往年四川省内江市中考数学真题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
往年四川省内江市中考数学真题及答案
一、选择题(本大题共12小题,每小题3分,共36分)
1.(3分)(2013•内江)下列四个实数中,绝对值最小的数是()
A.﹣5 B.C.1 D.4
考点:实数大小比较.
分析:计算出各选项的绝对值,然后再比较大小即可.
解答:解:|﹣5|=5;|﹣|=,|1|=1,|4|=4,
绝对值最小的是1.
故选C.
点评:本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.
2.(3分)(2013•内江)一个几何体的三视图如图所示,那么这个几何体是()
A.B.C.D.
考点:由三视图判断几何体.
分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,即可得出答案.
解答:解:由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱;
故选C.
点评:本题考查了由三视图判断几何体,考查学生的空间想象能力,是一道基础题,难度不大.
3.(3分)(2013•内江)某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为()
A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×109
考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当
原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将11500000000用科学记数法表示为:1.15×1010.
故选A.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(3分)(2013•内江)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.
考点:在数轴上表示不等式的解集.
分析:求得不等式组的解集为﹣1<x≤1,所以B是正确的.
解答:解:由第一个不等式得:x>﹣1;
由x+2≤3得:x≤1.
∴不等式组的解集为﹣1<x≤1.
故选B.
点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集
的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在
表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
5.(3分)(2013•内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()
A.这1000名考生是总体的一个样本B.近4万名考生是总体
C.每位考生的数学成绩是个体D.1000名学生是样本容量
考点:总体、个体、样本、样本容量.
分析:根据总体、个体、样本、样本容量的定义对各选项判断即可.
解答:解:A、1000名考生的数学成绩是样本,故本选项错误;
B、4万名考生的数学成绩是总体,故本选项错误;
C、每位考生的数学成绩是个体,故本选项正确;
D、1000是样本容量,故本选项错误;
故选C.
点评:本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的
数目,不能带单位.
6.(3分)(2013•内江)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()
A.125°B.120°C.140°D.130°
考点:平行线的性质;直角三角形的性质.
分析:根据矩形性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.
解答:
解:
∵EF∥GH,
∴∠FCD=∠2,
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,
∴∠2=∠FCD=130°,
故选D.
点评:本题考查了平行线性质,矩形性质,三角形外角性质的应用,关键是求出∠2=∠FCD和得出∠FCD=∠1+∠A.
7.(3分)(2013•内江)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()
A.B.
C.D.
考点:由实际问题抽象出二元一次方程组.
分析:根据等量关系:相遇时两车走的路程之和为170千米,小汽车比客车多行驶20千米,可得出方程组.
解答:解:设小汽车和客车的平均速度为x千米/小时和y千米/小时
由题意得,.
故选D.
点评:本题考查了由实际问题抽象二元一次方程组的知识,解答本题的关键是仔细审题得到等量关系,根据等量关系建立方程.
8.(3分)(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()
A.2:5 B.2:3 C.3:5 D.3:2
考点:相似三角形的判定与性质;平行四边形的性质.
分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:10:25即可得出其相似比,由相似三角形的性质即可求出 DE:EC的值,由AB=CD
即可得出结论.
解答:解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∵S△DEF:S△ABF=4:25,
∴DE:AB=2:5,
∵AB=CD,
∴DE:EC=2:3.
故选B.
点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.
9.(3分)(2013•内江)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为﹣4 D.抛物线与x轴的交点为(﹣1,0),(3,0)
考点:二次函数的性质.
分析:A根据二次函数二次项的系数的正负确定抛物线的开口方向.
B利用x=﹣可以求出抛物线的对称轴.
C利用顶点坐标和抛物线的开口方向确定抛物线的最大值或最小值.
D当y=0时求出抛物线与x轴的交点坐标.
解答:解:∵抛物线过点(0,﹣3),
∴抛物线的解析式为:y=x2﹣2x﹣3.
A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.
B、根据抛物线的对称轴x=﹣=﹣=1,正确.
C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为﹣4,而不是
最大值.故本选项错误.
D、当y=0时,有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),
(3,0).正确.
故选C.
点评:本题考查的是二次函数的性质,根据a的正负确定抛物线的开口方向,利用顶点坐标公式求出抛物线的对称轴和顶点坐标,确定抛物线的最大值或最小值,当y=0时求出抛物