1 3 3 2A.38.8和40 B.40和40 C.40和40.5 D.38.8和40.55.数据70、71、72、73、74的方差是()A.2 B.2 C.52D.546.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数 B.平均数 C. 中位数 D.方差7.甲、乙两人在相同的条件下各射靶 10 次,射击成绩的平均数都是 8 环,甲射击成绩的方差是 1.2,乙射击成绩的方差是 1.8.下列说法中不一定正确的是()A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同8.一次体检中,某班学生视力检查的结果如图所示,从图中看出全班视力数据的众数是()(A)55% (B)24% (C)1.0 (D)1.0以上9.如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、1010.李大伯有一片果林,共80棵果树,某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得果子,质量分别为(单位:kg):0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23,以此计算,李大伯收获的这批果子的单个质量和总质量分别约为()A.0.25kg,200kg B.2.5kg,100kg C.0.25kg,100kg D.2.5kg,200kg二.填空题(共10小题,每题3分,共30分)11.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是小时。

八年级数学下册第二十章数据的分析知识总结例题(带答案)

八年级数学下册第二十章数据的分析知识总结例题(带答案)

八年级数学下册第二十章数据的分析知识总结例题单选题1、某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④答案:B分析:根据中位数的性质即可作答.在添加了两款新能源汽车的测评数据之后,0~100km/h的加速时间的中位数m s,满电续航里程的中位数n km,这两组中位数的值不变,即可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,据此逐项判断即可:A项,两款车的0~100km/h的加速时间均在直线m下方,不符合要求,故A项错误;B项,可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,符合要求;C项,两款车的满电续航里程的数值均在直线n的左侧,不符合要求,故C项错误;D项,两款车的0~100km/h的加速时间均在直线m上方,不符合要求,故D项错误;故选:B.小提示:本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键.2、一组数据x、0、1、-2、3的平均数是1,则x的值是()A.3B.1C.2.5D.0答案:A分析:根据题意,得x+0+1-2+3=5,求得x的值即可.∵x、0、1、-2、3的平均数是1,∴x+0+1-2+3=5,解得x=3,故选A.,正确进行公式变形计算是解题的关键.小提示:本题考查了算术平均数的定义即x̅=x1+x2+x3+⋯+x n−1+x nn3、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.表中3≤x4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④答案:D分析:①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据3≤x<4的频率a满足0.20≤a≤0.30,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.解:①日均可回收物回收量(千吨)为1≤x<2时,频数为1,频率为0.05,所以总数m=1÷0.05=20,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D小提示:本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.4、河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是0答案:B分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;C、15D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.5、某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.7答案:D分析:根据统计图即可判断选项A,根据统计图可求出平均成绩,即可判断选项B,根据统计图即可判断选项C,根据所给数据进行计算即可判断选项D.解:A、由统计图得,最高成绩是9.4环,选项说法正确,不符合题意;B、平均成绩:1×(9.4+8.4+9.2+9.2+8.8+9+8.6+9+9+9.4)=9,选项说法正确,符合题意;10C、由统计图得,9出现了3次,出现的次数最多,选项说法正确,不符合题意;×[(9.4−9)2+(8.4−9)2+(9.2−9)2+(9.2−9)2+(8.8−9)2+(9−9)2+(8.6−9)2+D、方差:110(9−9)2+(9−9)2+(9.4−9)2]=0.096,选项说法错误,符合题意;故选D.小提示:本题考查了平均数,众数,方差,解题的关键是理解题意掌握平均数,众数和方差的计算方法.6、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7、小楠所在社会实践活动小组的同学们响应“垃圾分类,从我做起”的号召,主动到附近的7个社区宣传垃圾分类.她们记录的各社区参加活动的人数如图所示,那么这组数据的众数和中位数分别是()A.42,40B.42,38C.2,40D.2,38答案:A分析:根据众数和中位数的定义分别进行解答啊即可.解:在这一组数据中42是出现次数最多的,故众数是42 ;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是40,由中位数的定义可知,这组数据的中位数是40.故选:A.小提示:本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个,正确理解众数及中位数的定义是解题的关键.8、某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.31答案:B分析:根据算术平均数的计算方法进行计算即可.=33(辆),解:这组数据的平均数为:25+33+36+31+405故选:B.小提示:本题考查平均数,掌握算术平均数的计算方法是正确计算的关键.9、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环答案:C分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.小提示:本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是()答案:A分析:根据中位数、众数的意义求解即可.解:抽查学生的人数为:7+9+11+3=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+8=8,因此中位数是8小时.2故选:A.小提示:本题考查中位数、众数,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的关键.填空题11、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.12、数据-1,0,1的方差为_______.答案:23 分析:先求出3个数的平均数,再根据方差公式计算.解:数据-1,0,1的平均数:13(−1+0+1)=0, 方差S 2=13[(−1−0)2+(0−0)2+(1−0)2] =23,所以答案是:23. 小提示:本题考查方差的计算,方差S 2=1n [(x 1−x̅)2+(x 2−x̅)2+⋯+(x n −x̅)2],熟记方差公式是解题的关键.13、甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽取100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但s 甲2=0.288,s 乙2=0.024,则______机床生产这种滚珠的质量更稳定.答案:乙分析:根据甲的方差大于乙的方差,即可得出乙机床生产这种滚珠的质量更稳定.解:∵这两台机床生产的滚珠平均直径均为10mm ,S 2甲>S2乙,∴乙机床生产这种滚珠的质量更稳定.所以答案是:乙.小提示:本题主要考查方差,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.答案:90分析:根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解;解:设面试成绩为x分,根据题意知,该名老师的综合成绩为80×60%+40%⋅x=84(分)解得x=90所以答案是:90.小提示:本题考查一元一次方程实际问题和加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.15、八(1)班一组女生的体重(单位:kg)分别是:35,36,38,40,42,42,45.则这组数据的众数为 _____.答案:42分析:根据众数的定义即可求得.解:在这组数据中42出现了2次,出现的次数最多,故这组数据的众数是42.所以答案是:42.小提示:本题考查了众数的定义,熟练掌握和运用众数的定义是解决本题的关键.解答题16、近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.)这天部分出行学生使用共享单车次数的中位数是,众数是,该中位数的意义是;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?答案:(1)3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)这天部分出行学生平均每人使用共享单车约2次;(3)估计这天使用共享单车次数在3次以上(含3次)的学生有765人.分析:(1)根据中位数和众数的定义进行求解即可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.(1)∵总人数为11+15+23+28+18+5=100,∴中位数为第50、51个数据的平均数,即中位数为3+3=3次,众数为3次,2其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),故答案为3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)x=0×11+1×15+2×23+3×28+4×18+5×5≈2(次),100答:这天部分出行学生平均每人使用共享单车约2次;=765(人),(3)1500×28+18+5100答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.小提示:本题考查了中位数、众数、平均数、用样本估计总体等,熟练掌握中位数、众数、平均数的定义以及求解方法是解题的关键.17、某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10 ,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).答案:(1)8.6(2)甲(3)丙分析:(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.(1)=8.6,解:丙的平均数:10+10+10+9+9+8+3+9+8+1010则m =8.6.(2)s 甲2=110[2×(8.6−8)2+4×(8.6−9)2+2×(8.6−7)2+2×(8.6−10)2]=1.04, s 乙2=110[4×(8.6−7)2+4×(8.6−10)2+2×(8.6−9)2]=1.84,∵s 甲2<s 乙2,∴甲、乙两位同学中,评委对甲的评价更一致,所以答案是:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108=8.625, 乙:7+7+7+9+9+10+10+108=8.625, 丙:10+10+9+9+8+9+8+108=9.125, ∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,所以答案是:丙.小提示:本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.18、如图,直角坐标系xOy 中,一次函数y =﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.答案:(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.分析:(1)先求得点C 的坐标,再运用待定系数法即可得到l 2的解析式;(2)过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,再根据A (10,0),B (0,5),可得AO =10,BO =5,进而得出S △AOC ﹣S △BOC 的值;(3)分三种情况:当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得 4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2, y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32; 当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.小提示:本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.。

宁波市八年级数学下册第二十章《数据的分析》知识点复习(含答案解析)

宁波市八年级数学下册第二十章《数据的分析》知识点复习(含答案解析)

一、选择题1.反映一组数据变化范围的是()A.极差B.方差C.众数D.平均数A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差C解析:C【分析】根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从10个原始评分中去掉1个最高分、1个最低分,得到8个有效评分,8个有效评分与10个原始评分相比,最中间的两个数不变,即中位数不变,故选C.【点睛】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法.3.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.100A解析:A【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A . 【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定B解析:B 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 5.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A .50分 B .82分C .84分D .86分D解析:D 【分析】计算出各项学习成绩的分数再相加即是数学成绩. 【详解】研究性学习成绩为:8040%32⨯=分 期末卷面成绩为:9060%54⨯=分 数学成绩为;325486+=分 故选:D 【点睛】本题考查了加权平均数的相关定义,解题的关键是根据加权平均数的相关定义计算. 6.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n C解析:C 【分析】根据平均数、极差和方差的变化规律即可得出答案. 【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.7.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.8.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A.87,87 B.87,85 C.83,87 D.83,85A解析:A【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.9.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6 B .6.5C .7D .8C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.10.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3 B .4C .5D .8B解析:B 【解析】 【分析】众数是出现次数最多的数,据此求解即可. 【详解】∵数据4出现了2次,最多, ∴众数为4, 故选:B . 【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题11.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的中位数是________cm.40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4解析:40【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm,此中位数是40cm故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的.12.小明用S2=110[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S2=110[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.13.组数据2,x,1,3,5,4,若这组数据的中位数是3,则x的值是______.3【解析】【分析】利用中位数的定义只有x和3的平均数可能为3从而得到x的值【详解】解:除x外5个数由小到大排列为12345因为原数据有6个数所以最中间的两个数的平均数为3所以只有x+3=2×3即x=解析:3 【解析】 【分析】利用中位数的定义,只有x 和3的平均数可能为3,从而得到x 的值. 【详解】解:除x 外5个数由小到大排列为1、2、3、4、5, 因为原数据有6个数,所以最中间的两个数的平均数为3, 所以只有x+3=2×3,即x=3. 故答案为3. 【点睛】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5 【解析】 【分析】根据众数和平均数的定义求解. 【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5, 这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5. 故答案为:5;5. 【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数. 15.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.乙【分析】根据方差的定义方差越小数据越稳定即可得出答案【详解】该月份白菜价格最稳定的是乙市场;故答案为乙【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量方差越大表明这组数据偏离平均数越解析:乙 【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【详解】2S 7.5=甲,2S 1.5乙=,2S 3.1=丙, 222S S S ∴>>甲乙丙,∴该月份白菜价格最稳定的是乙市场;故答案为乙. 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 8.9 环,方差分别是 S 甲2=1.7,S 乙 2=1.2,则关于甲、乙两人在这次射击训练中成绩稳定是___________.(填“甲”或“乙”)乙【分析】根据方差的定义方差越小数据越稳定即可求解【详解】因为S 甲2=17>S 乙2=12方差小的为乙所以关于甲乙两人在这次射击训练中成绩稳定是乙故答案为乙【点睛】本题考查了方差的意义方差是用来衡量一解析:乙 【分析】根据方差的定义,方差越小数据越稳定即可求解. 【详解】因为S 甲2=1.7>S 乙2=1.2,方差小的为乙,所以关于甲、乙两人在这次射击训练中成绩稳定是乙. 故答案为乙. 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是___________.68【分析】本题可用求平均数的公式解出x 的值在运用方差的公式解出方差【详解】解:依题意得:5+8+x +10+4=2x×5所以x =32x =6方差s2==68【点睛】本题考查了算术平均数方差的计算方法熟解析:6.8 【分析】本题可用求平均数的公式解出x 的值,在运用方差的公式解出方差. 【详解】解:依题意得:5+8+x+10+4=2x×5,所以x=3,2x=6,方差s2=15()()()()()222225-6+8-6+3-6+10-6+4-6⎡⎤⎣⎦=6.8,【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键.18.已知一组数据的方差s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为_____.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn ﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].19.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.2323【解析】【分析】根据中位数和众数的定义求解即可【详解】解:由折线统计图可知阅读20本的有4人21本的有8人23本的有20人24本的有8人共40人∴其中位数是第2021个数据的平均数即=23众解析:23 23【解析】【分析】根据中位数和众数的定义求解即可.【详解】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即23232+=23,众数为23, 故答案为23、23. 【点睛】本题考查了折线统计图及中位数、众数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算.20.某班七个兴趣小组人数分别为4,5,6,x ,6,7,7,已知这组数据的平均数是6,则这组数据的众数是______.7【解析】【分析】根据平均数的计算公式先求出x 的值再根据众数的定义求解即可【详解】根据题意知解得:则这组数据为4566777所以这组数据的众数为7故答案为:7【点睛】此题考查众数与平均数众数是一组数解析:7 【解析】 【分析】根据平均数的计算公式先求出x 的值,再根据众数的定义求解即可. 【详解】 根据题意知4562x 7267++⨯++⨯=,解得:x 7=,则这组数据为4,5,6,6,7,7,7, 所以这组数据的众数为7, 故答案为:7. 【点睛】此题考查众数与平均数,众数是一组数据中出现次数最多的数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.三、解答题21.嘉淇同学利用业余时间进行射击训练,一共射击 7 次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是 ;中位数是 ; (2)求这组成绩的方差;解析:(1)10,9(2)87【分析】(1)根据众数的定义:一组数据中出现次数最多的数和中位数的定义:按照顺序排列的一组数据中居于中间位置的数,结合统计图得到答案; (2)先求出这组数的平均数,再求出这组成绩的方差. 【详解】解:(1)由折线统计图可知第1次:10环;第2次:7环;第3次:10环;第4次:10环;第5次:9环;第6次:8环;第7次:9环 10出现的次数最多,所以众数为10;这7次成绩从小到大排列为:7,8,9,9,10,10,10, 故中位数为9.(2)这组成绩的平均数为:()1107101098997++++++=, 这组成绩的方差为:()()()()2222181093992897977⎡⎤-⨯+-⨯+-+-=⎣⎦ 【点睛】本题考查了折线统计图,中位数,众数及方差.掌握中位数,众数及方差的定义是解题的关键.22.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵): 1 1 2 3 2 3 2 3 3 4 3 3 4 3 3 5 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析: ①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少? (2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?解析:(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户. 【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得; ②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得. 【详解】(1)①由已知数据知3棵的有12人、4棵的有8人, 补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是12233124854613.430⨯+⨯+⨯+⨯+⨯+⨯=(棵)中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵)答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵.(2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户. 【点睛】本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析; 方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内; ②估计该校1200名学生中达到“优秀”的学生总人数.解析:(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人 【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段; ②用优秀率乘以该校共有的学生数,即可求出答案. 【详解】解:(1)要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.答案是:方案三;(2)①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数,x≤<分数段内;∴这次竞赛成绩的中位数落在落在9095x≤<分数段内;∴该校1200名学生竞赛成绩的中位数落在9095⨯=(人).②由题意得:120070%840∴该校1200名学生中达到“优秀”的学生总人数为840人.【点睛】解决此题,需要能从统计表中获取必要的信息,根据题意列出算式是本题的关键,用到的知识点是抽样的可靠性,中位数的定义,用样本估计总体等.24.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?解析:(1)a=10,b=8,c=8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a=10,b=8,c=8.6.(2)甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲乙射击成绩统计表平均数中位数方差命中10环的次数甲70乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.解析:(1)补全图表见解析;(2)甲,理由见解析;(3)可制定评判规则为:命中10环次数较多者胜出,理由见解析.【分析】(1)根据甲选手成绩的平均数可求出甲选手第8次命中的环数,即可补全折线图;然后根据平均数、中位数和方差的求法补全统计表;(2)根据方差的意义可得答案;(3)可根据乙选手命中10环1次,甲选手没有命中10环来制定评判规则.【详解】解:(1)甲选手第8次命中的环数为:7×10-(9+6+7+6+5+7+7+8+9)=6,将甲选手的成绩从小到大排列为:5,6,6,6,7,7,7,8,9,9,中间两次的环数分别为:7,7,故中位数为7772+=, 2222221=5767377387972=1.610S 甲,乙选手成绩的平均数为:24687789910=710,补全表格和折线图为:平均数 中位数 方差 命中10环的次数 甲 771.6乙7 7.5 5.41(2)如果规定成绩较稳定者胜出,则甲胜出, 理由:因为甲的方差小于乙的方差, 所以甲的成绩比乙稳定,即甲胜出;(3)可制定评判规则为:命中10环次数较多者胜出, 理由:因为乙选手命中10环1次,甲选手没有命中10环, 所以乙胜出. 【点睛】本题考查了折线统计图,平均数、中位数、方差的意义与求法,能够从图表中得出有用信息是解题的关键.26.甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次 第2次 第3次 第4次 第5次甲 10 8 9108乙109ab9()1若甲、乙射击平均成绩一样,求+a b 的值;()2在()1条件下,若,a b 是两个连续整数,试问谁发挥的更稳定?解析:(1)17a b +=;(2)乙更稳定【分析】(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出+a b 的值;(2)根据题意令8,9a b ==,分别计算甲、乙的方差,方差越小.成绩越稳定. 【详解】 解:(1) 108910895x ++++==甲(环)109995a bx ++++==乙(环)17a b ∴+=(2)17a b +=且,a b 为连续的整数∴令8,9a b ==()()()()()22222211098999109890.85S ⎡⎤=-+-+-+-+-=⎣⎦甲,()()()()()2222221109999989990.45S ⎡⎤=-+-+-+-+-=⎣⎦乙,22S S >甲乙∴乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.27.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题: (1)a =(2)请完成图中表示甲成绩变化情况的折线; (3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.解析:(1)70;(2)详见解析;(3)80;(4)乙将被选中,理由详见解析 【分析】(1)根据平均数公式即可求得a 的值; (2)根据(1)计算的结果即可作出折线图; (3)利用平均数公式即可秋求解;(4)首先比较平均数,选择平均数大的,若相同,则比较方差,选择方差小,比较稳定的. 【详解】解:(1)根据题意得:901009050805a++++=,解得:a=70.(2)完成图中表示甲成绩变化情况的折线如图:(3)()乙1=8070809080=805x ++++, (4)甲乙成绩的平均数相同,乙的方差小于甲的方差,乙比甲稳定,所以乙将被选中. 【点睛】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.28.某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示: (1)根据图示填写下表 班级 中位数(分) 众数(分)平均数(分)一班 85二班10085(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好? (3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?解析:(1)85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定. 【分析】(1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好; (3)根据方差公式计算即可:S 2=()()()222121n x x x x x x n ⎡⎤-+--⎣⎦(可简单记忆为“等于差方的平均数”) 【详解】解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100, 二班5名选手的复赛成绩为:70、100、100、75、80, 一班的众数为85,一班的平均数为(75+80+85+85+100)÷5=85, 二班的中位数是80; 班级 中位数(分) 众数(分) 平均数(分) 一班 85 85 85 二班8010085。

人教版八年级下册数学第二十章 数据的分析含答案(往年考题)

人教版八年级下册数学第二十章 数据的分析含答案(往年考题)

人教版八年级下册数学第二十章数据的分析含答案一、单选题(共15题,共计45分)1、数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成如图所示的条形统计图,这组数据的中位数和众数分别是()A.中位数和众数都是8小时B.中位数是25人,众数是20人C.中位数是13人,众数是20人D.中位数是6小时,众数是8小时2、下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差3、某同学参加射击训练,共射击了六发子弹,击中的环数分别为5,4,9,7,7,10.则下列说法正确的是()A.中位数为8B.方差为C.众数为10D.以上均不正确4、将8.5,8.0,8.3,6.0,8.2,8.0,9.0按去掉一个最高分和一个最低分计算平均分是()A.8.0B.8.2C.8.3D.8.55、今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分6、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S=0.56,S=0.60,S=0.50,S=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁7、某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为()A.14,13B.13,14C.14,13.5D.14,13.68、在某校举行的“经典古诗文”诵读比赛中,有21名同学参加,预赛成绩各不相同,要取前10名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )A.平均数B.中位数C.众数D.以上都不对9、甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为,,则甲、乙两支仪仗队的队员身高更整齐的是().A.甲B.乙C.一样D.无法计算10、一组数据1,2,4,x,6,8的众数是1,则这组数据的中位数是()A.2B.3C.4D.611、某校有21名同学参加比赛,预赛成绩各不相同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这21名同学成绩的()A.中位数B.众数C.平均数D.最高分12、某校四个绿化小组某天的植树棵树如下:10,10,x,8.若这组数据的众数与平均数相等,那么这组数据的中位数是()A.9B.10C.11D.1213、甲、乙、丙、丁四位选手各10次射击的平均成绩都是92环,其中甲的成绩的方差为0.015,乙的成绩的方差为0.035,丙的成绩的方差为0.025,丁的成绩的方差为0.027,由此可知()A.甲的成绩最稳定B.乙的成绩最稳定C.丙的成绩最稳定D.丁的成绩最稳定14、河南省某地区今年3月份第一周的最高气温分别为:,,,,,,,关于这组数据,下列表述正确的是()A.中位数是7B.众数是4C.平均数是4D.方差是615、某青年排球队名队员的年龄情况如下表所示,则这名队员的平均年龄是()年龄人数A. 岁B. 岁C. 岁D. 岁二、填空题(共10题,共计30分)16、某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.17、某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析获得了两条信息和一个统计表信息1:4月份日最高气温的中位数是15.5℃;信息2:日最高气温是17℃的天数比日最高气温是18℃的天数多4天.4月份日最高气温统计表气温℃11 12 13 14 15 16 17 18 19 20天数/天2 3 ※5 4 ※※2 2 3请根据上述信息回答下列问题:(1)4月份最高气温是13℃的有________ 天,16℃的有________ 天,17℃的有________ 天.(2)4月份最高气温的众数是________ ℃,极差是________ ℃.18、一组数据3,5,7,8,4,7的中位数是________.19、数据1,0,5,3,5,π,4的中位数是________.20、据4月13日新华社报道,我国由陈薇院士组织的腺病毒载体重组新冠病毒疫苗率先进入第二期临床试验.我们从中选取甲、乙、丙三组各有7名志愿者,测得三组志愿者的体重数据的平均数都是58,方差分别为S甲2=36,S乙2=25,S丙2=16,则数据波动最小的一组是________.21、现有甲、乙两支篮球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是________队.22、国家将扩大公共场所免费上网范围,某小区响应号召调查小区居民上网费用情况,随机抽查了30户家庭的月上网费用,结果如表月网费(元)50 100 150户数(人)15 12 3则关于这30户家庭的月上网费用,中位数是________.23、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:=13,=13,S甲2=7.5,S乙2=21.6,则小麦长势比较整齐的试验田是________(填“甲”或“乙”).24、小明在七年级第二学期的数学成绩如表,如果按如图显示的权重要求,那么小明该学期的总评得分为________.姓名平时期中期末总评小明90 90 8525、要了解某地农户用电情况,抽查了部分农户在某地一个月中用电情况:用电15度的有3户,用电20度的有5户,用电30度的有2户,那么平均每户用电________.三、解答题(共6题,共计25分)26、一个水库养了某种鱼,从中捕捞了20条,称得它们的重量如下:(单位:kg)1.15、1.04、1.11、1.07、1.10、1.32、1.25、1.19、1.15、1.21、1.18、1.14、1.09、1.25、1.21、1.29、1.16、1.24、1.12、1.16,那么这组数据的平均数是多少?我们能否据此估计水库中鱼的平均重量?27、你们班的同学中有在同一个月出生的吗?有在同月同日出生的吗?你的同学在哪个月出生最多?做个小调查,看看会有什么有趣的发现.28、某中学举行“中国梦•校园好声音”歌手大赛,根据初赛成绩,初二和初三各选出5名选手组成初二代表队和初三代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初二85初三85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.29、小明、小丽两位同学八年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:(1)根据上图中提供的数据填写下表:平均成绩(分)中位数(分)众数(分)方差(S2)小明80 80小丽85 260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是谁?(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.30、公园里有甲、乙两组游客正在做团体游戏,两组游客的年龄如下:(单位:岁)甲组:13,13,14,15,15,15,15,16,17,17;乙组:3,4,4,5,5,6,6,6,54,57.我们很想了解一下甲、乙两组游客的年龄特征,请你运用“数据的代表”的有关知识对甲、乙两组数据进行分析,帮我们解决这个问题.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、B5、C7、D8、B9、A10、B11、A12、B13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共6题,共计25分)26、27、28、29、。

人教版初中八年级数学下册第二十章《数据的分析》知识点复习(含答案解析)

人教版初中八年级数学下册第二十章《数据的分析》知识点复习(含答案解析)

一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是()A.6℃B.6.5℃C.7℃D.7.5℃2.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.平均数是54 D.方差是293.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和44.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5 B.86.5 C.90 D.90.55.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( )年龄13141516人数2341A.15,15 B.14,15 C.14,14.5 D.15,14.56.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A .①②③B .①②C .①③D .②③ 7.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( )A .8B .5C .6D .38.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁 B .丙 C .乙 D .甲 9.已知数据x ,4,0,3,-1的平均数是1,那么它的众数是( )A .4B .0C .3D .-110.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数11.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20章 数据的分析单元复习测试
班别___________姓名_____________学号_______成绩__________
一、选择题(每小题4分,共36分)
1、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的期中考试数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有( )
A.1个
B.2个
C.3个
D.4个
2、人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:
80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是( )
A.甲班
B.乙班
C.两班成绩一样稳定
D.无法确定 3、某地连续9天的最高气温统计如下:
这组数据的中位数和众数别是( )
A.24,25
B.24.5,25
C.25,24
D.23.5,24
4、在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0, 0.1,则在这10天中该学生的体温波动数据中不正确的是( )
A.平均数为0.12
B.众数为0.1
C.中位数为0.1
D. 方差为0.02 5、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( ) A.100分 B.95分 C.90分 D.85分
6、已知三年四班全班35人身高的算术平均数与中位数都是150厘米,但后来发现其中有一位同学的身高登记错误,误将160厘米写成166厘米,正确的平均数为a 厘米,中位 数为b 厘米关于平均数a 的叙述,下列何者正确( ) A.大于158 B.小于158 C.等于158 D.无法确定
7、在上题中关于中位数b 的叙述。

下列何者正确 ( )
A.大于158
B.小于158
C.等于158
D.无法确定
8、已知一组数据1、2、y的平均数为4,那么()
A.y=7
B.y=8
C.y=9
D.y=10
9、若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,2a2,…,2a n的方差是()
A.5
B.10
C.20
D.50
二、填空题(每空3分,共45分)
10、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4
的比例确定。

已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________
11、在一次测验中,某学习小组的5名学生的成绩如下(单位:分)
68 、75、67、66、99
这组成绩的平均分x= ,中位数M= ;若去掉一个最高分后的平均分'x= ;那么所求的x,M,'x这三个数据中,你认为能描述该小组学生这次测验成绩的一般水平的数据是 .
12、从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果如下:
−1.2,0.1,−8.3,1.2,10.8,−7.0
这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为________ (结果保留到小数点后第一位)
13、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 .
14、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:
某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 _________ (把你认为正确结论的序号都填上).
15、某班同学进行知识竞赛,将所得成绩进行整理后,如右图:竞赛成绩的平均数为_____ .
16、物理老师布置了10道选择题作为课堂练习,右图是全班解题情况的统计,平均每个学生做对了 _________ 道题;做对题数的中位数为;众数为_________ ;
17、现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如右图所示.
(1)由观察可知,______班的方差较大;
(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.
三、解答题(19分)
18、某工厂有220名员工,财务科要了解员工收入情况。

现在抽测了10名员工的本月收入,结果如下:(单位:元)。

1660 1540 1510 1670 1620 1580 1580 1600 1620 1620
(1)全厂员工的月平均收入是多少?
(2)平均每名员工的年薪是多少?
(3)财务科本月应准备多少钱发工资?
(4)一名本月收入为1570元的员工收入水平如何?
题数
答案:
1-9:BBADC,BCCC
10. 84.5分
11. 75分,68分, 69分 , M
12. 19.1cm,164.3cm
13.2
14. ①②③
15. 74分
16.9(或8.78), 9,8和10
17.A,4
18. 解:(1)依题意得,
1
x=+++++++++=1600 (1660154015101670162015801580160016201620) 10
因此样本的平均数是1600元,由此可以推测出全厂员工的月平均收入约是1600元。

(2)由(1)得这个厂220名员工的月平均收入约是1600元,
⨯=(元)
16001219200
由此可以推测出这个厂平均每名员工的年薪约是19200元。

(3)由(1)得这个厂220名员工的本月平均收入约是1600元,
⨯=(元)
1600220352000
由此可以推测出财务科本月应准备约352000元发工资。

(4)样本的中位数是1610元,由此可以推测出全厂员工本月收入的中位数是1610元。


为1570元小于1610元,由此推测出一名本月收入为1570元的员工的收入可能是中下水平。

或由(1)得这个厂220名员工的本月平均收入约是1600元。

因为1570元小于1600元,由此推测出一名本月收入为1570元的员工的收入可能是低于平均水平。

相关文档
最新文档