雷达气象学复习重点
雷达与卫星气象学期末复习
名词解释雷达:能辐射电磁波并利用目标物对该电磁波的反射(散射)来发现目标物,并测定目标物位置的电子探测系统瑞利散射:一种光学现象,属于散射的一种情况。
又称“分子散射”。
粒子尺度远小于入射光波长时(小于波长的十分之一),其各方向上的散射光强度是不一样的,该强度与入射光的波长四次方成反比,这种现象称为瑞利散射。
a<<2。
雷达反射率η:描述粒子群后向散射能力的物理量∑==N i i1ση天线方向图:天气雷达的天线具有很强的方向性,它所辐射的功率集中在波束所指方向上,在极坐标中绘出的通过天线水平和垂直面上的能流密度的相对分布曲线图称为天线方向图。
增益:接收机必须接受足够的放大倍数才能使回波信号在显示器显示,放大倍数用增益来表示雷达系统组成部件:同步脉冲,发射机,接收机,收发天线,伺服系统,显示器,计算机接口雷达工作原理:天气雷达间歇性向空中发射脉冲式电磁波,电磁波在大气中以接近光波的速度,近似与直线的路径传播,如果在传播路径遇到了气象目标物,脉冲电磁波会被气象目标物向四面八方散射,其中一部分电磁波能被散射回雷达天线,在雷达显示器上显示出气象目标物的空间位置分布,和强度等特征有效照射深度:只有在波束中距离为R 到R+h/2范围内的那些粒子散射的回波,才能在同一时刻到达天线,称h/2这个量为波束有效照射深度有效照射体积:在波束宽度),(φθ范围内,粒子所产生的回波能同时到达天线的空间体积,称为有效照射体积径向速度:目标运动平行于雷达径向的分量。
速度模糊:表现为从正 负速度的最大值突变为负 正速度的最大值。
多普勒两难:根据最大不模糊距离与不模糊速度的表式知,PRF C R⨯=2max ,4max PRF V ⨯=λ对每个特定雷达而言,在确定的频率下,探测的最大距离和最大速度不能同时兼顾。
二次回波:超过雷达脉冲间隔所能探测最远距离之外的目标物回波。
简答:雷达图显示方式:雷达回波图,从蓝色到紫色表示回波强度由小到大(10-70dBz ),从不同颜色回波可以判断降雨强度,雨区范围、未来降雨强度和移动。
最新雷达原理复习总结培训资料
雷达原理复习要点第一章(重点)1、雷达的基本概念雷达概念(Radar):radar的音译,Radio Detection and Ranging 的缩写。
无线电探测和测距,无线电定位。
雷达的任务:利用目标对电磁波的反射来发现目标并对目标进行定位,是一种电磁波的传感器、探测工具,能主动、实时、远距离、全天候、全天时获取目标信息。
从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息?斜距R : 雷达到目标的直线距离OP方位α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。
仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。
2、目标距离的测量测量原理式中,R为目标到雷达的单程距离,为电磁波往返于目标与雷达之间的时间间隔,c为电磁波的传播速率(=3×108米/秒)距离测量分辨率两个目标在距离方向上的最小可区分距离最大不模糊距离3、目标角度的测量方位分辨率取决于哪些因素4、雷达的基本组成雷达由哪几个主要部分,各部分的功能是什么同步设备:雷达整机工作的频率和时间标准。
发射机:产生大功率射频脉冲。
收发转换开关: 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。
天线:将发射信号向空间定向辐射,并接收目标回波。
接收机:把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。
显示器:显示目标回波,指示目标位置。
天线控制(伺服)装置:控制天线波束在空间扫描。
电源第二章1、雷达发射机的任务为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去2、雷达发射机的主要质量指标工作频率或波段、输出功率、总效率、信号形式、信号稳定度3、雷达发射机的分类单级振荡式、主振放大式4、单级振荡式和主振放大式发射机产生信号的原理,以及各自的优缺点单级振荡式:脉冲调制器:在触发脉冲信号激励下产生脉宽为τ的脉冲信号。
雷达气象总复习
前言1) 按遥感方式划分,天气雷达属于主动遥感设备或有源遥感设备。
2) 我国目前已经布网了160多部新一代多普勒天气雷达。
按波长划分,已布网的新一代多普勒天气雷达有S 波段和C 波段两种类型,S 波段雷达部署在大江大河流域及沿海地区,C 波段雷达部署在东北、西北、西南等内陆地区。
3) 天气雷达起源于军事雷达,最早出现天气雷达是模拟天气雷达。
4) 天气雷达最常用的扫描方式有PPI 扫描、RHI 扫描和VOL 体扫描。
5) S 波段天气雷达波长在10cm 左右;C 波段天气雷达波长在5CM 左右;X 波段天气雷达波长在3cm 左右第1章散射1) 散射是雷达探测大气的基础,大气中引起雷达波散射的主要物质有大气介质、云和降水粒子。
2) 粒子在入射电磁波的极化作用下,做强迫的多极震荡而产生次波就是散射波。
3) 什么是瑞利散射及瑞利散射的特点?当 α <0.13时,发生瑞利散射当 α >0.13时,发生米散射当θ = 0º 或 180º 时.表明粒子的前向和后向散射为最大;当θ = 90º 或 270º 时.表明粒子没有侧向散射。
若θ = 0º 或 180º,则表明其在 Y-O-Z 平面内各向同性散射。
4) 什么是米散射及米散射的特点?散射波的能流密度是各向异性的,大部分散射能量集中在θ = 0º 附近的向前方向上,且α 值越大,向前散射的能量占全部散射能量的比重越大;2rD ππαλλ==其中λ 为雷达波长, r 为粒子半径, D 为粒子直径5) 雷达截面也称作后向散射截面,它的大小反映了粒子的后向散射能力的大小,雷达截面越大,粒子的后向散射能力越强。
6) 什么是雷达反射率η?单位体积内全部降水粒子的雷达截面之和称为雷达反射率。
7) 相关研究表明,对于小冰球粒子,其雷达截面要比同体积小水球的小很多;对于大冰球粒子,其雷达截面要比同体积大水球的大很多;8) 晴空回波产生的原因是什么?湍流大气(折射指数不均匀)对雷达波的散射作用;大气对雷达波的镜式反射(大气中折射指数的垂直梯度很大)。
雷达气象学1-知识点综合3
《雷达气象学》知识点--2014版本第一章前言1 天气雷达的主要功能2 天气雷达回波的形成的两种机制。
3 天气雷达系统的组成和主要参数(λ,PRF,τ)。
4 天气雷达的常用观测方式PPI、RHI、VCP(VOL体扫)5 我国新一代天气雷达网的业务情况介绍第二章气象目标物对雷达电磁波的散射1 散射的物理本质2、Rayleigh散射和Mie散射的概念、区别与联系;3、若干基本物理量(散射函数,散射截面,雷达截面,雷达反射率,雷达反射率因子,等效反射率因子)的概念、物理意义以及他们之间的联系。
4、Z和dBZ的转化计算。
5、后向散射截面σb与尺度参量α的关系。
6、水滴球、冰球、外包水膜冰球的散射能力比较。
7、介质小椭球体的散射8、晴空回波的成因第三章大气、云、降水粒子对雷达波的衰减1、衰减的物理本质2、电磁波在大气传输过程中的衰减特性及衰减公式。
3、大气气体、云、雨、雪、冰雹等对雷达电磁波的衰减能力及比较。
4、衰减对雷达探测的影响。
5、衰减和波长的关系第四章雷达气象方程1、单个目标的雷达方程的推导。
2、云及降水的雷达气象方程的推导。
3、雷达气象方程的讨论。
4、雷达方程成立的条件。
5、有效照射体积、照射深度、波束宽度、天线方向图、天线增益6、雷达常数及简化的雷达方程7、雷达气象方程的应用8、考虑充塞系数和衰减的雷达方程第五章雷达电磁波在大气中的折射1、产生折射现象的物理原因和折射规律2、折射指数N单位与温度、压力和水汽压的关系3、射线的曲率和等效地球半径的概念。
4、折射指数随高度变化的几种形式。
5、地球球面和大气折射对雷达探测远距离气象目标的影响。
6、订正折射指数M、B的含义7、大气折射对雷达探测的综合影响(高度、回波探测能力、地物回波)8、有利于形成超折射的气象条件分析第六章雷达探测能力和精度**1、径向分辨率2、切向分辨率(方位θ、俯仰Φ)3、雷达观测模式与时间分辨率4、回波涨落和样本平均5、天气雷达探测能力的讨论第七章雷达定量测量降水1、Z-I关系建立与雷达定量测量降水的原理。
雷达气象学复习思考题-1
雷达气象学复习思考题一、名词解释平均功率、方向性图、波束宽度、天线增益、雷达截面、雷达反射率、反射率因子、晴空回波、衰减系数、衰减截面、有效照射深度、有效照射体积、折射指数N单位、等效地球半径、等射束高度图二、简答题1.天气雷达的基本工作原理?2.PPI和RHI有何不同?3.粒子群的总回波功率能否是单个粒子的回波功率之和?为什么?4.对于10cm和5cm的天气雷达,什么样的气象目标物会满足瑞利散射近似?5.有了雷达反射率,为什么还要引入雷达反射率因子?6.雨对雷达波的衰减规律是什么?7.决定雷达最大探测距离的因素有哪些?8.标准大气折射时电磁波传播有何特征?9.大气水平分布非均一情况下出现探测“盲区”的原因是什么?10.雷达和雨量计测量降水各自的优缺点是什么?三、论述题1.简述天气雷达的未来发展方向?2.如何计算粒子对雷达波的衰减?3.论述实际工作中如何考虑大气、云、雨、雪、冰雹对雷达波的衰减问题。
4.推导天线辐射强度在两半功率点间均匀分布时单个目标物的雷达气象方程?5.推导天线辐射强度在两半功率点间均匀分布时云和降水的雷达气象方程?6.写出雷达气象方程:⎰⋅+-=-R 0kdR 2.022*********Z 2m 1m R 11024ln2ψλϕθπh G P P t r中各参数的含义,并讨论方程该雷达方程的适用范围。
7. 简述折射指数随高度变化的几种形式,各有何特点?8. 地球球面和大气折射对探测目标物有怎样的影响?9. 影响雷达定量测量降水精度的主要因素有哪些?①基本假定上:正压模式假设大气满足静力平衡,有自由面,是自动正压大气模型;斜压模式仅假定大气满足静力平衡,考虑大气斜压性,可以考虑温度平流,垂直运动。
②研究范围上:正压模式只研究大气某一层运动,斜压模式可研究大气的三维运动。
③差分格式上:正压模式仅考虑水平差分格式,斜压模式水平差分,垂直差分都要考虑。
④方程上:正压模式根据潜水方程组,没有考虑非绝热加热、摩擦、水汽方程;斜压模式根据σ坐标通量方程组,考虑了非绝热加热、摩擦、水汽方程和温度扩散。
雷达气象学考试复习知识讲解
雷达气象学考试复习1.说明和解释冰雹回波的主要特点(10分)。
答:冰雹云回波特征:回波强度特别强(地域、月份、>50dBZ );回波顶高高(>10km );上升(旋转)气流特别强(也有强下沉气流,)。
PPI 上,1、有“V ”字形缺口,衰减。
2、钩状回波。
3、TBSS or 辉斑回波。
画图解释。
RHI 上:1、超级单体风暴中的穹窿(BWER ,∵上升气流)、回波墙和悬挂回波。
2、强回波高度高。
3、旁瓣回波。
画图解释。
4、辉斑回波。
5、在回波强中心的下游,有一个伸展达60-150km 甚至更远的砧状回波。
速度图上可以看到正负速度中心分布在径线的两侧,有螺旋结构。
有可能会出现速度模糊。
2.画出均匀西北风的VAD 图像从VAD 图像上可以获得环境风速和风向的信息,西北风的风向对应7/4π(315°)如图所示,零速度线是从45°—225°方位的一条直线(可配图说明)。
由此可绘出VAD 图像。
3.解释多普勒频移:多普勒频移:由于相对运动造成的频率变化设有一个运动目标相对于雷达的距离为r ,雷达波长为λ。
发射脉冲在雷达和目标之间的往返距离为2r ,用相位来度量为2π•2r/λ。
若发射脉冲的初始相位为φ0,则散射波的相位为φ=φ0+4πr/λ。
目标物沿径向移动时,相位随时间的变化率(角频率)44r d d r v d t d t ϕππλλ==另一方面,角频率与频率的关系2D d f d t ϕωπ==则多普勒频率与目标运动速度的关系fD=2vr/λ4.天线方向图:在极坐标中绘出的通过天线水平和垂直面上的能流密度的相对分布曲线图。
天气雷达的天线具有很强的方向性,它所辐射的功率集中在波束所指的方向上。
反映了雷达波束的电磁场强度及其能流密度在空间的分布;曲线上各点与坐标原点的连线长度,代表该方向上相对能流密度大小。
图中能流密度最大方向上的波瓣称为主瓣,侧面的称为旁瓣,相反方向的称为尾瓣。
雷达复习——精选推荐
雷达复习雷达⽓象学绪论&第⼀章雷达基本概念1.常⽤的测⾬雷达波段与波长?X波段——3.2 cm、C波段(反射强,内陆地区,⼀般性降⽔)——5.7 cm、S 波段(穿透能⼒强、衰减少,沿海地区,台风、暴⾬)——10.7 cm2.雷达主要由哪⼏部分组成?①雷达数据采集⼦系统(RDA):A.发射机:RDA是取得雷达数据的第⼀步——发射电磁波信号。
RDA主要是由放⼤器完成,产⽣⾼效率且⾮常稳定的电磁波信号。
稳定是⾮常重要的,产⽣的每个信号必须具有相同的初相位,以保证回波信号中的多普勒信息能够被提取。
⼀旦信号产⽣,就被送到天线。
B.天线:将发射机产⽣的信号以波束的形式发射到⼤⽓并接受返回的能量,确定⽬标物的强度,同时确定⽬标物的仰⾓、⽅位⾓和斜距进⾏定位。
天线仰⾓的设置取决于天线的扫描⽅式(共有三种)、体扫模式(VCP)和⼯作模式(分为晴空和降⽔两种模式)。
使⽤三种扫描⽅式:扫描⽅式#1:5分钟完成14个不同仰⾓上的扫描(14/5)扫描⽅式#2:6分钟完成9个不同仰⾓上的扫描(9/6)(我国)扫描⽅式#3:10分钟完成5个不同仰⾓上的扫描(5/10)体扫模式定义4个:VCP11 --- VCP11规定5分钟内对14个具体仰⾓的扫描⽅式。
VCP21 --- VCP21规定6分钟内对9个具体仰⾓的扫描⽅式。
VCP31 --- VCP31规定10分钟内对5个具体仰⾓的扫描⽅式。
VCP32 --- VCP32确定的10分钟完成的5个具体仰⾓与VCP31相同。
不同之处在于VCP31使⽤长雷达脉冲⽽VCP32使⽤短脉冲。
⼯作模式:⼯作模式A:降⽔模式使⽤VCP11或VCP21,相应的扫描⽅式分别为14/5 和9/6。
⼯作模式B:晴空模式使⽤VCP31或VCP32,两者都使⽤扫描⽅式5/10。
C.接收机:当天线接收返回(后向散射)能量时,它把信号传送给接收机。
由于接收到的回波能量很⼩,所以在以模拟信号的形式传送给信号处理器之前必须由接收机进⾏放⼤。
雷达气象学复习重点
1、天气雷达工作原理天气雷达工作原理:定向地向空中发射电磁波列(探测脉冲),然后接收被气象目标散射回来的电磁波列(回波信号),并在荧光屏上显示出来,从而确定气象目标物的位置和特性雷达的测距原理:雷达根据从开始发射无线电波到接收到目标物回波的时间间隔,来测定目标与雷达之间的距离3、雷达主要组成:RDA:雷达数据采集系统、RPG:雷达产品生成子系统、PUP:主用户处理系统①定时器:定时器是雷达的“指挥中心”它实际上是一个频率稳定的脉冲信号发生器。
定时器每隔一定的时间间隔发出一个脉冲信号,它触发发射机,使发射机定时地产生强大的高频振荡脉冲并使阴极射线管同时开始作时间扫描②发射机:在定时器的控制下,发射机每隔一定的时间产生一个很强的高频脉冲,通过天线发射出去③天线传动装置: 天线传动装置主要包括两个部分,一部分是天线的转动系统,一部分是同步系统。
天线转动系统的作用是:(1)使天线绕垂直轴转动,以便探测平面上的降水分布,或漏斗面上降水、云的分布;(2)使天线在某一方位上作上下俯仰,以便探测云和降水的垂直结构和演变。
天线同步系统(也叫伺服系统)的作用是:使阴极射线管上不同时刻时间扫描基线的方位、仰角和相应时间天线所指的方位、仰角一致(即同步),从而使雷达荧光屏上出现的目标标志(用亮点或垂直偏移表示)的方位、仰角就是目标相对于雷达的实际方位、仰角④天线转换开关: 因为雷达发射和接受的都是持续时间极短(微秒量级)、间歇时间很长(千微秒量级)的高频脉冲波,这就有可能使发射和接收共用一根天线。
天线转换开关的作用是:在发射机工作时,天线只和发射机接通,使发射机产生的巨大能量不能直接进入接收机,从而避免损坏接收机;当发射机停止工作时,天线立即和接收机接通,微弱的回波信号只进入接收机⑤接收机:雷达接收机的作用是将天线接收回来的微弱回波信号放大并变换成足够强的视频信号送往显示器产生回波标志⑥雷达天线:雷达天线的作用是定向地辐射高频脉冲波和接收来自该方向的回波。
雷达气象要点(全)
E1 E1m cos t kr1 E1m cos t cos kr1 E1m sin t sin kr1 E2 E2 m cos t kr2 E2 m cos t cos kr2 E2 m sin t sin kr2 E1 E2 E1m cos kr1 E2 m cos kr2 cos t E1m sin kr1 E2 m sin kr2 sin t Em cos t kr Em cos kr cos t Em sin kr sin t E
Ss
Si , 其中 Ss 是散射电磁波的能流密度,是以粒子为中心,距离 R 处的球 R2
面上受到的散射能流密度。若 β 与 θ 和 υ 无关,则是各向同性散射,否则各项散射不均匀。
Si 是入射能流密度,是到达粒子处时电磁波的能流密度。 β(θ, υ)是散射方向函数:
r 6 m2 1 , 16 4 2 m 2
1
/2
/2
W (t )dt 1 T /2 W (t )dt T T /2
平均功率( Pt ):脉冲功率在一个周期的平均值。 P t W 是功率的瞬时值。Pt 与 Pt 的关系有 P t P t PRF
最小可测功率:表示接收机能接收到的最小信号强度,反映接收机的灵敏度。 3. 天线增益(G):天线增益是指天线反射器所指的特定方向所接收之能量与在该点一个各 向同性天线所接收之能量两者的比值。 (上述之特定方向所指的是波束轴之中心, 即存在 最大能量的那点)。增益用分贝(dB)来衡量,是无量纲量。 G 10 lg
可以看成由不同折射指数的介质形成的同心球。 瑞利区:随着融化水膜厚度迅速增大,融化冰球的后向散射截面迅速增大;当厚度达到 一定(不必融化完)时,雷达截面与水球等效。 米散射区:对于一个特定的雷达波长,当粒子的直径在某一个值之下时,反射率随着水 膜厚度的增大而减大;在另一个值之上时,反射率随着水膜厚度的增大而减小。 9. 冰水混合球的后向散射截面 冰水均匀混合球 (或多孔海绵冰球含水时) 后向截面的值随熔化水量的增加而增加要比 外包水膜冰球时慢得多。 class5 大气、云、降水对电磁波的衰减 1. 衰减:电磁波能量沿传播路径减弱的现象。 造成衰减的物理原因是因为电磁波投射到气体分子或云、 雨粒子时, 一部分能量被散射, 另一部分能量被吸收。 2. 衰减系数 接收功率随距离的衰减与接收功率本身的大小以及距离成正比,比例系数 kL 即称为衰 减系数。
雷达气象复习重点2.
第一章1. 简述我国天气雷达发展阶段及未来发展方向。
我国天气雷达发展大体上经历了从模拟天气雷达、数字化天气雷达到多普勒天气雷达的三个发展阶段。
未来:双极化、相控阵、多基地雷达2. 简述雷达气象的研究内容。
(1) 利用天气雷达,进行大气探测和研究雷达波与大气相互作用的学科,它是大气物理学、大气探测和天气学共同研究的一个分支。
(2)主要内容:基础理论、分析应用、探测方法与技术三部分(填空)。
(问答答法)基础理论方面包括云和降水粒子对雷达波的散射;微波经过大气、云和降水粒子时的衰减;气象条件对雷达波传播的影响,如大气折射、大气不均匀结构的散射等。
分析应用方面包括雷达测量降水和云中的含水量;天气系统(特别是中小尺度系统)的雷达回波在天气分析预报上的应用,在云和降水物理探测研究上的应用;多普勒雷达和各种波长的新型雷达在风的水平结构和铅直结构、铅直气流速度、降水粒子谱、晴空回波、大气湍流等的探测研究中的应用。
探测方法与技术方面包括各种天气雷达资料的处理和传输等。
4. 何谓雷达工作波长、频率,简述其关系。
波长λ:天气雷达发射高频电磁波的一个周期长度。
波长不同,雷达性能不同。
频率f:单位时间内完成振动的次数,即每秒钟内发射出电磁波的次数关系:f=C/λ,C为光速5. 何谓脉冲宽度、脉冲长度,简述其关系。
脉冲宽度τ:发射高频电磁脉冲波的持续时间叫脉冲宽度脉冲长度h:脉冲波在空间的长度叫脉冲长度。
关系:h=τ c6. 何谓脉冲重复频率与脉冲重复周期,简述其关系。
脉冲重复频率F:是每秒钟雷达发射脉冲波的次数。
重复周期T:两个相邻脉冲波之间的时间间隔它们之间互为倒数关系:F=1/T11. 简述天气雷达的三种基本观测模式。
(1)圆锥扫描模式雷达天线在仰角不变,方位进行360°的连续扫描称为圆锥扫描,也称平面位置显示(PPI)观测。
(2)垂直扫描模式雷达天线方位角不变,仰角进行0-30° (或更高)的上下扫描称为垂直扫描,也称为距离高度显示(RHI)观测。
多普勒雷达复习提要
多普勒天气雷达复习提要一、多普勒天气雷达探测基本原理(一)多普勒天气雷达主要参数天气雷达发射脉冲形式的电磁波,当电磁脉冲遇到降水物质(雨滴、雪花和冰雹等)时,大部分能量继续前进,而少部分能量被降水物质向四面八方散射,其中向后散射的能量回到雷达天线,被雷达所接收。
根据雷达接收的降水系统回波特征可以判别降水系统的特性(降水强弱、有无冰雹、龙卷和大风等)。
多普勒天气雷达除了测量雷达的回波强度外,还测量降水目标物沿雷达径向的运动速度和速度脉动程度。
1、波长:是雷达发射的电磁波波长。
天气雷达的波长通常为10公分、5公分、3公分三种,分别称为S波段、C波段、X波段。
2、脉冲重复频率PRF天气雷达间歇地发射脉冲形式的电磁波,每秒钟发射脉冲的个数称为脉冲重复频率(PRF)。
两个相继脉冲之间的时间间隔称为脉冲重复周期(PRT),他等于脉冲重复频率的倒数。
3、脉冲持续时间和脉冲长度天气雷达脉冲持续时间一般为一到几个微米左右。
假设某部天气雷达的相继脉冲之间的间隔为1000微秒,其脉冲持续时间为2微秒左右,则剩余的998微秒是雷达接收来自目标物回波的时间。
发射脉冲的持续时间确定了脉冲在空间的长度。
例如CINRAD-SA型多普雷天气雷达的窄脉冲持续时间为1.57微秒,脉冲在空间的长度约为500m。
4、波束宽度雷达发射的能量主要集中在主瓣内(图2.8a),其中主瓣内两个半功率点(及该处功率为最大的一半)之间角度大小称为波束宽度。
在垂直方向的波束宽度用θ表示,在水平方向的波束宽度用φ表示。
我国多普勒天气雷达的波束宽度大多为1°左右。
5、有效照射深度和有效照射体积雷达发出的脉冲具有一定的持续时间τ,在空间的电磁波列就有一定的长度h=τc。
位于波束宽度和波束长度范围内的所有粒子都可以同时被雷达波束所照射。
但是其中所有粒子产生的回波并不是都能同时回到雷达天线。
在径向方向上,粒子的回波信号能同时返回雷达天线的空间长度为h/2,称为雷达的有效照射深度。
雷达气象学期末复习重点
雷达系统组成:触发信号产生器,发射机,天线转换开关,天线,接收机,显示器 脉冲重复频率PRF :每秒钟产生的脉冲数目,脉冲间隔决定了探测距离;脉冲重复周期PRT :两个相邻脉冲之间的时间间隔,PRT =1/PRF ;脉冲宽度τ:脉冲发射占有时间的宽度,单位微秒波长λ:电磁波在一个周期内在空间占有的长度;脉冲发射功率P :发射机发出的探测脉冲的峰值功率;平均功率Pa:发射机在一个脉冲重复周期里的平均功率。
天线方向图:在极坐标中绘出的通过天线水平和垂直面上的能流密度的相对分布曲线图。
波束宽度: 在天线方向图上,两个半功率点方向的夹角。
波束宽度越小,定向角度的分辨率越高,探测精度越高。
天线增益:辐射总功率相同时,定向天线在最大辐射方向上的能流密度与各向均匀辐射的天线的能流密度之比。
灵敏度:雷达检测弱信号的能力。
用最小可辨功率Pmin 表示,就是回波信号刚刚能从噪声信号中分辨出来时的回波功率。
平面位置显示器PPI :雷达天线以一定仰角扫描一周时,测站周围目标物的回波。
以极坐标形式显示。
距离高度显示器RHI :显示雷达天线正对某方位以不同的仰角扫描时目标物的垂直剖面图 散射现象:当电磁波传播遇到空气介质和云、降水粒子时,入射的电磁波会从这些质点向四面八方传播相同频率的电磁波,称为散射现象。
散射过程:入射电磁波使粒子极化,正负电荷中心产生偏移而构成电偶极子或多极子,并在电磁波激发下作受迫振动,向外界辐射电磁波,就是散射波。
单个球形粒子的散射定义无量纲尺度参数:α=2πr/λ当α<<1时:Rayleigh 散射,也称分子散射。
如空气分子对可见光的散射。
当0.1<α<50:Mie 散射。
如大气中的云滴对可见光的散射。
当α>50:几何光学:折射。
如大雨滴对可见光的折射、反射,彩虹等光现象。
瑞利散射:方向函数的具体形式:当雷达波是平面偏振波时,瑞利散射在球坐标中的方向函数为:()()ϕϕθλπϕθβ222222464sin cos cos 2116,++-=m m r 当入射雷达波长一定,散射粒子的大小和相态一定(即r 、m 为常数),则:()()ϕϕθϕθβ222sin cos cos ,+=C米散射:单个球形粒子的散射Rayleigh 散射与Mie 散射不同点:Rayleigh :前后向散射相等,侧向散射为零。
南京信息工程大学雷达气象学总复习_最终版
前言1) 按遥感方式划分,天气雷达属于主动遥感设备或有源遥感设备。
2) 我国目前已经布网了160多部新一代多普勒天气雷达。
按波长划分,已布网的新一代多普勒天气雷达有S波段和C波段两种类型,S波段雷达部署在大江大河流域及沿海地区,C波段雷达部署在东北、西北、西南等内陆地区。
3) 天气雷达起源于军事雷达,最早出现天气雷达是模拟天气雷达。
4) 天气雷达最常用的扫描方式有PPI扫描、RHI扫描和VOL体扫描。
5) S波段天气雷达波长在10cm左右;C波段天气雷达波长在5cm左右;X波段天气雷达波长在3cm左右第1章散射1) 散射是雷达探测大气的基础,大气中引起雷达波散射的主要物质有大气介质、云和降水粒子。
2) 粒子在入射电磁波的极化作用下,做强迫的多极震荡而产生次波就是散射波。
3) 什么是瑞利散射及瑞利散射的特点?4) 什么是米散射及米散射的特点?5) 雷达截面也称作后向散射截面,它的大小反映了粒子的后向散射能力的大小,雷达截面越大,粒子的后向散射能力越强。
6) 什么是雷达反射率 ?单位体积内全部降水粒子的雷达截面之和称为雷达反射率。
7) 相关研究表明,对于小冰球粒子,其雷达截面要比同体积小水球的小很多;对于大冰球粒子,其雷达截面要比同体积大水球的大很多;8) 晴空回波产生的原因是什么?湍流大气(折射指数不均匀)对雷达波的散射作用;大气对雷达波的镜式反射(大气中折射指数的垂直梯度很大)。
9)雷达反射因子Z与雷达反射率的差别。
第2章衰减1) 造成雷达电磁波衰减的物理原因是散射和吸收。
2) 造成雷达电磁波衰减的主要物质有大气、云和降水。
3) 水汽和氧气对电磁波的衰减作用主要是吸收4) 云滴对雷达波的衰减随雷达波长得增加而减小。
5) 雨对雷达波的衰减一般与降水强度成近似的正比关系第三章 雷达气象方程1) 什么是天线增益G ? 定向天线最大辐射方向的能流密度与各向均匀辐射天线的能流密度之比,称为天线增益,用符号G 表示。
雷达讲义(复习)
1.新一代雷达系统对灾害天气有强的监测和预警能力。
对台风、暴雨等大范围降水天气的监测距离应不小于(400km)。
对雹云、中气旋等小尺度强对流现象的有效监测和识别距离应大于(150km)。
2.新一代雷达速度埸中,辐合(或辐散)在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线(一致)。
3.新一代天气雷达观测采用的是时。
计时方法采用24小时制,计时精度为秒。
4.在距离雷达一定距离的一个小区域内,通过对该区域内沿雷达径向速度特征的分析,可以确定该区域内的气流()、()和(旋转)等特征。
5.天气雷达是用来探测大气中降水区的(位置)、大小、强度及变化的6.多普勒天气雷达使用低脉冲重复频率PRF测(反射率因子),用高脉冲重复频率PRF 测(速度)。
7.在强回波离雷达(较近)时,有可能产生旁瓣造成虚假回波.8.降水粒子的后向散射截面是随粒子尺度增大而()。
9.Ze的物理意义是(所有粒子直径的6次方之和)。
10.在雷莱散射时,散射截面Qs比后向散射截面 (小)。
11.大水滴的后向散射截面总比小水滴的后向散射截面(大很多)。
12.在50km以外,我国新一带天气雷达的降水估测使用的仰角是0.5度。
13.对于靠近雷达的强对流回波,应尽量用(抬高)仰角。
14.反射率因子的大小反映了气象目标内部降水粒子的(尺度)和(数密度),常用来表示气象目标的强度。
15.单位体积中云雨粒子后向散射截面的总和,称为气象目标的(反射率)。
16.多普勒天气雷达的应用领域主要在于对灾害性天气的监测和预警。
还可以进行较大范围的降水定量估测,获取降水和降水运体的风场结构,改善高分辨率数值天气预报模式的(初值场)。
17.新一代天气雷达回波顶高产品中的回波顶高度(小于云顶高度)。
18.雷达探测到的任意目标的空间位置可根据仰角)、(方位角)、(斜距)求得。
19.在大气基本满足水平均匀并且雷达周围有降水的条件下,通过分析某一个仰角扫过的圆锥面内径向速度的分布,可以大致判断雷达上空大尺度的(风向、风速)随高度变化的情况。
雷达气象学考试复习
雷达气象学考试复习1.说明和解释冰雹回波的主要特点(10分)。
答:冰雹云回波特征:回波强度特别强(地域、月份、>50dBZ );回波顶高高(>10km );上升(旋转)气流特别强(也有强下沉气流,)。
PPI 上,1、有“V ”字形缺口,衰减。
2、钩状回波。
3、TBSS or 辉斑回波。
画图解释。
RHI 上:1、超级单体风暴中的穹窿(BWER ,∵上升气流)、回波墙和悬挂回波。
2、强回波高度高。
3、旁瓣回波。
画图解释。
4、辉斑回波。
5、在回波强中心的下游,有一个伸展达60-150km 甚至更远的砧状回波。
速度图上可以看到正负速度中心分布在径线的两侧,有螺旋结构。
有可能会出现速度模糊。
2.画出均匀西北风的VAD 图像从VAD 图像上可以获得环境风速和风向的信息,西北风的风向对应7/4π(315°)如图所示,零速度线是从45°—225°方位的一条直线(可配图说明)。
由此可绘出VAD 图像。
π/43π/4 7π/4方位角速度3.解释多普勒频移:多普勒频移:由于相对运动造成的频率变化设有一个运动目标相对于雷达的距离为r ,雷达波长为λ。
发射脉冲在雷达和目标之间的往返距离为2r ,用相位来度量为2π•2r/λ。
若发射脉冲的初始相位为φ0,则散射波的相位为φ=φ0+4πr/λ。
目标物沿径向移动时,相位随时间的变化率(角频率)44r d d r v d t d t ϕππλλ==另一方面,角频率与频率的关系2D d f d t ϕωπ==则多普勒频率与目标运动速度的关系fD=2vr/λ4.天线方向图:在极坐标中绘出的通过天线水平和垂直面上的能流密度的相对分布曲线图。
天气雷达的天线具有很强的方向性,它所辐射的功率集中在波束所指的方向上。
反映了雷达波束的电磁场强度及其能流密度在空间的分布;曲线上各点与坐标原点的连线长度,代表该方向上相对能流密度大小。
图中能流密度最大方向上的波瓣称为主瓣,侧面的称为旁瓣,相反方向的称为尾瓣。
雷达气象学知识点
雷达气象学知识点雷达气象学:利用气象雷达进行大气探测和研究雷达波与大气相互作用的学科它是大气物理学、大气探测和天气学共同研究的一个分支。
雷达气象学在突发性、灾害性天气的监测、预报和警报中具有极为重要的作用。
雷达的显示方式: PPI(平面位置显示Plain Position Indicator) :固定仰角天线做0-360°顺时针扫描显示回波分布;实际上显示的是圆锥面上的回波分布。
按测距公式R越大回波高度越高。
RHI (Range Height Indicator距离高度显示):固定方位角天线做俯仰扫描探测某方位上回波垂直结构。
坐标:R-最低仰角的斜距; H-按测高公式计算(标准大气折射)。
脉冲重复频率PRF:每秒产生的脉冲数脉冲间隔决定了探测距离。
脉冲重复周期PRT:两个相邻脉冲间的时间间隔。
脉冲宽度τ:脉冲发射占有时间的宽度。
波长a/λ:电磁波在一个周期内在空间占有的长度。
脉冲发射频率P:发射机发出的探测脉冲的峰值功率。
平均功率Pa:发射机在一个脉冲重复周期里的平均功率。
波束宽度:在天气方向图上两个半功率点方向上的夹角。
(波束宽度越小精度越高)天线增益:辐射总功率相同时定向天线在最大辐射方向上的能流密度与各向均匀辐射的天线的能流密度之比。
G=10_lg(S定向/S各项均匀)散射:当电磁波束在大气中传播遇到空气介质或云滴、雨滴等悬浮粒子时入射电磁波会从这些介质或粒子上向四面八方传播开来这种现象称为散射现象。
主要物质:大气介质、云滴、水滴气溶胶等。
其它散射现象:光波、声波等散射能流密度:对于入射能流密度 S i 经一各向同性的散射粒子散射后在以粒子为中心、半径为 R 的球面上任意一点所接收到的散射能流密度为:瑞利散射时的雷达截面:= 单个球形粒子的散射定义无量纲尺度参数:α=2πr/λ 当α Z正比于D6一方面表明粒子越大Z越大回波功率也就越大另一方面也表明Z的贡献主要来源于少数的大雨滴;等效雷达反射率因子:对不满足瑞利散射条件的降水粒子根据雷达气象方程求得的Z值就不能代表降水的实际谱分布情况只能是等效的Z值(Ze)称为等效雷达反射率因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达气象复习
1 多普勒天气雷达可获取的基数据有反射率因子、平均径向速度和速度谱宽。
2天气雷达一般分为X 波段、 C 波段、 S 波段,波长分别是3厘米、5厘米、10厘米
3目前我国 CINRAD-SA降水模式中使用的体扫模式为VCP11、VCP21、VCP31。
其中VCP11通常在强对流风暴出现的情况下使用,而VCP21在没有强对流单体有显著降水的情况下使用,晴空情况下使用VCP31
4目前我国 CINRAD-SA使用两种工作模式,即降水模式和晴空模式
5我国新一代天气雷达的降水估测只使用最低的4个仰角:0.5°,1.5°,2.4°,3.4°,分别使用在50km以外,35-50km,20-35km和0-20km的距离范围内。
6我国新一代天气雷达系统主要由雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)、通讯线路。
7当波源和观测者做相对运动时,观测者接受到的频率和波源的频率不同,其频率变化量和相对运动速度大小有关,这种现象就叫做多普勒效应。
8天气雷达的局限性:波束中心的高度随距离增加而增加、波束宽度随距离的增加而展宽、静锥区的存在。
9获取雷达接收到的降水回波信号是降水粒子对雷达所发射电磁波的散射产生的,因此电磁波在降水粒子上的散射是天气雷达探测降水的基础。
10当雷达波长λ确定后,球形粒子的散射情况主要取决于粒子直径d 。
对于d<<λ的小球形粒子的散射,称为瑞利散射;d≈λ的大球形质点的散射称为米散射。
11反射率因子在瑞利散射条件下的定义:单位体积中降水粒子直径6次方的总和
称为反射率因子,用Z表示,其常用单位为mm6/m3,即∑
=
单位体积6 i
D
Z
12后向散射截面的定义:设有一理想的散射体,其截面为σ,它能全部接收射到其上的电磁波能量,并全部均匀地向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,则该理想散射体的截面σ就称为实际散射体的后向散射截面。
13单位体积中降水粒子后向散射截面的总和,称为气象目标的反射率,用η表示,常用单位是 cm2/m3
14电磁波能量沿传播路径减弱的现象,称为衰减。
大气、云、降水粒子对雷达波的衰减是由于散射和吸收引起的,衰减的结果将使回波图象、定量测量情况与实际情况出现偏差。
15 距离折叠是指雷达对产生雷达回波的目标物位置的一种辨认错误。
距离折叠现象常见于速度和谱宽产品,距离折叠现象只偶尔出现在反射率产品。
16 最大不模糊距离是当雷达发出一个脉冲遇到该距离处的目标物产生的后向散射波返回到雷达时,下一个雷达脉冲刚好发出。
也即:雷达波传播到位于最大不模糊距离处的目标物,然后其回波再返回雷达所用的时间刚好是两个脉冲之间的 时间间隔。
17 多普勒天气雷达的最大不模糊距离和最大不模糊速度与雷达的脉冲重复频率和波长的关系表达式分别是PRF C
R ⨯=2max 和 4
max PRF V ⨯=λ。
多普天气雷达使用低脉冲重复频率PRF 测反射率因子,用高脉冲重复频率PRF 测速度。
18 当雷达发出的电磁波投射到降水粒子上时,它们就散射电磁波,雷达回波就是被雷达天线所接收的后向散射波。
19 压、湿随高度变化的不同,导致了折射指数分布的不同,使电磁波的传播发生弯曲,一般有负折射、零折射、标准大气折射、临界折射、超折射五种折射现象。
20 超折射一般发生在湿度随高度升高而迅速减少和温度随高度升高而增加大气层。
逆温引起的超折射主要出现在子夜和清晨,而湿度随高度迅速减小的情况大多出现在大雨刚刚过后。
21 当脉冲重复频率PRF 增大时,最大探测距离R max 减小,最大不模糊速度V max 增大;当重复频率PRF 减小时,最大探测距离R max 增大,最大不模糊速度V max 却减小,这
就是多普勒两难问题。
22 常用的雷达导出产品是组合反射率CR 、垂直液态含水量VIL 、回波顶ET 、反射率因子垂直剖面、风廓线、风暴跟踪信息STI 、相对于风暴的平均径向速度SRM 、冰雹指数HI 、一小时累积降水OHR 、强天气分析SWA 、中气旋M 等产品。
23 揭示了所有回波中最高反射率因子的产品是组合反射率因子;风暴相对平均径向速度与基本速度产品类似,只不过减去了由风暴跟踪信息(STI)识别的所有风暴的平均运动速度(缺省值),或减去由操作员选定的风暴运动速度。
24 垂直累积含水量表示的是将反射率因子数据转换成等价的(液态水值),并且假定反射率因子是完全由液态水反射得到的。
25 新一代雷达可用于定量估测大范围降水,用雷达回波估测的降水值与实际降水存在着一定的差异,其主要的影响因素是雷达本身的精度、雷达探测高度和地面降水的差异。
26 垂直剖面产品只能通过用户处理器中(PUP )中的“请求日常产品集(RPS )”。
27 某点的径向速度为零,实际上包含两种情况。
一种是该点处的真实风向与该点相对于雷达的径向互相垂直;另一种情况是该点的真实风速为零。
28在径向速度场上,零速度线呈“S”和反“S”弯曲,表示实际风随高度顺时针旋转和实际风随高度逆时针旋转,即分别表示在雷达探测范围内有暖平流和冷平流。
29辐合(或辐散)在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心的连线与雷达的射线平行。
30 具有辐合(或辐散)的气旋(或反气旋),在径向速度图像中表现出径向速度的最大、最小值连线与雷达射线走向呈一定的夹角。
31气流中的小尺度气旋(或反气旋)在径向速度图像中也表现为一个最大和最小的速度对,但两个极值的中心连线与雷达的射线垂直。
32冷锋的识别方法:零速度线有明显折角,由NE-SW走向折向NW-SE走向,零速度线附近等值线密集;有时零线仅为NE-SW走向而无折角,可能也有冷锋存在;有NE-SW走向的雷达回波带与冷锋配合;冷锋位于等值线密集带附近靠近远离速度中心的一侧,并向零速度线折角方向延伸;折角位于测站以北,冷锋未过境,位于测站以南,冷锋已过境。
33非降水回波包括:地物回波、海浪回波、昆虫和鸟的回波、大气折射指数脉动引起的回波、云的回波等。
34在0°c层附近,反射率因子回波突然增加,会形成零度层亮带。
零度层亮带通常在高于2.4°的仰角比较明显。
35 降水的反射率因子回波分积云降水回波、层状云降水回波、积云层状云混合降水回波。
36根据对流云强度回波的结构特征,风暴分为单体风暴、多单体风暴和超级单体风暴。
37 垂直风切变是指水平风随高度的变化,垂直风切变的大小往往和形成风暴的强弱有关。
38 强风暴的雷达回波特征有,主要是多单体风暴和超级单体风暴;雷达回波强度特别强,可达50dBz甚至更强;回波顶高,可达对流层顶;上升和下降气流特别强;PPI上常出现V形缺口、钩状回波、辉斑回波等现象;RHI上常出现穹隆、回波墙、悬挂回波、指状回波等现象
39 多单体风暴由几个处于不同发展阶段的单体所组成,通常在多单体风暴前进方向的右侧不断有新单体生成和并入,并在风暴内部继续发展增强成为主要单体,而原来老单体则减弱消散。
40超级单体风暴是一种具有特殊结构的强风暴,常伴有强风、局地暴雨、冰雹、下击暴流,龙卷,在低层风暴的运动右后方为钩状回波。
41 超级单体风暴出现的典型环境大气层结强烈不稳定;云下的平均环境风较强,达10 m/s ;通过云层,有强的垂直风切变;风随高度强烈旋转,可超过90º。
42 强冰雹的主要雷达识别判据:反射率因子的三维空间结构、有界弱回波区或弱回波区域大小,垂直累计液态水含量的大值区,风暴顶辐散,冰雹的三体散射现象。
43 飑线是满足线状或窄带状MCS标准的中尺度对流天气系统,是一条规则、活跃的风暴线。
44 超级单体最本质的特征是具有一个深厚持久的中气旋。
45“弓形回波”是地面大风的一个很好指标。
46 中气旋的水平尺度一般不超过10km;垂直厚度相应对流风暴厚度的三分之一;垂直涡度的量级为10-2S-1。
业务上通常将中气旋分为弱、中、强三个级别,在距离雷达50km处对应的旋转速度分别为12、16和22m/s。
47 中气旋的转动速度指的是最大入流速度和最大出流速度绝对值之和的二分之一。
48非超级单体非强风暴低层反射率因子的大值区位于中心,超级单体反射率因子的核心区偏向一侧,而且在风暴右后侧出现钩状回波。
49三体散射现象是指由于雷达发射波束在强反射率因子区向地面散射的能量又反射回云中强回波处时,再产生后向散射并考虑到其时间上的延迟而形成的异常回波。
50三体散射回波(TBSS)有如下特点:①异常回波强度通常≤20dBZ;②呈类似细长的钉子状,从强回波区沿径向伸展;③径向速度很小,谱宽很大。
这种回波简称TBSS可作为识别大冰雹的特征之一。
51热带气旋风雨区的外围有时候有一条强对流回波带,过境时,常常出现短时间的风向突变,风速增大,气压下降,有强对流天气,此强对流回波带称为台前飑线。
52涡旋特征TVS是业务上用以探测强烈龙卷的一种方法。
TVS的定义有三种指标:切变、垂直方向伸展厚度、持续性。