铁磁材料的磁滞回线实验原理

合集下载

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。

2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。

3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。

二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。

铁磁材料的磁化过程是不可逆的,存在磁滞现象。

2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。

当H 增大到一定值时,B 不再增加,达到饱和值 Bs。

随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。

当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。

要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。

继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。

3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。

连接各磁滞回线顶点的曲线称为基本磁化曲线。

三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。

四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。

2、调节示波器,使其能清晰显示磁滞回线。

3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。

4、逐点记录磁滞回线顶点的坐标(H,B)。

5、减小交流电压,重复上述步骤,测量多组数据。

6、根据测量数据绘制磁滞回线和基本磁化曲线。

五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。

3、连接磁滞回线的顶点,得到基本磁化曲线。

铁磁材料的磁化曲线和磁滞回线的 测量

铁磁材料的磁化曲线和磁滞回线的 测量

铁磁材料的磁化曲线和磁滞回线的测量磁化曲线和磁滞回线是铁磁材料的两个基本磁性特性,可以通过实验测量来获得。

磁化曲线反映了铁磁材料在外加磁场下的磁化过程,磁滞回线则是描述铁磁材料在磁场变化时磁化状态的变化过程。

在这篇文章中,我们将详细介绍铁磁材料磁化曲线和磁滞回线的测量方法。

一、磁化曲线的测量1、实验原理铁磁材料在外磁场作用下会被磁化,磁化过程可以被描述为一个磁化曲线。

实验中,我们可以通过应用不同大小的磁场来测量铁磁材料的磁化曲线,并在相应的磁场值处记录样品磁化强度。

2、实验步骤(1)选择适当的铁磁材料。

铁磁材料应该具有较高的磁滞回线,磁化曲线应平滑连续。

(2)制备样品。

将铁磁材料制成条状或薄片状,并尽可能保持样品尺寸一致。

(3)将制备好的铁磁材料打磨并清洗干净。

(4)准备实验装置。

将样品放置于磁感应计中间,并将磁感应计连接到电压表或电流表。

(5)应用不同大小的外磁场,并记录磁化强度。

使用恒流源或电压源,应用不同大小的电流或电压,同时记录磁感应计测得的磁感应强度,以得到磁化曲线。

重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。

3、注意事项(1)要保持样品尺寸一致,以避免磁滞回线太宽或太窄。

(2)应避免外界干扰和温度变化对实验结果的影响。

(3)在应用不同磁场时,应注意不要让磁场过强以至于将样品磁化到饱和,否则曲线终止于饱和点。

(1)选择适当的铁磁材料。

(4)以一个磁场方向开始,应用不同大小的磁场,并记录磁化强度,记录下磁化曲线,此时磁滞回线仍未形成完整闭合环形。

(5)随着外磁场方向变化,记录相应的磁化曲线和磁滞回线,直到一整个闭合环形的曲线测得。

(6)重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。

(1)测量时应注意保持外部环境的稳定,避免温度、震动等因素对实验结果的影响。

(2)应避免将试样磁滞回线的心磁化带磁化到饱和,否则将不能获得完整的磁滞回线。

(3)应避免在试样磁滞回线完成闭合之前改变外加磁场的方向,否则将失去呈环形的磁化曲线。

磁滞回线实验报告

磁滞回线实验报告

一、实验目的1. 理解磁滞回线的概念和特性;2. 掌握磁滞回线的测量方法;3. 分析磁滞回线与材料性能之间的关系。

二、实验原理磁滞回线是铁磁材料在外加磁场作用下,磁化强度(磁感应强度B)随磁场强度(磁场强度H)变化的关系曲线。

在磁滞回线中,磁化强度和磁场强度之间存在滞后现象,即当磁场强度减小到零时,磁化强度并不立即为零,而是保持一定的数值,这种现象称为磁滞。

磁滞回线的形状反映了铁磁材料的磁滞特性,主要包括以下参数:1. 矫顽力(Hc):磁化强度为零时,所需的反向磁场强度;2. 饱和磁感应强度(Bs):磁场强度达到饱和时,磁化强度达到的最大值;3. 剩磁(Br):磁场强度为零时,磁化强度所保持的值。

三、实验仪器与材料1. 磁滞回线测量仪;2. 待测铁磁材料;3. 示波器;4. 磁场发生器;5. 信号发生器;6. 测量磁感应强度和磁场强度的传感器。

四、实验步骤1. 将待测铁磁材料放置在磁滞回线测量仪中,调整磁场发生器,使磁场强度逐渐增加;2. 使用信号发生器产生一定频率的交流信号,输入到磁滞回线测量仪中;3. 示波器显示磁滞回线图形,记录不同磁场强度下的磁化强度值;4. 根据实验数据,绘制磁滞回线曲线;5. 分析磁滞回线与材料性能之间的关系。

五、实验结果与分析1. 磁滞回线图形:根据实验数据,绘制磁滞回线曲线,如图1所示。

图1 磁滞回线曲线2. 磁滞回线参数:根据磁滞回线曲线,测量矫顽力(Hc)、饱和磁感应强度(Bs)和剩磁(Br)等参数。

3. 分析:(1)矫顽力(Hc):矫顽力是磁滞回线中的最大磁场强度,反映了材料抵抗磁化退磁的能力。

矫顽力越大,材料越难退磁,即磁滞特性越好。

(2)饱和磁感应强度(Bs):饱和磁感应强度是磁化强度达到的最大值,反映了材料的磁导率。

饱和磁感应强度越大,材料的磁导率越高。

(3)剩磁(Br):剩磁是磁场强度为零时,磁化强度所保持的值,反映了材料的剩磁特性。

剩磁越大,材料的剩磁特性越好。

磁铁的磁滞回线实验

磁铁的磁滞回线实验

磁铁的磁滞回线实验磁滞回线实验是一种常见的物理实验,通过制作磁滞回线图来展示磁铁在不同磁场强度下的磁化特性。

本文将介绍磁滞回线实验的原理、实验步骤和实验结果的分析。

一、实验原理磁滞回线实验是通过改变磁铁的外部磁场,测量磁铁的磁化强度与外部磁场强度的关系。

在应用过程中,磁铁的磁化强度并不是简单地随外部磁场强度的升高而线性增加,而是出现一定的滞后现象,这种滞后现象被称为磁滞。

二、实验步骤1. 准备实验所需材料:一块铁芯、螺线管、直流电源、电流表以及磁场强度计等。

2. 将螺线管绕在铁芯上,固定好,并将电流表接在螺线管两端。

3. 将铁芯置于电磁铁的磁场中,并调整直流电源的电流,使其产生不同的磁场强度。

4. 测量电流表的读数和磁场强度计的读数,并记录下来。

5. 依次改变磁场强度,并重复步骤4,直到得到一条完整的磁滞回线。

三、实验结果分析通过实验得到的磁滞回线图能够直观地表达磁铁的磁滞现象。

在图中,横轴表示外部磁场强度,纵轴表示磁化强度。

磁滞回线的形状会告诉我们关于磁铁的磁化特性。

磁滞回线图的形状可以呈现出以下几种情况:1. 矩形:矩形回线表示磁铁完全磁化时的特征,当外部磁场的方向与磁铁相同时,磁滞回线为一个闭合的矩形。

2. S形:当外部磁场的方向与磁铁相反时,磁滞回线呈现出S 形,这是因为磁铁开始磁化时,其磁感应强度增大速度比较快,而当磁铁接近饱和时,磁感应强度增大速度减慢,因此形成曲线较为平缓的部分。

3. 弯曲:弯曲的磁滞回线表明磁铁的磁化特性具有不对称性,也就是当外部磁场强度减小或增大时,磁滞回线出现了偏移。

通过观察磁滞回线图,我们可以了解磁铁的磁化特性,包括饱和磁感应强度、残余磁感应强度、矫顽力等参数。

在实际应用中,磁滞回线的形状也会对磁铁的使用产生一定的影响,因此对磁滞回线进行研究具有重要的意义。

总结起来,磁滞回线实验是一种用来展示磁铁磁化特性的常见实验方法。

通过测量磁铁在外部磁场作用下的磁化强度,并制作磁滞回线图,可以直观地了解磁铁的磁化特性和滞后现象。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告铁磁材料是一类在外加磁场下具有明显磁性的材料,其磁性能对于电磁设备和磁性传感器等领域具有重要的应用价值。

本实验旨在通过对铁磁材料的磁滞回线进行测量和分析,探究其在外磁场作用下磁化特性的变化规律。

1. 实验目的。

本实验旨在通过测量铁磁材料在外磁场作用下的磁化特性,绘制磁滞回线图,并分析其磁滞损耗和矫顽力等参数,从而深入了解铁磁材料的磁性能。

2. 实验原理。

铁磁材料在外磁场作用下会发生磁化过程,当外磁场强度逐渐增大时,材料内部的磁化强度也会随之增大,直至达到饱和状态;而当外磁场强度逐渐减小时,材料的磁化强度也会随之减小,直至回到初始状态。

这一过程形成的磁化特性曲线即为磁滞回线。

3. 实验步骤。

(1)准备铁磁材料样品和磁化装置;(2)将样品置于磁化装置中,并接通电源,施加不同大小的外磁场;(3)通过磁感应计或霍尔元件等磁场测量设备,测量不同外磁场下的磁感应强度,并记录数据;(4)根据记录的数据,绘制铁磁材料的磁滞回线图。

4. 实验结果与分析。

通过实验测量和数据处理,我们得到了铁磁材料的磁滞回线图。

从图中可以明显看出,在外磁场逐渐增大时,磁感应强度也随之增大,直至达到饱和状态;而在外磁场逐渐减小时,磁感应强度也随之减小,直至回到初始状态。

这一过程呈现出明显的磁滞特性,磁滞损耗和矫顽力等参数也可以通过磁滞回线图进行计算和分析。

5. 实验结论。

通过本次实验,我们深入了解了铁磁材料的磁滞特性,掌握了磁滞回线图的绘制和分析方法,对铁磁材料的磁性能有了更深入的认识。

这对于进一步研究和应用铁磁材料具有重要的意义。

6. 实验总结。

本次实验通过对铁磁材料的磁滞回线进行测量和分析,深入了解了其在外磁场作用下的磁化特性。

同时,我们也发现了一些实验中存在的问题和不足之处,为今后的实验和研究工作提供了一定的参考和借鉴。

通过本次实验,我们对铁磁材料的磁滞回线有了更深入的了解,这对于相关领域的研究和应用具有一定的指导意义。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告一、实验目的。

本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。

二、实验原理。

磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。

铁磁材料的磁滞回线特性是其重要的磁性能指标之一。

三、实验仪器与设备。

1. 电磁铁。

2. 电源。

3. 示波器。

4. 铁磁材料样品。

四、实验步骤。

1. 将铁磁材料样品放置在电磁铁中间位置。

2. 调节电源输出电压,使电磁铁通电,产生磁场。

3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。

4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。

五、实验数据记录与分析。

根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。

从曲线图中可以清晰地看出铁磁材料的磁化特性。

在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。

六、实验结论。

通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。

磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。

通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。

七、实验注意事项。

1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。

2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。

八、参考文献。

1. 《材料物理学实验指导》。

2. 《磁性材料与器件》。

以上为铁磁材料的磁滞回线实验报告。

铁磁材料的磁滞回线

铁磁材料的磁滞回线

铁磁材料的磁滞回线和基本磁化曲线实验报告【实验目的】1、了解铁磁材料的磁化过程及磁化规律。

2、掌握用示波器法观察磁滞回线。

3、测定样品的基本磁化曲线。

4、测绘样品的磁滞回线。

【实验仪器】磁滞回线试验仪、示波器【实验原理】铁磁物质——在外磁场作用下能被强烈磁化,故磁导率µ很高。

磁场强度 -- H磁感应强度 -- B磁导率 -- µ= B/H铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质下图为铁磁物质磁感应强度 B与磁场强度H之间的关系曲线。

原点0:磁中性状态,即B=H=0,当H增至Hs时,B到达饱和值,0abs称为起始磁化曲线。

当磁场从Hs逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“0”点,而是沿另一条新曲线SR下降比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞。

磁滞——铁磁物质的另一特征,即磁化场作用停止后,铁磁质仍保留磁化状态。

磁滞的明显特征是当H=0时,B 不为零,而保留剩磁Br 。

当磁场反向从0逐渐变至 -HD 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,HD 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力。

线段RD 称为退磁曲线。

当磁场按HS →0→-HD →-HS →0→HD ′→HS 次序变化,相应的磁感应强度B 则沿闭合曲线SRDS ′R ′D ′S 变化,这条闭合曲线称为磁滞回线。

当初始态为H=B=0的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图所示。

这些磁滞回线顶点的连线即为铁磁材料的基本磁化曲线安培环路定理1H NH U LR =⋅22B C R B UnS=。

四、实验步骤1、电路连接:选样品1按实验仪上所给的电路图连接线路,并令R1=2.5Ω, “U 选择”置于0位。

UH 和UB 分别接示波器的“X 输入”和“Y 输入”,插孔为公共端。

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。

在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。

而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。

本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。

二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。

三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。

2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。

3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。

4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。

5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。

6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。

四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。

当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。

五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ-H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。

二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。

图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。

从图中可以看出,B 和H 的关系不是线性的,而是非线性的。

2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。

当 H = 0 时,B = Br,Br 称为剩余磁感应强度。

要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。

若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。

当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。

3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

磁滞回线实验报告

磁滞回线实验报告

磁滞回线实验报告一、实验原理磁滞回线是指在磁场强度变化的情况下,铁磁性材料的磁化强度随之变化的曲线。

当磁场强度为零时,铁磁性材料的磁化强度也为零。

当磁场强度增加时,材料的磁化强度随之增加,直到达到饱和磁化强度。

当磁场强度减小到一定程度时,磁化强度并不立即变为零,而是保持一定的残留磁化强度。

当磁场强度继续减小,磁化强度也随之减小,直到达到磁场强度为零时,磁化强度也为零。

如果再反向施加磁场强度,材料的磁化强度不会立即变为零,而是由于材料的磁滞效应,会出现一个磁滞回线。

二、实验步骤1. 准备工作:将铁磁性材料样品固定在磁通线圈上,并将磁通线圈与电源连接好。

2. 测量饱和磁化强度:在电流为零的情况下,先用磁通线圈产生如图1所示的磁场强度H1,然后逐渐增加电流大小,直到得到磁通线圈产生的最大磁场强度H2,此时的磁化强度即为样品的饱和磁化强度。

3. 测量残留磁化强度:在电流为零的情况下,用磁通线圈产生如图2所示的磁场强度H3,然后逐渐减小电流大小,直到样品的磁化强度随之减小到一定程度时,读取此时的磁场强度H4,即为样品的残留磁化强度。

4. 测量磁滞回线:将磁通线圈电流逆向,产生反向磁场强度,然后逐渐增加电流大小,测量出铁磁材料的磁通强度随之变化的曲线,即为磁滞回线。

三、实验结果与分析本次实验使用的铁磁性材料样品为普通的磁铁,其饱和磁化强度为1.14 Tesla,残留磁化强度为0.13 Tesla。

样品的磁滞回线如图3所示。

根据磁滞回线,可知当铁磁材料被磁化后,其磁通强度并不会立即随磁场强度的变化而变化,而是存在一定的磁滞效应。

当磁场强度减小到一定程度时,铁磁性材料的磁化强度才会随之减小。

此外,残留磁化强度也表明样品的磁滞效应比较明显,即在样品被磁化后,即使磁场强度减小到零,样品仍然保留一定的磁性。

四、实验结论本次实验通过测量铁磁性材料的磁滞回线,进一步认识了铁磁性材料在外加磁场作用下的磁化规律,得出的饱和磁化强度和残留磁化强度值,也为材料的使用提供了基础数据。

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。

根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。

从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。

关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。

2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。

3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。

4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。

(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。

(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。

5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。

实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。

铁磁材料的磁滞回线

铁磁材料的磁滞回线

铁磁材料在反复磁化的过程中, H----B之间的变化过程如图所示,图 中的原点o表示磁化前铁磁材料处于 B=H=0,当磁场H从零开始增加时,磁 感应强度B随之缓慢上升,如线段oa所 示,继之B随H迅速增长,如ab所示, 其后B的增长又趋缓慢,并当H增至Hm 时,B到达饱和值Bm,oabm称为起始磁 化曲线。
实验时采用导线将元件 连接成所需要的电路
同一点
交变电源 间隔0.3V
微机测试仪
附微机测试仪的使用
1 按【功能】直到显示【H B】, 【TEST】然后按【确认】,
2 两窗口显示【。。。。】稍等片刻, 如出现【GOOD】则表示正常,可以测量。
3 再按【功能】两窗口显示【H B】 【TEST】
4 接着按【功能】两窗口显示【HSHOW】 【BSHOW】
2、认识铁磁材料的磁化规律,比较两 种典型的铁磁物质的动态磁特性 .
3、掌握用示波器法观测磁滞回线的基 本原理。
二、实 验 原 理
若在由电流产生的磁 场中放入铁磁材料,铁磁 材料内部的磁场强度 H和 磁感应强度B 有以下关系:

B H
对铁磁材料来说,磁导率 µ不是一个常量,而是随
H的变化而改变的物理量, 即µ =f(H)为非线性函数, 所以,B与H的关系也是非 线性的。
hmbm逐渐减小至零磁感应强度b并不沿起始磁化曲线恢复到o点而是沿另一条新的曲线mr下降也减小但b的变化滞后于h的变化当h0时b不为零而保留剩磁b时磁感应强度b消失说明要消除剩磁必须施加反向磁小反映铁磁材料保持剩磁状态的能力线段rc称为退磁曲线
磁滞回线基本磁化曲线
¿ 电磁学系列 7
浙江大学物理实验中心
绕组n和R2、C2电路给定,S为样品绕组线的截面积

实验_铁磁材料的磁滞回线和基本磁化曲线

实验_铁磁材料的磁滞回线和基本磁化曲线


基本磁化曲线。磁滞回线顶点的连线为铁 磁材料的基本磁化曲线,磁导率。
B H
3,实验器
• 数码照片 • 磁滞回线实验组合分为实验仪和测试仪两大部分 。
4,操作指南
• • • 电路连接。选样品1按实验仪上所给的电路图连接线路, 令 ,“U选择” 置于0位。 和 分别接示波器的“X 输入”和“Y输入”。 R1 2.5 样品退磁。 U U2 1 观察磁滞回线。令 ,调节示波器,出现磁滞回线。
• •
操作指南(续2)
• • 令 测定样品1的特性参数。 取步骤7中的H B-H曲线,并估算曲 U和 B 3的对应值,用坐标纸绘制 .0V , R1 2.5 线所围面积(磁滞损耗)。
5,数据处理
• 按照实验内容的要求,记录所需的数据,自己画数据表格。 • 作图。画磁滞回线至少取50个数据。
U 2.2V
操作指南(续1)
• 观察基本磁化曲线。对样品进行退磁,从U=0开始提高励磁电 压,将在显示屏上得到面积由小到大的一族磁滞回线。这些磁 滞回线的顶点就是样品的基本磁化曲线,长余辉示波器,便可 观察到该曲线的轨迹 。 观察比较样品1和2的磁化性能。 测绘曲线。接通实验仪和测试仪之间的连线。开启电源,对样 品进行退磁后,依次测定10组H和B值。
实验 铁磁材料的磁滞回线和基本磁化曲线

1,背景介绍 2,实验原理 3,仪器介绍 4,操作指南 5,数据处理要求
1,简介
• 铁磁材料(镍、钴、铁及其合金)在电力、通讯等领域有着十分 广泛的应用。磁滞回线磁滞回线反映磁性材料在外磁场中的磁化 特性。
2,实验原理
• • 铁磁物质。在外磁场作用下,能被强烈磁化,磁导率很 高。磁场作用停止后,仍保持磁化状态,即磁滞。 0 磁化曲线。O点为磁中性状态,即 B H ,当磁场 H从 H s B达到 0开始增加时,B随之缓慢上升,并当H到 时, 饱和值 B ,到此为磁化曲线。当 H减小到0时,B不为0, s 而保留剩磁 。 Br

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到Bm 、Hm,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:Bm=;Hm=m;Br=;Hc=m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

磁滞回线 大物实验报告

磁滞回线 大物实验报告

磁滞回线大物实验报告一、实验目的本实验的目的是通过测量铁磁材料的磁滞回线来了解材料的磁性质,并观察磁滞回线的特征。

二、实验原理磁滞回线是描述铁磁材料磁化过程的一种曲线。

当外加磁场的强度逐渐增加时,材料开始磁化,产生磁化强度。

当外加磁场达到一定强度时,材料的磁化强度达到饱和值,此时再增大外加磁场对材料的磁化强度影响较小。

当外加磁场逐渐减小时,材料的磁化强度仍保持较大值,直到外加磁场减小到一个临界值,材料的磁化强度迅速消失,回到初始状态,形成一个完整的磁滞回线。

磁滞回线的特征可以用来描述铁磁材料的磁性质,如磁导率、矫顽力等。

三、实验器材和材料- 铁磁材料样品- 恒定磁场源- 恒定电流源- 数据记录仪四、实验步骤1. 将铁磁材料样品放置在恒定磁场源中心,确保样品处于无外加磁场状态。

2. 打开恒定磁场源,设置恒定磁场的强度,并保持一定的时间,使得材料达到饱和磁化状态。

3. 按照预设的实验步骤,逐渐减小恒定磁场的强度,记录每个磁场强度下材料的磁感应强度。

4. 将实验数据输入到数据记录仪中,绘制磁滞回线曲线。

五、实验结果和分析根据实验步骤得到的数据,我们可以绘制出铁磁材料的磁滞回线曲线。

磁滞回线曲线的横轴表示磁场的强度,纵轴表示材料的磁感应强度。

通过观察磁滞回线曲线,我们可以得到以下结论:1. 磁滞回线呈现出环形曲线的特征,环的面积代表了材料的磁化程度。

面积越大,表示材料越易磁化。

2. 磁滞回线曲线的对称轴表示正负磁场对材料磁化的影响是对称的,说明该铁磁材料具有良好的磁导率。

3. 磁滞回线曲线中的纵坐标的最大值表示了材料的饱和磁感应强度,即在给定磁场下,材料可以达到的最大磁化程度。

4. 磁滞回线曲线上的斜率可以用来表示材料的矫顽力,斜率越大,材料的矫顽力越大,说明材料对外加磁场的影响越大。

六、实验总结本实验通过实际测量铁磁材料的磁滞回线曲线,了解了磁滞回线的特征和其对材料磁性质的描述,提高了我们对铁磁材料的认识。

铁磁材料的磁滞回线实验原理

铁磁材料的磁滞回线实验原理

铁磁材料的磁滞回线实验原理1. 引言铁磁材料在外加磁场作用下会产生磁化现象,表现出一种特殊的磁性行为。

其中,磁滞回线实验是研究铁磁材料磁性行为的重要实验方法之一。

本文将详细介绍与铁磁材料的磁滞回线实验原理相关的基本原理。

2. 磁化与铁磁材料在讨论铁磁材料的磁滞回线实验原理之前,我们首先需要了解一些关于磁化和铁磁材料的基本概念。

2.1 磁化当一个物体被放置在外部磁场中时,它会受到该外部场的影响而形成自己的内部分子电流。

这个分子电流会产生一个微小的自发电流,从而使物体具有了自己的“内部”或“剩余”电流。

这种现象被称为“物体被磁化”。

2.2 铁磁材料铀、钕、钴等是常见的铜合金。

它们具有良好的磁性,被称为铁磁材料。

铁磁材料在外加磁场作用下,其内部分子电流会更加强化,形成更强的“内部”或“剩余”电流。

3. 磁滞回线实验原理3.1 实验装置进行磁滞回线实验需要一些基本的实验装置,包括: - 铁磁样品:通常是一个长方体形状的铁磁材料样品。

- 电磁铥:用于产生稳定的外部磁场。

- 磁感应计:用于测量样品中的磁感应强度。

3.2 实验过程下面将详细介绍进行磁滞回线实验的具体步骤: 1. 准备铁磁样品,并将其放置在实验台上。

2. 将电流通入电磁铥中,产生一个稳定的外部磁场。

3. 使用磁感应计测量样品中的磁感应强度,并记录下来。

4. 改变外部磁场的大小和方向(例如增大或减小电流),并再次测量并记录样品中的磁感应强度。

5. 重复步骤4多次,直到获得一条完整的磁滞回线。

3.3 实验结果通过以上实验过程,我们可以获得一条磁滞回线。

磁滞回线是描述铁磁材料在不同外部磁场下的磁感应强度变化的曲线。

根据实验结果,我们可以得到以下结论:•当外部磁场逐渐增大时,样品中的磁感应强度也会逐渐增大,但增长速率逐渐减慢。

这是因为铜合金在低外部磁场下具有较低的饱和磁感应强度。

•当外部磁场达到一定大小后,样品中的磁感应强度将趋于稳定,并达到一个最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁磁材料的磁滞回线实验原理
一、引言
铁磁材料的磁滞回线实验是材料科学中的重要实验之一,它可以通过
测量铁磁材料在外加磁场下的磁化强度和磁场强度之间的关系来了解
铁磁材料的磁性质。

本文将详细介绍铁磁材料的磁滞回线实验原理。

二、实验原理
1. 磁滞回线概念
当一个铁磁体置于外加恒定电流或恒定电压下时,其内部会产生一个
恒定的磁场。

如果在这个恒定的电流或电压基础上再施加一个变化的
电流或电压,那么这个变化就会引起铁磁体内部产生一个变化的磁场。

当施加到一定程度时,这个变化就会导致铁磁体发生饱和现象,即无
论施加多大的电流或电压,其内部产生的磁场都不再增大。

当减小施
加电流或电压时,铁磁体内部产生的磁场也会随之减小。

如果将此过
程中所得到的铝片上记录下来,则得到的图像就被称为磁滞回线。

2. 磁滞回线实验装置
磁滞回线实验需要使用到磁滞回线测试仪,它是一种专门用于测量铁
磁材料磁性质的设备。

其主要由电源、电流表、电压表、磁场计和铝
片等组成。

其中,电源用于提供恒定的电流或电压,电流表和电压表
分别用于测量施加在铁磁体上的电流和电压,磁场计则用于测量施加
在铁磁体上的磁场强度。

铝片则用于记录施加在铁磁体上的磁场强度
和其内部产生的磁化强度之间的关系。

3. 实验步骤
(1)将待测试的铁磁材料放置在测试仪中,并通过夹具固定住。

(2)通过测试仪中的控制面板设置所需的实验参数,如施加恒定电流或恒定电压等。

(3)开始实验后,通过测试仪中的控制面板逐渐改变施加在铜片上的电流或电压,并记录下每个时刻所得到的铝片图像。

(4)实验结束后,将所得到的铝片图像进行处理,得到磁滞回线图像。

三、实验注意事项
1. 在进行实验前,需要对测试仪进行校准,以确保测量结果的准确性。

2. 在进行实验时,需要注意施加在铁磁体上的电流或电压不要超过其
承受范围,否则会导致测试仪器损坏。

3. 在记录铝片图像时,需要确保铝片与测试仪中的磁场计之间没有任
何干扰,否则会影响测量结果的准确性。

四、总结
通过以上介绍可以看出,铁磁材料的磁滞回线实验是一种简单而重要
的材料科学实验。

它可以帮助我们更好地了解铁磁材料的磁性质,并
为相关领域的研究提供有力支持。

因此,在进行这一实验时需要严格
遵守操作规程,并注意安全事项。

相关文档
最新文档