学而思培优 2017-2018 一年级数学知识点第七讲
学而思七年级数学培优讲义word版(全年级章节培优-绝对经典)
![学而思七年级数学培优讲义word版(全年级章节培优-绝对经典)](https://img.taocdn.com/s3/m/8614c61f01f69e3143329484.png)
第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】 01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a≠b ,则|a|≠|b|;④若|a|≠|b|,则a≠b ,其中正确的个数为( ) A . 4个 B . 3个 C . 2个 D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+bab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴ m≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a≤x≤96,求y 的最大值. 演练巩固·反馈提高 01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____. 10.已知|x +2|+|y +2|=0,则xy =____. 11.a 、b 、c 三个数在数轴上的位置如图,求|a|a+|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-C.14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是, 数轴上表示-2和-5的两点之间的距离是, 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是|x+1|,如果|AB|=2,那么x=1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( ) A . 4个 B . 3个 C . 2个 D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组 09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp |3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-=1111111 12233420082009 -+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811 =4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx-值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15, (1)90,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( ) A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( ) A .-22003 B .22003 C .-22004 D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________534333231311.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算. 2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算. 5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算. 经典·考题·赏析 【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=-⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy=-=当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107 【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B . 【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .25.3×105亩 B .2.53×106亩 C .253×104亩 D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( ) 2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A.31003B.31004C.1334D.1100002.(第10届希望杯试题)已知111111111. 2581120411101640+++++++=求11111111 2581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A.1个B.2个C.3个D.1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数()A.互为相反数B.其中绝对值大的数是正数,另一个是负数C.都是负数D.其中绝对值大的数是负数,另一个是正数03.已知abc>0,a>0,ac<0,则下列结论正确的是()A.b<0,c>0 B.b>0,c<0 C.b<0,c<0 D.b>0,c>0 04.若|ab|=ab,则()A.ab>0 B.ab≥0 C.a<0,b<0 D.ab<005.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式a bm cdm+-+的值为()A.-3 B.1 C.±3 D.-3或106.若a>1a,则a的取值范围()A.a>1 B.0<a<1 C.a>-1 D.-1<a<0或a>107.已知a、b为有理数,给出下列条件:①a+b=0;②a-b=0;③ab<0;④1ab=-,其中能判断a、b互为相反数的个数是()A.1个B.2个C.3个D.4个08.若ab≠0,则a ba b+的取值不可能为()A.0 B.1 C.2 D.-209.1110(2)(2)-+-的值为()A.-2 B.(-2)21 C.0 D.-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×10411.已知4个不相等的整数a、b、c、d,它们的积abcd=9,则a+b+c+d=___________.12.21221(1)(1)(1)n n n+--+-+-(n为自然数)=___________.13.如果2x yx y+=,试比较xy-与xy的大小.14.若a、b、c为有理数且1a b ca b c++=-,求abcabc的值.15.若a、b、c均为整数,且321a b c a-+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x、y、z两两不相等,则,,x y y z z xy z z x x y------中负数的个数是()A.1个B.2个C.3个D.0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是()A.1 B.3 C.7 D.503.已知23450ab c d e<,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<004.若有理数x、y使得,,,xx y x y xyy+-这四个数中的三个数相等,则|y|-|x|的值是()A.12-B.0 C.12D.3205.若A=248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A-1996的末位数字是()A.0 B.1 C.7 D.906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315- 第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲 整式 考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式. 02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数. 解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n 的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________. 10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式. 12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007 B.2 C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,则m与n大小关系()A.m>n B.m<n C.m=n D.不能确定05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开始每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a、b、c在数轴上的位置如图所示,化简后的结果是______________.09.已知=______________.10.(全国初中数学竞赛)设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,若a>b>c,则M与P 大小关系______________.11.(资阳)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=________________195.。
学而思七级数学培优讲义全级章节培优绝对经典
![学而思七级数学培优讲义全级章节培优绝对经典](https://img.taocdn.com/s3/m/a89b8e6284868762cbaed5c8.png)
学而思七级数学培优讲义全级章节培优绝对经典.(共147页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作()A.-18% B.-8% C.+2% D.+8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A.-5吨 B.+5吨 C.-3吨 D.+3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A. 1个 B. 2个 C. 3个 D. 4个【解法指导】有理数的分类:⑴按正负性分类,有理数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C.【变式题组】01.在7,0.1 5,-12,-,-18,,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,.-,123, 【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 .02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m 2=-4,m =-8 【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴 标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c= .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c |c|的值可能是____. 【例6】(江西课改)已知|a -4|+|b -8|=0,则a+b ab 的值. 【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n)2+|m |≥0,而(m +n)2+|m|=m∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0∴m +n =O ①又∵|2m -n -2|=0∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49 【变式题组】 01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B .02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( ) A . 156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和306.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数07.下列结论中,正确的是( )①若a =b,则|a|=|b | ②若a =-b,则|a|=|b|③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a、a+b也可以表示成0、b、ba的形式,试求a、b的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-C.14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|?当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是 |x+1|,如果|AB|=2,那么x= 1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A. 1998 B. 1999 C. 2000 D. 200102.(第l8届希望杯邀请赛试题)在数轴上和有理数a、b、c对应的点的位置如图所示,有下列四个结论:①abc<0;②|a-b|+|b-c|=|a-c|;③(a-b)(b-c)(c-a)>0;④|a|<1-bc.其中正确的结论有( )A. 4个 B. 3个 C. 2个 D. 1个03.如果a、b、c是非零有理数,且a+b+c=0.那么a|a|+b|b|+c|c|+abc|abc|的所有可能的值为()A.-1 B. 1或-1 C. 2或-2 D. 0或-204.已知|m|=-m,化简|m-l|-|m-2|所得结果( )A.-1 B. 1 C. 2m -3 D. 3- 2m05.如果0<p<15,那么代数式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值( ) A. 30 B. 0 C. 15 D.一个与p有关的代数式06.|x+1|+|x-2|+|x-3|的最小值为 .07.若a>0,b<0,使|x-a|+|x-b|=a-b成立的x取值范围 .08.(武汉市选拔赛试题)非零整数m、n满足|m|+|n|-5=0所有这样的整数组(m,n)共有组09.若非零有理数m、n、p满足|m|m+|n|n+|p|p=1.则2mnp|3mnp|= .10.(19届希望杯试题)试求|x-1|+|x-2|+|x-3|+…+|x-1997|的最小值. 11.已知(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)=36,求x+2y+3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了元,下午收盘时又涨了元,则股票A这天的收盘价为()A.元B.元C.元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-)+()=,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-)+(-312)+(-134)+(-114)02.(-)++(-)+(-)03.+314+(-318)+1123+(-)【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和. 解:原式=1111111(1)()()()2233420082009-+-+-++- =111111112233420082009-+-+-++- =112009-=20082009 【变式题组】 01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( )A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-)-(-21811)=425+33311++21811=++(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+ 02.434-(+)-(-314)+(-)03.178--(-43221)+1531921-【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少第n 个数是多少⑵这列数中有多少个数是正数从第几个数开始是负数⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n 个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n 个数为25-2(n -1)⑵∵n =13时,25-2(13-1)=1,n =14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】 01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题. ⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-3 04.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|- x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-+-+-⑶--314+-712⑷--(-)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界着名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( ) A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( ) A .a <b <c B .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( ) A .-22003 B .22003 C .-22004 D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________534333231310.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析 【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=-⑵11111()24248⨯=⨯=⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+- 02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯--- 04.111(5)323(6)3333-⨯+⨯+-⨯ 【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D . 【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( ) A .a +b >0 B .b +c <0 C .ab +ac >0 D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a +b <0,0b a >,则下列结论成立的是( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 04.(广州)下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除. 解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷- 02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a ba b+=,则ab ab=___________.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩;当ab <0,0a ba b+=,∴ab <0,从而ab ab=-1.【变式题组】01.若k 是有理数,则(|k|+k)÷k 的结果是( )A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么ab a b a b ab++的值是多少?03.如果0x y x y +=,试比较xy -与xy 的大小.【例5】已知223(2),1x y =-=- ⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==-- 【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .×106B .×106C .×107D .×107 【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .×105 B .×105 C .×104 D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .×105亩B .×106亩C .253×104亩D .×107亩 【例7】(上海竞赛)【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】A .31003B .31004C .1334D .1100002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( ) A .1个 B .2个 C .3个 D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab|=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a ,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个 08.若ab≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .×107B .×106C .×105D .×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .503.已知23450ab c d e <,下列判断正确的是( ) A .abcde <0 B .ab2cd4e <0 C .ab2cde <0 D .abcd4e <004.若有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,则|y|-|x|的值是( )A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .906.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( ) A .2 B .1 C .0 D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c 08.已知a 、b 、c 都不等于0,且a b c abca b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m的值和这m个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x的值.13.(第12届“华杯赛”试题)已知m、n都是正整数,并且证明:⑴11,;22m nA Bm n++ ==⑵126A B-=,求m、n的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.(1)x+1 (2)1x(3)πr2(4)−32a2b【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,π是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32-,次数为3.【变式题组】01.判断下列代数式是否是单项式(1)a (2)−12(3)1+x2(4)xπ(5)xy (6)2πx02.说出下列单项式的系数与次数(1)−23x2y (2)mn (3)5a2(4)−72ab2c【例2】如果2x n y4与12m2x2y|m−n|都是关于x、y的六次单项式,且系数相等,求m、n 的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得n+4=6,2+|m−n|=6,2=12m2∴m=−2,n=2 【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式−45x2y2+23x4y3−xy+1⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少二次项系数是什么常数项是什么【解法指导】 n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是23x4y3,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴a3−a2b+ab2−b3 (2)3n4−2n2+102.指出下列多项式的二次项、二次项系数和常数项⑴x3+x2−x−2 (2)−4x3−x2+x−4【例4】多项式7x m+kx2−(3n+1)x+5是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为7x m+kx2−(3n+1)x+5是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为7x3,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式3x|m|y2+(m+2)x2y−1是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式ax2+2bxy+x2−x−2xy+y不含二次项,求5a-8b的值.03.已知多项式−56x2y m+2+xy2−12x3+6是六次四项式,单项式23x3n y5−m z的次数与这个多项式的次数相同,求n的值.【例5】已知代数式3x2−2x+6的值是8,求32x2−x+1的值.【解法指导】由3x2−2x+6=8,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由3x2−2x+6=8得由3x2−2x=23 2x2−x+1=12(3x2−2x+2)=12×(2+2)=2【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若a2+a=0,则2a2+2a+2008的值为_______________.03.(潍坊)代数式3x2−4x+6的值为9,则x2−43x+6的值为______________.【例6】证明代数式16+m−{8m−[m−9−(3−6m)]}的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=16+m−8m+[m−9−(3−6m)]=16+m−8m+m−9−3+6m=4∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知A=2x2+3ax−2x−1,B=−x2+ax−1,且3A+6B的值与x无关,求a的值. 02.若代数式(x2+ax−2y+7)−(bx2−2x+9y−1)的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式a x b y c z,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:a x b y c z为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当 x=4时,y=1,2,z=2,1.当 x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,a m−3b2c−17a2b n−3c4+112a m+1b n−1c是八次三项式,求m、n值.02.整数n=___________时,多项式5x n+2−2x2−n+2是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.x−y2是单项式 B.3x2y3z的次数为5 C.单项式ab2系数为0 D.x4−1是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式2y2+3x的值为1,则多项式4y2+6x−9的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A.(15n+15m)元 B.(45n−45m)元 C.(1−15m)元 D.(15n−m)元05.若多项式k(k−1)x2−kx+x−3是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若(1−n2)x n y3是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若3a m b3+4a n+1b m+2=7a x+1b y,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式x,−2x2,3x3,−4x4,,−10x10,(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式ax3+bx+5的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式2x2y−23x3y4+(2a−3)x3y5与多项式−x2b y4+3x2y−1的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数a1、a2、a3a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若a1=2,则a2007为()A.2007 B.2 C.12D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即a∗b=a+b2,则下列等式中对于任意实数a、b、c都成立的是()①a+(b∗c)=(a+b)∗(a+c)②a∗(b+c)=(a+b)∗c③a∗(b+c)=(a∗b)+(a∗c)④(a∗b)+c=a2+(b∗2c)。
学而思七年级数学培优讲义全年级章节培优绝对经典
![学而思七年级数学培优讲义全年级章节培优绝对经典](https://img.taocdn.com/s3/m/b54d3ef6960590c69ec376a9.png)
第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个 【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333 【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 . 【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 .02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则填____.03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m 2=-4,m =-8 【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = . 03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c |c|的值可能是____. 【例6】(江西课改)已知|a -4|+|b -8|=0,则a+b ab的值. 【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a-4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0∴m +n =O ①又∵|2m -n -2|=0∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B .02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( ) A . 156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和306.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b|③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、b a的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB|.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a -b|??当A 、B 两点都不在原点时有以下三种情况:①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b -a =|a -b|;②如图3,点A 、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a)=|a -b|; ③如图4,点A 、B 在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a )=|a -b|; 综上,数轴上A 、B 两点之间的距离|AB|=|a -b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x 和-1的两点分别是点A 和B ,则A 、B 之间的距离是 |x+1| ,如果|AB|=2,那么x = 1或3;⑶当代数式|x +1|+|x -2|取最小值时,相应的x 的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 200102.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc |abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-204.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 .08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp |3mnp|= . 10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l 台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小并求出调出电脑的最少总台数.第02讲 有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A 开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A 这天的收盘价为( )A .0.3元B .16.2元C .16.8元D .18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯L【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-L=1111111 12233420082009 -+-+-++-L=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( )A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a【变式题组】01.若m >0,n <0,且| m |>n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+ 02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少第n个数是多少⑵这列数中有多少个数是正数从第几个数开始是负数⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|- x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx-值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少15.独特的埃及分数:埃及同中国一样,也是世界着名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-LL等于()A.14B.14-C.12D.12-02.自然数a、b、c、d满足21a+21b+21c+21d=1,则31a+41b+51c+61d等于()A.18B.316C.732D.156403.(第17届希望杯邀请赛试题)a、b、c、d是互不相等的正整数,且abcd=441,则a+b+c+d值是()A.30 B.32 C.34 D.3604.(第7届希望杯试题)若a=1995199519961996,b=1996199619971997,c=1997199719981998,则a、b、c大小关系是()A.a<b<c B.b<c<a C.c<b<a D.a<c<b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯L的值得整数部分为5343332313( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析 【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=-⑵11111()24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号 D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B.0 C.负数 D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】na表示n个a相乘,根据乘方的符号法则,如果a为正数,正数的任何次幂都是正数,如果a是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1 x y=-=-⑴当2,1x y==-时,200820082(1)2xy=-=当2,1x y=-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y==-时,332008200828(1)xy==-当2,1x y=-=-时,3320082008(2)8(1)xy-==--【变式题组】01.(北京)若2(2)0m n m-+-=,则nm的值是___________.02.已知x、y互为倒数,且绝对值相等,求()n nx y--的值,这里n是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为()A.0.135×106 B.1.35×106 C.0.135×107 D.1.35×107【解法指导】将一个数表示为科学记数法的a×10n的形式,其中a的整数位数是1位.故答案选B.【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为()A.1.03×105 B.0.103×105 C.10.3×104 D.103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是()A.25.3×105亩 B.2.53×106亩 C.253×104亩 D.2.53×107亩【例7】(上海竞赛)【解法指导】找出21005000k k-+的通项公式=22(50)50k-+原式=222222222222 1299 (150)50(250)50(50)50(9950)50kk++⋅⋅⋅++⋅⋅⋅+-+-+-+-+=222222222222199298[][] (150)50(9950)50(250)50(9850)50++++⋅⋅⋅+ -+-+-+-+=49222+1++⋅⋅⋅+1442443个=99【变式题组】A .31003B .31004C .1334D .1100002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab|=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a ,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2xy xy+=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( )A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab2cd4e <0C .ab2cde <0D .abcd4e <004.若有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,则|y|-|x|的值是( )A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .906.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( ) A .2 B .1 C .0 D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m的值和这m个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x的值.13.(第12届“华杯赛”试题)已知m、n都是正整数,并且证明:⑴11,;22m nA Bm n++ ==⑵126A B-=,求m、n的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值. 经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】 理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数. 解:⑴不是,因为代数式中出现了加法运算; ⑵不是,因为代数式是与x 的商; ⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】 如果与都是关于x 、y 的六次单项式,且系数相等,求m 、n 的值.【解法指导】 单项式的次数要弄清针对什么字母而言,是针对x 或y 或x 、y 等是有区别的,该题是针对x 与y 而言的,因此单项式的次数指x 、y 的指数之和,与字母m 无关,此时将m 看成一个要求的已知数. 解:由题意得【变式题组】01.一个含有x 、y 的五次单项式,x 的指数为3.且当x =2,y =-1时,这个单项式的值为32,求这个单项式. 02.(毕节)写出含有字母x 、y 的五次单项式______________________. 【例3】 已知多项式 ⑴这个多项式是几次几项式⑵这个多项式最高次项是多少二次项系数是什么常数项是什么【解法指导】 n 个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式; (2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴ (2)02.指出下列多项式的二次项、二次项系数和常数项⑴ (2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法. 解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当 x =4时,y=1,2,z=2,1.当 x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式 B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A. B. C. D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007 B.2 C. D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③ B.①②④ C.①③④ D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A. B. C. D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m 米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 大小关系( ) A .m >n B .m <n C .m =n D .不能确定 05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a 元,租期超过3天,从第4天开始每天另加收b 元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a 、b 、c 在数轴上的位置如图所示,化简后的结果是______________. 09.已知=______________.10.(全国初中数学竞赛)设a 、b 、c 的平均数为M,a 、b 的平均数为N,又N 、c 的平均数为P ,若a >b >c ,则M 与P 大小关系______________.11.(资阳)如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB ,BC ,CA 至点A1,B1,C1,使得A1B =2AB ,B1C =2BC ,C1A =2CA ,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=________________195 . 12.(安徽)探索n ×n 的正方形钉子板上(n 是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n =2时,钉子板上所连不同线段的长度值只有122种,若用S 表示不同长度值的线段种数,则S =2;当n =3时,钉子板上所连不同线段的长度值只有12,252五种,比n =2时增加了3种,即S =2+3=5. 观察图形,填写下表:写出(n -1)×(n-1)和n×n 的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)(3)对n ×n 的钉子板,写出用n 表示S 的代数式. 13.(青岛)提出问题:如图①,在四边形ABCD 中,P 是AD 边上任意一点,△PBC 与△ABC 和△DBC 的面积之间有什么关系探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:钉子数(n ×n) S 值 2×2 2 3×3 2+34×42+3+( ) 5×5( )n =2n =3n =4n =5。
学而思七年级数学培优讲义word版(全年级章节培优_绝对经典)
![学而思七年级数学培优讲义word版(全年级章节培优_绝对经典)](https://img.taocdn.com/s3/m/02552e03195f312b3069a51a.png)
第1讲 与有理数有关的概念 考点•方法•破译1•了解负数的产生过程,能够用正、负数表示具有相反意义的量 2 •会进行有理的分类,体会并运用数学中的分类思想3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个 数的相反数、绝对值、倒数 • 经典•考题•赏析【例1】写出下列各语句的实际意义⑴向前—7米⑵收人—50元⑶体重增加—3千克【解法指导】用正、负数表示实际问题中具有相反意义的量. 而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前—7米表示向后7米⑵收入—50元表示支出50元⑶体重增加—3千克表示体重 减小3千克•【变式题组】01.如果+ 10%表示增加10%那么减少8%可以记作( )A.—18% B .— 8% C .+ 2% D .+ 8%02.()如果+ 3吨表示运入仓库的大米吨数,那么运出 5吨大米表示为() A.— 5 吨 B .+ 5 吨 C.— 3 吨 D .+ 3 吨03.()与纽约的时差一13 (负号表示同一时刻纽约时间比晚) •如现在是时间15 : 00,纽 约时问是 _____A. 1 个 B .2 个 C .3 个 D正整数整数0负整数3. 1415926…是无限不循环小数, 它不能写成分数的形式, 所以n 不是有理数,—号是分数0.0 33 3是无限循环小数可以化成分数形式, 0是整数,所以都是有理数,故选【例2】在—22 0.0 33 3这四个数中有理数的个数(正有理数正整数正分数负有理数【解法指导】有理数的分类: ⑴按正负性分类,有理数负整数负份数;按整数、分数分数正分数 分类,有理数负分数;其中分数包括有限小数和无限循环小数,因为C.【变式题组】1101.在 7, 0. 1 5301.31.25 石,100.1 , - 3 001 中,负分数为,整数2 8 为,正整数 02.()请把下列各数填入图中适当位置【例3】()有一列数为—1, , — 3, 4.— 5, 6,…,找规律到第 2007个数是【解法指导】从一系列的数中发现规律, 首先找出不变量和变量, 再依变量去发现规律.击【变式题组】01.()数学解密:第一个数是 3 = 2 + 1,第二个数是5= 3 + 2,第三个数是 四十数是17= 9 + & ••观察并精想第六个数是02.()毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填 ___________ . 03.()有一组数I , 2, 5, 10, 17, 26…请观察规律,则第 8个数为 ___________ . 【例4】(2008年)若I +》勺相反数是—3,则m 的相反数是 ________ .【解法指导】理解相反数的代数意义和几何意义, 代数意义只有符号不同的两个数叫互为相 反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反 03.如图为一个正方体纸盒的展开图,若在其中的三个正方形 A B C 分别填人适当的数,使得它们折成正方体 .若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 的三个数依次为() A.— 1 ,2 , 0 B . 0 , — 2, 1 C .— 2, 0, 1 D . 2 , 1 , 0【例5】()a 、b 为有理数,且a >0, b v 0, |b| >a ,贝U a,b 、一 a, — b 的大小顺序是()A. b v — a v a v — b B . — a v b v a v — b C . — b v a v — a v b D . — a v a v — bv bACB*2归纳去猜想,然后进行验证 .解本题会有这样的规律: ⑴各数的分子部是 1;⑵各数的分母依次为 1, 2, 3, 4, 5, 6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所 以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为―12007.数,本题 2=— 4,m = — 8【变式题组】01. () — 5的相反数是()1 1A. 5 B . 7 C . — 5 5D . — 502.已知a 与b 互为相反数,c 与d 互为倒数,则a + b + cd = 12139 = 5 + 4,第【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a的点到原点的距离a( a 0) 0(a 0)即|a|,用式子表示为|a| = a(a 0).本题注意数形结合思想,画一条数轴b, — a,故选 A. 【变式题组】01.推理①若a = b ,则|a| = |b| ;②若|a| = |b|,则a = b ;③若a 丰b ,则|a |工| b| ;④若 |a |工| b|,则a 丰b ,其中正确的个数为( )A. 4个 B . 3个 C .2个 D . 1个 02. a 、b 、c 三个数在数轴上的位置如图,贝UEL +牛+乩=a b c【解法指导】本题主要考查绝对值概念的运用, 因为任何有理数a 的绝对值都是非负数,即|a| > 0 .所以|a - 4| > 0, |b - 8| > 0.而两个非负数之和为 0,则两数均为 0.解:因为 |a - 4| > 0, |b - 8| > 0,又 |a - 4| + |b - 8| = 0,二 |a -4| = 0, |b - 8| = 0 即 a a+b 12 3-4 = 0, b - 8= 0, a = 4, b = 8.故药=32 =8 【变式题组】01.已知 |a| = 1, |b| = 2, |c| = 3,且 a > b > c ,求 a + b + C. 02.()若 |m - 3| + |n + 2| = 0,贝U m+ 2n 的值为() A.- 4 B .-1 C .0 D .4 03.已知 |a| = 8 , |b| = 2,且 |a — b| = b - a ,求 a 和 b 的值【例7】(第18届迎春杯)已知(m + n )2 + |m| = m 且|2m - n — 2| = 0 .求mn 的值. 【解法指导】本例关键是通过分析(m + n )2 + |m|的符号,挖掘出 m 的符号特征,从而把问题转化为(m + n)2 = 0 , |2m — n — 2| = 0,找到解题途径 解:••• (m + n)2 > 0 , |m| > O(m + n)2 + |m| > 0,而(m + n)2 + |m| = m /• m > 0, ••• (m + n)2 + m = m, 即 (m + n)2 = 0 /• m + n = O①又•/ |2m -n -2| = 0 •- 2m — n — 2 = 0 ②2 24由①②得 m= 3 , n =- 3, • mn =- 9 【变式题组】01 .已知(a + b)2 + |b + 5| = b + 5 且 |2a - b - l| = 0,求 a - B .02.(第 16 届迎春杯)已知 y = |x - a| + |x + 19| + |x - a -96| ,如果 19 v a v 96 . a < x < 96, 求y 的最大值.演练巩固•反馈提高03. a 、 b 、c 为不等于O 的有理散,则 的值可能是【例6】 (课改)已知 |a - 4| + |b - 8| = 0,则 a+bab的值. 标出a 、b,依相反数的意义标出一01 •观察下列有规律的数 2,6,1, _0,30,£…根据其规律可知第 9个数是()A. 1个B. 2个 C .3个 D .4个04.若一个数的相反数为 a + b ,则这个数是()A. a — b B . b — a C.— a + b D .— a — b05. 数轴上表示互为相反数的两点之间距离是 6,这两个数是() A. 0 和 6 B . 0 和一6 C .3 和—3 D . 0 和 3 06. 若一a 不是负数,贝U a ()A.是正数 B . 不是负数 C .是负数D . 不是正数07. 下列结论中,正确的是 ()①若 a = b,则 |a| = |b| ②若a =—b,则 |a| = |b| ③若 |a| = |b|,则 a =— b ④若 |a| = |b|, 贝 U a = b A.①② B .③④ C .①④ D .②③08•有理数a 、b 在数轴上的对应点的位置如图所示 的是()A. |b| > a >— a > b B .|b|> b > a >— aC . a >|b| >b >— aD . a >|b| >— a >b10. __________________________________ 已知 |x+ 2| + |y + 2| = 0,则 xy = __________________ 11.a 、b 、c 三个数在数轴上的位置如图,求 胆L +些+ ^c L +乩a b abc cb12.若三个不相等的有理数可以表示为 1、a 、a + b 也可以表示成0、b 、-的形式,试求a 、 ab 的值.13. 已知 |a| = 4, |b| = 5, |c| = 6,且 a > b > c ,求 a + b — C.A.02. 1 1 56 B .72 C()—6的绝对值是( 1 90A.1帀1 —603.n ,8 . 0.3四个数中,有理数的个数为,则a 、b ,— a , |b|的大小关系正确09. 一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数14. |a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x —1| + |x —3|有没有最小值,如果有,求出最小值;如果没有,说明理由15. 点A、B在数轴上分别表示实数a、b, A B两点之间的距离表示为|AB| .当A B两点中有一点在原点时,不妨设点A在原点,如图1, |AB| = |OB| = |b| = |a —b| 当A B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB| = |OB| —|OA| = |b| —|a| = b—a= |a —b| ;②如图3,点A、B都在原点的左边,|AB| =|0B| —|OA| = |b| —|a| =— b —( —a) = |a —b| ;③如图4,点A、B在原点的两边,|AB| = |0B| —|0A| = |b| —|a| =—b— (—a)= |a —b| ; 综上,数轴上A、B两点之间的距离|AB| = |a —b| .OCA) S O A B B A O BOAG—「竈「初去0 J J 「回答下列问题:⑴数轴上表示2和5的两点之间的距离是,数轴上表示一2和一5的两点之间的距离是,3,数轴上表示1和一3的两点之间的距离是4;⑵数轴上表示x和一1的两点分别是点A和B,则A、B之间的距离是|x+1|如果|AB| = 2,那么x = 1 或3;⑶当代数式|x + 1| + |x —2|取最小值时,相应的x的取值围是7培优升级•奥赛检测01.(市竞赛题)在数轴上任取一条长度为 19991的线段,则此线段在这条数轴上最多能盖住的整数点的个数是() A.1998 B .1999 C .2000 D .200102.(第18届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论: ①abc v 0;② |a — b| + |b — c| = |a — c| ;③(a — b ) (b — c )(c — a ) > 0;④ |a|v 1 — bc .其中正确的结论有()A.4 个 B . 3个 C . 2个D .1个一 abcabc,03.如果a 、b 、c 是非零有理数,且 a + b + c = 0.那么 +皿厂+匸厂+,的所有可能|a| |b| |c||abc|的值为() A .— 1 B .1 或—1 C .2 或—2 D .0 或—204.已知|m| = — m,化简|m —1| — |m — 2|所得结果() A.— 1 B . 1 C . 2m — 3 D . 3 — 2m05.如果 0v p v 15,那么代数式 |x — p| + |x — 15| + |x — p — 15| 在 p w x < 15 的最小值() A.30 B .0 C .15 D .一个与p 有关的代数式06. |x + 1| + |x — 2| + |x — 3| 的最小值为07.若 a >0, b v 0,使 |x — a| + |x — b| = a — b 成立的 x 取值围08.(市选拔赛试题)非零整数m n 满足|m| + |n| — 5= 0所有这样的整数组(m,n )共有 组|m| |n||p|2mnp满足半+半+牛=1.则爲■|x — 1| + |x — 2| + |x — 3| +•••+ |x — 1997| 的最小值.11. 已知(|x + 1| + |x — 2|) (|y — 2| + |y + 1| ) ( |z — 3| + |z + l| )= 36,求 x + 2y + 3 的最 大值和最小值•09.若非零有理数10. (19届希望杯试题)试求12. 电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4… 按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数•13. 某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、11台、3台, 14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数第02讲有理数的加减法考点•方法•破译1理解有理数加法法则,了解有理数加法的实际意义2•准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算3•理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题4 •会把加减混合运算统一成加法运算,并能准确求和经典•考题•赏析【例1】()某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为( )A. 0.3 元B. 16.2 元C. 16.8 元D. 18 元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(- 1.5 )+ ( 0.3 )= 16.8,故选 C.【变式题组】01.今年省元月份某一天的天气预报中,市最低气温为— 6 C,市最低气温2 C,这一天市的最低气温比低( )A. 8CB.—8CC. 6CD. 2 C02.()飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为_______________03.()珠穆朗玛峰海拔8848m,吐鲁番海拔高度为—155 m ,则它们的平均海拔高度为【例2】计算(—83) + (+ 26) + (—17) + (—26) + (+ 15)【解法指导】应用加法运算简化运算, -83与-17相加可得整百的数,+ 26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(—83) + (+ 26) + (—17) + (—26) + (+ 15)= [ (—83) + (—17) ] + [ ( +26) + (—26) ] + 15=(—100)+ 15=—85【变式题组】13 101. (—2.5 ) + (—32) + (—1 4) + (—1 4)02. (—13.6 )+ 0.26 +(—2.7 ) + (—1.06 )11203. 0.125 + 34+(—38)+ 11 3+(—0.25 )1 12008 2009d 1 20081 - =2009 = 2009【变式题组】01.计算 1+(— 2)+ 3+(— 4)+ …+ 99 +(— 100)102•如图,把一个面积为 1的正方形等分成两个面积为2的长方形,1 1接着把面积为 2的长方形等分成两个面积为 4的正方形,再把面积11为4的正方形等分成两个面积为8的长方形,如此进行下去,试利1 丄 1 11111 用图形揭示的规律计算2 4 816 32 64 128 256 =—【例4]如果a v 0, b > 0, a + b v 0,那么下列关系中正确的是( A. a > b >— b >— a B. a >— a > b >— bC. b > a > —b > — a D. — a > b > — b > a【解法指导]紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小, 然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论 解:T a v 0, b >0,••• a + b 是异号两数之和 又a + b v 0,「. a 、b 中负数的绝对值较大,• | a |> | b |将a 、b 、一 a 、一 b 表示在同一数轴上,如图,则它们的大小关系是一a >b >— b > a【变式题组]___________________________01 .若 m >0, n v 0,且 | m | > | a b 0 -b -a n |,贝U n _________________________________ 0.1 1【例3】计算1 22 3III 12008 20091【解法指导】依n(n1)1 丄n n 1进行裂项,然后邻项相消进行化简求和(1 解:原式=1 1 2)(1)(丄 2 3 3III(“(填>、<号)02.若 m < 0, n > 0,且 | m | > | n | ,贝U nn+ n __________ 0.(填>、v 号) 03.已知 a < 0, b >0, c < 0,且 | c | > | b | >| a | ,试比较 a 、b 、c 、a + b 、小2 3 8 【例 5】4 5 —(— 33 11) — (— 1.6 ) — (— 21 11 )【解法指导】有理数减法的运算步骤: ⑴依有理数的减法法则,把减号变为加号, 变为它的相反数; ⑵利用有理数的加法法则进行运算•2 3 2 28解:4 5 —(— 3311 ) — (— 1.6 ) — (— 21 11 )= 4 5 + 3311 + 1.6 + 21 113_8=4.4 + 1.6 +( 3311 + 21 11 )= 6+ 55= 61【变式题组】02. 44 —(+ 3.85 ) — (— 34 ) + (— 3.15 )2 1903. 178— 87.21 —(— 43 21 )+ 153 21 — 12.79【例6】试看下面一列数: 25、23、21、19…⑴观察这列数,猜想第 10个数是多少?第n 个数是多少? ⑵这列数中有多少个数是正数?从第几个数开始是负数? ⑶求这列数中所有正数的和•【解法指导】寻找一系列数的规律, 应该从特殊到一般, 找到前面几个数的规律, 通过观察 推理、猜想出第n 个数的规律,再用其它的数来验证 •解:⑴第10个数为7,第n 个数为25- 2(n — 1)⑵••• n = 13 时,25 — 2(13 — 1) = 1, n = 14 时,25— 2(14 — 1) =— 1 故这列数有13个数为正数,从第14个数开始就是负数• ⑶这列数中的正数为 25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25 + 1) + ( 23+ 3)a + c 的大并把减数(2)( !)( 5)( ^) 01.3(11)+ •••+( 15+ 11)+ 13= 26 >6+ 13 = 169【变式题组】01.()观察下列等式11 28 _3 27 4641 —2= 2,2 —5= 5,3 —10= 10,4 —17= 17…依你发现的规律,解答下列问题•⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9—1 = 8,16 —4= 12,25 —9 = 16,36 —16= 20⑴用关于n (n》1的自然数)的等式表示这个规律; ⑵当这个等式的右边等于2008时求n.1 1Z 123 j 2 3【例7】(第十届希望杯竞赛试题) 求2+ ( 3+ 3) + ( 4+ 4+ 4) + ( 5+ 5+ 5+4 丄_2 48 495 ) + … +( 50 + 50 +•••+ 50 + 50 )【解法指导】观察式中数的特点发现:若括号在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了1 12 123 1_2 48 49解:设S= 2+( 3+ 3) + ( 4+ 4+ 4) + …+( 50+ 50+…+50+ 50)1 2 1 3 2 1 49 48 丄则有S= 2+( 3+ 3) + ( 4+ 4+4) + …+( 50+ 50+…+50+ 50)将原式和倒序再相加得1 1 12 2 1 1 23 3 2 1 1_2 2S= 2 + 2 +( 3 + 3 + 3 + 3) + (4 + 4 + 4 + 4 + 4 + 4 ) + •••+( 50 + 5048 49 49 48 2 1+ •••+ 50 + 50 + 50 + 50 +•••+ 50 + 50)49 (49 1)即 2S = 1 + 2+ 3 + 4+-+ 49=2= 12251225••• S =2【变式题组】01.计算 2 -22 - 23- 24 — 25 - 26 - 27 — 28 - 29 + 2101 1 111 11— 2 ― 3 _•••_ 2003)( 2 + 3 + 4 +-+ 2003 +1 12004 ) —( 1 ― 2 ― 3 _•|X||08 .设x 是不等于0的有理数,贝U 2x值为(A. 0 或 1B. 0 或 209. () 2 + ( - 2)的值为 __________ 10. 用含绝对值的式子表示下列各式:⑴若 av 0, b >0,贝U b — a = _ ⑵若 a > b > 0,则 |a - b| = __02.(第8届希望杯试题)计算2004)( 2 + 3 + 4 +•••+ 2003)演练巩固•反馈提高01 . m 是有理数,则 m+ |m| A.可能是负数C.比是正数)B.不可能是负数D.可能是正数,也可能是负数 ) 02 .如果 |a| = 3, |b| = 2,那么 |a + b| 为( A. 5 B. 1 C. 1 或 5 03 .在1 , - 1,- 2这三个数中,任意两数之和的最大值是( A. 1B. 0C. - 1 04 .两个有理数的和是正数,下面说法中正确的是( A.两数一定都是正数 C.至少有一个为负数 05 .下列等式一定成立的是( A. |x| — x = 0 B.06 . 一天早晨的气温旦 A. - 4 C 07 .若 a v 0,则 |a - ( - a )| 等于(A . — aD . ±1 或±5 )D.—x — x .是一 6C, B. 4 C B.两数都不为0 D.至少有一个为正数 )=0 C . |x| + 中午又上升了 10 C, -3CD. |x| - |x| = 0)C. I —x|午间又下降了 8C,则午夜气温疋 D . - 5C B. 0C. ) 2aD.— 2aC. 0 或一1D. 0 或一2⑶若 a v b v 0,贝U a — b = _________ 11 •计算下列各题: ⑴ 23 +(— 27)+ 9+ 5⑵—5.4 + 0.2 — 0.6 + 0.35 — 0.2512. 计算 1 — 3+ 5 — 7 + 9— 11 +…+ 97 — 9913.某检修小组乘汽车沿公路检修线路, 规定前进为正,后退为负,某天从 A 地出发到收工 时所走的路线(单位:千米)为:+ 10 , — 3,+ 4, — 2, — 8,+ 13 , — 7,+ 12,+ 7,+ 5 ⑴问收工时距离 A 地多远?⑵若每千米耗油0.2千克,问从A 地出发到收工时共耗油多少千克?14. 将1997减去它的2,再减去余下的3,再减去余下的4,再减去余下的5……以此类1推,直到最后减去余下的 1997,最后的得数是多少?⑶一0.5 — 34 + 2.75 — 7 2⑷33.1 — 10.7 —(— 22.9 )23I -為15•独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与1 12 11 1 3 众不冋,他们一般只使用分子为 1的分数, 例如 3 + 15来表示 5,用 4 + 7 + 28表示71 1 1 1 1 1等等.现有90个埃及分数:2 ,3 4 5 • • • 90,91,你能从中挑出 10个,加上正、负号,使它们的和等于—1吗?培优升级•奥赛检测1 3 7_ 15 A. 8B. 16C. 32D. 6403. (第 17届希望杯邀请赛试题) a 、b 、c 、 d 是互不相等的正整数,且 abcd = 441,则a + b + c + d 值是( )A. 30B. 32C. 34D. 361995199519961996 1997199704. (第 7届希望杯试题)若 a = 19961996,b = 19971997, c = 19981998,则 a 、b 、c大小关系是( )1111A. 4B.4C.2 D.2111 111 1102.自然数 2a 、b 、c 、d 满足 a + b 2+2 2c + d3=1,则 a +5+ C + 6d 等于()01.(第16届希望杯邀请赛试题))1 2 3 4 | 14 15 2 4 6 8—28 30 等于(191919 767609.767676 1919 = ___________10. 1 + 2 — 22 — 23 — 24 — 25 — 26 — 27 — 28 — 29 + 210 = 11. 求32001 >72002X132003所得数的末位数字为 ____________ 12. 已知(a + b)2 + |b + 5| = b + 5,且 |2a — b — 1| = 0,求 aB.1 1 1 1 113.计算(1998 — 1)( 1997 — 1)( 1996 — 1)…(1001 — 1)( 1000 — 1)14.请你从下表归纳出 13 + 23+ 33+ 43+…+ n3的公式并计算出 1003的值.第03讲有理数的乘除、乘方 考点•方法•破译1. 理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会 利用运算律简化乘法运算2. 掌握倒数的概念,会运用倒数的性质简化运算3. 了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算4. 掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合 运算•5. 理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运 算• 经典•考题•赏析A. a v b v cB. b v c v aC. c v b v aD. a v c v b05. (1 —)(11 31998 2000)(11999 2001)的值得整数部分为( A. 1 06. ( — 2)2004 + 3 入—2)2003 的值为( A.— 2200307. B. 2C.D.08.B. 22003(希望杯邀请赛试题)若|m| = m+1,)C.— 22004 则(4m + 1)2004 =D. 22004592+( 3 + 3 ) + ( 4 + 4 + 4 )+ ... +( 60 + 60 +•••+ 60)=04.(3) ( 7) (11) ( ^) ⑸ 5 6 97正确运用法则,一是要体会并掌握乘法的符号规律,二 即先确定积的符号,后计算绝对值的积1( 1)(- 解:⑴2 4 21 1 (1 1) 1 (2 4)⑷ 2500【变式题组】【例2】已知两个有理数 a 、b ,如果ab v 0,且a + b v 0,那么()【例1】计算1( 1) ⑴ 2 ' 471 1⑶(( 4)⑷ 2500 0【解法指导】掌握有理数乘法法则, 是细心、稳妥、层次清楚,1)1)4 (1 1)4_ . 1 ⑸(5) ( 6) (19)(7) (53 7 10 369 7) 01. ⑴(5) ( 6)1) 14⑶(8) (3.76)(0.125)02.3) ( 1) 2 (6) (2)121150(2 5)1)5) 31 23331(6) 31A. a > 0, b v 0 B . a v 0, b > 0C. a 、b 异号D . a 、b 异号且负数的绝对值较大 【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断 •解:由ab v 0知a 、b 异号,又由a + b v 0,可知异号两数之和为负,依加法法则得负数的 绝对值较大,选D. 【变式题组】01.若a + b + c = 0,且b v c v 0,则下列各式中,错误的是( ) A. a + b > 0 B . b + c v 0 C. ab + ac > 0D . a + bc > 002 .已知 a + b >0 ,a — b v 0, ab v 0,贝U a _________ 0 ,b __________ 0 , |a| _________ |b|.(7) 0【变式题组】1 3 1 1 5 329 3 -(-) (3;) (匕)30 (-)02 .⑴ 3 ⑵5 2 4 ⑶ 3 5b03 .()如果 a + b v 0, a,则下列结论成立的是(A. a > 0, b > 0 B . a v 0, b v 0 C04 .()下列命题正确的是( )A.若ab >0,贝U a >0, b >0B C.若 ab = 0,贝V a = 0 或 b = 0Da > 0,b v 0D . a v 0, b > 0.若 ab v 0,贝U a v 0, b v 0.若 ab = 0,贝V a = 0且 b = 0 ⑴(72)( 18)21) (25)⑷0( 7)【解法指导】进行有理数除法运算时,若不能整除,应用法则 确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算 直接确定符号,再把绝对值相除 • 1,先把除法转化成乘法,再 •若能整除,应用法则 2,可解: ⑴(72)18) 72 18 4(23)7 3(?)1 ( 7)1 (25) (15)01.⑴(32)8)⑵2113)+1ab2008⑴求xy 的值;n【解法指导】a 表示n 个a 相乘,根据乘方的符号法则,如果 都是正数,如果a 是负数,负数的奇次幕是负数,负数的偶次幕是解: ..x 2( 2)2, y 312008 2008⑴当 x 2,y1时, xy 2( 1) 2当x 2,y1时, 2008 2008xy( 2) ( 1)203. 21 3 (4)(1。
学而思七年级数学培优讲义版全年级章节培优-绝对经典
![学而思七年级数学培优讲义版全年级章节培优-绝对经典](https://img.taocdn.com/s3/m/72cb305da58da0116d17496e.png)
第1讲 与有理数有关的概念 考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C . 【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】 01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n )2≥0,|m |≥O∴(m +n)2+|m |≥0,而(m +n)2+|m|=m ∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值. 演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是, 数轴上表示-2和-5的两点之间的距离是, 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是|x+1|,如果|AB|=2,那么x=1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp|3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++⨯⨯⨯⨯L 【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-L =111111112233420082009-+-+-++-L =112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m>0,n<0,且| m |>| n |,则m+n ________ 0.(填>、<号)02.若m<0,n>0,且| m |>| n |,则m+n ________ 0.(填>、<号)03.已知a<0,b>0,c<0,且| c |>| b |>| a |,试比较a、b、c、a+b、a+c的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx-值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15, (1)90,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-L L 等于( ) A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( ) A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是( )5343332313A .a <b <c B .b <c <a C .c <b <a D .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯L 的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( ) A .-22003 B .22003 C .-22004 D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】na表示n个a相乘,根据乘方的符号法则,如果a为正数,正数的任何次幂都是正数,如果a是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1 x y=-=-⑴当2,1x y==-时,200820082(1)2xy=-=当2,1x y=-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107 【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+1442443个=99【变式题组】3333+++=( ) 2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A.31003B.31004C.1334D.1100002.(第10届希望杯试题)已知111111111. 2581120411101640+++++++=求11111111 2581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A.1个B.2个C.3个D.1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数()A.互为相反数B.其中绝对值大的数是正数,另一个是负数C.都是负数D.其中绝对值大的数是负数,另一个是正数03.已知abc>0,a>0,ac<0,则下列结论正确的是()A.b<0,c>0 B.b>0,c<0 C.b<0,c<0 D.b>0,c>0 04.若|ab|=ab,则()A.ab>0 B.ab≥0 C.a<0,b<0 D.ab<005.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式a bm cdm+-+的值为()A.-3 B.1 C.±3 D.-3或106.若a>1a,则a的取值范围()A.a>1 B.0<a<1 C.a>-1 D.-1<a<0或a>107.已知a、b为有理数,给出下列条件:①a+b=0;②a-b=0;③ab<0;④1 ab=-,其中能判断a、b互为相反数的个数是()A.1个B.2个C.3个D.4个08.若ab≠0,则a ba b+的取值不可能为()A.0 B.1 C.2 D.-209.1110(2)(2)-+-的值为()A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×104 11.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________. 12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较x y -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( )A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab2cd4e <0C .ab2cde <0D .abcd4e <004.若有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,则|y|-|x|的值是( )A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m的值和这m个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x的值.13.(第12届“华杯赛”试题)已知m、n都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233Am m=-+-+⋅⋅⋅-+111111(1)(1)(1)(1)(1)(1).2233Bn n=-+-+⋅⋅⋅-+证明:⑴11,;22m nA Bm n++==⑵126A B-=,求m、n的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32-,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y =1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n 值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007 B.2 C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,则m与n大小关系()A.m>n B.m<n C.m=n D.不能确定05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开始每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a、b、c在数轴上的位置如图所示,化简后的结果是______________.。
2017年4月学而思杯一年级数学试卷解析
![2017年4月学而思杯一年级数学试卷解析](https://img.taocdn.com/s3/m/55d0c2e704a1b0717fd5dd53.png)
2017年第十一届北京学而思综合能力测评(学而思杯)数学试卷(一年级)(考试时间:60分钟,满分200分)一.基础过关(每题8分,共40分)1. 计算:9+19=_______ 8+12—20=_______【考点】计算问题——50以内加减法计算【难度】☆【答案】28,0【分析】第一题为进位加法,可从9中拆一个1给19,和为20,用20+8=28;第二题按照顺序从左到右依次计算。
2. 小朋友,来排队;头向前,站整齐.数一数,共有________个小男孩.【考点】组合问题——图形找规律【难度】☆【答案】24【分析】观察此图,图中小孩按照1,3,5,7,9的顺序进行排列,总人数为1+3+5+7+9=25,其中有一个小女孩,因此小男孩的总人数为25-1=24(个)。
3.《欢乐好声音》电影中的考拉经理决定举办一场盛大的歌唱大赛.很多小动物都来参加比赛,一列队伍中,猪妈妈左边有6只小动物,右边有8只小动物,这列队伍中一共有_______只动物.【考点】应用题问题——排队问题【难度】☆☆【答案】15【分析】排队问题最重要的解决方法就是画图,根据题目的描述画出队列图即可,注意关键词“有几只”,如图:▲为猪妈妈,O代表其他小动物;OOOOOO▲OOOOOOOO 列式6+1+8=15(只)小动物,或者数一数一共有15只小动物。
4. 妈妈送给奇奇一个特别的骰子,六个面分别印有1、2、3、4、5、6不同的点数,当它如图放置时,上面与下面点数的和是6,左面与右面点数的和也是6.那么,后面的点数是______.【考点】图形问题——立体图形【难度】☆☆【答案】3【分析】通过题目叙述6个面的点数分别为1、2、3、4、5、6,上面和下面的点数之和为6,因为上面点数为1所以下面点数为 5,左面和右面的点数和也是6,右面为2所以左面为4,前面为6,排除1,5,2,4,6,所以剩下的后面的点数为3.5.根据下图的规律,判断第10幅图用了______根火柴棒.【考点】图形问题——图形找规律【难度】☆☆【答案】21【分析】观察前3 幅图形会发现,从第二幅图开始每增加一个三角形,都会增加2根火柴棒,则火柴棒的根数就会呈现这样的规律:3,5,7,9,11,13,15,17,19,21。
学而思培优 2017-2018 一年级数学知识点第一讲
![学而思培优 2017-2018 一年级数学知识点第一讲](https://img.taocdn.com/s3/m/bd6b2c936529647d2728527f.png)
第一讲 孙行者有几个名字一、 枚举法有序思考目标:不重复,不漏掉二、 排列(有顺序 )1、 类型:名字、卡片、位置 魏雅楠老师2、方法:先固定开头,后交替位置三、 组合(无顺序)1、 类型:握手、击掌、打电话、搭配2、方法:连线法【例1】布莱克、树桩、简乐、石磊磊合照留念,树桩只能在从左往右的第二个位置,他们一共有多少种不同的排法呢?解析:首先四个人肯定有四个位置,先把四个位置写上。
看到树桩只能站在②号位置,给它一个特殊的符号,比如▲,布莱克用A 表示,简乐用B 来表示,石磊磊用C 来表示。
先确定树桩在②,接下来有序思考,先让A 站在一号位,两种;B 站在①号位,两种;C 站在①号位,两种。
一共六种。
具体如下:① ② ③ ④ A ▲ B CA ▲ CB B ▲ A CB ▲C A C ▲ A BC ▲ B A 2+2+2=6(种)答:一共有6种不同的站法。
【例3】四只猴子互相击掌庆祝胜利,想一想如果每两只猴子击一次掌(不能重复计数),他们一共需要几次击掌?解析:首先给四只猴子起个名字,A 、B 、C 、D ,第一个猴子A 先开始,分别找B 、C 、D 击掌;然后第二个猴子B ,已经跟A 击过掌了,那就不用再回去击掌了,只要往后面继续就行,所以找C 、D ;接下来是C ,还是只要往后继续,所以只有找D ,如下图:A B C D3+2+1=6(次)【例5】用下面的服装搭配一下,可以有几种不同的穿法?解析:首先上衣穿一件,下装穿一件,两两搭配,由于思考,先看第一件上衣可以搭配几种,连线连出来,再看第二件上衣,同样连线,如下图:答:可以有6种不同的搭配。
、共6题:前3题为自编题,后3题按课后作业改编(均需给出分析与解答)1、每两个人握手一次,请问6个小朋友需要握手几次?2、4个小朋友排队领奖品,其中有一个小朋友一定要在从左到右第二个位置,请问有几种排法?3、从森林到湖边有三条路,从湖边到帐篷有四条路,请问从森林经过湖边到帐蓬有几条不同的路可以走?4、有三个花瓶,分别为紫色和蓝色还有红色,还有两朵花,分别为玫瑰和百合,一个花瓶中插一朵花,请问有几种搭配方法5、有9个小朋友,每两个人要猜一次拳(不能重复计数),请问一共需要猜几次拳? 6、有三把椅子,分别为白色、蓝色、粉色,和四张桌子,分别为长方形、圆形、正方形和三角形,一张椅子搭配一张桌子,请问一共有几种不同的搭配方案?1、〔分析与解答〕:一共有5+4+3+2+1=15(种)2、〔分析与解答〕:首先4个人肯定有4个位置,先把4个位置写上。
学而思培优 2017-2018 一年级数学知识点第九讲
![学而思培优 2017-2018 一年级数学知识点第九讲](https://img.taocdn.com/s3/m/405378347375a417866f8f7a.png)
第九讲 无敌的剪刀一. 剪图形:用直线分割图形1. 边到边(原来图形有几个角,剪完增加一个角)2. 边到角(原来图形有几个角,剪完角的个数不变)3. 角到角(原来图形有几个角,剪完减少一个角)二. 剪绳子1. 折成几段中间剪一刀 中间剪一刀后段数增加12. 对折几次中间剪一刀先算出对折之后变成几段,中间剪一刀之后段数增加1对折次数 对折成几段 剪一刀后变成几段不对折 1段 +1 2段对折一次 1+1=2段 +1 3段对折两次 2+2=4段 +1 5段对折三次 4+4=8段 +1 9段•••三. 拼图形:照着目标补完整方法:1、把最接近的补齐 2、从好画的部分下手——王艳老师例1:一张正方形的纸,剪去一个角,可能还有几个角?解析:剪去一个角,其实就是用直线分割图形。
我们要考虑的就是剪刀是从正方形的一条边剪到另外一条边,或者是从正方形的一条边剪到一个角,或者是从一个角剪到另外一个角。
这样一共分别对应了三种情况。
①③①边到边(原来图形有4个角,剪完增加一个角变成5个角)②边到角(原来图形有4个角,剪完角的个数不变还是4个角)③角到角(原来图形有4个角,剪完减少一个角变成3个角)例2:一根绳子折成3段(如下图)从中间剪一刀,可以剪成多少段?一根绳子折成5段,从中间剪一刀,可以剪成多少段?折成10段呢?① ②③ ④解析:将绳子折成3段,是指折完之后变成3段,沿着中间剪一刀,如上图红色的线,将绳子分成了4段,我们列算式的时候可以写成3+1=4,表示剪后线段增加1,所以将绳子折成5段的时候,从中间剪一刀,可以变成6段。
折成10段的时候,可以变成11段。
例3:把一根绳子对折,然后从中间一刀剪开,这根绳子剪成了几段?一根绳子对折2次,然后从中间一刀剪开,这根绳子剪成了几段?对折了三次呢?解析:对折一次就是将一根绳子变成相等的两段,然后从中间剪一刀,剪成了几段只需要拿对折后的段数加1就可以了; 将一根绳子对折两次,就是折成2+2=4段,从中间剪一刀后,就是4+1=5段; 对折3次,就是折成4+4=8段,从中间剪一刀后,就是8+1=9段。
2017一年级数学上册第七单元知识点(北师大版)
![2017一年级数学上册第七单元知识点(北师大版)](https://img.taocdn.com/s3/m/9f99429e71fe910ef02df80b.png)
XX一年级数学上册第七单元知识点(北师大版)第七单元:加减法捆小棒1、计数器表示数的方法是摆小棒表示数的方法的简化和抽象:计数器上的数的“十位”与“捆”对应,“个位”与“根”对应。
这次抽象形成了极为重要的位值概念。
2、认识一个新的计数单位“十”,知道“从右边起,第一位是个位,第二位是十位。
”3、在摆一摆、数一数、捆一捆活动中,认学生认、读、写11~20各数。
掌握20以内数的顺序、大小以及数的组合。
搭积木几的加减法)1、用形象的积木,帮助学生认识不进位加法和不退位减法。
2、学习20以内不进位加法和不退位减法,计算方法都是先在个位上加或减,然后再与十位上相加或相减。
3、在计算中找规律,理解加法中加号两边的数交换位置,相加结果不变。
减法中,被减数不变,减数越大,所得的差越小。
有几瓶牛奶1、通过问题的解决,让学生学会“9+?”的进位加法2、理解凑十法的简便性。
1、引导学生利用已有的“9+?”的经验探索“8+?”的计算方法。
第一种方法:把8凑10,分解另一个加数。
第二种方法:把8分解,将另一个加数凑成10。
2、进一步理解“凑十法”。
3、正确熟练地口算8加几。
买铅笔)1、学会“十几减九”的退位减法。
2、让学生探索并学会“十几减八”的退位减法及相关数学问题。
3、体会计算方法的多样性。
第一种方法:个位上的数不够减9或8,从十位退一在个位加十再减。
第二种方法:将十几分解10和几,用10减9或8,再用结果加上分得的另一个数。
第三种方法:逆向思维,做减法想加法,9加几等于十几,十几减9就等于几。
第四种方法:十几减9可以想成用个位数加1。
以上几种方法不是要求每一位学生全部掌握,但是要求学生明确退位减法的算理。
跳伞表演)1、正确计算十几减7、减6等数的减法。
2、进一步感知解题策略的多样性。
美丽的田园1、学会用数学知识解决简单的实际问题。
2、巩固20以内的进位加法和退位减法。
3、使学生能根据一个加法算式写出两道减法算式。
4、多角度的认识一个数,建立数感。
”学而思杯“一年级数学知识点详解
![”学而思杯“一年级数学知识点详解](https://img.taocdn.com/s3/m/60ec25e90975f46527d3e17a.png)
2、 李叔叔把一根木头锯成 4 段,用了 3 分钟,如果把这根木头锯成 8 段,需要______ 分钟。 【知识点】一年级春季学期第十二讲:间隔之谜。尚未学到。 【解析】把一根木头锯成 4 段,只需要锯 3 下,用时 3 分钟,则锯一下需用时 1 分钟; 把木头锯成 8 段,需要锯 7 下,故需要 7 分钟。 【答案】7
更多精彩奥数题及详解尽在 E 度论坛()一年级版块 第 1 页/共 8 页
学习改变命运
联系电话:6186 3366
4、 下面算式是用火柴棒摆成的,可惜是错的,请你移动其中的一根火柴棒,使等号两 边相等,正确的算式是____________.
【知识点】一年级秋季学期第九讲:火柴棒游戏。 【解析】动手移一移即可发现正确算式为:11+1=12 【答案】11+1=12
5、 甲、 乙、 丙、 丁 4 只小动物站成一排, 已知甲在丙左边 5 米处, 丁在乙左边 3 米处, 丙在丁右边 2 米处,问最左边和最右边的两只小动物相距____________米。 【知识点】一年级秋季学期第五讲:方向与位置; 一年级春季学期第五讲:智趣推理。 【解析】分清楚左右位置,用画线段图的方向推理如下: 左 5米 3米 右
图二
如图二:包含两个基本三角形的三角形有 8 个;
更多精彩奥数题及详解尽在 E 度论坛()一年级版块
第 3 页/共 8 页
学习改变命运
联系电话:6186 3366
包含三个基本三角形的三角形有 0 个;
图三
如图三,包含四个基本三角形的三角形有 2 个; 包含五个及五个以上三角形的三角形有 0 个。 则一共有 8+8+2=18(个)三角形 【答案】18
5、已知:
+
学而思培优-2017-2018--一年级数学知识点第七讲
![学而思培优-2017-2018--一年级数学知识点第七讲](https://img.taocdn.com/s3/m/d0d6c58dc8d376eeafaa3156.png)
第七讲 时间爷爷的胡子去哪了一、 认识钟表1、 12个数:1~122、 格子:12个大格子,60个小格子3、 指针:秒针 →数小格子分针 →数小格子 时针 →数大格子二、 时间换算1分=60秒 1时=60分 三、 认识时间四、 时间的计算1、 时和时,分和分2、 求具体时刻再过几分钟,做“+” 几分钟前,做“-” 3、 求某个时间段经过的时间等于结束-开始 注:变成24小时制五、 镜子里的时间上下不变,左右改变。
1.按要求填写下面的时刻。
解析:(1)第一辆车发车时间是7时4分,再过6分钟,用加法,第二辆车发车时间是7时4分+6分=7时10分,再过6分,用加法,第三辆车发车时间是7时10分+6分=7时16分。
(2)第二辆车发车时间是8时,第一辆车在第二辆车8分钟前发出,用减法,分钟是0不够减,所以可以找小时兄弟借过来1小时,将1小时变成60分,8时变成了7时60分。
第一辆车的发车时间是7时60分-8分=7时52分。
第三辆车在第二辆车后面发出,也就是8分钟后,用加法,第三辆车发车时间是8时+8分=8时8分。
(3)第三辆车发车时间是11时25分,第二辆车在第一辆车15分钟前发出,用减法,第二辆车的发车时间是11时25分-15分=11时10分,第1辆车在第二辆车15分钟前发出,用减法,我们发现分钟不够减,怎么办?那咱们就想办法借一借,从哪借?看到小时兄弟时间挺多的,就找他借过来1小时,将1小时变成60分,将1小时变成60分,第一辆车发车时间是10时70分-15分=10时55分。
2. 下面钟表上所表示的是什么时刻?用电子计时法表示出来。
解析:首先我们先知道那个是分针,哪个是时针,又矮又胖身材不好的是时针,又瘦又高身材最好的是分针。
读时间其实就是数格子,那么分针和时针都是怎么走的呢?分针是走小格子,它身材很好,走的很快,它走一大圈,时针慢腾腾的才走了1大格。
所以我们就知道了分针走小格子,时针走大格子。
现在要读时间了(1)我们先看走的快的,分针,分针从起点开始走到3,也就是从12到3之间有15个小格子,一个小格子是一分钟,那15个小格子就是15分,再看时针,时针是不是刚过了8,但是还没有到9,我们能不能说现在是9点?是不是不可以,没有到9,刚过了8,就表示现在就是8时,最后,合起来,我们就知道现在是8时15分,电子示法就是8:15.(2)我们依然先看走的快的,分针,分针从起点开始走到4,也就是从12到4之间有20个小格子,一个小格子是一分钟,那20个小格子就是20分,再看时针,时针是不是刚过了10,但是还没有到11,我们能不能说现在是11点?是不是不可以,没有到11,刚过了10,就表示现在就是10时,最后,合起来,我们就知道现在是10时20分,电子表示法就是10:20. (3)我们还是先看走的快的,分针,分针从起点开始走了7个小格子,一个小格子是一分钟,那7个小格子就是7分,再看时针,时针是不是刚过了1,但是还没有到2,我们能不能说现在是2点?是不是不可以,没有到2,刚过了1,就表示现在就是1时,最后,合起来,我们就知道现在是1时7分。
学而思培优 2017-2018 一年级数学知识点第六讲
![学而思培优 2017-2018 一年级数学知识点第六讲](https://img.taocdn.com/s3/m/25752a9c83d049649b66587b.png)
第6讲芝麻换西瓜一.两者替换1.以少换多2.以多换少二.多者替换1.确定目标2.从问题入手3.换到目标为止方法:标一法三.天平左右两边同时“添上/去掉”相同的,天平不变1.填一填,1根香蕉的重量等于()个小青苹果的重量?知识点总结例题精讲——夏健峰老师解析:将重量最小的水果小青苹果标记成”1“,图中每个小青苹果都是1。
根据第一个天平左右两边重量相等可以得出,2个红苹果的重量等于4个小青苹果的重量,所以红苹果是2;根据第二个天平左右两边重量相等可以得出,1个香蕉等于的重量等于三个红苹果,而1个红苹果是等于2个小青苹果,所以一个香蕉是2+2+2=6个小青苹果。
2.一只小狗的重量等于2只小猫的重量,一只小猫的重量等于3只小鸭子的重量,那么一只小狗的重量等于()只小鸭子的重量?解析:1只小狗的重量=2只小猫的重量,1只小猫的重量=3只小鸭子的重量,2只小猫的重量=3+3=6只小鸭子的重量,所以1只小狗的重量=(6)只小鸭子的重量。
3.填一填,1个西瓜的重量等于()个石榴的重量?解析:将重量最小的石榴标记成“1”,图中每个石榴都是1,根据第一个天平左右两边重量相等得出,1个柚子是2;根据第三个天平左右两边重量相等得出,1个哈密瓜+1=3个柚子=2+2+2=6,所以1个哈密瓜是5;根据第二个天平左右两边重量相等得出,1个西瓜=2个哈密瓜=5+5=10,即1个西瓜的重量等于(10)个石榴的重量。
1、一串葡萄的重量等于3个橘子的重量,一个西瓜的重量等于3串葡萄的重量,那么1个西瓜的重量等于()个橘子的重量?2、填一填,1个圆形的重量等于()个三角形的重量?每周一练3、填一填,一个苹果的重量等于()个草莓的重量?4、填一填,1个梨的重量等于()根香蕉的重量?5、1个梨的重量等于()个苹果的重量?6、填一填,1个石榴的重量等于()个橘子的重量,1串葡萄的重量等于()个石榴的重量?1、〔分析与解答〕:1串葡萄=3个橘子,1个西瓜=3串葡萄,3串葡萄=3+3+3=9个橘子1个西瓜的重量=(9)个橘子的重量。
学而思奥数一年级上
![学而思奥数一年级上](https://img.taocdn.com/s3/m/9cc8890c0975f46526d3e13b.png)
学而思奥数一年级上第一讲1.用彩色笔涂色:(1)把左边5朵花涂上色。
(2)按从右到左的顺序数,把第4只五角星涂上色。
2.从前面数,小狗排第几?从后面数,小狗排第几?一共有几只动物?3.一只小狗在爬台阶,它爬到第( )层,爬到顶层它还要爬( )层。
4.图形排队。
(1)从左边起,排第( ),排第( ),排第( )。
(2)从右边起,排第( ),排第( )。
(3)一共有( )个图形。
5.这个小朋友正按体操教练员的口令进行动作训练。
教练员的口令依次是:立正,左抬腿,右伸手,右抬腿,左伸手,稍息。
你能把图中的这六个动作按口令的顺序分别用1,2,3,4,5,6数码给操练图标上次序吗?6.小明和6名同学排成一排。
你知道小明左边可能有几名同学?右边可能有几名同学?7.桌子上摆着三只盘子,盘子里分别放着1、2、3个苹果。
老师又分别发给三个小朋友1、2、3个苹果。
老师要求小朋友再分取桌子上的三盘苹果,但要求每个人得到一样多的苹果,那么这三个朋友应该各端走哪一盘苹果?第二讲1.把同类的物体用线连起来。
2.将下列物品分类。
3.把下图(1)、(2)、(3)中不是同类的分别圈出来。
4.把动物分类。
5.把图中的东西分类,你有几种分法?(1)(2)6.下图有许多手套,有一只不能配对。
请你把能配对的用线连起来。
7、图中每一栏都画了一个与其它三个不同类的东西,把它找出来后用笔画个圈.8、你能说说下面各组铅笔是按什么来分组的吗?第一组是按( )来分的.第二组是按( )来分的.第三组是按( )来分的.第四组是按( )来分的.9、将下列动物分类:A组 B组第三讲1、说说哪种水果第二轻,哪种水果重?2 从重到轻,说说四种动物排列顺序:3 四种球,谁重谁轻?4、从轻到重,给四种蔬菜排次序:5、小鹿、小松鼠、小猴、熊猫在玩翘翘板,你能说出它们的轻重顺序?6、把两块同样大小的橡皮泥捏成不同的形状后,放在天平的两边。
天平会是下列哪种情况?第四讲1 把下面的数按从大到小的顺序排列,并用“>”连结起来。
学而思--数数与比较
![学而思--数数与比较](https://img.taocdn.com/s3/m/fa5c56bcf71fb7360b4c2e3f5727a5e9856a27b5.png)
学而思数数与比较---------------------------------------让学习更有效一年级秋季第一讲数数与比较本讲先通过数数来学习基数和序数,再学习数之间的比较.本讲重点——通过本节课的学习,要学会熟练掌握大于号、小于号、等于号的使用,并会按大小排列自然数(基数、序数),同时能解决简单的排队问题.一、基数、序数的认识1、基数:几个(表示数量)2、序数:第几(表示顺序、位置)●关键词:第几个数字前面有第字,就是序数二、数与数之间的比较相同数位从高到底依次比较——从最高位开始,该数位相同,看下一位,不相同谁大这个数就大,具体如下:1、先看位数,位数越多数越大.如25>3,两位数大于一位数2、位数相同时,看最高位,最高位大的这个数就大.如35和27比较,都是两位数,那么看最高位.3>2,所以35>27.3、位数相同,最高位也相同时,看次高位.如35和39比较,都是两位数,且最高位都是3,次高位54、以此类推三、区分不大于、不小于1、不大于:小于或者等于.2、不小于:大于或者等于.注:在1、2、3、4、5、6、7、8、9这9个数中不大于4的数有:1、2、3、4不小于4的数有:4、5、6、7、8、9此部分孩子对于等于的这种情况理解不够好,此时可以从反面来引导孩子,“不大于”就是把“大于”的都去掉;“不小于”就是把“小于”的都去掉.四、组成最大数与最小数1、组成最大数:从最高位开始,把数字从大到小排列2、组成最小数:从最高位开始,把数字从小到大排列,有“0”放在第二位;组最小数是孩子们的易错点,多练习,便于理解.代表例题:3、5、8中组成的最大数和最小数分别是多少?组大数:从高位开始从大到小排列,即最大数为853.组小数:位数越少数越小,所以只用一个数组成一个一位数,而且要选最小的,即3.学而思培优秋季班一年级第1讲感谢阅读,欢迎大家下载使用!。
学而思小学奥数知识点梳理
![学而思小学奥数知识点梳理](https://img.taocdn.com/s3/m/0023fbcd172ded630a1cb60e.png)
学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质 若111a b c >>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n②()()612121222++=+++n n n n③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇奇×偶=偶偶±偶=偶偶×偶=偶2.位值原则形如:abc=100a+10b+c3.数的整除特征:4.整除性质①如果c|a、c|b,那么c|(a±b)。
学而思 一年级数学
![学而思 一年级数学](https://img.taocdn.com/s3/m/1f9868f8f8c75fbfc77db29f.png)
一、每种水果都表示一个数,你能知道这个数是几吗?1 — 6 = 15 =12 —= 8 =+ 12 = 35 =25 —= 11 =二、每个图形代表一个数,你能算出这个数是多少吗??( 1 ) △一7=5o+△=17 ( 2 )☆+☆=12 ☆一△=6△=( ) o=( ) ☆=( ) △=( )(3 )△一4=11 o+△=16 ( 4 )☆+☆=24 ☆一△=6△=( ) o=( ) ☆=( ) △=( )(5)5+o=12 △+o=10 ( 6 ) o 一☆=5 12一☆=8o=( ) △=( ) o =( ) ☆=( )( 7 )5+o=12 △+o=10 ( 8 ) o 一☆=5 12一☆=8o=( ) △=( ) o =( ) ☆=( )(9 )△+△=18 △=( ) (10)口+口+△+△=14☆+ o =13 o =( ) △+△+口=10△+ o =15 ☆=( ) △=( ) 口=( )三、每个图形代表一个数,你能算出这个数是多少吗?(1 )△+□=9 ○-△=1 △+△+△=9△=()□=()○=()2 (2 )△+ ○= 12 ○+ ☆= 8 △+ ○+ ☆= 21△=( ) ○= ( ) ☆=( )(3 )你+ 我= 7 你+ 他= 18 你+ 我+ 他= 24你= ()我= ()他= ()(4 )○+□=10,□+△=12,○+□+△=15。
○=(),□=(),△=()。
(5 )△+○=9 △+△+○+○+○=25△=()○=()四、每个图形代表一个数,你能算出这个数是多少吗?(1)△+△+△+△=28 △=()△+△+□=20 □=()(2)○+○+○=6 ○=()△+△+△=12 △=()(3)△-○=1 △=()△+△-○=9 ○=()△+○-□=10 □=()二、下图中每种水果各代表一个数,算一算,它们各代表几?+= 73 += 10+= 9=()=()=()已知:☆+☆+☆=6,△+△+△+△=20,则△-☆=( )已知:△+○=14 △-○=2 则△=( ) ○=( )已知:▲=●+●+●,▲+●=12,则●=(),▲=()已知:△+ ○= 5 ○+ ☆= 9 △+ ○+ ☆= 13△=( ) ○= ( ) ☆=( )七、张老师把红、白、蓝各一个气球分别送给三位小朋友。
学而思七年级数学培优讲义全年级章节培优经典
![学而思七年级数学培优讲义全年级章节培优经典](https://img.taocdn.com/s3/m/d78b137003768e9951e79b89680203d8ce2f6ad8.png)
第1讲 与有理数有关的概念 考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进展有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比拟两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出以下各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等〞解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作〔 〕 A .-18% B .-8% C .+2% D .+8% 02.〔XX 〕如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A .-5吨 B .+5吨 C .-3吨 D .+3吨 03.〔XX 〕与纽约的时差-13〔负号表示同一时刻纽约时间比晚〕.如现在是时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数〔 )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,应选C . 【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.〔XXXX 〕请把以下各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】〔XX 〕有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜测,然后进展验证.解此题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.〔XXXX 〕数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 .02.〔XX 〕毕选哥拉斯学派创造了一种“馨折形〞填数法,如图那么?填____. 03.〔XX 〕有一组数l ,2,5,10,17,26…请观察规律,那么第8个数为____. 【例4】〔2021年XXXX 〕假设l +m 2的相反数是-3,那么m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,此题m2=-4,m =-8【变式题组】 01.〔XXXX 〕-5的相反数是( )A .5B .15C .-5D .-1502.a 与b 互为相反数,c 与d 互为倒数,那么a +b +cd =______03.如图为一个正方体纸盒的展开图,假设在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.假设相对的面上的两个数互为相反数,那么填人正方形A 、B 、C 内的三个数依次为( )A .- 1 ,2,0B . 0,-2,1C .-2,0,1D . 2,1,0 【例5】〔XX 〕a 、b 为有理数,且a >0,b <0,|b|>a ,那么a,b 、-a,-b 的大小顺序是( ) A .b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b 【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.此题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,应选A .【变式题组】01.推理①假设a =b ,那么|a|=|b|;②假设|a|=|b|,那么a =b ;③假设a ≠b ,那么|a|≠|b|;④假设|a|≠|b|,那么a ≠b ,其中正确的个数为〔 〕 A . 4个 B . 3个 C . 2个 D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,那么|a|a +|b|b +|c|c =.03.a 、b 、c 为不等于O 的有理散,那么a |a|+b |b|+c|c|的值可能是____.【例6】〔XX 课改〕|a -4|+|b -8|=0,那么a+bab的值.【解法指导】此题主要考察绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,那么两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .02.〔XX 〕假设|m -3|+|n +2|=0,那么m +2n 的值为( ) A .-4 B .-1 C . 0 D . 403.|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】〔第l8届迎春杯〕(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ①又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴mn =-49【变式题组】01.(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B .02.〔第16届迎春杯〕y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练稳固·反应提高01.观察以下有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156B .172C .190D .111002.〔XX 〕-6的绝对值是( ) A . 6 B .-6 C .16D .-1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.假设一个数的相反数为a +b ,那么这个数是( ) A .a -bB .b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B .0和-6C . 3和-3D . 0和3 06.假设-a 不是负数,那么a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.以下结论中,正确的选项是( )①假设a =b,那么|a|=|b| ②假设a =-b,那么|a|=|b| ③假设|a|=|b|,那么a =-b ④假设|a|=|b|,那么a =b A .①②B .③④C .①④D .②③08.有理数a 、b 在数轴上的对应点的位置如下图,那么a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC .a >|b|>b >-aD .a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,那么这个数是____.10.|x +2|+|y +2|=0,那么xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.假设三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB|.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a -b| 当A 、B 两点都不在原点时有以下三种情况:①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b -a =|a -b|;②如图3,点A 、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a)=|a -b|; ③如图4,点A 、B 在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b -〔-a 〕=|a -b|; 综上,数轴上A 、B 两点之间的距离|AB|=|a -b|.答复以下问题:⑴数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4 ;⑵数轴上表示x 和-1的两点分别是点A 和B ,那么A 、B 之间的距离是 |x+1| ,如果|AB|=2,那么x = 1或3;⑶当代数式|x +1|+|x -2|取最小值时,相应的x 的取值X 围是 7 .培优升级·奥赛检测01.〔XX 市竞赛题〕在数轴上任取一条长度为199919的线段,那么此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.〔第l8届希望杯邀请赛试题〕在数轴上和有理数a 、b 、c 对应的点的位置如下图,有以下四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③〔a -b 〕(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B .3个C .2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为〔 〕A .-1B . 1或-1C . 2或-2D . 0或-2 04.|m|=-m ,化简|m -l|-|m -2|所得结果( ) A .-1 B .1 C .2m -3 D .3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A .30 B .0C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为.07.假设a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值X 围 . 08.〔XX 市选拔赛试题〕非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有组09.假设非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.那么2mnp|3mnp|=.10.〔19届希望杯试题〕试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.(|x +l|+|x -2|)〔|y -2|+|y +1|〕〔|z -3|+|z +l|〕=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数一样,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法那么,了解有理数加法的实际意义.2.准确运用有理数加法法那么进展运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】〔XXXX〕某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,那么股票A这天的收盘价为〔〕A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法那么,是同号相加,取一样符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+〔-1.5〕+〔0.3〕=16.8,应选C.【变式题组】01.今年XX省元月份某一天的天气预报中,XX市最低气温为-6℃,XX市最低气温2℃,这一天XX市的最低气温比XX低〔〕A.8℃B.-8℃C.6℃D.2℃02.〔XX〕飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________ 03.〔XX〕珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,那么它们的平均海拔高度为__________【例2】计算〔-83〕+〔+26〕+〔-17〕+〔-26〕+〔+15〕【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷一样符号的数结合一起.解:〔-83〕+〔+26〕+〔-17〕+〔-26〕+〔+15〕=[〔-83〕+〔-17〕]+[〔+26〕+〔-26〕]+15=〔-100〕+15=-85【变式题组】01.〔-2.5〕+〔-312〕+〔-134〕+〔-114〕02.〔-13.6〕+0.26+〔-2.7〕+〔-1.06〕03.0.125+314+〔-318〕+1123+〔-0.25〕【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进展裂项,然后邻项相消进展化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+〔-2〕+3+〔-4〕+ … +99+〔-100〕02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进展下去,试利用图形提醒的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么以下关系中正确的选项是〔 〕 A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a 【解法指导】紧扣有理数加法法那么,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,那么它们的大小关系是-a >b >-b >a 【变式题组】01.假设m >0,n <0,且| m |>| n |,那么m +n________ 0.〔填>、<号〕02.假设m <0,n >0,且| m |>| n |,那么m +n ________ 0.〔填>、<号〕03.a<0,b>0,c<0,且| c |>| b |>| a |,试比拟a、b、c、a+b、a+c的大小【例5】425-〔-33311〕-〔-1.6〕-〔-21811〕【解法指导】有理数减法的运算步骤:⑴依有理数的减法法那么,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法那么进展运算.解:425-〔-33311〕-〔-1.6〕-〔-21811〕=425+33311+1.6+21811=4.4+1.6+〔33311+21811〕=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-〔+3.85〕-〔-314〕+〔-3.15〕03.178-87.21-〔-43221〕+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜测第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开场是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜测出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开场就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=〔25+1〕+〔23+3〕+…+〔15+11〕+13=26×6+13=169【变式题组】01.(XX)观察以下等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答以下问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察以下等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n〔n≥1的自然数〕的等式表示这个规律;⑵当这个等式的右边等于2021时求n.【例7】〔第十届希望杯竞赛试题〕求12+〔13+23〕+〔14+24+34〕+〔15+25+35+45〕+…+〔150+250+…+4850+4950〕【解法指导】观察式中数的特点发现:假设括号内在加上一样的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+〔13+23〕+〔14+24+34〕+…+〔150+250+…+4850+4950〕那么有S=12+〔23+13〕+〔34+24+14〕+…+〔4950+4850+…+250+150〕将原式和倒序再相加得2S=12+12+〔13+23+23+13〕+〔14+24+34+34+24+14〕+…+〔150+250+…+4850+4950+4950+4850+…+250+150〕即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.〔第8届希望杯试题〕计算〔1-12-13-…-12003〕〔12+13+14+…+12003+12004〕-〔1-12-13-…-12004〕〔12+13+14+…+12003〕演练稳固·反应提高01.m是有理数,那么m+|m|〔〕A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为〔〕A.5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是〔〕A.1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的选项是〔〕A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.以下等式一定成立的是〔〕A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,那么午夜气温是〔〕A.-4℃B.4℃C.-3℃D.-5℃07.假设a<0,那么|a-(-a)|等于〔〕A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,那么||||2x xx-值为〔〕A.0或1 B.0或2 C.0或-1 D.0或-2 09.〔XX〕2+(-2)的值为__________10.用含绝对值的式子表示以下各式:⑴假设a<0,b>0,那么b-a=__________,a-b=__________⑵假设a>b>0,那么|a-b|=__________⑶假设a<b<0,那么a-b=__________11.计算以下各题:⑴23+〔-27〕+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-〔-22.9〕-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线〔单位:千米〕为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵假设每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.〔第16届希望杯邀请赛试题〕1234141524682830-+-+-+-+-+-+-等于〔 〕A .14B .14-C .12 D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,那么31a +41b +51c +61d 等于〔 〕A .18 B .316 C .732D .1564 03.〔第17届希望杯邀请赛试题〕a 、b 、c 、d 是互不相等的正整数,且abcd =441,那么a +b +c +d 值是〔 〕A .30B .32C .34D .3604.〔第7届希望杯试题〕假设a =1995199519961996,b =1996199619971997,c =1997199719981998,那么a 、b 、c 大小关系是〔 〕A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数局部为5343332313〔 〕A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为〔 〕A .-22003B .22003C .-22004D .2200407.〔希望杯邀请赛试题〕假设|m|=m +1,那么(4m +1)2004=__________ 08.12+〔13+23〕+〔14+24+34〕+ … +〔160+260+…+5960〕=__________09.19191976767676761919 =__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法那么以及运算律,能运用乘法法那么准确地进展有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法那么,熟练进展有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四那么混合运算的步骤,熟练进展有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法那么,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算 ⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法那么,正确运用法那么,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积. 解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯= ⑷250000⨯= ⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=- 【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】两个有理数a 、b ,如果ab <0,且a +b <0,那么〔 〕A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法那么,异号为负,故a 、b 异号,又依加法法那么,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法那么得负数的绝对值较大,选D .【变式题组】01.假设a +b +c =0,且b <c <0,那么以下各式中,错误的选项是〔 〕A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.a +b >0,a -b <0,ab <0,那么a___________0,b___________0,|a|___________|b|.03.(XXXX)如果a +b <0,0b a >,那么以下结论成立的是〔 〕A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 04.(XX)以下命题正确的选项是〔 〕A .假设ab >0,那么a >0,b >0B .假设ab <0,那么a <0,b <0C .假设ab =0,那么a =0或b =0D .假设ab =0,那么a =0且b =0【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷- 【解法指导】进展有理数除法运算时,假设不能整除,应用法那么1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.假设能整除,应用法那么2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷= ⑵17331(2)1()1()3377÷-=÷-=⨯-=- ⑶131255()()()()10251036-÷=-⨯=- ⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】〔XX 〕假设实数a 、b 满足0a b a b +=,那么ab ab =___________.【解法指导】依绝对值意义进展分类讨论,得出a 、b 的取值X 围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩;当ab <0,0a b a b +=,∴ab <0,从而ab ab =-1.【变式题组】01.假设k 是有理数,那么(|k|+k)÷k 的结果是〔 〕A .正数B .0C .负数D .非负数02.假设A .b 都是非零有理数,那么ab a b a b ab ++的值是多少?03.如果0xy xy +=,试比拟x y -与xy 的大小.【例5】223(2),1x y =-=- ⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法那么,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==-当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】01.〔〕假设2(2)0m n m -+-=,那么nm 的值是___________. 02.x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】〔XX 〕2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为〔 〕A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a ×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.〔XX 〕XX 市今年约有103000名学生参加中考,103000用科学记数法表示为〔 〕A .1.03×105B .0.103×105C .10.3×104D .103×10302.〔XX 〕XX 市方案从2021年到2021年新增林地面积253万亩,253万亩用科学记数法表示正确的选项是〔 〕A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】〔XX 竞赛〕222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+ 原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003B .31004C .1334D .1100002.〔第10届希望杯试题〕11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练稳固·反应提高01.三个有理数相乘,积为负数,那么负因数的个数为〔 〕A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数〔 〕A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.abc >0,a >0,ac <0,那么以下结论正确的选项是〔 〕A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.假设|ab|=ab ,那么〔 〕A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.假设a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么代数式a b m cd m +-+的值为〔 〕A .-3B .1C .±3D .-3或106.假设a >1a ,那么a 的取值X 围〔 〕A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.a 、b 为有理数,给出以下条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是〔 〕A .1个B .2个C .3个D .4个08.假设ab ≠0,那么a b a b+的取值不可能为〔 〕A .0B .1C .2D .-209.1110(2)(2)-+-的值为〔 〕A .-2B .(-2)21C .0D .-21010.(XX)2021年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的选项是〔 〕A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,那么a +b +c +d =___________. 12.21221(1)(1)(1)n n n +--+-+-〔n 为自然数〕=___________.13.如果2xy x y+=,试比拟xy -与xy 的大小.14.假设a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.假设a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.有理数x 、y 、z 两两不相等,那么,,x y y z z xy z z x x y ------中负数的个数是〔 〕A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是〔 〕A .1B .3C .7D .5 03.23450ab c d e <,以下判断正确的选项是〔 〕A .abcde <0B .ab2cd4e <0C .ab2cde <0D .abcd4e <004.假设有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,那么|y|-|x|的值是〔 〕A .12-B .0C .12D .3205.假设A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,那么A -1996的末位数字是〔 〕A .0B .1C .7D .906.如果20012002()1,()1a b a b +=--=,那么20032003a b +的值是〔 〕 A .2 B .1 C .0 D .-107.5544332222,33,55,66a b c d ====,那么a 、b 、c 、d 大小关系是〔 〕A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.a 、b 、c 都不等于0,且a b c abca b c abc+++的最大值为m ,最小值为n ,那么2005()m n +=___________.09.〔第13届“华杯赛〞试题〕从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315- 第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.〔XX 省竞赛试题〕观察按以下规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方〞只填了一局部,将以下9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛〞试题)m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲 整式 考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值. 经典·考题·赏析【例1】判断以下各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】 理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数. 解:⑴不是,因为代数式中出现了加法运算; ⑵不是,因为代数式是与x 的商; ⑶是,它的系数为π,次数为2;⑷是,它的系数为32-,次数为3.【变式题组】01.判断以下代数式是否是单项式02.说出以下单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n 的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.〔XX〕写出含有字母x、y的五次单项式______________________.【例3】多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出以下多项式的项和次数⑴(2)02.指出以下多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-〔3n+1〕=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,那么m的值为〔〕A.2 B.-2 C.±2 D.±102.关于x、y的多项式不含二次项,求5a-8b的值.03.多项式是六次四项式,单项式的次数与这个多项式的次数一样,求n的值.【例5】代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法. 解:由得由〔3【变式题组】01.(XX)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于〔〕A.28 B.-28 C.32 D.-3202.〔同山〕假设,那么的值为_______________.03.〔潍坊〕代数式的值为9,那么的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.,且的值与x无关,求a的值.02.假设代数式的值与字母x的取值无关,求a、b的值.【例7】〔市选拔赛〕同时都含有a、b、c,且系数为1的七次单项式共有〔〕个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,那么x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,应选C.【变式题组】01.m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练稳固·反应提高01.以下说法正确的选项是〔〕A.是单项式B.的次数为5C.单项式系数为0D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.那么这个三位数是〔〕A.100b+a B.10a+b C.a+b D.100a+b03.假设多项式的值为1,那么多项式的值是〔〕A.2 B.17 C.-7 D.704.随着计算机技术的迅猛开展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为〔〕A.B.C.D.05.假设多项式是关于x的一次多项式,那么k的值是〔〕A.0 B.1 C.0或1 D.不能确定06.假设是关于x、y的五次单项式,那么它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,那么第10排有_______个座位.08.假设,那么代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(XX)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.〔XX〕一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.〔XX〕x=3时多项式的值为-1,那么当x=-3时这个多项式的值为多少?13.假设关于x、y的多项式与多项式的系数一样,并且最高次项的系数也一样,求a-b的值.14.某地拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月〔只限一部宅电上网〕.此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)假设某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.〔XX〕有一列数,从第二个数开场,每一个数都等于1与它前面那个数的倒数的差.假设,那么为〔〕A.2007 B.2 C.D.-102.〔华师一附高招生〕设记号*表示求a、b算术平均数的运算,即,那么以下等式中对于任意实数a、b、c都成立的是〔〕①②③④A.①②③B.①②④C.①③④D.②④03.,那么在代数式中,对任意的a、b,对应的代数式的值最大的是〔〕A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,那么m与n大小关系〔〕A.m>n B.m<n C.m=n D.不能确定05.〔XX〕_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开场每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.=_____________.08.有理数a、b、c在数轴上的位置如下图,化简后的结果是______________.09.=______________.10.〔全国初中数学竞赛〕设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,假设a>b>c,那么M与P大小关系______________.11.(资阳)如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,那么其面积S5=________________195.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲 时间爷爷的胡子去哪了
一、 认识钟表
1、 12个数:1~12
2、 格子:12个大格子,60个小格子
3、 指针:秒针 →数小格子
分针 →数小格子 时针 →数大格子
二、 时间换算
1分=60秒 1时=60分 三、 认识时间
四、 时间的计算
1、 时和时,分和分
2、 求具体时刻
再过几分钟,做“+” 几分钟前,做“-” 3、 求某个时间段
经过的时间等于结束-开始 注:变成24小时制
五、 镜子里的时间
上下不变,左右改变。
1.按要求填写下面的时刻。
解析:
(1)第一辆车发车时间是7时4分,再过6分钟,用加法,第二辆车发车时间是7时4分+6分=7时10分,再过6分,用加法,第三辆车发
车时间是7时10分+6分=7时16分。
(2)第二辆车发车时间是8时,第一辆车在第二辆车8分钟前发出,用减法,分钟是0不够减,所以可以找小时兄弟借过来1小时,将1小时
变成60分,8时变成了7时60分。
第一辆车的发车时间是7时60
分-8分=7时52分。
第三辆车在第二辆车后面发出,也就是8分钟后,
用加法,第三辆车发车时间是8时+8分=8时8分。
(3)第三辆车发车时间是11时25分,第二辆车在第一辆车15分钟前发出,用减法,第二辆车的发车时间是11时25分-15分=11时10分,
第1辆车在第二辆车15分钟前发出,用减法,我们发现分钟不够减,
怎么办?那咱们就想办法借一借,从哪借?看到小时兄弟时间挺多的,
就找他借过来1小时,将1小时变成60分,将1小时变成60分,第
一辆车发车时间是10时70分-15分=10时55分。
2. 下面钟表上所表示的是什么时刻?用电子计时法表示出来。
解析:首先我们先知道那个是分针,哪个是时针,又矮又胖身材不好的是时针,又瘦又高身材最好的是分针。
读时间其实就是数格子,那么分针和时针都是怎么
走的呢?分针是走小格子,它身材很好,走的很快,它走一大圈,时针慢腾腾的才走了1大格。
所以我们就知道了分针走小格子,时针走大格子。
现在要读时间了
(1)我们先看走的快的,分针,分针从起点开始走到3,也就是从12到3之间有15个小格子,一个小格子是一分钟,那15个小格子就是15分,再看时
针,时针是不是刚过了8,但是还没有到9,我们能不能说现在是9点?是不是不可以,没有到9,刚过了8,就表示现在就是8时,最后,合起来,我们就知道现在是8时15分,电子示法就是8:15.
(2)我们依然先看走的快的,分针,分针从起点开始走到4,也就是从12到4之间有20个小格子,一个小格子是一分钟,那20个小格子就是20分,再
看时针,时针是不是刚过了10,但是还没有到11,我们能不能说现在是
11点?是不是不可以,没有到11,刚过了10,就表示现在就是10时,最后,合起来,我们就知道现在是10时20分,电子表示法就是10:20. (3)我们还是先看走的快的,分针,分针从起点开始走了7个小格子,一个小格子是一分钟,那7个小格子就是7分,再看时针,时针是不是刚过了1,但是还没有到2,我们能不能说现在是2点?是不是不可以,没有到2,刚过了1,就表示现在就是1时,最后,合起来,我们就知道现在是1时7分。
电子表示法就是1:7,这样对吗?我们发现1:7是不是很像比分啊?那在这里,注意啦,为了区别开时间和比分,如果分钟只有个位数字,十位要用0补上,所以1时7分的电子表示法就是1:07.
(4)我们依然先看走的快的,分针,分针从起点开始走了21个小格子,一个小格子是一分钟,那21个小格子就是21分,再看时针,时针是不是刚过
了4,就表示现在就是4时,最后,合起来,我们就知道现在是4时21分,电子表示法就是4:21.
3.按要求填写下面的时刻
现在是()现在是()现在是()
再过7分是()10分前是()9分前是()
解析:读时刻我们知道应该先读走的快的,也就是分针,再读走的慢的,也就是时针。
我们明确了分针走了多少个小格子就是多少分,时针刚过了几就是几。
现在我们开始读一读时刻,分别是5时35分,1时50分,9时9分。
(1)那么时间是不是一直安安静静的像小淑女一样,停止不动的呢?不是,所以,再过7分钟就是时间向前还是向后走呢?很明显是向后走,向后走需要用到加法,注意哦,做加法的时候一定要分钟与分钟计算,小时与小时计算,这样按照一定的规则才不会出错。
所以,5时35分+7分=5时42分。
(2)10分前,时间是向前了还是向后走了呢?向前了,时间向前走,时间是变多了还是变少了?变少了,需要用减法。
应该是1时50分-10分=1时40分。
(3)9分前,时间是向前了还是向后走了呢?向前了,时间向前走,时间是变
多了还是变少了?变少了,需要用减法。
应该是9时9分-9分=9时。
共6题:前3题为自编题,后3题按课后作业改编(均需给出分析与解答)
1、
一部电影在几时几分开映?几时几分结束?这部电影共放映了多长时间?
开始放映时( ) 结束放映时( )
2、
简乐在照镜子时看到时钟在镜子里的样子如下图,钟面上的实际时间是几时几分呢?
3、
如果制作手表的师傅上午8点半上班,中午12时休息吃午饭,下午1时上班,5时半下班,请你算一算,制作手表的师傅一天工作了多长时间?
4、请问下面的钟表都是什么时刻呢?请用电子计时法表示出来。
5、按要求填写下面的时刻
现在是()现在是()
再过8分钟是()7分钟前是()
6、下面是工人师傅上班时间和下班时间,分别是几时呢,工人师傅要在单位工作多长时间呢?
上午下午
1、〔分析与解答〕:
电影开始的时间是3时10分,结束放映的时间是4时55分,放映了多长时间就是要问经过了多久,应该用减法,小时与小时计算,分钟与分钟计算4时55分-3时10分=1时45分。
2、〔分析与解答〕:
镜子中像与实际物体是左右对称的,上下是不变的。
所以给镜子中的12和6的位置是确定的,左右两侧数字交换位置,逆时针给钟表标上数。
实际钟表的数从1~12是顺时针的,镜子中的数从1~12是逆时针的。
(1)分针从12到6有30个小格,就是30分,时针刚过1就是1时,所以实际时间是1时30分。
(2)同理,实际时间是12:21 3、〔分析与解答〕:
分段来考虑,上午8时30分上班到12时午休,一共经历了几小时应该用减法,12时-8时30分=3时30分。
从下午上班到下班经历的时间也要用减法,5时30分-1时=4时30分。
最后把两段时间加在一起,4时30分+3时30分=8时。
4、〔分析与解答〕:
(1)几时整,分针指向12,时针指着几就是几时,时针指着5,就是5时整,
电子示法就是5:00.
(2)我们先看走的快的,分针,分针从起点开始走了48个小格子,一个小格子是一分钟,那48个小格子就是48分,再看时针,时针是不是刚过了5,但是还没有到6,我们能不能说现在是6点?是不是不可以,没有到6,刚过了5,就表示现在就是5时,最后,合起来,我们就知道现在是5时48分,电子示法就是5:48. (3)我们依然先看走的快的,分针,分针从起点开始走了3
个小格子,一个小
格子是一分钟,那3个小格子就是3分,再看时针,时针是不是刚过了3,就表示现在就是3时,最后,合起来,我们就知道现在是3时3分,电子表示法就是3:03(3占个位,十位没有数字所以用0补上)
5、〔分析与解答〕:
首先确定现在的时间,然后确定再过几分以后是几时几刻需要用加法,最后确定几分前是几时几刻需要用减法。
小时与小时计算,分钟与分钟计算。
1.现在是8:10,再过8分,用加法,8时10分+8分=8时18分
2.现在是6:30,7分前,用减法,6时30分-7分=6时23分
6、〔分析与解答〕:
用24小时制,上午是9时,24小时制是8时,下午6时,分针从12开始转了一圈是12小时,再从12开始转了6个大格子就是6小时,下午6时就是12时+6时=18时。
工作多长时间:18时-9时=9时。