H桥逆变器SPWM ,MATLAB仿真
桥式可逆PWM变换器Matlab仿真
适用标准文案作业:桥式可逆 PWM 变换器的主电路由四个 IGBT 构成一个 H 桥,并且每一个 IGBT 上均反并联有电力二极管,电力二极管起到续流的作用采纳以下 2 种方式进行仿真,并进行比较剖析:Simulink 的 SimPowerSystemsOrCAD PSpice要求在文件组中画出详尽的原理图、给出元件的详尽模型和参数、仿真设置参数和仿真结果并进行剖析。
议论分类状况以下:(一)占空比为90%时对系统的剖析;(二)占空比为50%时对系统的剖析;(三)占空比为10%时对系统的剖析;在上边所分的三大类中,每一种又分为三小类。
进而对该系统的剖析尽量达到全面。
三小类为:①电动机所带负载为轻载时的状况;②电动机所带负载为适合负载时的状况;③电动机所带负载为重载时的状况;1、Simulink 的 SimPowerSystems(1)原理图以下列图所示(2)元器件参数设置脉冲发生器:逻辑算符:IGBT :直流电机参数:直流电机的励磁电压110V ,励磁电流0.5A ,额定转速2400r/min ,负载转矩· m。
(一)、占空比为90%时对系统的剖析;电动机所带负载为轻载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为适合负载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为重载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:从以上波形图能够看出,当占空比为90%时,电机的输出电压在不一样负载的状况下不受影响。
而转速在不一样的负载下是变化的,轻载时转速略高于额定转速;适合负载时为额定转速;重载时低于额定转速。
电机启动时会产生较大的电枢电流,当转速趋于安稳的时候电枢电流趋近于零。
转矩的变化跟电枢电流近似。
(二)占空比为50%时对系统的剖析;电动机所带负载为轻载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为适合负载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为重载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:从以上波形图能够看出,当占空比为 50%时,电机的输出电压在不一样负载的状况下不受影响。
基于H桥级联型五电平逆变器的Matlab仿真分析
基于H桥级联型五电平逆变器的Matlab仿真分析【摘要】多电平逆变器广泛应用于电机调速等领域,本文在分析级联型逆变器的基础上,深入分析了SPWM控制技术及逆变器的谐波问题。
通过Matlab/simulink软件对H桥级联型五电平逆变器进行建模仿真,得到了不同调制比情况下的电压及电流波形,并分析了不同调制比情况下的谐波问题。
【关键词】多电平逆变器;H桥级联;载波移相PWM;谐波Simulation and Analysis of H-bridge Cascaded 5-level Inverter Based on Matlab CHAI Ai-ping(Department of Electronic and Information Engineering,Wuwei Occupational College,Wuwei Gansu,733000)【Abstract】Multi-level inverter has been widely used in motor speed regulation,and other fields.This paper first briefly introduced in the cascaded inverter,in-depth analysis of SPWM control technology and its harmonic problem.Based on the Matlab/simulink simulation platform,H-bridge cascaded inverter will be simulated.Then get the voltage and the current waveform by different modulation ratio,and analyzes the harmonic problems by different modulation ratio.【Key words】Multi-level inverter;Vasvaded H-bridge;Varrier phase shifted SPWM;Harmonics0 引言多电平逆变器是以电力系统中直流输电、无功功率补偿、电力有源滤波器等应用发展的需要,高压大功率交流电动机变频调速系统大量应用的需求,以及20世纪70年代以来两次世界性的能源危机和当前严重的环境污染所引起的世界各国对节能技术与环保技术的广泛关注为背景的[1]。
单相单极性SPWM逆变电路matlab仿真
单相单极性SPWM逆变电路matlab仿真————————————————————————————————作者:————————————————————————————————日期:计算机仿真实验报告专业:电气工程及其自动化班级:11电牵4班姓名:江流在班编号:26指导老师:叶满园实验日期:2014年5月15日一、实验名称:单相单极性SPWM逆变电路MATLAB仿真二、目的及要求了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。
三、实验原理1.单相单极性SPWM逆变的电路原理图2、单相单极性SPWM逆变电路工作方式单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当Ur<U c时使V4断,V3通,U0=0。
Ur负半周,V1保持断,V2保持通,当Ur<cu时使V3通,V4断,U0=-U d,当Ur>Uc时使V3断,V4通,U0=0。
输出电压波形四、实验步骤及电路图1、建立MATLAB仿真模型。
以下分别是主电路和控制电路(触发电路)模型:2、参数设置本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。
设置正弦波周期为0.02s,幅值为1。
直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。
五、实验结果与分析1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:2、设置三角脉冲波形的周期t=0.02/21s时的仿真结果:根据仿真结果和面积等效原理可知,模拟电路成功的实现了将直流逆变成交流。
H桥逆变器SPWMMATLAB仿真
H桥逆变器S P W M M A T L A B仿真文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]MATLAB仿真技术大作业题目:H桥逆变器SPWM仿真单相逆变器(H桥)。
直流电压500V,使用直流电压源模块;逆变器用Universal Bridge模块,器件选IGBT。
负载用阻感串联负载,电阻1,电感15mH。
使用三角波作为载波,载波频率750Hz,调制度,基波频率50Hz。
仿真时间秒,使用ode23tb求解器。
本次仿真关注稳态时的情况。
分析谐波成分时,取秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。
1、双极性SPWM仿真采用双极性SPWM,完成以下内容:(1)在同一副图中,画出载波与调制波的波形;(2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析,(3)(a)分析基波电压是否与理论公式相符;基本相符,理论值为500*=400,实际值,相对误差%(b) 分析电压谐波成分,并给出结论;谐波集中在载波频率(750hz)及其整数倍附近(3)记录负载电流的波形,并进行谐波分析。
谐波分析负载电流谐波成分与电压基本一致。
2、单极性SPWM仿真采用单极性SPWM,重复上述仿真,即,完成以下内容:(1)在同一副图中,画出载波与调制波的波形;(2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析,谐波分析(a) 分析基波电压是否与理论公式相符;基本相符(b) 分析电压谐波成分,并给出结论;谐波分别很散,与理论不符(3)记录负载电流的波形,并进行谐波分析。
(4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC 滤波器参数时,其负载电流THD的情况。
单极性谐波应该少,实际仿真结果反而多3、级联H桥逆变器仿真两个H桥级联,每个桥的逆变器参数都与前面的相同。
基于MATLAB的SPWM电压型逆变器的仿真与分析
[ 2 】 高峰 , 俞 力 ,张 文安 等 . 基 于作 物 水 分 胁 迫声发 射 技 术的 无 线传 感 器 网络精 量 灌 溉 系统 的初 步研 究 … .农 业 工 程 学
报 , 2 0 0 8 , 2 4 ( 0 1 ) .
能耗 等因素 。在该系统 中,水 分传 感器是用于 信 息搜集 的,其所搜集信 息数据 的准确性将直 接决 定了整个系统运用分析 的真 实可靠 性,是 该技术在 农 田土壤含水率监测 中具有 实用性的 第一 步。因此,在选择传感器 时,要 充分考虑 到农 田的环 境,使得选择 的传感器不会 受到土 壤的腐蚀 ;要充分考虑到农 田所在 的地 区,选 择那些受土 质影 响较小的传感器 ;要充分考虑 到其对土壤含水率 的分辨率,确保传感器感知
2 us 。
下面详 述系 统模 型 中两个 重要 子模 块,
< <上 接 7 8页
术协议的无线通信 则是最佳选择,其不仅应用 范围极为广泛 ,且其 芯片集成度较高 ,可靠性 高,并具有低能耗 的特点 。
3 . 2 - 3 传 感 器 的 选 型
一
个执行 模块 由 1 个T i n y OS程 序 和 多 个 组 件
波。
3三相S P W M 电压型逆变器的建模与仿真
利用 Ma t l a b软 件,在 S i mu l i n k环境 下 的
P o we r S y s t e m仿 真 工 具箱 搭 建 的三相 S P W M 电 压 型 逆 变 器 的 系 统 电 路模 型 。 系 统 主 电 路 实 现 的 是 交 流 .直 流 .交 流
要是由 Z i g b e e来 实现 的 ,并借 助具 有 z i e e 协调 能力 的设备来促使 自身形成一个新 的网络
基于MATLAB的三相桥式PWM逆变电路的状态空间分析与仿真
关键词:PWM;状态空间法;Simulink
Abstract
Thecontroltechnologyof the PWM inverter circuitis the most widely used ,the vast majorityof theinverter circuit applications noware PWM inverter circuit.In order to analyze the circuit of the PWM inverter,Firstlyestablished the required modelofPWM inverter circuit, and the working principle ofthe three-phase PWM inverter control circuit and the circuit is analyzedon the basis of the LC filter circuits and load R-L.Analysis of this circuit is to take the state space method,namely the establishment of the state space expression to get the working status of this circuit by analyzing the state space expression.
ifrob==n
disp('System is observable')
SPWM变频调速系统的MATLAB仿真
SPWM变频调速系统的MATLAB仿真1.1系统仿真综述在采用电力半导体器件对电动机进行交流调速的分析研究中,计算机仿真技术已经显示出了它的巨大优越性。
MATLAB/SIMULINK环境是一种优秀的系统仿真软件,使用它可以大大提高系统仿真和CAD的效率和可靠性。
本设计的特点是用MATLAB对基于SPWM控制的交流异步电动机变频调速系统进行仿真分析。
系统仿真模型主要由整流器、滤波器、逆变器、电动机模型以及SPWM控制器几部分组成,对实际系统的分析与研究十分有帮助。
本文根据电力电子器件的开关原理、PWM调制方式的动作过程和自动控制理论,结合具体的电路拓扑结构并基于多信息融合思想,构建计算机仿真方案,在通过分析比较仿真波形、仪表的显示结果和存储示波器的记录,检验数学模型、电路拓扑结构、调节器方式和主要元器件参数是否正确,修改设计方案,逐步达到预期的目的。
本文用仿真调速系统控制一台三相异步电动机。
系统工作过程是:首先通过电网中获得三相对称交流电,然后经过三相不可控整流和SPWM控制方式下的逆变器为电动机提供电源。
电动机在三相逆变电源的控制下产生电磁转矩带动负载工作。
在本系统中,三相桥式逆变电路的基本工作方式采用的是导电方式,同一相(即同一半桥)上下两个臂交替导电,这样,在任意瞬间,将有3个桥臂同时导通。
在控制电路中,采用的是正弦波脉宽调制法(SPWM),即三角形载波信号和三相对称的正弦波参考信号相比较,在交点处发出三相脉冲调制信号,去驱动逆变器主回路的各IGBT的基极,当改变参考信号的幅值时,相电位脉冲的脉宽随之改变,从而改变了主回路基波相电压的大小。
当改变参考信号的频率时,输出电压的频率随之改变。
如果同时改变参考电压的幅值和频率,就可以实现变频调速系统u/f=常数的要求。
这种调制方式的特点是在半个周期内,脉冲间中心线等距,脉冲等幅、调宽,各脉冲面积之和与正弦波下的面积成正比。
在SPWM方式中,经常要用到调制系数M(M=调制波幅值/载波幅值)。
PWM逆变器Matlab仿真设计
PWM逆变器MATLAB仿真1设计方案的选择与论证从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。
除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示:图1-1方案一:先升压再逆变图1-2方案二:先逆变,再升压方案选择:方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。
方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。
从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关内容也会在后文予以讨论。
2逆变主电路设计2.1逆变电路原理及相关概念逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。
根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。
2.2逆变电路的方案论证及选择从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论:方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。
基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析
基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析本文以MATLAB软件的SIMULINK仿真软件包为平台,对桥式直流PWM 变换电路进行仿真分析文章对每个电路首先进行原理分析,进而建立相应的仿真模型,经过详细计算确定并设置仿真参数进行仿真,对于每次仿真结果均采用可视化波形图的方式直接输出。
在对仿真结果分析的基础上,不断优化仿真参数,使其最大化再现实际物理过程,并根据各个电路的性能进行参数改变从而观察结果的异同。
标签:SIMULINK;PWM;电路仿真1 桥式直流PWM变换电路简介桥式直流PWM变流器仿真实验是对全控型器件的应用。
实验电路中,前端为不可控整流、后端为开关型逆变器,此结构形式应用最为广泛。
逆变器的控制采用PWM方式。
对这个实验有所掌握的话,对后续课程设计直流调速系统也会有很大启发。
因为直流PWM-M调速系统近年来发展很快,直流PWM-M调速系统采用全控型电力电子器件,调制频率高,与晶闸管直流调速系统相比动态响应速度快,电动机转矩平稳脉动小,有很大优越性,因此在小功率调速系统和伺服系统中的应用越来越广泛。
2 桥式直流PWM变换电路的工作原理本实验系统的主电路采用双极性PWM控制方式,其中主电路由四个MOSFET(VT1~VT4)构成H桥。
Ub1~Ub4分别由PWM调制电路产生后经过驱动电路放大,再送到MOSFET相应的栅极,用以控制MOSFET的通断。
在双极性的控制方式中,VT1和VT4的栅极由一路信号驱动,VT2和VT3的栅极由另一路信号驱动,它们成对导通。
控制开关器件的通断时间可以调节输出电压的大小,若VT1和VT4的导通时间大于VT2和VT3的导通时问,输出电压的平均值为正,VT2和VT3的导通时间大于VT1和VT4的导通时间,则输出电压的平均值为负,所以可以用于直流电动机的可逆运行。
3 计算机仿真实验(1)桥式直流PWM变换电路仿真模型的建立。
根据所要仿真的电路,在SIMULINK窗口的仿真平台上构建仿真模型。
基于matlab下的spwm三相桥式逆变电路
基于MATLAB 下的SPWM 三相桥式逆变电路理论补充:逆变器工作原理:整个实验在三相桥式逆变电路下进行,如下图1,电感电阻性负载,A 、B 、C 相的上下桥臂轮流导通。
当1VT 导通,4VT 截止时,a 点电位位Ud/2;当4VT 导通,1VT 截止时,a 点电位位-Ud/2。
同理可得b 、c 点的电位。
通过控制六个管子的导通时间,达到逆变效果。
图1 实验主电路PWM 是六个VT 管子的触发信号,此信号是通过调制信号(即正弦波)和载波(三角波)的比较得到的,分析1VT 管的通断情况:当正弦波r u 比三角载波c u 大的时候比较器输出1,1VT 导通,否则,比较器输出0,1VT 关断。
同理4VT 导通情况只要与1VT 反相即可。
图2 PWM 波生成原理简图仿真:1.主电路模块搭建:如图3,输入直流电压源大小V U d 250=,输入部分为三相对称电感、电阻性负载,作星形连接,电阻取值大小为Ω=2R ,电感取值mH L 01.0=。
图3 SPWM 三相桥式逆变仿真电路Universal Bridge 元器件说明图4 Universal Bridge 模块和通用桥展开图Universal Bridge 模块的中文名是通用桥模块,它有1个桥臂、2个桥臂和3个桥臂的选择。
它的三个桥臂的展开图如下图4所示,当六列PWM 信号输入通用桥的g 端口时,通用桥会自动分配每一列的信号给每一个管子,控制该管子的开闭。
其输入的顺序是,第一列信号输入到1VT ,第二列信号输入到4VT ,第三列信号输入到3VT ,第四列信号输入到6VT ,第五列信号输入到5VT ,第六列信号输入到2VT 。
2.SPWM 生成模块由图2可知,当调制信号的正弦波r u 大于三角载波c u 时,逆变器输出高电平,否则,输出低电平,可设计如图5触发电路,以A 相电路上下桥臂为例。
图5SPWM中A相的上下桥臂的输入信号图5中用了两个逻辑比较器Relational Operator来比较两列输入波形的大小,Relational Operator的工作原理是,符合图中逻辑关系时,输出1;反之,输出0。
单相全桥逆变器matlab仿真
用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。
本文选用双极性SPW调制。
1双极性单相SPW原理SPWM采用的调制波的频率为f s的正弦波U s U sm Sin s t , s 2f s;载波U c 是幅值为U cm,频率为f c的三角波。
载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m通常采用调制信号与载波信号相比较的方法生成SPW信号.当Us>Uc 时,输出电压Uo等于Ud,当UsvUc时,输出信号Uo等于-Ud.随着开关以载波频率fc轮番导通,逆变器输出电压不断在正负Ud之间来回切换。
2 建立仿真模型2.1 主电路模型第一步设置电压源:在Electrical Sources 库中选用DCVoltage Source,设置Ud=300X第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes ,构成单项全桥电路。
第三步使用Series RLC Branch 设置阻感负载为1 Q, 2mH 并在Measurement 选项中选择Branch Voltage and current, 利用multimeter 模块观察逆变器的输出电压和电流。
电路如图2.1 所示。
图2.1单相全桥逆变逆变器电路图2.2双极性SPW 信号发生器在Simulink 的Source 库中选择Clock 模块,提供仿真时间t, 乘以2 f 后通过一个sin 模块即sin t ,乘以调整深度m 可获得所需的 正弦调整信号。
选择 Source 库中的Repeating Sequenee 模块产生三 角载波,设置 Time Values 为[0 1/fc/4 3/fc/4 1/fc ],设置OutputValues 为[0 -1 1 0],生成频率为fc 的三角载波。
单相全桥逆变器matlab仿真
用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。
本文选用双极性SPWM 调制。
1双极性单相SPWM 原理SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 就是幅值为cm U ,频率为c f 的三角波。
载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。
通常采用调制信号与载波信号相比较的方法生成SPWM 信号、当Us>Uc 时,输出电压Uo 等于Ud,当Us<Uc 时,输出信号Uo 等于-Ud 、随着开关以载波频率fc 轮番导通,逆变器输出电压不断在正负Ud 之间来回切换。
2 建立仿真模型2、1主电路模型第一步设置电压源:在Electrical Sources 库中选用DC Voltage Source,设置Ud =300V 。
第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes,构成单项全桥电路。
第三步使用Series RLC Branch 设置阻感负载为1Ω,2mH,并在Measurement 选项中选择Branch Voltage and current,利用multimeter 模块观察逆变器的输出电压与电流。
电路如图2、1所示。
图2、1 单相全桥逆变逆变器电路图2、2双极性SPWM信号发生器在Simulink的Source库中选择Clock模块,提供仿真时间t,乘以fπ2后通过一个sin模块即tωsin,乘以调整深度m可获得所需的正弦调整信号。
选择Source库中的Repeating Sequence模块产生三角载波,设置Time Values 为[0 1/fc/4 3/fc/4 1/fc],设置Output Values 为[0 -1 1 0],生成频率为fc的三角载波。
基于Matlab的三相桥式SPWM逆变器建模与仿真
基于Matlab的三相桥式SPWM逆变器建模与仿真柳凌;钱祥忠【摘要】对三相桥式逆变电路原理及其SPWM控制原理进行简单的分析,针对开环SPWM电压的不稳定提出一种电压闭环SPWM控制模型。
在Matlab/Simulink软件环境中分别建立了三相SPWM逆变器开环仿真模型和具有电压调节作用的SPWM闭环仿真模型,分别对其进行仿真分析。
仿真结果表明电压闭环SPWM控制比开环SPWM控制具有更好的动静态特性。
得出的结论对三相桥式逆变器的原理的理解、参数的确定、电路的设计有一定的参考价值和指导意义。
%This paper analyzed simply three phase full bridge active inverter principle and the SPWM control theory, to overcome disadvantages of open loop control, a voltage close loop control model is proposed. The three-phase SPWM inverter open loop simulation model and the SPWM voltage close loop control simulation model with the voltage regulating function has been established respectivly in Matlab /Simulink software environment,each of them was analyzed through the simulation. The simulation results show that the voltage close loop control has better dynamic and static characters. the conclusion has some reference value and guiding significance to understand the principle of three-phase bridge inverter ,the determ, ination of parameters,The design of the circuit.【期刊名称】《电子设计工程》【年(卷),期】2014(000)014【总页数】4页(P139-141,145)【关键词】三相逆变器;SPWM控制;Matlab/Simulink仿真;闭环控制【作者】柳凌;钱祥忠【作者单位】温州大学浙江温州 325035;温州大学浙江温州 325035【正文语种】中文【中图分类】TN99随着电力电子技术的飞速发展,特别是随着大功率全控型电力电子器件(如GTO IGBT MOSFET IGCT等) 的开发成功和应用技术的不断成熟,电能变换技术出现了突破性进展,这也使得逆变器的SPWM技术[1]得到了快速发展和广泛应用。
PWM逆变器Matlab仿真
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: PWM逆变器Matlab仿真初始条件:输入110V直流电压;要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、得到输出为220V、50Hz单相交流电;2、采用PWM斩波控制技术;3、建立Matlab仿真模型;4、得到实验结果。
时间安排:课程设计时间为两周,将其分为三个阶段。
第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。
第二阶段:根据设计的技术指标要求选择方案,设计计算。
第三阶段:完成设计和文档整理,约占总时间的40%。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (1)1设计方案的选择与论证 (2)2逆变主电路设计 (2)2.1逆变电路原理及相关概念 (2)2.2逆变电路的方案论证及选择 (3)2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4)2.3.1模型假设 (4)2.3.2利用MATLAB/Simulink进行电路仿真 (5)3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6)3.1正弦脉冲宽度调制(SPWM)原理 (6)3.2SPWM波的控制方法 (7)3.2.1双极性SPWM控制原理及Simulink仿真 (7)3.2.2单极性SPWM控制原理及Simulink仿真 (9)4升压电路的分析论证及仿真 (10)4.1B OOST电路工作原理 (10)4.2B OOST电路的S IMULINK仿真 (11)5滤波器设计 (12)6 PWM逆变器总体模型 (14)7心得体会 (17)参考文献 (18)PWM逆变器MATLAB仿真摘要随着电力电子技术,计算机技术,自动控制技术的迅速发展,PWM技术得到了迅速发展,SPWM正弦脉宽调制这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列有点,是一种比较好的波形改善法。
三相无源电压型SPWM逆变器的构建及其MATLAB仿真
三相无源电压型SPWM逆变器的构建及其MATLAB仿真摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。
关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation.Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology1逆变器1.1逆变器的概念逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。
相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。
这是与整流相反的变换,因而称为逆变。
[1]1.2逆变器涉及的技术逆变器的构建应用了电力电子学科中的很多关键技术。
电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。
1.3逆变器的分类现代逆变技术的种类很多,可以按照不同的形式进行分类。
其主要的分类方式如下:1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。
2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。
3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。
4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。
5)按输出稳定的参量,可分为电压型逆变和电流型逆变。
6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。
PWM逆变器Matlab仿真设计
摘要在本设计中,首先,针对课设题目要求,进行了系统的总体方案选择,以与各功能模块的方案论证和选择。
选择通过升压斩波电路将输入直流电压升高,再利用全桥逆变方式将直流电转换成50HZ的交流电,控制部分采用PWM斩波控制技术。
接着,对各功能模块进行了详细的原理分析和电路设计,同时也对可能出现的直流不平衡等问题进行了考虑。
并最终通过MATLAB来实现PWM逆变器的仿真,并进行结果分析,得出系统参数对输出的影响规律。
经过理论分析设计以与MATLAB仿真两种方式,证明了本系统可以很好地实现将输入110V直流转换成220V、50HZ单相交流电的设计要求,另外本设计也按设计要求采用了PWM斩波控制技术。
关键词:逆变;PWM控制;MATLAB仿真;DC-DC;目录1.设计方案的论证与选择11.1总体设计思路11.2 DC-DC方案论证与选择11.3逆变主电路的方案论证与选择21.4 逆变器控制方法的论证与选择32.设计原理与实现方法42.1 升压斩波电路的设计42.2 全桥式逆变电路的设计52.3 PWM控制技术与SPWM波的生成62.3.1 PWM控制的基本原理72.3.2 SPWM法的基本原理82.3.3 规则采样法82.3.4单极性和双极性PWM控制逆变电路分析93.MATLAB仿真与结论分析123.1升压环节的建模与仿真123.2 制作并生成SPWM波形133.3 逆变环节的建模与仿真(一)153.4 逆变环节的建模与仿真(二)173.4.1载波频率与输出电压频率改变对波形的影响183.4.2 改变负载对输出的影响214.收获与体会255.参考文献25PWM逆变器Matlab仿真1.设计方案的论证与选择1.1总体设计思路由于要求的输出为220V,50HZ单相交流电,而输入却是只有110V的直流电压,所以仅仅由逆变环节不能实现,而应该有升压环节。
方案一:有工频变压器的逆变电源。
逆变电路将110V输入电压逆变成有效值基本不变的频率为50HZ的交流电,再由工频变压器升压得到220V交流电压。
单相全桥逆变器matlab仿真
用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。
本文选用双极性SPWM 调制。
1双极性单相SPWM 原理SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。
载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。
通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us<Uc 时,输出信号Uo 等于-Ud.随着开关以载波频率fc 轮番导通,逆变器输出电压不断在正负Ud 之间来回切换。
2 建立仿真模型2.1主电路模型第一步设置电压源:在Electrical Sources 库中选用DC Voltage Source ,设置Ud =300V 。
第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes ,构成单项全桥电路。
第三步使用Series RLC Branch 设置阻感负载为1Ω,2mH ,并在Measurement 选项中选择Branch Voltage and current,利用multimeter 模块观察逆变器的输出电压和电流。
电路如图2.1所示。
图2.1 单相全桥逆变逆变器电路图2.2双极性SPWM 信号发生器在Simulink 的Source 库中选择Clock 模块,提供仿真时间t,乘以f π2后通sin,乘以调整深度m可获得所需的正弦调整信号。
选择过一个sin模块即tSource库中的Repeating Sequence模块产生三角载波,设置Time Values 为[0 1/fc/4 3/fc/4 1/fc],设置Output Values 为[0 -1 1 0],生成频率为fc的三角载波。
基于MATLAB的三相SPWM逆变电路与Dead time 对其影响的仿真
基于MATLAB的三相SPWM逆变电路与Dead time 对其影响的仿真电子信息工程学院通信工程二班顾问 2012214485一、MATLAB与Simulink简介MATLAB程序设计语言是美国MathWorks公司在20世纪80年代中期推出的高性能数值计算软件。
该公司经过三十年的开发、扩充、不断完善与更新换代,MATLAB已经发展成适合多学科切功能特别强、特别全的大型软件。
Simulink是MATLAB的一个附加组件,为用户提供了一个建模与仿真的工作平台。
由于它的许多功能都是必须基于MATLAB环境下运行的,因此也有人将其称之为MATLAB的一个工具箱。
它能够实现动态系统建模与仿真的环境集成,且可以根据设计及使用的要求,对系统进行修改与优化,以提高系统工作的性能,实现高效开发系统的目的。
二、三相SPWM逆变电路三相PWM 逆变器主电路 三相SPWM 逆变电路中,载波信号c u 仍为对称三角波,幅值为cm U ,频率为c f ,调制信号为三相正弦波sa u 、sb u 与sm u ,幅值为sm U ,频率为s f ,对于a 相桥臂,当sa u >c u 时,S1导通S4关断,当sa u <c u 时,S4导通S1关断,b 相和c 相类似。
下图为载波比p=3时的三相SPWM 逆变电路基本波形输出电压的谐波集中分布在s s k np k ωωω)(n c ±=±处,其中n=1,3,5,…时,k=3(2m-1)±1,m=1,2,3,…n=2,4,6,…时,k=6m+1,m=0,1,2,…,或k=6m-1,m=1,2,3,…所以,在载波频率的整数倍处的高次谐波不再存在。
SPWM的谐波分布一组一组集中分布于载波频率的整数倍频率两侧,且在每一组谐波中,随着k的增大,谐波值通常逐渐减小。
三、三相SPWM半桥逆变电路的仿真在仿真在Simpowersystems的“Electrical Sources”库中选择电压源模块,直流电压设置为530V,选择“Universal Bridge”模块,在对话框中选择桥臂数为3,构成三相半桥电路,开关器件选择带反并联二极管的IGBT,三相串联RLC负载模块选择Y型连接,设定额定电压为413V,额定功率为50Hz,有功为1kW,感性无功为500Var,SPWM控制信号由Simpowersystems中的“Discrete PWM Generator”产生,选择三桥臂六脉冲模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB仿真技术大作业
题目:H桥逆变器SPWM仿真
单相逆变器(H桥)。
直流电压500V,使用直流电压源模块;逆变器用Universal Bridge 模块,器件选IGBT。
负载用阻感串联负载,电阻1 ,电感15mH。
使用三角波作为载波,载波频率750Hz,调制度0.8,基波频率50Hz。
仿真时间0.2秒,使用ode23tb求解器。
本次仿真关注稳态时的情况。
分析谐波成分时,取0.1秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。
1、双极性SPWM仿真
采用双极性SPWM,完成以下内容:
(1)在同一副图中,画出载波与调制波的波形
;
(2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis 子模块进行谐波分析,
(3)
(a)分析基波电压是否与理论公式相符;
基本相符,理论值为500*0.8=400,实际值400.3,相对误差0.75%
(b) 分析电压谐波成分,并给出结论;
谐波集中在载波频率(750hz)及其整数倍附近
(3)记录负载电流的波形,并进行谐波分析。
谐波分析
负载电流谐波成分与电压基本一致。
2、单极性SPWM仿真
采用单极性SPWM,重复上述仿真,即,完成以下内容:
(1)在同一副图中,画出载波与调制波的波形;
(2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析,
谐波分析
(a) 分析基波电压是否与理论公式相符;
基本相符
(b) 分析电压谐波成分,并给出结论;
谐波分别很散,与理论不符
(3)记录负载电流的波形,并进行谐波分析。
(4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC滤波器参数时,其负载电流THD的情况。
单极性谐波应该少,实际仿真结果反而多?
3、级联H桥逆变器仿真
两个H桥级联,每个桥的逆变器参数都与前面的相同。
负载为阻感串联负载,电阻1 ,电感15mH。
两个H桥采用如下图所示调制方法,其中Vcr1,Vcr1-为上部H桥的载波,Vcr2,Vcr2-为下部H桥的载波,载波频率为750Hz;Vm为调制波,调制度0.8,基波频率为50Hz。
上部H桥脉冲产生条件为:
Vm>Vcr1时,Vg1=1,Vg2=0;Vm<Vcr1-时,Vg3=1,Vg4=0;
下部H桥脉冲产生条件为:
Vm>Vcr2时,Vg1=1,Vg2=0;Vm<Vcr1-时,Vg3=1,Vg4=0;
完成以下内容:
(1)记录每个H桥的输出电压波形;
上桥
下桥
(2) 记录逆变器的输出电压(即负载两端的电压)波形,并进行谐波分析;
(3)记录负载电流的波形,并进行谐波分析。
(4)与1、2的仿真结果对比,可以得到什么结论?级联使得输出电压和电流加倍,容量扩大至四倍。