经典导学案
一元二次方程、不等式(经典导学案及练习答案详解)
§1.5一元二次方程、不等式学习目标1.会从实际情景中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.知识梳理1.二次函数与一元二次方程、不等式的解的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅2.分式不等式与整式不等式(1)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0);(2)f(x)g(x)≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.简单的绝对值不等式|x|>a(a>0)的解集为(-∞,-a)∪(a,+∞),|x|<a(a>0)的解集为(-a,a).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若方程ax2+bx+c=0无实数根,则不等式ax2+bx+c>0的解集为R.(×)(2)若不等式ax2+bx+c>0的解集为(x1,x2),则a<0.(√)(3)若ax 2+bx +c >0恒成立,则a >0且Δ<0.( × ) (4)不等式x -ax -b ≥0等价于(x -a )(x -b )≥0.( × )教材改编题1.若集合A ={x |x 2-9x >0},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A .R B .{x |x >-1} C .{x |x <3或x >9} D .{x |x <-1或x >3} 答案 C解析 A ={x |x >9或x <0},B ={x |-1<x <3}, ∴A ∪B ={x |x <3或x >9}.2.若关于x 的不等式ax 2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13,则a +b =________. 答案 -14解析 依题意知⎩⎨⎧-b a =-12+13,2a =⎝⎛⎭⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.3.一元二次不等式ax 2+ax -1<0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 (-4,0)解析 依题意知⎩⎪⎨⎪⎧ a <0,Δ<0,即⎩⎪⎨⎪⎧a <0,a 2+4a <0,∴-4<a <0.题型一 一元二次不等式的解法 命题点1 不含参的不等式例1 (1)不等式-2x 2+x +3<0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪ -32<x <1C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1或x >32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-32或x >1 答案 C解析 -2x 2+x +3<0可化为2x 2-x -3>0, 即(x +1)(2x -3)>0, ∴x <-1或x >32.(2)(多选)已知集合M ={}x ||x -1|≤2,x ∈R ,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪5x +1≥1,x ∈R ,则( ) A .M ={}x |-1≤x ≤3 B .N ={}x |-1≤x ≤4 C .M ∪N ={}x |-1≤x ≤4 D .M ∩N ={}x |-1<x ≤3 答案 ACD解析 由题设可得M =[-1,3],N =(-1,4], 故A 正确,B 错误;M ∪N ={x |-1≤x ≤4},故C 正确; 而M ∩N ={x |-1<x ≤3},故D 正确. 命题点2 含参的不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 延伸探究 在本例中,把a >0改成a ∈R ,解不等式. 解 当a >0时,同例2,当a =0时,原不等式等价于-x +1<0,即x >1, 当a <0时,1a<1,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, 解得x >1或x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a , 当a =1时,不等式的解集为∅,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1, 当a =0时,不等式的解集为{x |x >1},当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a或x >1. 教师备选解关于x 的不等式x 2-ax +1≤0. 解 由题意知,Δ=a 2-4, ①当a 2-4>0,即a >2或a <-2时,方程x 2-ax +1=0的两根为x =a ±a 2-42,∴原不等式的解为a -a 2-42≤x ≤a +a 2-42.②若Δ=a 2-4=0,则a =±2.当a =2时,原不等式可化为x 2-2x +1≤0, 即(x -1)2≤0,∴x =1;当a =-2时,原不等式可化为x 2+2x +1≤0, 即(x +1)2≤0,∴x =-1.③当Δ=a 2-4<0,即-2<a <2时, 原不等式的解集为∅.综上,当a >2或a <-2时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a -a 2-42≤x ≤a +a 2-42; 当a =2时,原不等式的解集为{1}; 当a =-2时,原不等式的解集为{-1}; 当-2<a <2时,原不等式的解集为∅.思维升华 对含参的不等式,应对参数进行分类讨论,常见的分类有 (1)根据二次项系数为正、负及零进行分类.(2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(多选)已知关于x 的不等式ax 2+bx +c ≥0的解集为{x |x ≤-3或x ≥4},则下列说法正确的是( ) A .a >0B .不等式bx +c >0的解集为{x |x <-4}C .不等式cx 2-bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-14或x >13 D .a +b +c >0 答案 AC解析 关于x 的不等式ax 2+bx +c ≥0的解集为(-∞,-3]∪[4,+∞), 所以二次函数y =ax 2+bx +c 的开口方向向上,即a >0,故A 正确; 对于B ,方程ax 2+bx +c =0的两根分别为-3,4,由根与系数的关系得⎩⎨⎧-ba=-3+4,ca =-3×4,解得⎩⎪⎨⎪⎧b =-a ,c =-12a .bx +c >0⇔-ax -12a >0, 由于a >0,所以x <-12,所以不等式bx +c >0的解集为{}x |x <-12, 故B 不正确;对于C ,由B 的分析过程可知⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以cx 2-bx +a <0⇔-12ax 2+ax +a <0⇔12x 2-x -1>0⇔x <-14或x >13,所以不等式cx 2-bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-14或x >13,故C 正确; 对于D ,a +b +c =a -a -12a =-12a <0,故D 不正确. (2)解关于x 的不等式(x -1)(ax -a +1)>0.解 ①当a =0时,原不等式可化为x -1>0,即x >1; 当a ≠0时,(x -1)(ax -a +1)=0的两根分别为1,1-1a .②当a >0时,1-1a<1,∴原不等式的解为x >1或x <1-1a .③当a <0时,1-1a >1,∴原不等式的解为1<x <1-1a.综上,当a =0时,原不等式的解集为{x |x >1};当a >0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <1-1a ; 当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1-1a . 题型二 一元二次不等式恒(能)成立问题 命题点1 在R 上恒成立问题例3 (2022·漳州模拟)对∀x ∈R ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .-2<a ≤2 B .-2≤a ≤2 C .a <-2或a ≥2 D .a ≤-2或a ≥2答案 A解析 不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,当a -2=0,即a =2时,-4<0恒成立,满足题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧ a -2<0,Δ<0,即有⎩⎪⎨⎪⎧a <2,4(a -2)2+16(a -2)<0,解得-2<a <2.综上可得,a 的取值范围为(-2,2]. 命题点2 在给定区间上恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,则实数m 的取值范围为________. 答案 ⎝⎛⎭⎫-∞,67 解析 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法: 方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6, x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增,所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上单调递减, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0在x ∈[1,3]上恒成立, 所以m <6x 2-x +1在x ∈[1,3]上恒成立.令y =6x 2-x +1,因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎝⎛⎭⎫-∞,67. 命题点3 给定参数范围的恒成立问题例5 (2022·宿迁模拟)若不等式x 2+px >4x +p -3,当0≤p ≤4时恒成立,则x 的取值范围是( ) A .[-1,3] B .(-∞,-1] C .[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 不等式x 2+px >4x +p -3 可化为(x -1)p +x 2-4x +3>0,由已知可得[(x -1)p +x 2-4x +3]min >0(0≤p ≤4), 令f (p )=(x -1)p +x 2-4x +3(0≤p ≤4),可得⎩⎪⎨⎪⎧f (0)=x 2-4x +3>0,f (4)=4(x -1)+x 2-4x +3>0,∴x <-1或x >3.教师备选函数f (x )=x 2+ax +3.若当x ∈[-2,2]时,f (x )≥a 恒成立,则实数a 的取值范围是________. 若当a ∈[4,6]时,f (x )≥0恒成立,则实数x 的取值范围是________________. 答案 [-7,2](-∞,-3-6]∪[-3+6,+∞)解析 若x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 令g (x )=x 2+ax +3-a ,则有①Δ≤0或②⎩⎪⎨⎪⎧Δ>0,-a2<-2,g (-2)=7-3a ≥0.或③⎩⎪⎨⎪⎧Δ>0,-a2>2,g (2)=7+a ≥0,解①得-6≤a ≤2,解②得a ∈∅, 解③得-7≤a <-6.综上可得,满足条件的实数a 的取值范围是[-7,2]. 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 思维升华 恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式Δ,一元二次不等式在给定区间上恒成立,不能用判别式Δ,一般分离参数求最值或分类讨论.跟踪训练2 (1)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1}答案 A解析 因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点, 所以Δ=(-4)2-4×(a 2-3a )≥0, 即a 2-3a -4≤0,所以(a -4)(a +1)≤0, 解得-1≤a ≤4,所以实数a 的取值范围是{a |-1≤a ≤4}.(2)当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是( ) A .(-∞,4] B .(-∞,-5) C .(-∞,-5] D .(-5,-4)答案 C解析 令f (x )=x 2+mx +4, ∴当x ∈(1,2)时,f (x )<0恒成立,∴⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0, 即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0, 解得m ≤-5.课时精练1.不等式9-12x ≤-4x 2的解集为( ) A .RB .∅C.⎩⎨⎧⎭⎬⎫x ⎪⎪x =32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠32 答案 C解析 原不等式可化为4x 2-12x +9≤0, 即(2x -3)2≤0, ∴2x -3=0,∴x =32,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =32. 2.(2022·揭阳质检)已知p :|2x -3|<1,q :x (x -3)<0,则p 是q 的( ) A .充要条件 B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件 答案 B解析 ∵p :|2x -3|<1,则-1<2x -3<1, 可得p :1<x <2,又∵q :x (x -3)<0,由x (x -3)<0,可得q :0<x <3, 可得p 是q 的充分不必要条件.3.(2022·南通模拟)不等式(m +1)x 2-mx +m -1<0的解集为∅,则m 的取值范围是( ) A .m <-1 B .m ≥233C .m ≤-233D .m ≥233或m ≤-233答案 B解析 ∵不等式(m +1)x 2-mx +m -1<0的解集为∅, ∴不等式(m +1)x 2-mx +m -1≥0恒成立.①当m +1=0,即m =-1时,不等式化为x -2≥0, 解得x ≥2,不是对任意x ∈R 恒成立,舍去; ②当m +1≠0,即m ≠-1时,对任意x ∈R , 要使(m +1)x 2-mx +m -1≥0,只需m +1>0且Δ=(-m )2-4(m +1)(m -1)≤0, 解得m ≥233.综上,实数m 的取值范围是m ≥233.4.(2022·合肥模拟)不等式x 2+ax +4≥0对一切x ∈[1,3]恒成立,则a 的最小值是( ) A .-5 B .-133 C .-4 D .-3答案 C解析 ∵x ∈[1,3]时,x 2+ax +4≥0恒成立, 则a ≥-⎝⎛⎭⎫x +4x 恒成立, 又x ∈[1,3]时,x +4x ≥24=4,当且仅当x =2时取等号.∴-⎝⎛⎭⎫x +4x ≤-4, ∴a ≥-4.故a 的最小值为-4.5.(多选)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是( )A .(-2,-1)B .(-3,-6)C .(2,4)D.⎝⎛⎭⎫-3,-32 答案 AD解析 不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2, 且⎩⎪⎨⎪⎧ a <0,b a =12,即a =2b <0,故选AD. 6.(多选)(2022·湖南长郡中学月考)已知不等式x 2+ax +b >0(a >0)的解集是{x |x ≠d },则下列四个结论中正确的是( )A .a 2=4bB .a 2+1b≥4 C .若不等式x 2+ax -b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则c =4答案 ABD解析 由题意,知Δ=a 2-4b =0,所以a 2=4b ,所以A 正确;对于B ,a 2+1b =a 2+4a 2≥2a 2·4a 2=4,当且仅当a 2=4a 2,即a =2时等号成立, 所以B 正确;对于C ,由根与系数的关系,知x 1x 2=-b =-a 24<0,所以C 错误; 对于D ,由根与系数的关系,知x 1+x 2=-a ,x 1x 2=b -c =a 24-c , 则|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =a 2-4⎝⎛⎭⎫a 24-c =2c =4, 解得c =4,所以D 正确.7.不等式3x -1>1的解集为________.答案 (1,4)解析 ∵3x -1>1, ∴3x -1-1>0,即4-x x -1>0, 即1<x <4.∴原不等式的解集为(1,4).8.一元二次方程kx 2-kx +1=0有一正一负根,则实数k 的取值范围是________. 答案 (-∞,0)解析 kx 2-kx +1=0有一正一负根,∴⎩⎪⎨⎪⎧ Δ=k 2-4k >0,1k<0,解得k <0. 9.已知关于x 的不等式-x 2+ax +b >0.(1)若该不等式的解集为(-4,2),求a ,b 的值;(2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧2-4=a ,2×(-4)=-b , 解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0,即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅;当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1);当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅; 当a >-2时,不等式的解集为(-1,a +1).10.若二次函数f (x )=ax 2+bx +c (a ≠0),满足f (x +2)-f (x )=16x 且f (0)=2.(1)求函数f (x )的解析式;(2)若存在x ∈[1,2],使不等式f (x )>2x +m 成立,求实数m 的取值范围.解 (1)由f (0)=2,得c =2,所以f (x )=ax 2+bx +2(a ≠0),由f (x +2)-f (x )=[a (x +2)2+b (x +2)+2]-(ax 2+bx +2)=4ax +4a +2b ,又f (x +2)-f (x )=16x ,得4ax +4a +2b =16x ,所以⎩⎪⎨⎪⎧4a =16,4a +2b =0,故a =4,b =-8, 所以f (x )=4x 2-8x +2.(2)因为存在x ∈[1,2],使不等式f (x )>2x +m 成立,即存在x ∈[1,2],使不等式m <4x 2-10x +2成立,令g (x )=4x 2-10x +2,x ∈[1,2],故g (x )max =g (2)=-2,所以m <-2,即m 的取值范围为(-∞,-2).11.(多选)已知函数f (x )=4ax 2+4x -1,∀x ∈(-1,1),f (x )<0恒成立,则实数a 的取值可能是( )A .0B .-1C .-2D .-3答案 CD解析 因为f (x )=4ax 2+4x -1,所以f (0)=-1<0成立.当x ∈(-1,0)∪(0,1)时,由f (x )<0可得4ax 2<-4x +1,所以4a <⎝⎛⎭⎫1x 2-4x min ,当x ∈(-1,0)∪(0,1)时,1x∈(-∞,-1)∪(1,+∞), 所以1x 2-4x =⎝⎛⎭⎫1x-22-4≥-4, 当且仅当x =12时,等号成立, 所以4a <-4,解得a <-1.12.(2022·南京质检)函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0,即x 2-2x -c <0的解集为(m ,m +4),所以m ,m +4是方程x 2-2x -c =0的两个根,所以⎩⎪⎨⎪⎧m +m +4=2,m (m +4)=-c ,解得m =-1,c =3. 13.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.答案 [-4,3]解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.14.若不等式x 2+ax -2>0在[1,5]上有解,则a 的取值范围是________.答案 ⎝⎛⎭⎫-235,+∞ 解析 对于方程x 2+ax -2=0,∵Δ=a 2+8>0,∴方程x 2+ax -2=0有两个不相等的实数根,又∵两根之积为负,∴必有一正根一负根,设f (x )=x 2+ax -2,于是不等式x 2+ax -2>0在[1,5]上有解的充要条件是f (5)>0,即5a +23>0,解得a >-235. 故a 的取值范围是⎝⎛⎭⎫-235,+∞.15.(2022·湖南多校联考)若关于x 的不等式x 2-(2a +1)x +2a <0恰有两个整数解,则a 的取值范围是( )A.⎩⎨⎧⎭⎬⎫a ⎪⎪ 32<a ≤2 B.⎩⎨⎧⎭⎬⎫a ⎪⎪-1<a ≤-12 C.⎩⎨⎧⎭⎬⎫a ⎪⎪-1<a ≤-12或32≤a <2 D.⎩⎨⎧⎭⎬⎫a ⎪⎪ -1≤a <-12或32<a ≤2 答案 D解析 令x 2-(2a +1)x +2a =0,解得x =1或x =2a .当2a >1,即a >12时, 不等式x 2-(2a +1)x +2a <0的解集为{x |1<x <2a },则3<2a ≤4,解得32<a ≤2; 当2a =1,即a =12时, 不等式x 2-(2a +1)x +2a <0无解,所以a =12不符合题意; 当2a <1,即a <12时,不等式x 2-(2a +1)x +2a <0的解集为{x |2a <x <1}, 则-2≤2a <-1,解得-1≤a <-12. 综上,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪-1≤a <-12或32<a ≤2. 16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)若不等式组⎩⎪⎨⎪⎧f (x )>0,f (x +k )<0的正整数解只有一个,求实数k 的取值范围; (2)若对于任意x ∈[-1,1],不等式t ·f (x )≤2恒成立,求t 的取值范围. 解 (1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎨⎧ 0+5=-b 2,0×5=c 2, 解得⎩⎪⎨⎪⎧b =-10,c =0. 所以f (x )=2x 2-10x .不等式组⎩⎪⎨⎪⎧ f (x )>0,f (x +k )<0, 即⎩⎪⎨⎪⎧2x 2-10x >0,2(x 2+2kx +k 2)-10(x +k )<0, 解得⎩⎪⎨⎪⎧x <0或x >5,-k <x <5-k , 因为不等式组的正整数解只有一个,可得该正整数解为6,可得6<5-k ≤7,解得-2≤k <-1,所以k 的取值范围是[-2,-1).(2)tf (x )≤2,即t (2x 2-10x )≤2,即tx 2-5tx -1≤0,当t =0时显然成立,当t >0时,有⎩⎪⎨⎪⎧ t ·1-5t ·(-1)-1≤0,t ·1-5t ·1-1≤0, 即⎩⎪⎨⎪⎧t +5t -1≤0,t -5t -1≤0, 解得-14≤t ≤16, 所以0<t ≤16; 当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增, 所以只要其最大值满足条件即可,所以t -5t -1≤0,解得t ≥-14, 即-14≤t <0, 综上,t 的取值范围是⎣⎡⎦⎤-14,16.。
《仁义礼智,我固有之》 导学案
《仁义礼智,我固有之》导学案一、学习目标1、理解孟子“仁义礼智,我固有之”的观点。
2、学习孟子运用比喻、举例等论证方法进行说理的技巧。
3、思考并探讨“仁义礼智”在现代社会中的价值和意义。
二、学习重难点1、重点(1)理解孟子关于“仁义礼智,我固有之”的论述。
(2)掌握文中重要的实词、虚词和句式。
2、难点(1)领悟孟子思想的现实意义。
(2)借鉴孟子的说理方法,提升自己的论说能力。
三、知识链接1、孟子简介孟子(约公元前 372 年公元前 289 年),名轲,字子舆,战国时期邹国(今山东邹城)人。
伟大的思想家、教育家,儒家学派的代表人物之一,与孔子并称“孔孟”。
2、《孟子》其书《孟子》一书是孟子的言论汇编,由孟子及其弟子共同编写而成,记录了孟子的治国思想、政治观点和政治行动,属儒家经典著作。
其学说出发点为性善论,主张德治。
四、文本研读(一)整体感知1、朗读课文,注意字音和停顿。
2、对照注释,疏通文意,理解文章的大致内容。
(二)具体分析1、孟子认为“仁义礼智,我固有之”,他是如何论证这一观点的?(1)以“恻隐之心,仁之端也;羞恶之心,义之端也;辞让之心,礼之端也;是非之心,智之端也”为例,指出人皆有“四端”,就像人皆有四肢一样,这是与生俱来的。
(2)通过“孺子将入于井”的例子,说明人在紧急情况下都会产生“怵惕恻隐之心”,这种同情心是“仁”的开端。
(3)以“人皆有所不忍,达之于其所忍,仁也;人皆有所不为,达之于其所为,义也”来说明,将不忍之心、不为之心推广扩充,就能够成就仁义。
2、文中运用了哪些论证方法?有何作用?(1)比喻论证如“人之有是四端也,犹其有四体也”,将“四端”比作人的四肢,形象生动地说明了“四端”是人天生就有的。
(2)举例论证“孺子将入于井”的例子,具体直观地论证了人皆有恻隐之心,从而论证了“仁之端也”。
3、思考:孟子所说的“仁义礼智”与我们今天所理解的“仁义礼智”有何异同?(三)深入探究1、孟子认为“仁义礼智,我固有之”,那么在现实生活中,我们应该如何培养和发扬这些品质?(1)要善于反省自身,发现自己内心的善端,并加以呵护和培养。
得道多助失道寡助导学案
得道多助,失道寡助导学案一、学习目标 (1)二、学习重难点 (2)三、预习检测 (2)四、中心思想 (3)五、段落划分 (4)六、写作手法 (5)七、读文感知 (6)八、经典语句解读 (7)九、预习检测答案 (9)十、全文翻译 (10)一、学习目标《得道多助失道寡助》这篇古文,是孟子政治主张的集中体现,强调了道义在政治和军事中的重要作用。
学习本文,首要目标是理解孟子提出的“得道多助,失道寡助”的深刻内涵,体会其中蕴含的哲理,并将其应用于日常生活和工作中。
学习目标还包括掌握本文的文言基础知识,如重点词汇、句式结构等,提高文言文阅读理解能力。
同时,通过深入分析文本,培养批判性思维,学会辩证看待问题,理解道义与力量之间的关系,以及道义在人际交往和社会治理中的重要性。
学习《得道多助失道寡助》,旨在深入理解孟子的政治主张,提升个人素养,培养正确的价值观和道德观。
二、学习重难点《得道多助失道寡助》一文的学习重难点主要聚焦于两方面。
首先,深入理解并把握孟子提出的“得道多助,失道寡助”的政治主张,这是本文的核心思想,也是理解孟子政治哲学的重要入口。
需要仔细揣摩文中的每一句话,体会其中的深刻内涵。
其次,本文是一篇文言文,对于文言词汇、句式结构等基础知识的掌握和运用也是学习的一大难点。
这需要我们通过反复阅读和练习,逐步提高文言文的阅读理解能力。
通过攻克这些重难点,我们能够更好地理解和运用孟子的政治主张,也能提升我们的文言文素养。
三、预习检测一、填空题1.《得道多助失道寡助》一文的作者是_______,他是_______时期的思想家、教育家,是_______家学派的代表人物。
2.“得道多助,失道寡助”中的“道”指的是__________________。
3.文章的中心论点是__________________。
二、选择题1.下列句子中加点词解释有误的一项是()A.天时不如地利(有利于作战的天气、时令)B.委而去之(离开)C.寡助之至,亲戚畔之(内外亲属)D.威天下不以兵革之利(武器)2.下列句子中加点词的意义和用法相同的一项是()A.环而攻之而不胜/委而去之B.三里之城/多助之至C.寡助之至/天下顺之D.然而不胜者/天时不如地利三、翻译题1.天时不如地利,地利不如人和。
应用举例(一)(优秀经典导学案)
1.2解三角形应用举例第一课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学设想新课讲授(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒75。
求A、B两点的距离(精确到0.1m)51,∠ACB=︒提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?请学生回答。
变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30︒,灯塔B 在观察站C南偏东60︒,则A、B之间的距离为多少?例2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法。
变式训练:若在河岸选取相距40米的C、D两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒3、学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。
4、课堂练习:课本第14页练习第1、2题5、归纳总结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。
《孔乙己》导学案(精选6篇)
《孔乙己》导学案 篇1 [教学目标] 1、认识封建科举制度的罪恶,教育学生珍惜现在的学习生活 2、在具体的自然环境和社会环境的描写中,去分析人物的性格特征,从而揭示孔乙己悲剧生活的社会根源。
[教学重点和难点]: 把握主题 [教学时数] 四教时 一、导语: 二、时代背景介绍 本文写于1918年冬天,发表于1919年4月的《新青年》杂志,后来收入短篇小说集《呐喊》。
在当时的文化教育领域,虽然在1906年就废止了封建科举制度,但封建复古逆流仍然很猖獗。
封建教育仍然是社会教育的核心内容。
鲁迅先生针对现状,写了二十多年前的社会现实,启发人们将其与当时现状进行对照,懂得批判与取舍。
三、作者介绍: 鲁迅是一位伟大的文学家、思想家和革命家。
从文学创作方面讲,鲁迅前期创作成熟和影响最大的是小说,而他后期则主要从事杂文创作。
小说集:《呐喊》《彷徨》,《狂人日记》是新中国第一篇白话文小说,他写的第二部就是《孔乙己》。
散文集:《从百草园到三味书屋》,杂文集:《》诗集:《野草》 四、读课文 1、检查预习,正字注音 阔绰(chu)阔气。
绰:宽绰,如绰绰有余 羼(chàn)混和,掺杂 绽出(zhàn)突露出来。
比较“绽”“淀”字 间或(jiàn)偶然,有时候。
注音“中间”读jian 拭(shì)擦蘸(zhàn)打折(shé)打断附和(hè)(言语动作)追随别人(多含贬义)。
比较:和平he 不屑置辩(xiè):认为不值得争辩 颓唐(tuí)精神萎靡,不振作 戕害(qiāng)伤害。
戕:杀害。
2、听录音,要求用一句话概括全文内容。
通过“我”——咸亨酒店小伙计的口述,记叙了清末下层知识分子孔乙己一生的不幸遭遇和悲惨结局。
五、理清小说结构 1、指名回顾小说情节的四个组成部分。
(开端、发展、高潮、结局) 2、按照小说情节的开端、发展、高潮、结局划分课文结构。
《伊索寓言》 导学案
《伊索寓言》导学案一、学习目标1、了解《伊索寓言》的基本知识,包括作者、创作背景、文学地位等。
2、能够读懂并理解《伊索寓言》中的经典故事,领会其中蕴含的道理。
3、学习通过寓言故事培养思考能力、道德观念和人生智慧。
4、掌握分析寓言故事的方法和技巧,提高文学鉴赏能力。
二、学习重难点1、重点(1)理解寓言故事中的深刻寓意和人生哲理。
(2)掌握分析寓言故事的方法,如通过人物形象、情节发展、语言表达等来揭示寓意。
2、难点(1)如何将寓言故事中的道理与现实生活相结合,指导自己的行为和思想。
(2)对于一些较为复杂或隐晦的寓言故事,准确把握其寓意。
三、知识链接1、作者简介伊索,相传为公元前 6 世纪古希腊的奴隶,善于讲寓言故事来讽刺权贵。
他所创作的寓言故事经后人整理,成为了《伊索寓言》。
2、创作背景《伊索寓言》产生于希腊的古典时期,当时社会矛盾尖锐,人们需要通过一种简单易懂的方式来表达对社会现象的看法和思考。
寓言这种形式短小精悍、寓意深刻,正好满足了这一需求。
3、文学地位《伊索寓言》是世界上最早的寓言集之一,对后来的欧洲寓言文学产生了深远影响,也是人类文化宝库中的重要组成部分。
四、学习过程1、自主阅读选择几篇《伊索寓言》中的经典故事,如《狐狸和葡萄》《农夫和蛇》《龟兔赛跑》等,进行自主阅读。
在阅读过程中,思考以下问题:(1)故事的主要情节是什么?(2)故事中的主要人物或动物有怎样的特点?(3)故事想要传达的道理是什么?2、小组讨论将同学们分成小组,交流自己对所读寓言故事的理解和感悟。
每个小组推选一名代表,在全班进行发言。
3、寓意分析以《狐狸和葡萄》为例,引导同学们分析故事的寓意。
狐狸因为够不着葡萄,就说葡萄是酸的。
这反映了一种怎样的心理?在生活中,我们是否也有过类似的经历?通过这样的分析,让同学们明白,这个故事告诉我们,有些人能力小,做不成事,就借口说时机未成熟,不要为自己的无能找借口。
4、联系生活让同学们思考,在现实生活中,如何避免像寓言中的人物或动物那样犯错?比如,在面对困难时,是像兔子一样骄傲自大,还是像乌龟一样坚持不懈?通过这样的思考,将寓言中的道理运用到实际生活中。
集 合(经典导学案及练习答案详解)
§1.1集合学习目标1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作A B(或B A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示 运算集合语言 图形语言 记法并集{x |x ∈A ,或x ∈B }A ∪B交集 {x |x ∈A ,且x ∈B }A ∩B 补集{x |x ∈U ,且x ∉A }∁U A常用结论1.若集合A 有n (n ≥1)个元素,则集合A 有2n 个子集,2n -1个真子集. 2.A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( × ) (2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若1∈{x 2,x },则x =-1或x =1.( × ) (4)对任意集合A ,B ,都有(A ∩B )⊆(A ∪B ).( √ ) 教材改编题1.(多选)若集合A ={x ∈N |2x +10>3x },则下列结论正确的是( ) A .22∉A B .8⊆A C .{4}∈A D .{0}⊆A答案 AD2.已知集合M ={a +1,-2},N ={b ,2},若M =N ,则a +b =________. 答案 -1解析 ∵M =N ,∴⎩⎨⎧a +1=2,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴a +b =-1.3.已知全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4},则A ∩B =____________,A ∪(∁U B )=____________.答案 {x |2≤x ≤3} {x |-2<x ≤3}解析 ∵全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4}={x |x ≤-2或x ≥2}, ∴∁U B ={x |-2<x <2},∴A ∩B ={x |2≤x ≤3},A ∪(∁U B )={x |-2<x ≤3}.题型一 集合的含义与表示例1 (1)(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .6 答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素. (2)若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析 ①当a -3=-3时,a =0, 此时A ={-3,-1,-4}, ②当2a -1=-3时,a =-1, 此时A ={-4,-3,-3}舍去,③当a 2-4=-3时,a =±1,由②可知a =-1舍去,则当a =1时,A ={-2,1,-3}, 综上,a =0或1. 教师备选若集合A ={x |kx 2+x +1=0}中有且仅有一个元素,则实数k 的取值集合是________. 答案 ⎩⎨⎧⎭⎬⎫0,14解析 依题意知,方程kx 2+x +1=0有且仅有一个实数根,∴k =0或⎩⎪⎨⎪⎧k ≠0,Δ=1-4k =0,∴k =0或k =14,∴k 的取值集合为⎩⎨⎧⎭⎬⎫0,14.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪4x -2∈Z ,则集合A 中的元素个数为( )A .3B .4C .5D .6答案 C解析 ∵4x -2∈Z ,∴x -2的取值有-4,-2,-1,1,2,4, ∴x 的值分别为-2,0,1,3,4,6, 又x ∈N ,故x 的值为0,1,3,4,6. 故集合A 中有5个元素.(2)已知a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a 2 023+b 2 023=________.答案 0解析 ∵{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b 且a ≠0,∴a +b =0,∴a =-b , ∴{1,0,-b }={0,-1,b }, ∴b =1,a =-1, ∴a 2 023+b 2 023=0.题型二 集合间的基本关系例2 (1)设集合P ={y |y =x 2+1},M ={x |y =x 2+1},则集合M 与集合P 的关系是( ) A .M =P B .P ∈M C .M P D .PM答案 D解析 因为P ={y |y =x 2+1}={y |y ≥1},M ={x |y =x 2+1}=R ,因此P M .(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案 [-1,+∞) 解析 ∵B ⊆A ,①当B =∅时,2m -1>m +1,解得m >2; ②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞).延伸探究 在本例(2)中,若把B ⊆A 改为B A ,则实数m 的取值范围是________. 答案 [-1,+∞)解析 ①当B =∅时,2m -1>m +1,∴m >2;②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1<4或⎩⎪⎨⎪⎧2m -1≤m +1,2m -1>-3,m +1≤4.解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞). 教师备选已知M ,N 均为R 的子集,若N ∪(∁R M )=N ,则( ) A .M ⊆N B .N ⊆M C .M ⊆∁R N D .∁R N ⊆M答案 D解析 由题意知,∁R M ⊆N ,其Venn 图如图所示,∴只有∁R N ⊆M 正确.思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练2 (1)已知集合A ={x |x 2-3x +2=0},B ={x ∈N |x 2-6x <0},则满足A C ⊆B 的集合C 的个数为( ) A .4 B .6 C .7 D .8答案 C解析 ∵A ={1,2},B ={1,2,3,4,5}, 且A C ⊆B ,∴集合C 的所有可能为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.(2)已知集合M ={x |x 2=1},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为________. 答案 0,±1解析 ∵M ={-1,1},且M ∩N =N ,若N =∅,则a =0;若N ≠∅,则N =⎩⎨⎧⎭⎬⎫1a ,∴1a =1或1a =-1, ∴a =±1综上有a =±1或a =0. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2021·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T 等于( )A .∅B .SC .TD .Z 答案 C解析 方法一 在集合T 中,令n =k (k ∈Z ),则t =4n +1=2(2k )+1(k ∈Z ),而集合S 中,s =2n +1(n ∈Z ),所以必有T ⊆S , 所以T ∩S =T .方法二 S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以T ∩S =T .(2)(2022·济南模拟)集合A ={x |x 2-3x -4≥0},B ={x |1<x <5},则集合(∁R A )∪B 等于( ) A .[-1,5) B .(-1,5) C .(1,4] D .(1,4)答案 B解析 因为集合A ={x |x 2-3x -4≥0}={x |x ≤-1或x ≥4}, 又B ={x |1<x <5}, 所以∁R A =(-1,4), 则集合(∁R A )∪B =(-1,5).命题点2 利用集合的运算求参数的值(范围)例4 (1)(2022·厦门模拟)已知集合A ={1,a },B ={x |log 2x <1},且A ∩B 有2个子集,则实数a 的取值范围为( ) A .(-∞,0] B .(0,1)∪(1,2] C .[2,+∞)D .(-∞,0]∪[2,+∞)解析 由题意得,B ={x |log 2x <1}={x |0<x <2}, ∵A ∩B 有2个子集, ∴A ∩B 中的元素个数为1; ∵1∈(A ∩B ),∴a ∉(A ∩B ),即a ∉B ,∴a ≤0或a ≥2, 即实数a 的取值范围为(-∞,0]∪[2,+∞).(2)已知集合A ={x |3x 2-2x -1≤0},B ={x |2a <x <a +3},若A ∩B =∅,则实数a 的取值范围是( ) A .a <-103或a >12B .a ≤-103或a ≥12C .a <-16或a >2D .a ≤-16或a ≥2答案 B解析 A ={x |3x 2-2x -1≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤1, ①B =∅,2a ≥a +3⇒a ≥3,符合题意; ②B ≠∅,⎩⎪⎨⎪⎧a <3,a +3≤-13或⎩⎪⎨⎪⎧a <3,2a ≥1, 解得a ≤-103或12≤a <3.∴a 的取值范围是a ≤-103或a ≥12.教师备选(2022·铜陵模拟)已知A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},若A ∩(∁R B )≠∅,则实数a 的取值范围是( ) A .1≤a ≤2 B .1<a <2 C .a ≤1或a ≥2 D .a <1或a >2答案 D解析 A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},所以∁R B ={x |a -1<x <a +1}; 又A ∩(∁R B )≠∅, 所以a -1<0或a +1>3, 解得a <1或a >2,所以实数a 的取值范围是a <1或a >2.思维升华 对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn 图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(2021·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5,则M ∩N 等于( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x ≤13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4 C .{x |4≤x <5} D .{x |0<x ≤5}答案 B解析 因为M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4. (2)(2022·南通模拟)设集合A ={1,a +6,a 2},B ={2a +1,a +b },若A ∩B ={4},则a =________,b =________. 答案 2 2解析 由题意知,4∈A ,所以a +6=4或a 2=4, 当a +6=4时,则a =-2,得A ={1,4,4},故应舍去; 当a 2=4时,则a =2或a =-2(舍去), 当a =2时,A ={1,4,8},B ={5,2+b }, 又4∈B ,所以2+b =4,得b =2. 所以a =2,b =2.题型四 集合的新定义问题例5 (1)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.(2)非空数集A 如果满足:①0∉A ;②若∀x ∈A ,有1x∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x |x 2-6x +1≤0};③⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4],其中是“互倒集”的序号是________. 答案 ②③解析 ①中,{x ∈R |x 2+ax +1=0},二次方程判别式Δ=a 2-4,故-2<a <2时,方程无根,该数集是空集,不符合题意; ②中,{x |x 2-6x +1≤0}, 即{x |3-22≤x ≤3+22}, 显然0∉A , 又13+22≤1x ≤13-22,即3-22≤1x ≤3+22,故1x也在集合中,符合题意; ③中,⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4], 易得⎩⎨⎧⎭⎬⎫y ⎪⎪12≤y ≤2,0∉A , 又12≤1y ≤2,故1y 也在集合A 中,符合题意. 教师备选对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={x |x ≥0},B ={x |-3≤x ≤3},则A *B =____________. 答案 {x |-3≤x <0或x >3}解析 ∵A ={x |x ≥0},B ={x |-3≤x ≤3}, ∴A -B ={x |x >3},B -A ={x |-3≤x <0}. ∴A *B ={x |-3≤x <0或x >3}. 思维升华 解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4 若集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)是集合A 的同一种分拆.若集合A 有三个元素,则集合A 的不同分拆种数是________. 答案 27解析不妨令A={1,2,3},∵A1∪A2=A,当A1=∅时,A2={1,2,3},当A1={1}时,A2可为{2,3},{1,2,3}共2种,同理A1={2},{3}时,A2各有2种,当A1={1,2}时,A2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A1={1,3},{2,3}时,A2各有4种,当A1={1,2,3}时,A2可为A1的子集,共8种,故共有1+2×3+4×3+8=27(种)不同的分拆.课时精练1.(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},集合N={3,4},则∁U(M∪N)等于()A.{5} B.{1,2}C.{3,4} D.{1,2,3,4}答案 A解析方法一(先求并再求补)因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.方法二(先转化再求解)因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.2.已知集合U=R,集合A={x|x+3>2},B={y|y=x2+2},则A∩(∁U B)等于() A.R B.(1,2]C.(1,2) D.[2,+∞)答案 C解析A={x|x+3>2}=(1,+∞),B={y|y=x2+2}=[2,+∞),∴∁U B=(-∞,2),∴A∩(∁U B)=(1,2).3.已知集合M={1,2,3},N={(x,y)|x∈M,y∈M,x+y∈M},则集合N中的元素个数为() A.2 B.3 C.8 D.9答案 B解析 由题意知,集合N ={(1,1),(1,2),(2,1)},所以集合N 的元素个数为3.4.(2022·青岛模拟)已知集合A ={a 1,a 2,a 3}的所有非空真子集的元素之和等于9,则a 1+a 2+a 3等于( )A .1B .2C .3D .6 答案 C解析 集合A ={a 1,a 2,a 3}的所有非空真子集为{a 1},{a 2},{a 3},{a 1,a 2},{a 1,a 3},{a 2,a 3},则所有非空真子集的元素之和为a 1+a 2+a 3+a 1+a 2+a 1+a 3+a 2+a 3=3(a 1+a 2+a 3)=9,所以a 1+a 2+a 3=3.5.(2022·浙江名校联考)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是( )A .a <-2B .a ≤-2C .a >-4D .a ≤-4 答案 D解析 集合A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤-a 2,由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a 2≥2,即a ≤-4. 6.(多选)已知集合P ={(x ,y )|x +y =1},Q ={(x ,y )|x 2+y 2=1},则下列说法正确的是( )A .P ∪Q =RB .P ∩Q ={(1,0),(0,1)}C .P ∩Q ={(x ,y )|x =0或1,y =0或1}D .P ∩Q 的真子集有3个答案 BD解析 联立⎩⎪⎨⎪⎧ x +y =1,x 2+y 2=1, 解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =1, ∴P ∩Q ={(1,0),(0,1)},故B 正确,C 错误;又P,Q为点集,∴A错误;又P∩Q有两个元素,∴P∩Q有3个真子集,∴D正确.7.(多选)(2022·重庆北碚区模拟)已知全集U={x∈N|log2x<3},A={1,2,3},∁U(A∩B)={1,2,4,5,6,7},则集合B可能为()A.{2,3,4} B.{3,4,5}C.{4,5,6} D.{3,5,6}答案BD解析由log2x<3得0<x<23,即0<x<8,于是得全集U={1,2,3,4,5,6,7},因为∁U(A∩B)={1,2,4,5,6,7},则有A∩B={3},3∈B,C不正确;对于A选项,若B={2,3,4},则A∩B={2,3},∁U(A∩B)={1,4,5,6,7},矛盾,A不正确;对于B选项,若B={3,4,5},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},B正确;对于D选项,若B={3,5,6},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},D正确.8.(多选)已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=∅B.A∩B=BC.A∪B=U D.(∁U B)∪A=A答案CD解析令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C,D均正确.9.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析 由题意可知,A ={x ∈U |x 2+mx =0}={0,3},即0,3为方程x 2+mx =0的两个根,所以m =-3.10.(2022·石家庄模拟)已知全集U =R ,集合M ={x ∈Z ||x -1|<3},N ={-4,-2,0,1,5},则下列Venn 图中阴影部分的集合为________.答案 {-1,2,3}解析 集合M ={x ∈Z ||x -1|<3}={x ∈Z |-3<x -1<3}={x ∈Z |-2<x <4}={-1,0,1,2,3}, Venn 图中阴影部分表示的集合是M ∩(∁R N )={-1,2,3}.11.已知集合A ={m 2,-2},B ={m ,m -3},若A ∩B ={-2},则A ∪B =________. 答案 {-5,-2,4}解析 ∵A ∩B ={-2},∴-2∈B ,若m =-2,则A ={4,-2},B ={-2,-5},∴A ∩B ={-2},A ∪B ={-5,-2,4};若m -3=-2,则m =1,∴A ={1,-2},B ={1,-2},∴A ∩B ={1,-2}(舍去),综上,有A ∪B ={-5,-2,4}.12.已知集合A ={x |y =lg(a -x )},B ={x |1<x <2},且(∁R B )∪A =R ,则实数a 的取值范围是________.答案 [2,+∞)解析 由已知可得A =(-∞,a ),∁R B =(-∞,1]∪[2,+∞),∵(∁R B )∪A =R ,∴a ≥2.13.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系”集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有“伙伴关系”的集合的个数为( )A .15B .16C .32D .256解析 由题意知,满足“伙伴关系”的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现,所有满足条件的集合个数为24-1=15. 14.已知集合A ={x |8<x <10},设集合U ={x |0<x <9},B ={x |a <x <2a -1},若(∁U B )∩A ={x |8<x <9},则实数a 的取值范围是________________.答案 ⎝⎛⎦⎤-∞,92解析 当B =∅时,2a -1≤a ,解得a ≤1,此时∁U B =U ,(∁U B )∩A =U ∩A ={x |8<x <9},符合题意;当B ≠∅时,2a -1>a ,解得a >1,因为集合U ={x |0<x <9},B ={x |a <x <2a -1},所以∁U B ={x |0<x ≤a 或2a -1≤x <9},因为(∁U B )∩A ={x |8<x <9},所以2a -1≤8,解得a ≤92,所以B ≠∅时,1<a ≤92,综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,92.15.(多选)设集合A ={x |x =m +3n ,m ,n ∈N *},若x 1∈A ,x 2∈A ,x 1x 2∈A ,则运算可能是( )A .加法B .减法C .乘法D .除法答案 AC解析 由题意可设x 1=m 1+3n 1,x 2=m 2+3n 2,其中m 1,m 2,n 1,n 2∈N *,则x 1+x 2=(m 1+m 2)+3(n 1+n 2),x 1+x 2∈A ,所以加法满足条件,A 正确;x 1-x 2=(m 1-m 2)+3(n 1-n 2),当n 1=n 2时,x 1-x 2∉A ,所以减法不满足条件,B 错误;x 1x 2=m 1m 2+3n 1n 2+3(m 1n 2+m 2n 1),x 1x 2∈A ,所以乘法满足条件,C 正确;x 1x 2=m 1+3n 1m 2+3n 2,当m 1m 2=n 1n 2=λ(λ>0)时,x 1x 2∉A , 所以除法不满足条件,D 错误.16.对班级40名学生调查对A ,B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成,另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人,问对A ,B 都赞成的学生有___________人.答案 18解析 赞成A 的人数为40×35=24,赞成B 的人数为24+3=27,设对A ,B 都赞成的学生有x 人,则13x +1+27-x +x +24-x =40, 解得x =18.。
函数的单调性导学案(经典)
《函数的单调性》导学案
一、教学目标
(1)知识与技能:使学生理解函数单调性的概念,并能从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.
(2)过程与方法:从生活实际和已有旧知出发,引导学生探索函数的单调性的概念,通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
(3)情感态度价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,也培养学生细心观察、归纳、分析的良好习惯和不断探求新知识的精神.
二、教学重难点
教学重点:(1)函数单调性的概念及其应用;
(2)常见函数的单调区间的求法.
教学难点:利用函数图象、单调性的定义判断和证明函数的单调性.
三、课堂导学。
《愚公移山》导学案共3篇
《愚公移山》导学案共3篇《愚公移山》导学案1《愚公移山》是中国古代民间传说中的一篇故事,是古代中国智慧的象征之一。
这个故事的主人公是一个名叫愚公的老汉,他和他的儿子们在一座山上居住,并且他的家园被一座大山挡住了去路,让他和他的家人出行十分不便。
于是,他决定动手移山,他和他的家人不分昼夜地刨山挖石,经过几代人的努力,这座高高的大山终于被移除了,他们终于可以感受到通往外界的道路。
该故事的深层含义在于,坚持不懈的努力和不屈不挠的精神可以战胜一切艰难险阻,为我们树立了榜样。
如何引导学生阅读并理解《愚公移山》呢?以下是一份针对该故事的导学案,希望能帮助学生学习和理解这篇文学作品。
前置知识本课通过引入“愚公移山”,学生可以了解到中国古代传说中讲述的坚持不懈的艰苦和努力。
此外,学生还需要了解“愚公移山”这个故事的一些背景信息,包括作者、时间和地点等。
教学目标1. 了解中国古代传说中的《愚公移山》,并理解其中蕴含的道理和寓意。
2. 发掘该故事中的文学细节,如形象、语言、人物塑造等。
3. 培养学生自我学习和思考的能力,让学生发掘故事的内涵以及体会故事给我们带来的启示和鼓励。
教学过程Step 1:故事导入教师通过简短的讲述来介绍《愚公移山》的背景,简要描述故事梗概,引导学生理解故事突出的要素和暗示的精神内涵。
Step 2:内容分析将《愚公移山》的内容分成四个阶段,让学生在分析故事情况的同时深入了解故事表现的精神。
第一阶段:描述愚公家中的情况第二阶段:愚公决定移山第三阶段:老百姓的反应第四阶段:愚公的半个世纪Step 3:语言形象分析通过引导学生观察故事中的语言描述和形象描写,让学生了解这些描述的背后所代表的含义和象征意义。
通过分析语言和形象,理解故事情节中的深意和思想内涵。
Step 4:课外思考学生在课程结束后,可以思考以下问题:“愚公移山”是一篇什么样的故事?这个故事是什么意义和作用?为什么愚公移山的故事在中国文化中如此受欢迎和广泛传播?学生可以写下自己对这个故事的看法和理解,让学生通过自我思考反馈和加深对故事内涵的理解。
老人与海的导学案
老人与海的导学案《老人与海》的导学案一、导入《老人与海》是美国作家海明威的代表作品,也是世界文学史上的经典之一。
这部小说以一个老古板的古巴渔夫圣地亚哥与他在大海上与巨大马林鱼搏斗的故事为主线,展现了海明威对人生、力量、坚持和命运的深刻思考。
通过本次导学,我们将深入探讨小说的主题、结构和风格,帮助我们更好地理解和欣赏这部伟大的文学作品。
二、整体概述1. 作者简介:海明威,美国著名小说家和诺贝尔文学奖得主,是20世纪最具影响力的作家之一。
2. 小说背景:《老人与海》出版于1952年,被誉为“人类永恒的悲剧”,融合了海明威的个人经历和文学才华。
3. 内容概要:主人公圣地亚哥是一个孤独而顽固的老渔夫,他在大海上与一条庞大的马林鱼搏斗,表现出人与自然、人与命运的较量。
三、主题探讨1. 对抗命运:圣地亚哥虽然孤独贫穷,但他不向命运低头,在与巨鱼的激烈斗争中展现出不屈的精神。
2. 生命与生存:在无尽的大海和风浪之中,人类命运微小而渺茫,但人类仍然要坚守希望,追求生存。
3. 孤独与坚持:小说中的老人孤独而顽强,他的坚持和毅力展现出一种对生活的独特理解和态度。
四、阅读指导1. 关注人物形象:圣地亚哥是一个令人难以忘怀的人物形象,通过对他的描写和行为举止,我们可以更好地理解小说的主题。
2. 分析叙事结构:海明威的叙事手法简洁而有力,通过一系列的事件和对话揭示出人物内心的挣扎和矛盾。
3. 对话语言品味:小说中的对话幽默而深刻,对话语言充满了哲理和力量,值得我们多加品味和思考。
五、总结展望通过本次导学,我们对《老人与海》有了初步的了解和认识,但这只是一个开始。
希望大家能够继续深入阅读和思考,从中汲取更多的智慧和感悟,让这部伟大的文学作品在我们心中留下深刻的印记。
六、作业安排1. 阅读《老人与海》全文,分析其中的主题、结构和语言特色。
2. 撰写读后感或评论,谈谈你对这部作品的理解和感受。
3. 下次课堂我们将就本书展开更深入的讨论和交流。
高中化学经典导学案
高中化学经典导学案一、导学目标通过本次导学案,学生将能够:1. 理解化学的基本概念和原理;2. 掌握化学实验的基本方法和技巧;3. 熟悉常见的化学反应和平衡方程式;4. 理解物质的构成和性质。
二、导学内容1. 化学的基本概念- 物质的分类及性质- 元素和化合物的概念- 离子、原子和分子的区别2. 化学实验- 实验器材和操作步骤- 实验中的常见安全问题和应对措施- 实验中的常见测量方法和技巧3. 化学反应与平衡方程- 化学反应的基本概念和分类- 氧化还原反应和酸碱中和反应的特点- 平衡方程的表示方法和意义4. 物质的构成和性质- 原子结构和元素周期表的基本概念- 各种物质的性质与结构的关系- 物质的化学键和化学键能的作用三、导学过程1. 导入(概念解释和实例介绍)化学是研究物质的组成、性质和变化规律的科学。
我们身边的许多日常现象和实验现象都可以归结为化学反应和物质性质的变化。
例如:燃烧、腐败、发酵、溶解等都属于化学反应;铁锈、风化、变色等都是物质性质的变化。
2. 学习重点了解物质的分类及性质,掌握化学实验的基本方法和技巧,熟悉常见的化学反应和平衡方程式,理解物质的构成和性质。
3. 学习方法- 阅读教材相关内容,理解基本概念和原理;- 参与实验,亲自操作和观察实验现象;- 运用所学知识解析实例,思考现象背后的化学原理。
4. 实践与总结通过进行化学实验,学生可以深入理解化学的基本原理。
同时,总结实验过程中的问题和经验,进一步提高实验技巧和操作安全性。
5. 展示与讨论学生可将实验结果进行归纳总结,并与同学进行讨论和交流。
通过分享实验经验和观点,拓宽对化学知识的理解和应用。
四、学习反思通过本次导学案的学习,我们对化学的基本概念和原理有了更深入的了解。
同时,通过实验操作和实例分析,增强了我们的实践动手能力和问题解决能力。
随着学习的深入,我们需要不断积累实验经验,提高观察和分析的能力,进一步提升对化学知识的理解和运用能力。
《岳阳楼记》导学案 (人教版八年级下册)共3篇
《岳阳楼记》导学案 (人教版八年级下册)共3篇《岳阳楼记》导学案 (人教版八年级下册)1《岳阳楼记》是唐代文学家杨万里所著的一篇散文,描述了作者游览湖南岳阳楼并赞美楼观的奇妙壮观与历史文化价值。
本文以《岳阳楼记》作为导学案的主要内容之一,详细分析其文学特点、历史背景和文化内涵,帮助学生深入理解文本意义及其对社会历史和文化的影响。
一、文学特点《岳阳楼记》是一篇散文,其特点是文笔简洁优美,蕴含深刻的人文情感,形成强烈的意境感染力。
杨万里运用大量的比喻、拟人、古诗词等修辞手法,使文章生动而有趣,表达了他对壮美山川和文化历史的热爱与赞美之情。
文中情感丰富、形象生动,始终注重文字与境界的协调统一。
这使得整篇文章笔调优美、雄壮恢宏,既有学问,又在跨越时空的情感瞬间中,肆意留连。
二、历史背景《岳阳楼记》是唐朝诗文的代表之一,写作于唐朝贞观年间。
当时,唐朝的疆域逐渐扩大,文化交流得到了更广泛的发展。
中国文化迈上了新的高峰,同时,也涌现出了一批优秀的文化代表。
杨万里的《岳阳楼记》便是其中一篇,其艺术精湛,形式新颖,极具代表性,于文学史上占有一席之地。
三、文化内涵《岳阳楼记》深刻地表现了杨万里对山水文化和历史文化的热爱和情感。
他借湖南岳阳楼一处闻名世界的胜地,表达了对文化和历史的热爱、怀疑和思考。
通过对这座楼观的描述,作者既表达了对山水自然风光的热爱,也点明了历史文化的内涵给予自己深刻的启示。
同时,文章的句句言犹在耳,语言清新,婉约中有深沉的文化内涵,深刻地折射出了唐代文化的特点。
总之,通过《岳阳楼记》这篇经典散文,我们可以对唐代山水文学、历史文化和文学创作的特点有更加深刻的理解,同时,也可以更好地领悟到文化传承和历史传承的重要性。
在今天,我们应当在传承好文化的同时,增强文化自信和传承的责任感,继承发扬优秀文化,促进中华文化的传承与发展。
这样,我们才能够走向更加美好的未来通过《岳阳楼记》的阅读,可以充分感受到唐代文化的博大精深和瑰丽多彩。
利用导数证明不等式(经典导学案及练习答案详解)
§3.6 利用导数证明不等式题型一 将不等式转化为函数的最值问题例1 已知函数g (x )=x 3+ax 2.(1)若函数g (x )在[1,3]上为单调函数,求a 的取值范围;(2)已知a >-1,x >0,求证:g (x )>x 2ln x .(1)解 由题意知,函数g (x )=x 3+ax 2,则g ′(x )=3x 2+2ax ,若g (x )在[1,3]上单调递增,则g ′(x )=3x 2+2ax ≥0在[1,3]上恒成立,则a ≥-32; 若g (x )在[1,3]上单调递减,则g ′(x )=3x 2+2ax ≤0在[1,3]上恒成立,则a ≤-92.所以a 的取值范围是⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫-32,+∞. (2)证明 由题意得,要证g (x )>x 2ln x ,x >0,即证x 3+ax 2>x 2ln x ,即证x +a >ln x , 令u (x )=x +a -ln x ,x >0,可得u ′(x )=1-1x =x -1x,x >0, 当0<x <1时,u ′(x )<0,函数u (x )单调递减;当x >1时,u ′(x )>0,函数u (x )单调递增.所以u (x )≥u (1)=1+a ,因为a >-1,所以u (x )>0,故当a >-1时,对于任意x >0,g (x )>x 2ln x .教师备选已知函数f (x )=1-ln x x ,g (x )=a e e x +1x-bx ,若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)证明:当x ≥1时,f (x )+g (x )≥2x. (1)解 因为f (x )=1-ln x x,x >0,所以f ′(x )=ln x -1x 2,f ′(1)=-1. 因为g (x )=a e e x +1x-bx , 所以g ′(x )=-a e e x -1x 2-b . 因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1,所以g (1)=a +1-b =1,g ′(1)=-a -1-b =1,解得a =-1,b =-1.(2)证明 由(1)知,g (x )=-e e x +1x+x , 则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x+x ≥0. 令h (x )=1-ln x x -e e x -1x+x (x ≥1), 则h (1)=0,h ′(x )=-1+ln x x 2+e e x +1x 2+1=ln x x 2+e e x+1. 因为x ≥1,所以h ′(x )=ln x x 2+e e x +1>0, 所以h (x )在[1,+∞)上单调递增,所以当x ≥1时,h (x )≥h (1)=0,即1-ln x x -e e x -1x+x ≥0, 所以当x ≥1时,f (x )+g (x )≥2x. 思维升华 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.跟踪训练1 已知函数f (x )=ln x +a x,a ∈R . (1)讨论函数f (x )的单调性;(2)当a >0时,证明:f (x )≥2a -1a. (1)解 f ′(x )=1x -a x 2=x -a x 2(x >0). 当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增;若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减.(2)证明 由(1)知,当a >0时,f (x )min =f (a )=ln a +1.要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a, 即证ln a +1a-1≥0. 令函数g (a )=ln a +1a-1, 则g ′(a )=1a -1a 2=a -1a 2(a >0), 当0<a <1时,g ′(a )<0;当a >1时,g ′(a )>0,所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增,所以g (a )min =g (1)=0.所以ln a +1a-1≥0恒成立, 所以f (x )≥2a -1a. 题型二 将不等式转化为两个函数的最值进行比较例2 (2022·武汉模拟)已知函数f (x )=a ln x +x .(1)讨论f (x )的单调性;(2)当a =1时,证明:xf (x )<e x .(1)解 f (x )的定义域为(0,+∞),f ′(x )=a x +1=x +a x. 当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0;若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.(2)证明 当a =1时,要证xf (x )<e x ,即证x 2+x ln x <e x ,即证1+ln x x <e x x 2. 令函数g (x )=1+ln x x, 则g ′(x )=1-ln x x 2. 令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (x )max =g (e)=1+1e, 令函数h (x )=e xx2, 则h ′(x )=e x (x -2)x 3. 当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以h (x )min =h (2)=e 24. 因为e 24-⎝⎛⎭⎫1+1e >0, 所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证. 教师备选(2022·长沙模拟)已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e. 证明 要证f (x )<x e x +1e, 只需证e x -ln x <e x +1e x, 即e x -e x <ln x +1e x. 令h (x )=ln x +1e x(x >0), 则h ′(x )=e x -1e x2, 易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x,故原不等式成立. 思维升华 若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.跟踪训练2 (2022·百校大联考)已知函数f (x )=eln x -ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.(1)解 f ′(x )=e x-a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;②若a >0,则当0<x <e a时,f ′(x )>0; 当x >e a时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明 因为x >0,所以只需证f (x )≤e x x-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x )max =f (1)=-e.设g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x 2, 所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x -2e. 故不等式xf (x )-e x +2e x ≤0得证.题型三 适当放缩证明不等式例3 已知函数f (x )=e x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x >-2时,求证:f (x )>ln(x +2).(1)解 由f (x )=e x ,得f (0)=1,f ′(x )=e x ,则f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线方程为y -1=x -0,所以所求切线方程为x -y +1=0.(2)证明 设g (x )=f (x )-(x +1)=e x -x -1(x >-2),则g ′(x )=e x -1,当-2<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,即g (x )在(-2,0)上单调递减,在(0,+∞)上单调递增,于是当x =0时,g (x )min =g (0)=0,因此f (x )≥x +1(当且仅当x =0时取等号),令h (x )=x +1-ln(x +2)(x >-2),则h ′(x )=1-1x +2=x +1x +2, 则当-2<x <-1时,h ′(x )<0,当x >-1时,h ′(x )>0,即有h (x )在(-2,-1)上单调递减,在(-1,+∞)上单调递增,于是当x =-1时,h (x )min =h (-1)=0,因此x +1≥ln(x +2)(当且仅当x =-1时取等号),所以当x >-2时,f (x )>ln(x +2). 教师备选已知函数f (x )=x ln x x +m,g (x )=x e x ,且曲线y =f (x )在x =1处的切线方程为x -2y +n =0. (1)求m ,n 的值;(2)证明:f (x )>2g (x )-1.(1)解 由已知得,f (1)=0,∴1-0+n =0,解得n =-1.∵f ′(x )=(ln x +1)(x +m )-x ln x (x +m )2,∴f ′(1)=m +1(1+m )2=12, 解得m =1.(2)证明 设h (x )=e x -x -1(x >0),则h ′(x )=e x -1>0,∴h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,即e x >x +1>1,∴1e x <1x +1. 要证f (x )>2g (x )-1,即证x ln x x +1>2x e x-1, 只需证x ln x x +1≥2x x +1-1, 即证x ln x ≥x -1,令m (x )=x ln x -x +1,则m ′(x )=ln x ,∴当x ∈(0,1)时,m ′(x )<0;当x ∈(1,+∞)时,m ′(x )>0,∴m (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴m (x )min =m (1)=0,即m (x )≥0,∴x ln x ≥x -1,则f (x )>2g (x )-1得证.思维升华 导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号.跟踪训练3 已知函数f (x )=a e x -1-ln x -1.(1)若a =1,求f (x )在(1,f (1))处的切线方程;(2)证明:当a ≥1时,f (x )≥0.(1)解 当a =1时,f (x )=e x -1-ln x -1(x >0),f ′(x )=e x -1-1x, k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0.(2)证明 ∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1.方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x, 令h (x )=e x -1-1x, ∴h ′(x )=e x -1+1x 2>0, ∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0,∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0.方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0;当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”.同理可证ln x ≤x -1,当且仅当x =1时取“=”.由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”),由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”),∴e x -1≥x ≥ln x +1,即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0.课时精练1.已知函数f (x )=ln x x +a(a ∈R ),曲线y =f (x )在点(e ,f (e))处的切线方程为y =1e . (1)求实数a 的值,并求f (x )的单调区间;(2)求证:当x >0时,f (x )≤x -1.(1)解 ∵f (x )=ln x x +a, ∴f ′(x )=x +a x -ln x (x +a )2,∴f ′(e)=a e (e +a )2, 又曲线y =f (x )在点(e ,f (e))处的切线方程为y =1e, 则f ′(e)=0,即a =0,∴f ′(x )=1-ln x x 2, 令f ′(x )>0,得1-ln x >0,即0<x <e ;令f ′(x )<0,得1-ln x <0,即x >e ,∴f (x )的单调递增区间是(0,e),单调递减区间是(e ,+∞).(2)证明 当x >0时,要证f (x )≤x -1,即证ln x -x 2+x ≤0,令g (x )=ln x -x 2+x (x >0),则g ′(x )=1x -2x +1=1+x -2x 2x=-(x -1)(2x +1)x, 当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,∴g (x )≤g (1)=0,即当x >0时,f (x )≤x -1.2.已知f (x )=x ln x .(1)求函数f (x )的极值;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x成立. (1)解 由f (x )=x ln x ,x >0,得f ′(x )=ln x +1,令f ′(x )=0,得x =1e.当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. 所以当x =1e时,f (x )取得极小值, f (x )极小值=f ⎝⎛⎭⎫1e =-1e,无极大值. (2)证明 问题等价于证明x ln x >x e x -2e(x ∈(0,+∞)). 由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e ,当且仅当x =1e时取到. 设m (x )=x e x -2e(x ∈(0,+∞)), 则m ′(x )=1-x ex ,由m ′(x )<0,得x >1时,m (x )单调递减;由m ′(x )>0得0<x <1时,m (x )单调递增,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),x ln x ≥-1e ≥x e x -2e ,两个等号不同时取到,所以对一切x ∈(0,+∞)都有ln x >1e x -2e x成立.3.已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )在(0,+∞)上的单调性;(2)证明:e x -e 2ln x >0恒成立.(1)解 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x, 当a ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增,当a >0时,令f ′(x )=0,得x =1a, ∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,∴f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)证明 要证e x -e 2ln x >0,即证e x -2>ln x ,令φ(x )=e x -x -1,∴φ′(x )=e x -1.令φ′(x)=0,得x=0,∴当x∈(-∞,0)时,φ′(x)<0;当x∈(0,+∞)时,φ′(x)>0,∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴φ(x)min=φ(0)=0,即e x-x-1≥0,即e x≥x+1,当且仅当x=0时取“=”.同理可证ln x≤x-1,当且仅当x=1时取“=”.由e x≥x+1(当且仅当x=0时取“=”),可得e x-2≥x-1(当且仅当x=2时取“=”),又x-1≥ln x,当且仅当x=1时取“=”,∴e x-2≥x-1≥ln x且两等号不能同时成立,故e x-2>ln x.即证原不等式成立.4.(2022·常德模拟)已知函数f(x)=x e x-x.(1)讨论f(x)的单调性;(2)证明:当x>0时,f(x)-ln x≥1.(1)解由题意得f′(x)=(x+1)e x-1,设g(x)=(x+1)e x,则g′(x)=(x+2)e x,当x≤-1时,g(x)≤0,f′(x)<0,f(x)在(-∞,-1]上单调递减;当x>-1时,g′(x)>0,g(x)单调递增,又因为g(0)=1,所以当x<0时,g(x)<1,即f′(x)<0,当x>0时,g(x)>1,即f′(x)>0,综上可知,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)证明要证f(x)-ln x≥1,即证x e x-x-ln x≥1,即证e x+ln x-(x+ln x)≥1,令t=x+ln x,易知t∈R,待证不等式转化为e t-t≥1.设u(t)=e t-t,则u′(t)=e t-1,当t<0时,u′(t)<0,当t>0时,u′(t)>0,故u(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增.所以u(t)≥u(0)=1,原命题得证.。
《过秦论》导学案(人教版高一必修三)共3篇
《过秦论》导学案(人教版高一必修三)共3篇《过秦论》导学案(人教版高一必修三)1《过秦论》导学案(人教版高一必修三)一、导言《过秦论》是中国古代史书《史记》中的一篇,作者为韩非,该篇是自由主义和唯实主义思想的代表之一。
它具有很强的警示作用,深刻揭示了人类社会无论在哪个历史时期,都必须用正确的观念、方法去对待和解决种种问题的重要性。
从史学的角度看,它也是中国古代史学思想的一个重要组成部分。
它所阐述的理论和思想大部分仍然具有普遍的现实意义和历史价值,并且对现代社会的发展也有一定参考作用。
二、内容导读《过秦论》主要由三个部分构成,分别为:第一部分:通论。
该部分主要论述了人性、社会和政治等方面的基本问题,有“圣人观”、“政治观”、“道德观”、“教育观”、“哲学观”等多重观点交织。
第二部分:批判秦政府的专制统治。
该部分是全文的核心,通过对秦政府种种罪恶行径的揭露和批判,揭示出专制统治所引发的社会危害和政治灾难。
它以攻击政治制度和反对特定人物为主。
第三部分:提出救亡思想。
该部分深入探讨了如何拯救秦国、拯救中国的方法论和策略性“建言”。
三、教学目标1. 了解《过秦论》的历史背景和重要思想内容。
2. 理解和掌握韩非子的政治思想和人性观。
3. 掌握《过秦论》的韵律和修辞手法。
4. 能够分析和评价《过秦论》对中国历史的启示和对现实社会的照耀。
四、教学过程1. 导入请同学们思考并回答下列问题:“什么是专制统治?它所带来的危害是什么?”“你认为中国古代最著名或有代表性的专制朝代是哪一朝?”这些问题不仅有助于激发学生们的学习兴趣,而且有助于引导学生们逐渐进入《过秦论》的主题。
2. 阅读与解析请同学们先划分文本结构,并结合导学案提供的“内容导读”,逐段解析问题:a) 第一部分:通论1) 解释“圣人观”和“政治观”。
2) 对“万物皆备于天”的观点进行阐释。
3) 阐述韩非子的“道德观”。
4) 总结韩非子的“教育观”。
5)发掘韩非子的“哲学思想”中包含的一些思想。
女娲补天导学案
女娲补天导学案一、学习目标 (1)二、学习重难点 (1)三、预习检测 (2)四、中心思想 (3)五、段落划分 (4)六、写作手法 (5)七、读文感知 (6)八、经典语句解读 (7)九、预习检测答案 (8)一、学习目标通过学习《女娲补天》这一经典神话传说,我们要深入理解女娲作为中华民族创世女神的伟大形象。
掌握课文中的生字新词,能够流畅地朗读课文,并尝试复述故事内容。
同时,要感悟女娲为了拯救人类而炼石补天、抟土造人的勇敢和无私精神,体会她作为人类母亲的伟大。
在学习过程中,我们还应发挥想象力和创造力,尝试编写与女娲相关的小故事,以加深对神话传说的理解和感悟。
通过学习,我们要激发对中华传统文化的热爱之情,并努力传承和弘扬这一宝贵的精神财富。
二、学习重难点学习重点是深入理解女娲如何冒着生命危险、克服重重困难补天的过程。
通过细致阅读课文,我们需要把握女娲炼石补天、抟土造人的具体细节,感受她作为人类母亲的伟大形象。
学习难点则在于感受神话故事的神奇之处。
神话故事往往充满了丰富的想象和夸张的手法,我们需要发挥想象力和创造力,尝试理解并体会其中的神奇元素,从而更好地领悟神话故事所蕴含的文化内涵和精神价值。
三、预习检测一、填空题1. 《女娲补天》是我国古代__________之一,讲述了女娲为了拯救人类,炼__________补天、抟__________造人的故事。
2. 课文描写了女娲补天的几个主要步骤,包括寻找五彩石、__________、__________、以及最终成功补天。
3. 女娲为了补天,不畏__________,克服了重重困难,展现了伟大的__________精神。
二、选择题1. 女娲炼制的五彩石中不包括以下哪种颜色?()A. 红B. 绿C. 黄D. 紫2. 女娲补天的原因是什么?()A. 天塌地陷,洪水猛兽出没B. 人类生活困苦,需要新的领袖C. 五彩石散落人间,需要收集D. 天上出现了裂缝,洪水泛滥三、简答题1. 请简述女娲炼石补天的过程。
《书戴嵩画牛》导学案3篇
《书戴嵩画牛》导学案第一篇:导入引言+名画赏析导入引言《书戴嵩画牛》是明代绘画家戴嵩所作的一幅水墨画。
它运用了素笔和重彩相结合的手法,以牛为主体,刻画了动物的自然本质和神韵之美,被誉为世间绘牛之首品。
名画赏析画面中的牛身体修长,毛发细柔,以素笔轮廓描绘出清晰的形态;耳朵箭头般直立,目光清澈,栩栩如生。
牛的皮肤上有许多自然的皱纹、毛发和斑点,无论是调和的阴影还是简单明了的线条,都揭示了戴嵩的精湛技艺。
牛的气息和姿态尽显神韵之美,形象逼真传神,是文人画中的经典之作。
第二篇:艺术背景+作者介绍艺术背景《书戴嵩画牛》凝聚了文人画的艺术精髓,成功地运用了素笔、结彩、重彩等多种绘画技法,是明代中国画的代表作之一。
明代是中国画的鼎盛时期,绘画艺术呈现出多元化的发展趋势,以浓重的韵味和自由的精神风貌,赋予了中国画面世界独特的审美价值。
作者介绍戴嵩(约公元1620-1693年),浙江湖州人。
是明代末期以来清初画坛上的著名画家,师从徐渭,学习徐渭的“仿古”技法。
他的画作有“一意”,是后世形象的典范。
其代表作品有《书戴嵩画牛》、《花鸟图》、《道教真仙图》等,塑造了“戴氏派”的艺术风格。
第三篇:艺术价值+文化内涵艺术价值《书戴嵩画牛》以其高超的技艺和传神的效果展示了艺术的真正价值,被公认为富有情趣与内涵的艺术珍品。
它的表现手法、意境和寓意都达到了一定的水准,展示出明代绘画的创新力和魅力。
同时,它也对现代油画和装饰绘画有重要的艺术启示价值。
文化内涵《书戴嵩画牛》坚持天人合一的创作理念,不仅反映了戴嵩个人对自然形态的理解和把握,也蕴含了中国传统哲学中的“天人合一”、“儒释道”等思想精华。
其揭示的自然之美和生命之魂,体现了中华文化中对于一切生命的尊重和关注,代表了中国画真正的文化精神和价值观念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014高二语文选修导学案编号使用时间:2015年1月日
第三单元
苏幕遮(周邦彦)
【学习目标】
1.诵读全词,把握其中的情感。
2.掌握本词“反客为主”的表现手法。
3.背诵全词。
【学习重点】
词中蕴含的情感
【学习难点】
“反客为主”的表现手法
预习案
一. 积累描写荷花诗句
1. ,。
2. ,。
3. , 。
4. ,。
二.作家名片
周邦彦(1056—1121),字美成,号清真居士,人。
少年时落拓不羁,二十四岁时入太学读书,后来当过一些地方官和
编制人:计艳霞审核人:语文组班级姓名小组评价校书郎等职。
他精通音律、善作词,其作品善铺叙而含蓄,富丽精细,格律精严。
周邦彦是继苏轼之后北宋中后期词坛领袖,他不同于苏轼追求创作自由,注重抒情言志,而是强调精心勾画,法度井然,注重词境的开拓。
他是继柳永之后北宋最有影响力的派词人。
三.解释下列句子中加点的词。
1.燎.沉香
2.消溽.暑
3.侵.晓窥檐语
4.叶上初阳干宿雨
...
5.小楫.轻舟
6.梦入芙蓉浦.。
四.整体赏析
这首词上片:下片:(写景或抒情)。
这首词主要抒发词人
的情感。
【我的疑惑】:
探究案
1.这首词上片是如何写景的?请用优美的语言描绘上片的景。
2.下片是如何抒情的?
3. 这首词上片写景,下片抒情,情景关联密切,想想二者有什么关
系。
请结合诗句分析。
【学法归纳】鉴赏诗词情感的答题步骤:
1. 2. 3.
训练案
除夜作
高适
旅馆寒灯独不眠,客心何事转凄然?
故乡今夜思千里,双鬓明朝又一年。
“故乡今夜思千里”,诗人运用什么表现手法抒写思乡之情的?【自我评价】
探究非常好好一般
探究1
探究2
探究3
【我的收获】
【布置作业】
完成《学习指导》57页的练习。
【预习新课】
预习《过小孤山大孤山》。