鲁教版六年级数学下知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本平面图形
一、知识点总结
1、线段:绷紧的琴弦,人行横道线都可以近似的瞧做线段。线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。
一条直线上有n 个点,则在这条直线上一共有
2
)
1(-⨯n n 条线段,一共有2n 条射线。 平面内的n 条直线相交,最多也只有2
)
1(-⨯n n 个交点。
4、点、直线、射线与线段的表示 在几何里,我们常用字母表示图形。 一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点与射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。 5、点与直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 6、直线的性质
(1)直线公理:经过两个点有且只有一条直线。(或者说两点确定一条直线。) (2)过一点的直线有无数条。
(3)直线就是就是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。 7、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。 (3)线段的中点到两端点的距离相等。
(4)线段的大小关系与它们的长度的大小关系就是一致的。 8、线段的中点:
点M 把线段AB 分成相等的两条相等的线段AM 与BM,点M 叫做线段AB 的中点。 9、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以瞧成就是一条射线绕着它的端点旋转而成的。
10、平角与周角:一条射线绕着它的端点旋转,当终边与始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又与始边重合时,所形成的角叫做周角。
11、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C 等。 ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE 等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
12、角的度量
角的度量有如下规定:把一个平角180等分,每一份就就是1度的角,单位就是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
13、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
14、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
相交线与平行线专题总结
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角就是邻补
角。
2.对顶角:一个角的两边分别就是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂直。
5、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7、垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8、同位角、内错角、同旁内角:
9、平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共
点时,称它们平行。
10、平行线:在同一平面内,不相交的两条直线叫做平行线。11、命题:判断一件事情的语句叫命题。
12、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。13、假命题:条件与结果相矛盾的命题就是假命题。
14、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15、对应点:平移后得到的新图形中每一点,都就是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16、定理与性质
对顶角的性质:对顶角相等。
17、垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19、平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20、平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
用尺规作角
作法
1)作射线O’A’
(2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB 于点D;
(3)以点O’为圆心,以OC长为半径画弧, 交O’A’于点C’
(4)以点C’为圆心,以CD长为半径画弧,交前面的弧于点D’
(5)过点D’作射线O'B’。∠A'O'B' 就就是所求作的角
数据的收集整理与描述
[基础知识梳理]
一、统计调查
(一)全面调查
1、数据处理的基本过程收集数据、整理数据、描述数据、分析数据、得出结论
2、统计调查的方式及其优点
(1)全面调查:我们把对全体对象的调查称为全面调查、
(2)百分比:每个对象出现的次数与总次数的比值。
注意:①调查方式有两种:一种就是全面调查,另一种就是抽样调查。
②百分比之与为1。
全面调查的优点就是可靠,、真实,抽样调查的优点就是省时、省力,减少破坏性。