EDA多功能数字钟设计

合集下载

EDA课程设计报告(多功能数字时钟的设计)

EDA课程设计报告(多功能数字时钟的设计)

1 绪论1.1设计目的本次设计的目的就是在掌握EDA实验开发系统的初步使用基础上,了解EDA 技术,加深对计算机体系结构的理解。

通过学习的VHDL语言结合电子电路的设计知识理论联系实际,掌握所学的课程知识,学习VHDL基本单元电路的综合设计应用。

通过对实用数字钟的设计,巩固和综合运用计算机原理的基本理论和方法,理论联系实际,提高设计、分析、解决计算机技术实际问题的独立工作能力。

1.2设计要求(1)熟练掌握VHDL语言的结构特点并能运用到具体实际中。

(2)学会利用复杂的可编程逻辑器件进行简单的电子系统设计。

(3)熟悉并掌握基于EDA实验开发系统设计实际问题的方法和步骤。

(4)通过设计过程提高自己运用所学知识来分析解决问题的能力。

1.3设计内容本课程设计中使用Altera公司的EP2C35系列的FPGA芯片,利用SOPC-NIOSII-EP2C35开发板上的资源和QuartusII软件,实现一个多功能数字时钟。

本设计的任务要求显示格式为小时-分钟-秒钟,整点报时,报时时间为10秒,即从整点前10秒钟开始进行报时提示,喇叭开始发声,直到过整点时,在 5秒LED开始闪烁,过整点后,停止闪烁。

系统时钟选择时钟模块的10KHz,要得到1Hz时钟信号,必须对系统时钟进行10,000次分频。

调整时间的的按键用按键模块的S1和S2,S1调节小时,每按下一次,小时增加一个小时,S2调整分钟,每按下一次,分钟增加一分钟。

另外用S8按键作为系统时钟复位,复位后全部显示00-00-00。

扩展内容:用16*16点阵显示实现日期的动态显示用4×4键盘阵列键盘替换按键实现日期、时钟的调整,用液晶显示模块日期、时间的显示。

1.4设计环境本次课题设计方要用到的开发环境是Altera公司的EDA设计工具软件QuartusII。

Altera公司的工作与EDA厂家紧密结合,使QuartusII软件可以与其它工业标准的设计输入、综合和校验工具相连接。

用EDA技术设计多功能数字钟

用EDA技术设计多功能数字钟

用EDA技术设计多功能数字钟摘要近年来,随着电子技术和通信技术的飞速发展,要求设计研究方面运用电子设计自动化(Electronic Design Automation,简称EDA)工具进行开发。

在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。

EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言HDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。

EDA技术的出现,极大地提高了电路设计的效率和可靠性,减轻了设计者的劳动强度。

本设计为通过EDA仿真软件MAX+PLUSII设计一个多功能数字钟,并下载到硬件中实现。

本系统的设计电路由计时电路、动态显示电路、闹钟电路、控制电路、显示电路等部分组成。

本系统采用动态显示的原理在数码管上显示12小时计时的时刻,具有清零、保持、校时、报时的功能,并在此基础上增加了闹铃、秒表、12小时制计时、A/P显示等功能。

在设计过程中,将各部分均模块化,各模块间相互独立,又相互联系。

本实验吸收了硬件软件化的思想,大部分功能通过软件来实现,使电路简单明了,系统稳定性大大提高。

本系统不仅成功的实现了要求的基本功能,发挥部分也得到完全的实现,而且有一定的创新功能。

关键词数字钟、计数器、多功能、动态显示、原理图、仿真、模块化AbstractRecently, with the rapid development of electronic and communication technology, it is required to use Electronic Design Automation (EDA) as a tool in designing systems. EDA derives from the concepts of Computer Aided Design, Computer Aided Manufacture, Computer Aided Test and Computer Aided Engineering in the 1990s. Designers use Hardware Describe Language to accomplish designing files on the platform of software. Then, computer will finish the work of logical compiling, simplification, division, synthesis, optimizing, layout, tracking and simulating automatically, and it can also accomplish the work of proper compiling, logical projecting and downloading of the target chip. As a result, it evidently improves the efficiency and reliability of the circuit design, and it also lighten designer’s workload.This experiment has designed a multifunctional digital clock via using the MAX+PLUSII, and the basic and extended performances and functions are successfully realized in the hardware. This system includes time circuit, alarm circuit, dynamic display circuit, control circuit, display circuit. In the system, the segment display can display time in the 24-hour format, it includes such functions as clear, hold, check the time and so on. We can also add alarm, stopwatch, 12-hour format display and other functions on that basic. In the designing process, many parts are modularized, they are not only independent but also related. Many functions are finished by the software. So it simples the circuit and enhances the stability of the system. Not only all the basic and extended performances and functions are successfully realized, but also accomplish some innovation functions.KeywordsDigital clock, arithmometer, multifunctional, dynamic display,schematic diagram, simulate, modularization目录摘要 1ABSTRACT 11、前言62、EDA技术的介绍及发展 73、总体方案设计 93.1 设计内容 93.2 方案比较 (9)3.3 方案论证 (10)3.4 方案选择 104、多功能数字中的设计 124.1 课题要求 124.2 课题分析 12 4.3 功能实现 134.3.1 秒计时模块 144.3.2 分计时模块 164.3.3 小时计时模块 17 4.3.4 校时校分模块 194.3.5 整点报时模块 194.3.6 时段控制模块 204.3.7 连接各模块 214.4 下载过程 234.5 总结报告 265、设计总结 285.1 设计小结 28 5.2 设计收获 285.3 设计改进 286、致谢 287、参考文献 301、前言本课题研究的背景和目的:二十一世纪是信息化高速发展的世纪,产业的信息化离不开硬件芯片的支持。

EDA课程设计——多功能数字钟

EDA课程设计——多功能数字钟

哈尔滨工业大学(威海)电子学课程设计报告带有整点报时的数字钟设计与制作**: ***班级: 0802503学号: *************: **目录一、课程设计的性质、目的和任务 (3)二、课程设计基本要求 (3)三、设计课题要求 (3)四、课程设计所需要仪器 (4)五、设计步骤 (4)1、整体设计框图 (4)2、各个模块的设计与仿真 (4)2.1分频模块 (4)2.2计数器模块 (6)2.3控制模块 (10)2.4数码管分配 (13)2.5显示模块 (14)2.6报时模块 (16)六、调试中遇到的问题及解决的方法 (18)七、心得体会 (18)一、课程设计的性质、目的和任务创新精神和实践能力二者之中,实践能力是基础和根本。

这是由于创新基于实践、源于实践,实践出真知,实践检验真理。

实践活动是创新的源泉,也是人才成长的必由之路。

通过课程设计的锻炼,要求学生掌握电路的一般设计方法,具备初步的独立设计能力,提高综合运用所学的理论知识独立分析和解决问题的能力,培养学生的创新精神。

二、课程设计基本要求掌握现代大规模集成数字逻辑电路的应用设计方法,进一步掌握电子仪器的正确使用方法,以及掌握利用计算机进行电子设计自动化(EDA)的基本方法。

三、设计课题要求(1)构造一个24小时制的数字钟。

要求能显示时、分、秒。

(2)要求时、分、秒能各自独立的进行调整。

(3)能利用喇叭作整点报时。

从59分50秒时开始报时,每隔一秒报时一秒,到达00分00秒时,整点报时。

整点报时声的频率应与其它的报时声频有明显区别。

#设计提示(仅供参考):(1)对频率输入的考虑数字钟内所需的时钟频率有:基准时钟应为周期一秒的标准信号。

报时频率可选用1KHz和2KHz左右(两种频率相差八度音,即频率相差一倍)。

另外,为防止按键反跳、抖动,微动开关输入应采用寄存器输入形式,其时钟应为几十赫兹。

(2)计时部分计数器设计的考虑分、秒计数器均为模60计数器。

EDA多功能数字钟设

EDA多功能数字钟设

实验报告实验四多功能数字钟设计一、实验目的1、学习复杂数字电路系统的设计。

2、设计一个多功能数字钟。

二、实验要求1.数字显示当前的小时、分钟;2.可以预置为12小时计时显示和24小时计时显示;3.一个调节键,用于调节目标数位的数字。

对调节的内容敏感,如调节分钟或秒时,保持按下时自动计数,否则以脉冲计数;4.一个功能键,用于切换不同状态:计时、调时、调分、调秒、调小时制式。

三、实验仪器PC机、Quartus II软件、EDA实验箱四、实验原理1.系统需要两个六十进制计数器用于分钟和秒的计时,为方便译码采用60进制计数器(1)秒计时实验程序如下:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;USE IEEE.STD_LOGIC_ARITH.ALL;entity second ISport(clk1,rst1:in std_logic;cout1:out std_logic;cq0:out std_logic_vector(3 downto 0);cq1:out std_logic_vector(3 downto 0));END second;ARCHITECTURE behave of second isSIGNAL d: std_logic_vector(3 downto 0);SIGNAL g: std_logic_vector(3 downto 0);BEGINprocess(clk1,rst1,d,g)BEGINif (rst1 ='1') thend <="0000";g <="0000";elsif(clk1'EVENT and clk1='1')thenif(d=9 and g=5)thencout1<='1';elsecout1<='0';end if;if(d=9)thend<="0000";if(g=5)theng<="0000";elseg<=g+1;end if;elsed<=d+1;end if;end if;end process;cq0<=d;cq1<=g;end behave;clk1是时钟信号,rst1是复位信号, cout1作为下一模块分钟设计的时钟信号,cq0,cq1输出信号最后接在动态译管码芯片上。

EDA课程设计——多功能数字钟的设计

EDA课程设计——多功能数字钟的设计

E D A课程设计学院:电气信息学院专业年级:通信工程2013级姓名:学号课题:EDA课程设计指导老师:日期:2016年7月6日第一章多功能数字钟的设计1、设计任务了解数字钟的工作原理,进一步熟悉VHDL语言编写驱动七段数码管显示代码,并且掌握用多进程的方式实现一个综合性的程序。

最终实现硬件和软件多功能数字钟的设计。

(1)显示的格式为小时-分钟-秒钟,是24小时制,整点报时时间为5秒,级从整点前5秒钟开始进行报时提示,LED灯开始闪烁,过整点后,停止闪烁。

(2)系统时钟选择时钟模块的10KHz,要得到1Hz时钟信号,必须对系统时钟进行10000次分频。

(3)调整时间的按键用按键模块的S1和S2,S1调节小时,每按下一次,小时增加一个小时,S2调节分钟,每按下一次,分钟增加一分钟。

另外用S8按键作为系统时钟复位,复位后全部显示00-00-00。

2、方案设计2.1软件设计方案用VHDL语言编写程序实现设计内容中需要实现的功能。

将编写好的VHDL的程序加载到硬件电路中,从而驱动七段数码管时间,并用按键控制时间的变化,用软件仿真验证实验结果。

2.2硬件设计方案在软件方案实现的基础上,将已经运行成功的程序,将结果烧制到硬件电路中,最后生成顶层电路原理图。

3、设计的具体实现3.1设计步骤3.1.1打开QUARTUSII软件,新建一个工程3.1.2建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框;3.1.3按照自己设计方案,在VHDL编辑窗口编写VHDL程序;(程序见附录) 3.1.4编写完VHDL程序后,保存在自己新建的文件夹在D盘的目录下;3.1.5对自己编写的VHDL程序进行编译仿真,对程序的错误进行修改,直到完全通过编译和仿真;3.1.6仿真无误后,依照按键开关、数码管、LED灯与FPGA的管脚连接表进行管脚分配。

分配完成后,在进行编译一次,以使管脚分配生效;3.1.7用下载电缆通过JTAG口将对应的sof文件加载到FPGA中,观察设计结果是否和自己的编程思想一致。

EDA课程设计+(数字钟)

EDA课程设计+(数字钟)

EDA课程设计报告课题名称:多功能数字钟设计多功能数字钟设计一、数字钟简介:20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。

忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。

但是,一旦重要事情,一时的耽误可能酿成大祸。

钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。

诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

因此,研究数字钟及扩大其应用,有着非常现实的意义。

数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,已得到广泛的使用。

数字钟的设计方法有许多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等等。

这些方法都各有其特点,其中利用单片机实现的电子钟具有编程灵活,并便于功能的扩展。

二、设计要求1. 具有以二十四小时制计时、显示、时间设置的功能。

2. 精度要求为1s。

三、系统功能简介1. 计时:时钟计时:秒——60进制BCD码计数;分——60进制BCD码计数;时——24进制BCD码计数;2. 校时:同时整个计数器有清零,调分,调时功能。

可手动校时,能分别进行时、分的校正3. 显示:具有驱动8位八段共阴极扫描数码管的片选驱动信号输出和八段字形译码输出。

内容规划:(1)根据电路特点,可用层次化结构化设计概念。

将此项设计分成若干模块,规定每一模块的功能和各模块之间的接口。

EDA多功能数字钟设计

EDA多功能数字钟设计

多功能数字钟的设计1设计功能(1)在6位数码管上按24小时进制显示时分秒;(2)当电路发生走时误差时具有对时和分校是功能(3)具有整点报时功能,报时声响为4低1高,每一下响声持续1s,结束报时是正好整点;(4)能按设定的时间启动闹钟,如早上7点,即用800Hz方波驱动喇叭,持续1分钟自动停止。

2设计思路划分出实现该数字钟的各逻辑功能模块,采用VHDL语言编写后分别例化,最后在顶层文件中将各功能模块连接起来。

(1)分和秒的计时是60进制,时的计时是24 进制,分高低位。

(2)数据选择器选择时分秒进行输出实现6位数码管动态扫描。

(3)校时电路根据输入的不同开关进行分和时的调整。

(4)报时电路主要完成整点报时和定时闹钟。

3 各模块采用VHDL代码设计(1)秒的代码(2)library ieee;(3)use ieee.std_logic_1164.all;(4)use ieee.std_logic_unsigned.all;(5)entity second is(6)port((7)setmin, clk, reset : in std_logic;(8)sec1, sec2 : out std_logic_vector(3 downto 0);(9)carry : out std_logic );(10)end second;(11)architecture rtl of second is(12)signal sec1_t, sec2_t:std_logic_vector(3 downto 0);(13)begin(14)process(clk, reset)(15)begin(16)if reset = '1' then(17)sec1_t <= "0000";(18)sec2_t <= "0000";(19)elsifsetmin= '1' then(20)carry <= '1';(21)elsifclk'event and clk='1' then(22)if sec1_t = "1001" then(23)sec1_t <= "0000";(24)if sec2_t = "0101" then(25)sec2_t <= "0000";(26)else(27)sec2_t<=sec2_t+1;(28)end if;(29)else(30)sec1_t<=sec1_t+1;(31)end if;(32)(33)if sec1_t="1001" and sec2_t="0101" then carry<= '1'; (34)else(35)carry <= '0';(36)end if;(37)end if;(38)end process;(39)sec1 <= sec1_t;(40)sec2 <= sec2_t;(41)end rtl;(2)分的代码libraryieee;use ieee.std_logic_1164.all;useieee.std_logic_unsigned.all;entity minute isport(clk, reset, sethour : in std_logic;sec1, sec2 : out std_logic_vector(3 downto 0);carry : out std_logic );end minute;architecturertl of minute issignal sec1_t, sec2_t:std_logic_vector(3 downto 0);beginprocess(clk, reset)beginif reset = '1' thensec1_t <= "0000";sec2_t <= "0000";elsifsethour='1' then carry <= '1';elsifclk'event and clk='1' thenif sec1_t = "1001" thensec1_t <= "0000";if sec2_t = "0101" thensec2_t <= "0000";elsesec2_t<=sec2_t+1;end if;elsesec1_t<=sec1_t+1;end if;if sec1_t="1001" and sec2_t="0101" then carry <= '1';elsecarry<= '0';end if;end if;end process;sec1 <= sec1_t;sec2 <= sec2_t;endrtl;(3)时的代码libraryieee;use ieee.std_logic_1164.all;useieee.std_logic_unsigned.all;entity hour isport(clk, reset : in std_logic;hour1,hour2: out std_logic_vector(3 downto 0));end hour;architecturertl of hour issignal hour1_t,hour2_t:std_logic_vector(3 downto 0);beginprocess(clk,reset)beginif reset='1' thenhour1_t<="0000";hour2_t<="0000";elsifclk'event and clk='1' thenif hour1_t="0011" and hour2_t="0010" thenhour1_t<="0000";hour2_t<="0000";elseif hour1_t="1001" thenhour1_t<="0000";if hour2_t="0010" thenhour2_t<="0000";elsehour2_t<=hour2_t+1; end if;elsehour1_t<=hour1_t+1;end if;end if;end if;--hour1<=hour1_t;--hour2<=hour2_t;end process;hour1<=hour1_t;hour2<=hour2_t;endrtl;(4)数码管译码代码libraryieee;use ieee.std_logic_1164.all;entity segment7 isport(data:instd_logic_vector(3 downto 0);dout:outstd_logic_vector(6 downto 0));end;architecturebehav of segment7 isbeginprocess(data)begincase data iswhen "0000"=>dout<="0111111";when "0001"=>dout<="0000110";when "0010"=>dout<="1011011";when "0011"=>dout<="1001111";when "0100"=>dout<="1100110";when "0101"=>dout<="1101101";when "0110"=>dout<="1111101";when "0111"=>dout<="0000111";when "1000"=>dout<="1111111";when "1001"=>dout<="1101111";when "1010"=>dout<="1000000";when others=>null;end case;end process;endbehav;(5)动态扫描代码libraryieee;use ieee.std_logic_1164.all;useieee.std_logic_unsigned.all;entity mux6_1scan isport(clkscan,reset : in std_logic;in1,in2,in3,in4,in5,in6 : in std_logic_vector(3 downto 0);data : out std_logic_vector(3 downto 0);sel : out std_logic_vector(2 downto 0));end mux6_1scan;architecturertl of mux6_1scan issignalcount:std_logic_vector(2 downto 0);beginprocess(clkscan,reset)beginif reset='1' thencount<="000";elsifclkscan'event and clkscan='1' thenif count="111" thencount<="000";elsecount<=count+1;end if;end if;end process;process(count)begincase count iswhen "000"=>data<=in1;when "001"=>data<=in2;when "010"=>data<="1010";when "011"=>data<=in3;when "100"=>data<=in4;when "101"=>data<="1010";when "110"=>data<=in5;when "111"=>data<=in6;when others=>null;end case;end process;sel<=count;endrtl;(6)闹钟代码libraryieee;use ieee.std_logic_1164.all;useieee.std_logic_unsigned.all;entity alert isport( clk500hz,clk1khz : in std_logic;int1,int2,int3,int4,int5,int6 : in std_logic_vector(3 downto 0);speak : out std_logic);end alert;architecturertl of alert isbeginspeak<=clk500hz when (int4="0101" and int3="1001")and ((int2="0101" and int1="0101")or(int2="0101" and int1="0111"))elseclk1khz when (int4="0101" and int3="1001")and (int2="0101" and int1="1001")elseclk1khz when int6="0101" and int5="1001" else'0';endrtl;4顶层文件设计将VHDL语言所写的各个模块分别例化为元器件,顶层文件采用原理图的方式输入。

EDA课程设计——多功能数字钟的设计

EDA课程设计——多功能数字钟的设计

E D A课程设计学院:电气信息学院专业年级:通信工程2013级姓名:学号课题: EDA课程设计指导老师:日期:2016年7月6日第一章多功能数字钟的设计1、设计任务了解数字钟的工作原理,进一步熟悉VHDL语言编写驱动七段数码管显示代码,并且掌握用多进程的方式实现一个综合性的程序。

最终实现硬件和软件多功能数字钟的设计。

(1)显示的格式为小时-分钟-秒钟,是24小时制,整点报时时间为5秒,级从整点前5秒钟开始进行报时提示,LED灯开始闪烁,过整点后,停止闪烁。

(2)系统时钟选择时钟模块的10KHz,要得到1Hz时钟信号,必须对系统时钟进行10000次分频。

(3)调整时间的按键用按键模块的S1和S2,S1调节小时,每按下一次,小时增加一个小时,S2调节分钟,每按下一次,分钟增加一分钟。

另外用S8按键作为系统时钟复位,复位后全部显示00-00-00。

2、方案设计2.1软件设计方案用VHDL语言编写程序实现设计内容中需要实现的功能。

将编写好的VHDL的程序加载到硬件电路中,从而驱动七段数码管时间,并用按键控制时间的变化,用软件仿真验证实验结果。

2.2硬件设计方案在软件方案实现的基础上,将已经运行成功的程序,将结果烧制到硬件电路中,最后生成顶层电路原理图。

3、设计的具体实现3.1设计步骤3.1.1打开QUARTUSII软件,新建一个工程3.1.2建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框;3.1.3按照自己设计方案,在VHDL编辑窗口编写VHDL程序;(程序见附录) 3.1.4编写完VHDL程序后,保存在自己新建的文件夹在D盘的目录下;3.1.5对自己编写的VHDL程序进行编译仿真,对程序的错误进行修改,直到完全通过编译和仿真;3.1.6仿真无误后,依照按键开关、数码管、LED灯与FPGA的管脚连接表进行管脚分配。

分配完成后,在进行编译一次,以使管脚分配生效;3.1.7用下载电缆通过JTAG口将对应的sof文件加载到FPGA中,观察设计结果是否和自己的编程思想一致。

EDA电子钟多功能数字时钟课程设计(含代码)[优秀]

EDA电子钟多功能数字时钟课程设计(含代码)[优秀]

多功能数字时钟设计说明:1.系统顶层框图:各模块电路功能如下:1.秒计数器、分计数器、时计数器组成最基本的数字钟,其计数输出送7段译码电路由数码管显示.2.基准频率分频器可分频出标准的1HZ频率信号,用于秒计数的时钟信号;分频出4HZ频率信号,用于校时、校分的快速递增信号;分频出64HZ频率信号,用于对按动“校时”,“校分”按键的消除抖动.2.多功能数字钟结构框图:一、系统功能概述已完成功能1.完成时/分/秒的依次显示并正确计数,利用六位数码管显示;2.时/分/秒各段个位满10正确进位,秒/分能做到满60向前进位,有系统时间清零功能;3.定时器:实现整点报时,通过扬声器发出高低报时声音;4.时间设置,也就是手动调时功能:当认为时钟不准确时,可以分别对分/时钟进行调整;5.闹钟:实现分/时闹钟设置,在时钟到达设定时间时通过扬声器响铃.有静音模式.待改进功能:1. 系统没有万年历功能,正在思考设计方法.2. 应添加秒表功能.二、系统组成以及系统各部分的设计1.时计数模块时计数模块就是一个2位10进制计数器,记数到23清零.VHDL的RTL描述如下:----cnt_h.vhdlibrary ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity cnt_h isport(en,clk,clr:in std_logic;dout:out std_logic_vector(7 downto 0);c:out std_logic);end cnt_h;architecture rtl of cnt_h issignal t:std_logic_vector(7 downto 0);beginprocess(en,clk,clr)variable t:std_logic_vector(7 downto 0);beginif en='1' then --异步使能if clk 'event and clk='1' thent:=t+1;if t(3 downto 0)=X"A" then --个位等于10则十位加1t(7 downto 4):=t(7 downto 4)+1;t(3 downto 0):=X"0"; --个位清零end if;if t>X"23" then --大于23清零t:=X"00";end if;end if;if clr='1' then --异步清零t:=X"00";end if;end if;dout<=t;end process;end rtl;时计数器模块仿真波形如下从仿真波形可知,当计数到23时,下一个时钟上升沿到来时就清零了,符合设计要求.时计数模块框图如下2.分及秒计数模块分及秒计数模块也是一个2位10进制计数器,记数到59清零.VHDL的RTL描述如下:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity cnt_s isport(en,clk,clr:in std_logic;dout:buffer std_logic_vector(7 downto 0);c:out std_logic);end cnt_s;architecture rtl of cnt_s isbeginprocess(en,clk,clr)beginif en='1' thenif clr='1' then --异步清零dout<=X"00";elsif clk 'event and clk='1' thenif dout(3 downto 0)<9 thendout(3 downto 0)<=dout(3 downto 0)+1;c<='0';elsif dout(7 downto 4)<5 thendout(3 downto 0)<=X"0";dout(7 downto 4)<=dout(7 downto 4)+1;elsedout<=X"00";c<='1';end if;end if;else dout<="ZZZZZZZZ";end if;end process;end rtl;分和秒计数器模块仿真波形如下从仿真波形可知,当计数到59时,下一个时钟上升沿到来时就清零了,并且产生进位信号,符合设计要求.分和秒计数模块框图如下3.按键消抖动模块按键消抖动有很多方案,这里选择的是计数消抖,即只当有效电平到来后开始计数,当计数值大于一定值后再输出该有效电平,否则不输出,从而达到消抖目的. VHDL的RTL描述如下:library ieee;use ieee.std_logic_1164.all;entity haoin isport(din,clk:in std_logic;dout:out std_logic); end haoin;architecture rtl of haoin isbeginprocess(din)variable t: integer range 0 to 63:=0;beginif din='1' thenif clk 'event and clk='1'thent:=t+1;if t>10 thendout<='1';t:=t-1;else dout<='0';end if;end if;else dout<='0';t:=0;end if;end process;end rtl;library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity ring isport(clk: in std_logic;clk500: in std_logic;clk1k:in std_logic;beep:out std_logic);end ring;architecture rtl of ring isbeginprocess(clk)variable t: std_logic;variable n: integer range 0 to 15:=0;beginif clk 'event and clk='1' thent:=not t;n:=n+1;end if;if t='1' and n<11 thenbeep<=clk500;elsif n=11 thenbeep<=clk1k;else beep<='Z';end if;end process;end rtl;library IEEE;use IEEE.std_logic_1164.all;use IEEE.std_logic_arith.all;use IEEE.std_logic_unsigned.all;entity clock isport(SA: in std_logic;SB: in std_logic;SC: in std_logic;SD: in std_logic;clk1: in std_logic;dout: buffer std_logic_vector(23 downto 0);--seg_data:out std_logic_vector(7 downto 0);--seg_co米:out std_logic_vector(3 downto 0);beep: out std_logic--led:out std_logic_vector(3 downto 0));end entity clock;architecture rtl of clock isco米ponent cnt_s isport(en,clk,clr:in std_logic;dout:buffer std_logic_vector(7 downto 0);c:out std_logic);end co米ponent;co米ponent cnt_h isport(en,clk,clr:in std_logic;dout:buffer std_logic_vector(7 downto 0));end co米ponent;--co米ponent seg米ain is--port(clk,reset_n:in std_logic;--datain:in std_logic_vector(15 downto 0);--seg_data:out std_logic_vector(7 downto 0);--seg_co米:out std_logic_vector(3 downto 0));--end co米ponent;--co米ponent ring is--port( en: in std_logic;-- clk: in std_logic;--clk500: in std_logic;--clk1k:in std_logic;--beep:out std_logic);--end co米ponent;co米ponent haoin isport(din,clk:in std_logic;dout:out std_logic);end co米ponent;co米ponent naoling isport (h,米:in std_logic_vector(7 downto 0);clk4hzh,clk4hz米:in std_logic;sys_en,sys_rst:in std_logic;h_o,米_o: out std_logic_vector(7 downto 0);beep:out std_logic);end co米ponent;signal reg_h:std_logic_vector(7 downto 0);signal reg_米:std_logic_vector(7 downto 0);signal reg_s:std_logic_vector(7 downto 0);signal reg_米_s:std_logic_vector(7 downto 0):=X"59"; signal reg_米_米:std_logic_vector(7 downto 0):=X"59";signal reg_米_h:std_logic_vector(7 downto 0):=X"59";signal clk_h:std_logic;signal clk_米:std_logic;signal clk_s:std_logic;signal c_s :std_logic;signal c_米:std_logic;signal c_h :std_logic;signal sys_clk1:std_logic;signal sys_clk4:std_logic;signal sys_clk64:std_logic;signal sys_clk500:std_logic;signal sys_clk1k:std_logic;signal clki:integer:=750000;signal sys_rst:std_logic:='0';signal sys_en:std_logic:='1';signal clk_ring,米h:std_logic;signal SAc,SBc,SCc,SDc:std_logic;signal en_r:std_logic;signal NL_reg_h,NL_reg_米:std_logic_vector(7 downto 0);signal NL_ring:std_logic;signal sys_clk4_NL_h,sys_clk4_NL_米:std_logic;beginh:cnt_h port 米ap(en=>sys_en,clk=>clk_h,clr=>sys_rst,dout=>reg_h);米:cnt_s port 米ap(en=>sys_en,clk=>clk_米,clr=>sys_rst,dout=>reg_米,c=>c_米);s:cnt_s port 米ap(en=>sys_en,clk=>sys_clk1,clr=>SCc,dout=>reg_s,c=>c_s);--sled:seg米ain port 米ap(clk=>clk1,reset_n=>SCc,seg_data=>seg_data,seg_co 米=>seg_co米,datain=>dout(15 downto 0));--ring0:ring port 米ap(en=>en_r,clk=>clk_ring,clk500=>sys_clk500,clk1k=>sys_clk1k,beep=>beep); haoin1:haoin port 米ap( SA,sys_clk64,SAc);haoin2:haoin port 米ap( SB,sys_clk64,SBc);haoin3:haoin port 米ap( SC,sys_clk64,SCc);haoin4:haoin port 米ap( SD,sys_clk64,SDc);NL:naoling port 米ap(beep=>NL_ring,h=>reg_h,米=>reg_米,clk4hzh=>sys_clk4_NL_h,clk4hz米=>sys_clk4_NL_米,sys_en=>sys_en,sys_rst=>sys_rst,h_o=>NL_reg_h,米_o=>NL_reg_米);beep<=clk_ring and 米h;--led<=reg_s(3 downto 0);p_sys_clk:process(clk1)variable t1,t4,t64,t500,t1k:integer range 0 to 50000000;beginif clk1 'event and clk1='1' thent1:=t1+1;t4:=t4+1;t64:=t64+1;t500:=t500+1;t1k:=t1k+1;if t1=clki/2 thent1:=0;sys_clk1<=not sys_clk1;end if;if t4=clki/8 thent4:=0;sys_clk4<=not sys_clk4;end if;if t64=clki/128 thent64:=0;sys_clk64<=not sys_clk64;end if;if t500=clki/1000 thent500:=0;sys_clk500<=not sys_clk500;end if;if t1k=clki/2000 thent1k:=0;sys_clk1k<=not sys_clk1k;end if;end if;end process p_sys_clk;p_c:process(SAc,SBc,SCc,SDc)beginif SAc='1' and SDc='0' thenclk_h<=sys_clk4;elseclk_h<=c_米;end if;if SAc='1' and SDc='1' thensys_clk4_NL_h<=sys_clk4;elsesys_clk4_NL_h<='0';end if;if SBc='1' and SDc='0'thenclk_米<=sys_clk4;elseclk_米<=c_s;end if;if SBc='1' and SDc='1'thensys_clk4_NL_米<=sys_clk4;elsesys_clk4_NL_米<='0';end if;if SDc='0' thendout(7 downto 0)<=reg_s;dout(15 downto 8)<=reg_米;dout(23 downto 16)<=reg_h;elsedout(7 downto 0)<="ZZZZZZZZ";dout(15 downto 8)<=NL_reg_米;dout(23 downto 16)<=NL_reg_h;end if;end process p_c;P_ring:process(reg_米,reg_s,sys_clk1k)variable clk_ring_t:std_logic;variable t:std_logic_vector(3 downto 0);beginif reg_米=X"59" and (reg_s=X"50" or reg_s=X"52" or reg_s=X"54" or reg_s=X"56" or reg_s=X"58") thenclk_ring_t:=sys_clk500;elsif reg_米=X"00" and reg_s=X"00" thenclk_ring_t:=sys_clk1k;else clk_ring_t:='Z';end if;if NL_ring='1' thenclk_ring_t:=sys_clk1k;end if;if sys_clk1k 'event and sys_clk1k='1' thent:=t+1;end if;if t>1 then 米h<='1';end if;clk_ring<=clk_ring_t;end process p_ring;end rtl;。

EDA设计-多功能数字钟

EDA设计-多功能数字钟

设计一个数字计时器,可以完成00:00:00到23:59:59的计时功能,并在控制电路的作用下具有保持、清零、快速校时、快速校分、整点报时等功能。

具体实现方法为:首先利用一个模48和两个模1000的计数器将原始的48MHZ转换成数字计时器所需的1HZ。

然后利用1HZ作为时钟,用两个模60和一个模24计数器形成基本数字钟。

快速校时和校分只需利用适当的与门和或门添加到相应计时模块的时钟即可。

至于整点报时,利用相应的判别条件,再连入相应的的频率,最后送到蜂鸣器端口即可完成功能。

对于附加功能闹钟和星期。

闹钟的具体功能为可设置时间,可先清零后再重新设置,到点后以1KHZ鸣叫10秒,期间可关掉闹钟。

具体实现方法为:将开关K5作为闹钟的小时设定,开关K6作为闹钟的分钟设定,均作为计数器的时钟。

当这两个开关上下一次,小时和分钟均增加1。

然后再将闹钟的时间与数字钟的时间相比较,当两者完全相同时,蜂鸣器响起。

对于星期的设置比较简单,只需在数字钟小时模块后添加一个模8计数器,并在显示模块添加星期的相应输出即可。

对于实验调试所需注意的是:要对开关进行消颤,利用D触发器,且添加的频率不能太大。

关键字:分频、计数器、D触发器AbstractDesign a digital timer, which has the timing function counting from 00:00:00 to23:59:59, and can also maintain time 、clear time、rapidly adjust the minutes 、rapidly adjust the hours and timekeeping. The realizing specific methods are as follows .First, use a mold 48 and two mode 1000 counters to turn the original 48 MHz into a digital timer required 1HZ. Second , take the 1HZ as the clock to the basic digital clock formation of two mold 60 and a modulo 24 counters . Use the appropriate AND and OR gates added to the appropriate timing module can realize rapidly adjusting the minutes . As for timekeeping , using the corresponding discriminant conditions, connecting them with the corresponding frequency, and sending to the buzzer port can complete the function.Additional features include alarm clock and counting days of the week. The alarm clock can set the time, can be first cleared and then reseted, can sound for 10 seconds, and in the period can turn off the alarm. The specific method is: take K5 as the switch setting hour and take K6 as the switch setting minute, both as counters’ clock. Once these two switches up and down, hour and minute are both increase 1. Then compare the alarm time with the time of the digital clock . When they are the same, the buzzer start sounding . Setting the week is relatively simple, just adding a modulo 8 counter behind digital clock hour module and adding the corresponding output to the display module.For the debug experiments , use the D flip-flop to eliminate chatter and the frequency added can not be too much.Keywords:frequency converteion、counter、D flip-flop一.设计要求 (3)二.方案论证 (4)三.各子模块设计原理 (6)3.1 脉冲发生电路 (6)3.2 计时电路 (8)3.3 译码显示电路 (11)3.4整点报时电路 (12)3.5保持电路 (13)3.6清零电路 (14)3.7校分、校时电路 (14)3.8闹钟电路 (15)3.9星期电路 (20)四.下载调试 (20)五.结论 (21)六.实验感想 (21)参考文献 (24)附录 (24)多功能数字钟一、设计要求设计一个数字计时器,可以完成00:00:00到23:59:59的计时功能,并在控制电路的作用下具有保持、清零、快速校时、快速校分、整点报时等功能。

eda多功能数字钟实验报告

eda多功能数字钟实验报告

eda多功能数字钟实验报告EDA多功能数字钟实验报告一、引言数字钟是现代生活中常见的一种时间显示工具,其准确性和便携性使其成为人们生活中不可或缺的一部分。

本实验旨在设计并制作一款多功能数字钟,通过EDA(电子设计自动化)软件进行模拟和仿真,验证其功能和性能。

二、设计原理1. 时钟电路:采用CMOS(互补金属氧化物半导体)技术设计时钟电路,包括时钟发生器、计数器和显示器。

时钟发生器产生稳定的方波信号,计数器根据方波信号进行计数,显示器将计数结果以数字形式显示出来。

2. 功能模块:多功能数字钟除了显示时间外,还应具备日期显示、闹钟设置、温度检测等功能。

为实现这些功能,需要添加相应的模块,如时钟芯片、温度传感器、闹钟电路等。

三、电路设计1. 时钟电路设计:根据设计原理,使用EDA软件进行电路设计,选择合适的元器件和连接方式。

通过仿真验证电路的工作稳定性和准确性。

2. 功能模块设计:根据需求,添加相应的功能模块。

时钟芯片用于精确计时和日期显示,温度传感器用于检测环境温度并显示,闹钟电路用于设置闹钟时间并触发报警。

四、电路实现1. 元器件选取:根据电路设计需求,选择合适的元器件。

时钟芯片应具备高精度和稳定性,温度传感器应具备高灵敏度和准确度,闹钟电路应具备可调节和触发功能。

2. 电路布局:将选取的元器件按照电路设计进行布局,注意元器件之间的连接和布线,避免干扰和短路。

3. 电路连接:根据电路设计进行元器件之间的连接,注意连接的正确性和稳定性。

五、仿真与测试1. 仿真验证:使用EDA软件进行电路仿真,检查电路的稳定性和准确性。

通过仿真结果对电路进行调整和优化,确保其正常工作。

2. 功能测试:对多功能数字钟进行功能测试,包括时间显示、日期显示、温度检测和闹钟设置等。

通过测试结果对电路进行调整和改进,确保其功能的完善和可靠性。

六、实验结果与分析经过仿真和测试,多功能数字钟实现了准确的时间显示、日期显示、温度检测和闹钟设置等功能。

eda多功能数字时钟课程设计

eda多功能数字时钟课程设计

eda多功能数字时钟课程设计一、课程目标知识目标:1. 学生能理解数字时钟的基本原理,掌握EDA工具的使用方法,并运用相关电路知识设计多功能数字时钟。

2. 学生能够运用所学知识,分析并解释数字时钟电路中各个部分的功能及其相互关系。

3. 学生了解数字时钟在实际生活中的应用,理解其重要性。

技能目标:1. 学生能够运用EDA工具进行电路设计,具备实际操作能力。

2. 学生通过动手实践,培养解决实际问题的能力,提高创新意识和团队协作能力。

3. 学生能够运用所学知识,对数字时钟电路进行调试和优化。

情感态度价值观目标:1. 学生在学习过程中,培养对电子技术的兴趣,激发创新精神。

2. 学生通过团队合作,学会尊重他人,培养良好的沟通能力和团队精神。

3. 学生认识到科技发展对社会进步的重要性,树立正确的价值观。

课程性质:本课程为实践性较强的课程,结合理论教学,注重培养学生的动手能力和实际操作技能。

学生特点:学生具备一定的电子技术基础知识,对实践操作有较高的兴趣。

教学要求:教师需结合理论教学,指导学生进行实践操作,注重启发式教学,引导学生主动探究,提高学生的综合能力。

在教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。

通过课程学习,使学生能够将所学知识应用于实际生活中,提高学生的创新意识和实践能力。

二、教学内容本课程教学内容主要包括以下几部分:1. 数字时钟原理:讲解数字时钟的基本工作原理,包括时钟信号、计数器、显示驱动等组成部分。

2. EDA工具使用:介绍EDA工具的基本操作,如原理图绘制、电路仿真、PCB设计等。

3. 电路设计与实现:指导学生运用EDA工具设计多功能数字时钟电路,包括时钟信号电路、分频器、计数器、显示驱动和按键控制等模块。

4. 电路调试与优化:教授学生如何对设计的数字时钟电路进行调试,找出问题并进行优化。

教学内容与教材关联性如下:1. 《电子技术基础》中关于数字电路的基础知识,为理解数字时钟原理提供理论支持。

EDA实现多功能数字钟课程设计

EDA实现多功能数字钟课程设计

目录一、实验任务 (1)二、关键词 (1)三、内容摘要 (1)四、数字钟电路系统组成框图 (2)五、各个功能模块的实现 (3)(1)小时计时 (3)(2)分钟计时 (3)(3)秒钟计时 (4)(4)校时校分 (5)(5)整点报时 (6)(6)时段控制 (6)六、数字钟的顶层文件 (7)七、下载 (8)(1)添加译码模块后的原理图 (8)(2)选用芯片 (8)(3)分配引脚号 (9)(4)器件下载 (9)(5)效果显示 (9)八、遇到的问题及解决办法 (12)九、《课程设计》中设计项目完成最终结论 (13)十、结束语 (13)十一、附录 (14)一、实验任务:用FPGA器件和EDA技术实现多功能数字钟的设计已知条件:1、QuartusП软件2、FPGA实验开发装置基本功能:1、以数字形式显示时、分、秒的时间;2、小时计数器为24进制;3、分、秒计数器为60进制。

拓展功能:1、校时、校分(有两个使能端构成,分别为校时、校分功能,同时按无效)2、仿电台报时(每个小时的59分51、53、55、57、59分别以四长声一短声进行报时)3、时段控制(让信号显示灯在晚上19点至早上5点灭。

之后亮)二、关键词小时、分钟计时模块、顶层文件、整点报时、时段控制、下载模块三、内容摘要1、设计要求:(1)小时计数器为8421BCD码24制;分和秒计数器为8421BCD 码60进制计数器;(2)拓展功能:①校正“时”和“分”;②整点报时;③时段控制。

2、硬件描述语言设计(Verilog HDL语言)方法在QuartusП软件系统平台上建立数字电子钟电路的顶层文件并完成编译和仿真。

3、输入变量:时钟CPS,直接清零RD;输出变量:小时计时H[7..4]、H[3..0]为8421BCD码输出,其时钟为CPH;之后的分计时、秒计时均为8421BCD码输出,其时钟为CPS等。

4、在顶层文件中,由若干低层模块“打包”组成整个多功能数字钟,分别对各模块作设计及仿真,最后级联各模块,统调、仿真及下载,从而实现各项功能。

EDA多功能数字钟

EDA多功能数字钟

个位计数器再输入一个秒脉冲时,数字钟应自动显 示为00时00分00秒。 12小时制:当数字钟运行到12时59分59秒时,秒的 个位计数器再输入一个秒脉冲时,数字钟应自动显 示为01时00分00秒。
数字钟主体计时模块框图举例
任 意 闹 钟 设 定 作 用 模 块
多功能数字钟总体框图举例
7 段 数 码 管 扫 描 显 示
层次化设计举例(续) -100进制计数器
由10进制计数器构成100进制计数器
//**************** counter10.v ( BCD: 0~9 ) ************** module counter10(Q, nCR, EN, CP); input CP, nCR, EN; output [3:0] Q; reg [3:0] Q; always @(posedge CP or negedge nCR) begin if(~nCR) Q <= 4'b0000; // nCR=0,计数器被异步清零 else if(~EN) Q <= Q; //EN=0,暂停计数 else if(Q == 4'b1001) Q <= 4'b0000; else Q <= Q + 1'b1; //计数器增1计数 end endmodule
7 段 数 码 管 扫 描 显 示
always @ (count[11:10]) begin case(count[11:10]) 2'b00: scan<=4'b0111; 2'b01: scan<=4'b1011; 2'b10: scan<=4'b1101; 2'b11: scan<=4'b1110; endcase end always @ (count[11:10]) begin case(count[11:10]) 2'b00: temp<=h1; 2'b01: temp<=h0; 2'b10: temp<=m1; 2'b11: temp<=m0; endcase end

本科毕业设计论文--eda课程设计报告多功能数字钟设计

本科毕业设计论文--eda课程设计报告多功能数字钟设计

湖北大学物电学院EDA课程设计报告(论文)题目:多功能数字钟设计专业班级: 14微电子科学与工程*名:**时间:2016年12月20日指导教师:万美琳卢仕完成日期:2015年12月20日多功能数字钟设计任务书1.设计目的与要求了解多功能数字钟的工作原理,加深利用EDA技术实现数字系统的理解2.设计内容1,能正常走时,时分秒各占2个数码管,时分秒之间用小时个位和分钟个位所在数码管的小数点隔开;2,能用按键调时调分;3,能整点报时,到达整点时,蜂鸣器响一秒;4,拓展功能:秒表,闹钟,闹钟可调3.编写设计报告写出设计的全过程,附上有关资料和图纸,有心得体会。

4.答辩在规定时间内,完成叙述并回答问题。

目录(四号仿宋_GB2312加粗居中)(空一行)1 引言 (1)2 总体设计方案 (1)2.1 设计思路 (1)2.2总体设计框图 (2)3设计原理分析 (3)3.1分频器 (4)3.2计时器和时间调节 (4)3.3秒表模块 (5)3.4状态机模块 (6)3.5数码管显示模块 (7)3.6顶层模块 (8)3.7管脚绑定和顶层原理图 (9)4 总结与体会 (11)多功能电子表摘要:本EDA课程主要利用QuartusII软件Verilog语言的基本运用设计一个多功能数字钟,进行试验设计和软件仿真调试,分别实现时分秒计时,闹钟闹铃,时分手动较时,时分秒清零,时间保持和整点报时等多种基本功能关键词:Verilog语言,多功能数字钟,数码管显示;1 引言QuartusII是Altera公司的综合性PLD/FPGA开发软件,支持原理图、VHDL、VerilogHDL 以及AHDL(Altera Hardware Description Language)等多种设计输入形式,内嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD设计流程,解决了传统硬件电路连线麻烦,出错率高且不易修改,很难控制成本的缺点。

利用软件电路设计连线方便,修改容易;电路结构清楚,功能一目了然2 总体设计方案2.1 设计思路根据系统设计的要求,系统设计采用自顶层向下的设计方法,由时钟分频部分,计时部分,按键调时部分,数码管显示部分,蜂鸣器四部分组成。

多功能数字钟(EDA设计)实验报告

多功能数字钟(EDA设计)实验报告

多功能数字钟一、实验原理分析通过晶振产生的50MHz的脉冲,用分频器进行分频产生1Hz的脉冲信号,即作为时钟的1s的信号进行计数。

秒钟每计数60秒后产生进位使分钟显示加1,分钟满60循环至0。

为实现手动校准时间功能,可以对分和秒计数器进行加减。

为实现校准时间时候的闪烁,对数码管使用消隐,把数码管的接地端口接一个脉冲信号。

在实验过程中,要注意很多细节,比如进行按键消抖,手动调整时间时不会进位。

二、逻辑分析三、功能模块分析功能模块包括分频模块,时间计数及校准模块,数码管译码显示模块、判决模块和消抖模块1.分频模块该电路由多个70LS90经过分频将由晶振产生的50MHz分频为1Hz方波,供后续时钟电路使用。

这一模块是整个电路的基础。

2.时间计数及校准模块该模块连接至分频模块的信号输出端,以分频模块产生的1Hz 方波作为基础。

1Hz方波与秒同步,以秒为基础,分别实现电子钟中,分与时的运转,即1分钟=60秒,1小时=60分钟的循环运转。

为了修正电子钟在运行过程中产生的一些误差或其他认为错误,另设置校准功能,可以对电子钟的计时进行调整。

其中,此模块的逻辑部分需Verilog语言实现并进行封装。

此模块用到3个十进制计数器、2个六进制计数器和1个三进制计数器。

3.数码管译码显示模块本电子钟采用数码管来显示,可以简单、直观地表现出确切的时间,实现其他配套功能。

且数码管易于操作。

此模块中有四个数码管,每两个数码管分别显示小时与分钟。

由上一模块,即时间计数及校准模块中的时间计数器产生的数值,将其对应的七段码直接传送至相应的数码管译码显示。

4.判决模块该电路判决信号连接至开关,当开关选中数码管某位后,经过判决器令改为停止计数,并开始1秒闪烁,按动按键可实现手动调整。

5.消抖模块通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。

EDA课程设计多功能数字时钟报告

EDA课程设计多功能数字时钟报告
II.功能简介…………………………………………………………………………………4
III.开关功能介绍(两种方案)……………………………………………………………4
二.方案论证……………………………………………………5
I.总体方案分析…………………………………………………………………………5
II.电路的工作原理……………………………………………………………………6
二.方案论证:
I。总体方案分析:
利用QuartusII软件设计一个数字钟,对设计电路进行功能仿真,并下载到SmartSOPC实验系统中,可以完成00:00:00到23:59:59的计时功能,并在控制电路的作用下具有保持、清零、快速校时、快速校分、整点报时等功能.本电路在原有基础上进行了拓展,具备以下功能:
①.能进行正常的时、分、秒计时功能;
These electric circuits are all packed with mold piece okay, for the purpose of other electric circuits adjust to use.With count machine composing to account parts, pass a cent repeatedly the machine divides of when the 1 HZ pulse accounts adjust to show that the electric circuit suggests and passes a little bit whole buzzer that tell the time an electric circuit control with the dynamic state.BE counting the way that the machine class adopted synchronously external different step in the inner part while uniting, but came to a synchronous effect through a simple change and than synchronously returned credibility。While showing a control for economizing a resources adoption dynamic state principle,from wove VHDL language of 24 choose 4 data selectors.文档为个人收集整理,来源于网络文档为个人收集整理,来源于网络
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计总成绩:江汉大学文理学院EDA课程设计报告课程设计题目多功能数字钟部(系)信息技术学部专业姓名学号指导教师2014年 12 月 29 日目录一、设计目的 (1)二、设计要求 (1)三、硬件方案 (1)3.1 设计思路 (1)3.2 设计框图 (2)3.3 数字钟主控电路状态表 (3)四、软件方案 (5)4.1 按键消抖模块 (5)4.2 时钟计数器模块 (7)4.3 显示译码模块 (17)4.4 分频器模块 (19)4.5 主控制电路模块 (21)4.5.1 计数器控制模块 (21)4.5.2 闹钟计数器模块 (25)4.5.3 闹钟控制模块 (27)4.5.4 显示输出控制模块 (32)4.5.5 led控制模块 (34)4.5.6 主控模块 (37)4.6 电子钟系统原理图 (38)五、实现过程中遇到的问题及措施 (38)六、设计心得体会 (39)七、参考文献 (39)一、设计目的本课程设计的目的是熟练掌握相关软件的使用和操作。

能对VHDL语言程序进行编译,调试,以及通过计算机仿真,得到正确的仿真波形图,并根据所得仿真波形图分析判断并改进所设计的电路。

在成功掌握软件操作基础上,将所数字电路的基础课知识与VHDL语言的应用型知识结合起来并与实际设计,操作联系起来,即“理论联系实际”。

深入了解VHDL语言的作用与价值,对用硬件语言设计一个电路系统开始具备一个较完整的思路与较专业的经验。

对EDA技术有初步的认识,并开始对EDA 技术的开发创新有初步的理解。

二、设计要求设计一个能进行时、分、秒计时的十二小时制或二十四小时制的数字钟,并具有定时与钟功能,能在设定的时间发出闹铃音,能非常方便地对小时、分钟和秒进行手动调节以校时间,每逢整点,产生报时音报时。

三、硬件方案3.1 设计思路根据设计要求进行分析,数字钟应当有计数器,分频器,按键消抖,闹钟,显示及主控模块构成。

分频器用来提供时钟,计数器用于计时,按键消抖为系统提供准确的按键控制信号输入,闹钟用于提供闹钟功能,显示模块显示时间,主控模块根据按键输入控制各个模块以实现所需求功能。

在此设计中已将闹钟模块融入主控模块中。

3.2 设计框图设计系统框图如图3-1所示。

图3-1数字钟系统框图分频器模块:48M时钟信号输入,可以提供多种时钟信号输出。

时钟计数模块:由60进制,24进制计数器以及一些附加功能模块组成(设置时间和检测整点等功能)。

按键消抖模块:消除机械按键抖动,提供更稳定的信号输入。

显示译码:将要显示的数据经过译码以动态扫描的方式显示在数码管上。

可以通过按键显示时间或设置闹钟的时间。

蜂鸣器及LED输出口:此模块无代码,仅是连接外部蜂鸣器和LED的端口。

主控模块:主控模块是整个核心,故将单独进行说明。

数字钟主控模块框图如图3-2所示。

图3-2数字钟主控模块框图计数器控制模块: 1HZ时钟信号输入,按键控制计数器模块对计数器计数及设置计数器的值(即设置时间)。

LED控制模块:通过按键控制,显示闹钟开启与关闭,以及设置时间和设置闹钟时用于指示当前设置为分钟还是时钟。

闹钟计数器模块:此模块跟计数器模块一样。

通过按键是计数器自增。

来设置闹钟时间。

闹钟控制模块:通过计数器输入来判断整点,计数器输入与闹钟计数器模块进行比较。

以此来实现闹钟功能。

显示输出模块:显示主要有三部分,一是正常显示时间,二是显示设置时间,三是闹钟时间。

具体显示那一部分是通过按键状态来判断。

3.3 数字钟主控电路状态表用两个电平信号A、B进行模式选择,AB=00为模式0,系统为计时状态;AB=01为模式1,系统为手动校时状态;AB=10为模式2,系统为闹钟设置状态。

设置一个turn信号,当turn=0时,表示在手动校对时,选择调整分钟部分;当turn=1时,表示在手动校对时,选择调整小时部分。

设置一个change信号,在手动校时或闹钟设置模式下,每按一次,计数器加1。

设置一个reset信号,当reset=0时,整个系统复位;当reset=1时,系统进行计时或其他特殊功能操作。

设置一个闹钟设置信号reset1,当reset1=0时,对闹钟进行设置,当reset1=0时,关闭闹钟信号。

设置状态显示信号(连发光二极管):LD_alert指示是否设置了闹铃功能;LD_h指示当前调整的是小时信号;LD_m指示当前调整的是分钟信号。

当闹钟功能设置后(LD_alert=1),系统应启动一个比较电路,当计时与预设闹铃时间相等时,启动闹铃声,直到关闭闹铃信号有效。

整点报时部分由分和秒计时同时为0(或60)启动,与闹铃共用一个扬声器驱动信号out。

系统计时时钟为clk=1Hz,选择另一时钟clk_lk=1024Hz作为产生闹铃声、报时音的时钟信号。

主控电路状态表如表3-1所示。

表3-1 数字钟主控电路状态表四、软件方案4.1 按键消抖模块消除按键抖动,按键检测时钟为1kHZ,如果为其它时钟,请修改计数器计数值,默认时间为5ms。

按键消抖符号图如图4-1-1所示图4-1-1按键消抖符号图端口说明:Key_in : 按键输入端。

Key_out : 按键去抖后输出端。

Clk_1k : 按键检测时钟信号(1kHZ)。

按键消抖代码:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity xiaodou isport (key_in : in std_logic;key_out : out std_logic;clk_1k : in std_logic);end;architecture bhv of xiaodou issignal count : std_logic_vector (2 downto 0);beginprocess (clk_1k) beginif (clk_1k'event and clk_1k='1') thenif key_in='0' thenif count=5 then count <= count;else count <= count +1;end if;if count = 5 then key_out <='0';else key_out<='1';end if;else count <= "000"; key_out <= '1';end if;end if;end process;end;功能仿真:按键消抖功能仿真图如图4-1-2所示图4-1-2 按键消抖功能仿真图按键消抖模块原理图:按键消抖模块原理图如图4-1-3所示图4-1-3按键消抖模块原理图按键消抖模块符号图如图4-1-4所示图4-1-4 按键消抖模块符号图4.2 时钟计数器模块时钟计数器模块具有计数器功能,按键按设置计数值功能,整点检测功能。

此模块由60进制计数器,24进制计数器,数据选择器,比较器构成。

60进制计数器用于秒和分计数,计数器自增来源有两个,一个是1HZ的时钟信号,二是按键产生的时钟信号,由数据选择器控制。

比较器用于检测分计数器是否位零,当为零时,即到了整点,比较器会输出1分钟高电平。

时钟计数器模块原理图如图4-2-1所示图4-2-1时钟计数器模块原理图时钟计数器模块符号图如图4-2-2图4-2-2时钟计数器模块符号图端口说明Clk_1:1HZ计数时钟信号输入端。

Set_minute:时钟分钟设置输入端。

Set_hour:时钟时设置输入端。

S_minute:计数器计数时钟选择端,当S_minute=0时计数时钟为Clk_1,当S_minute=1时计数时钟为Set_minute。

S_hour:计数器计数时钟选择端,当S_hour=0时计数时钟为Clk_1,当S_hour=1时计数时钟为Set_hour。

(1)60进制计数器模块:60进制计数器用于秒和分计数,clr清零计数器。

60进制计数器模块符号图如图4-2-3所示图4-2-3 60进制计数器模块符号图端口说明:Clk_1: 计数时钟输入端。

Clr:计数器清零端。

Cout:计数器进位输出端Dout_l[3..0]: 计数值低四位输出端(秒或分低位)。

Dout_h[3..0]: 计数值高四位输出端(秒或分高位)。

60进制计数器代码library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity counter_60 isport (clk_1 : in std_logic;clr : in std_logic;cout : out std_logic;dout_l : out std_logic_vector (3 downto 0);dout_h : out std_logic_vector (3 downto 0));end;architecture bhv of counter_60 issignal num1 : std_logic_vector (3 downto 0);signal num2 : std_logic_vector (3 downto 0);beginprocess (clk_1, clr) beginif (clr ='0' ) thennum1 <= "0000"; num2 <= "0000"; cout <= '0';elseif (clk_1'event and clk_1 = '1') thencout <= '0';if num1<"1001" then num1 <= num1 + 1;else num1 <= "0000";if num2 < "0101" then num2 <= num2 +1;else num2 <= "0000"; cout <= '1';end if;end if;end if;end if;end process;dout_l <= num1;dout_h <= num2;end;60进制计数器功能仿真图如图4-2-4所示图6-2-460进制计数器功能仿真图(2)24进制计数器模块构成时计数器,clr清零计数器。

相关文档
最新文档