桥墩桩基础设计计算书
桥梁桩基础计算书
桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯=(2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21 = 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
桥梁桩基设计计算书
桥梁桩基设计1.工程地质资料及设计资料某桥位于直线上,冲刷线以下的河床上部为厚度很大的中密孵石层,其容重γ=20kN/m 3,内摩擦角φ=38°,地基的基本承载力σ0=800kPa 。
冲刷线标高为所给支挡结构原地面标高150m 下2m 即148m ,承台底设计标高与水位线平齐,为路堤墙顶标高155m 下3m 即152m 。
采用钻孔桩基础,作用于承台底面的竖向力N=18000kN 、水平力H=550kN ,力矩M=9000kN ·m 。
设计时,桩侧土极限摩阻力f=120kPa ,横向地基系数的比例系数m=60MN ·m -4。
基桩混凝土采用C20,其受压弹性模量 E h =2.6×107kPa 。
1. 设计计算 2.1桩的计算宽度b 0式中 d--桩径,为1.60m ;K--各桩之间的纵向相互影响系数,当L 0<0.6h p 时,K 值按下式计算其中 C--随位于外力作用平面内的桩数n 而异的系数,当n=2时,C=0.6; h p --桩埋入地面或局部冲刷线以下的计算深度,按h p =3(d+1)计算,故h p =3(1.60+1)=7.8m ;L 0--外力作用平面方向上的桩间净距,L 0=3.5-1.6=1.9m 。
至此可知L 0=1.9m<0.6h p =4.68m 。
故则桩的计算宽度b 0为2.2变形系数α 已知, 故Kd b )1(9.00+=ph L c C K 06.01⋅-+=762.08.79.16.06.016.0=⨯-+=K mK d b 78.1762.0)160.1(9.0)1(9.00=⨯+⨯=+=5EImb =α259444100.67322.010268.08.0;322.064;/60000m kN I E EI m d I m kN m h ⋅⨯=⨯⨯⨯=====π155437.0100.6778.160000-=⨯⨯=m α2.3桩长估算可根据总的桩数n 和竖向荷载N=18000kN ,按下式粗略估算桩顶轴向力N i : 再按[P]=5850kN 估算桩长。
铁路桥墩桩基础设计(中南大学)
.铁路桥墩桩基础设计学院:土木工程学院班级:姓名:学号:指导老师:基础工程课程设计任务书——铁路桥墩桩基础设计一、设计资料:1. 线路:双线、直线、坡度4‰、线间距5m,双块式无碴轨道及双侧1.7m宽人行道,其重量为44.4kN/m。
2. 桥跨:等跨L=31.1m无碴桥面单箱单室预应力混凝土梁,梁全长32.6m,梁端缝0.1m,梁高3m,梁宽13.4m,每孔梁重8530kN,简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距1.6m。
轨底至梁底高度为3.7m,采用盆式橡胶支座,支座高0.173m,梁底至支座铰中心0.09m。
3. 建筑材料:支承垫石、顶帽、托盘采用C40钢筋混凝土,墩身采用C30混凝土,桩身采用C25混凝土。
4. 地质及地下水位情况:土层平均容重γ=20kN/m3,土层平均内摩擦角ϕ=28°。
地下水位标高:+30.5。
5. 标高:梁顶标高+54.483m,墩底+33.31m。
6. 风力:ω=800Pa (桥上有车)。
7. 桥墩尺寸:如图1。
二、设计荷载:1. 承台底外力合计:双线、纵向、二孔重载:N=18629.07kN H=341.5kN M= 4671.75kN双线、纵向、一孔重载:N 17534.94kN,H=341.5kN,M=4762.57kN.m2. 墩顶外力:双线、纵向、一孔重载:H=253.44 kN,M=893.16 kN.m。
三、设计要求:1、选定桩的类型和施工方法,确定桩的材料、桩长、桩数及桩的排列。
2、检算下列项目(1)单桩承载力检算(双线、纵向、二孔重载);(2)群桩承载力检算(双线、纵向、二孔重载);(3)墩顶水平位移检算(双线、纵向、一孔重载);(4)桩身截面配筋计算(双线、纵向、一孔重载);(5)桩在土面处位移检算(双线、纵向、一孔重载)。
3、设计成果:(1)设计说明书和计算书一份(2)设计图纸(2号图,铅笔图)一张(3)电算结果四、附加说明:1、如布桩需要,可变更图1中承台尺寸;2、任务书中荷载系按图1尺寸进行计算的结果,如承台尺寸变更,应对其竖向荷载进行相应调整。
桩基础计算书
桩基础计算书9第一部分桥梁桩基础设计一、设计题目:桥梁桩基础或沉井基础二、设计资料1.地质与水文资料图1.水文及地基土层分布表1 各层土的物理性质及力学指标2.墩底标高:90.9m3.墩底尺寸:3.5m(纵桥向) 7.0m4.上部为等跨30m的钢筋混凝土预应力桥梁,荷载为纵桥向控制设计。
5.墩底荷载:纵桥向为恒载及一孔活载时ΣN=6800+50n(kN)ΣH=360+5n( kN)(制动力及风力)ΣM=4700kN m(竖直反力偏心距、制动力及风力引起)恒载及二孔活载时ΣN=8000+50n kNn为学生学号(取后三位);三、设计任务(时间:1周)1.选择桩的类型、确定桩数、桩径、桩长、桩的平面布置、桩的配筋、混凝土标号;2.设计承台(承台尺寸、配筋、混凝土标号);3.绘制施工图(桩基础平面、桩及承台剖面、承台配筋、桩身配筋、节点详图)。
4.如果采用沉井基础,试确定沉井的高度、平面尺寸、刃脚和井壁的配筋、混凝土标号,绘制施工图(正面、侧面和平面尺寸,刃脚和井壁的配筋图)。
第一章方案拟定一.桩基础类型的选择1.摩擦桩桩基与端承桩桩基的考虑从任务书中的地质资料分析,河床7米以下的土层为密实砂卵石层,这种土层土质较好且很厚,承载能力较大,可作为持力层,但不适合柱桩的受力特性,端承桩主要指桩底支撑在基岩上的桩,适用于基岩埋深较浅的情况,埋深较大时,如果将桩一直打入基岩层,则桩的长度将很大,既不经济,给施工带来一定的难度,造成施工周期较长,故综合考虑后选择摩擦桩。
2.桩型与成桩工艺该桩基础的施工环境在水下,而钻孔灌注桩因其施工方便,基本避免了水下作业,同时施工速度快、造价低、工艺设备简单,在实际工程中广泛被采用。
灌注桩成孔的方式很多,考虑到冲抓锥更适用于淤泥、粘性土、砂土、砾石、卵石等土层的成孔,且适用孔径为0.6~1.5m,与该处条件基本相符,故综合考虑后选择钻孔灌注桩。
二.桩径的拟定查《公路桥涵地基与基础设计规范》(以下简称《规范》)知,钻孔桩设计直径不宜小于0.8m,且常用尺寸为0.8~3.2m,参照已有工程实例与荷载大小,初步拟定桩的直径为1.2m。
桥墩计算书——精选推荐
本桥选择左幅桥2号桥墩和右幅桥3号桥墩计算1、左幅桥2号墩(非过渡墩)(一)、基本资料:1).设计荷载:公路Ⅰ级2).T梁(单幅5片梁,简支变连续)高:2.4m3).跨径: 40m4).该联跨径组合:(3×40)m5).结构简图如下:二、水平力计算1.横向风力计算按《公路桥涵设计通用规范(JTG D60-2004)》附表1,取湖北省黄石市设计基本风速为V10=20.2m/s;2.温度力计算温差按25度考虑,混凝土收缩徐变近似按温差15度考虑,计算刚度K时,偏安全的忽略支座和桩基的刚度,计算如下表:3.汽车制动力力计算(考虑2车道,一联中近似由一个非过渡墩承受)4.撞击力计算由《公路桥涵设计通用规范(JTG D60-2004)》查得,六级航道内的撞击力顺桥向为100KN,横桥向为250KN,作用点位于通航水位线以上2m的桥墩宽度或长度的中点。
5.桥墩及盖梁自重荷载计算三、作用组合1.支反力汇总按上述盖梁计算立面图,5片主梁从左到右依次编号为1~5,其对应盖梁顶支座反力如下表:2.墩底内力计算因墩柱与盖梁(约5:7)刚度相近,将盖梁与墩柱在横桥向做刚架计算,其中,盖梁计算书另行给出,此处只计算墩柱部分。
荷载分别计算上述“上构支反力汇总”三种活载工况及“横桥向水平风力”作用下墩底内力,计算模型及工况3计算结果如下图所示,其他见下表。
1)活载横桥向产生的墩底内力:(1)墩柱盖梁刚架模型(2)活载工况3结构弯矩图(3)工况3结构剪力图(4)工况3结构轴力图2)风力横桥向产生的墩底内力:3)墩底内力组合a.考虑顺桥向撞击力的偶然组合:对于圆形截面,纵横向内力应合并计算。
b四、墩身强度与裂缝验算1.墩底截面强度验算(36×HRB335-25)M最大时墩身截面强度验算:弯矩设计值6664.27钢筋直径25.0桩半径R(m)弯矩设计值6664.02钢筋直径25.0桩半径R(m)2.墩底截面裂缝宽度计算由于横桥向抗弯刚度较大,因此横桥向裂缝在此不做验算。
柱式墩计算书【范本模板】
xxxxx高速公路常见跨径组合桥墩的计算xxxxx高速公路桥梁上部结构大部分采用先简支后连续预应力混凝土箱梁或板梁,下部结构采用双柱式墩、柱式台或肋台,钻孔灌注桩基础。
为了设计方便,给出如下几种跨径组合下相应的桥墩几何参数的计算书。
设计参数:(见下表)设计荷载:公路-Ⅰ级,q k=10。
5KN/m;集中荷载的取值视桥梁跨径的不同取值见下表:桥墩墩身材料:C30混凝土,Ec=3.0×104Mp a;非连续端采用滑板式支座,其规格与对应的连续端的板式支座相同。
支座的力学性能根据规范取值。
一、桥墩墩顶集成刚度计算1、桥墩截面惯性矩计算按照公式:I i=π×d4/64;其中d为柱径。
2、桥墩抗推刚度计算根据公式K1=3×EcI/H3计算,其中混凝土的弹性模量没有考虑0.8的折减系数是偏于安全的。
计算结果见下表:3、支座抗推刚度计算支座抗推刚度按下式计算:K2=nAG/t式中K2:一横排支座的抗推刚度;n:一横排支座的支座个数,每个梁底放置两个支座,8个支座串连放置在盖梁上,所以每个墩分配的支座个数为4,所以n=4;A:一个支座的平面面积,根据具体的支座规格计算;G:橡胶支座剪切弹性模量,根据规范取1。
1×104Mp a;t:支座橡胶层总厚度,根据橡胶支座的规格取橡胶支座厚度的0.8倍。
计算结果见下表:4、墩顶与支座集成刚度的计算在墩顶有一排支座串连,再与墩顶刚度串连,串连后的刚度即为支座顶部由支座与桥墩联合的集成刚度。
其计算公式为:K= K1×K2 /( K1+ K2)计算结果见下表:二、桥墩墩顶水平荷载效应计算1、混凝土收缩+徐变在墩顶产生的水平力按照公式:p1=c×△x×k其中:c—收缩系数,计算中按照混凝土收缩+徐变按相当于降温30℃的影响力计算,c=30×10—5;△x-桥墩距离变形零点的距离;变形零点x 根据以下公式计算:i c l k Rx C nkμ+=⨯∑∑l i :桥墩矩桥台的距离; n :桥墩个数;k :桥墩顶部合成刚度;R μ∑:桥台摩擦系数与上部结构竖直反力的乘积,由于联端支座与桥台支座的摩阻力大小相差不大,方向相反,所以近似地认为R μ∑=0.计算结果见下表:计算中没有考虑桥墩刚度的差异是出于如下考虑:首先,由于桥墩小于12米时,根据规范和相关资料可以不考虑二阶弯矩的影响,这就大大降低了由于竖向荷载引起的弯矩的数值;其次,墩高的降低虽然增加了墩的刚度而导致了相同变形下水平力的增加,但由于墩高的降低,墩顶水平力在墩底产生的弯矩也有所降低;出于以上两项的考虑,在荷载相同的情况下,如果高12米的墩根据计算是安全的,则小于12米的墩也是安全的。
桥梁桩基础设计计算部分【范本模板】
一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用.《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。
1、按承载能力极限状态设计时,可采用以下两种作用效应组合。
(1)基本作用效应组合。
基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1—1)或(1—2) γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1.0和0.9;γGi-第i个永久荷载作用效应的分项系数。
分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。
当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1。
4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。
γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1。
4,但风荷载的分项系数取γQ1=1.1;Sgik、S gid-第i个永久作用效应的标准值和设计值;SQjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;Sud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积.SQ1k、S Q1d-汽车荷载效用含汽车冲击力、离心力)的标准值和设计值;φc-在作用效应组合中,除汽车荷载效应效应(含汽车冲击力、离心力)以外其他可变作用效应的组合系数,当永久作用与汽车荷载和人群荷载(或其他一种可变作用)组合时,人群荷载(或其他一种可变作用)的组合系数取0.80; 当除汽车荷载(含汽车冲击力、离心力)以外尚有两种其他可变作用参与组合时,其组合系数取0.70;尚有三种可变作用组合时,其组合系数取0.60;尚有四种及多于四种的可变作用参与组合时取0.50。
(整理)桥台桩基础设计计算书
0.6
4
0.53938
0.95861
641.52
-915.089
-273.569
2.0151
0.8
4
0.64561
0.91324
782.38
-871.779
-89.399
2.512
1
4
0.72305
0.85089
876.22
-812.25
63.97
3.0027
1.2
4
0.76183
0.77415
(二)活载计算
1.车辆荷载
由已知可知,桥梁墩台在计算车辆荷载时可换算为:桥上为q=10.5KN/m的均布荷载,支座为P=215KN的集中荷载。
车辆荷载分布图
2-1
求出A﹑B端的支座反力
FA+FB-q×19.94-215=0
q×19.94× ×19.94+P×19.94-FB×19.94=0
解得:FA=104.685KN
1-4
3. 2#墩台及以上部分自重
1-5
2#墩台计算表
序号
计算式
结果
1
150×250×80×25×3
450KN
2
120×h×80×25×3
951.84KN
合计
1401.84KN
1-6
4.承台上板自重
5.梁恒载反力
6.土侧压力计算(按朗金主动土压力计算)
4#桥台处:
1-7
对于左侧土:
每延米土楔体ACD的重力W1 = 445.65KN
26251.83
4036.87
8064.71
组合三
永久作用+可变作用(支座摩阻力)
大桥主墩承台钢板桩设计计算书_secret
x 大桥主墩承台钢板桩设计 计算 书主墩承台钢板桩计算已知条件:1、施工水位:2、平台土围堰标高:承台底面标高:厚4.8 m 。
3、土的重度为:内摩擦角Ф=20.1°4、距板桩外1.5m 20KN/ m 2计。
5、围堰内50cm 厚C20封底砼。
6、拉森Ⅳ型钢板桩 W=2037cm 3,[f]=200MPa钢板桩平面布置、板桩类型选择,支撑布置形式,板桩入土深度、基底稳定性设计计算如下:(1)作用于板桩上的土压力强度及压力分布图 ka=tg а(45°-υ/2)= tg а(45°-20.1/2)=0.49Kp= tg а(45°+Ф/2)= tg а(45°+20.1/2)=2.05 板桩外侧均布荷载换算填土高度h1, h1=q/r=20/18.8 =1.06m+17.50m 以上土压力强度Pa 1:Pa 1=r*(h1+1.5)Ka=18.8*(1.06+1.5)*0.49 =23.6KN/m2+17.50m 以下土压力强度Pa 2:Pa 2=[r*(h1+1.5)+(r-rw )*(17.5-11.67)]*Ka =[18.8*(1.06+1.5)+()18.8-10*5.83]*0.49 =48.7KN/m 2水压力(围堰抽水后)Pa 3: Pa 3=rw*(17.5-11.67)=10*5.83=58.3 KN/m 2则总的主动压力(土体及水压力)Ea :Ea=(23.6*2.56)/2+23.6*(2.56+5.83)+(48.72-23.6)*5.83/2+58.3*5.83/2 =471.4 KN/m 2合力Ea 距承台底的距离y :471.4*y=23.6*2.56*5.83+2.56/3+23.6*5.83*5.83/2+(48.72-23.6)/2*5.83*5.83/3+58.3*5.83/2*5.83/3 =2.28m(2)确定内支撑层数及间距按等弯距布置确定各层支撑的间距,根据拉森Ⅳ型许跨度h:h=6[f]w rka3=6*200*2037*10518.8*103*0.493=298cm =2.98mh1=1.11h=1.11*2.98=3.3m h2=0.88H=0.88*2.98=2.62m h3=0.77h=0.77*2.98=2.3m根据具体情况,确定采用的布置如右图所示: (3)各内支撑反力采用简支梁法近似计算各内支撑反力P1=23.6×2.56/2+23.6×(0.34+2.89/2)+31.22×0.34/2+31.22×2.89/2+(95.97-31.22)/2×2.89/2 =146.15 KN/mP2=95.97×(2.6/2+2.89/2)+(130.62-95.97)/2×2.6/2-(95.97-31.22)/2×2.89/2 =227.11KN/m(4)钢板桩入土深度:R土的重度考虑浮力影响后,取r=8.8KN/m 2 Kn=r(Kp-Ka)=8.8*(2.05-0.49) =13.73 KN/m 3则r*( Kp-Ka)*X*X*X*2/3*1/2 =2.28*471.4 得X=6.12 取安全系数K=1.1 X=1.1*6.12=6.73m 所以钢板桩的总长度L 为: L=6.73+1.06+7.33=14.76m选用钢板桩长度16.0m ,7号墩考虑为(5) 基坑底部的隆起验算考虑地基土质均匀,依据地质勘察资料,指标如下:r=18.8 KN/m 3,c=21.1Kpa ,q=20 KN/m 2 由抗隆起安全系数K=2πC/(q+rh )≥则:h ≤(2πC -1.2q)/1.2r≤(2*3.14*21.1-1.2*20)/1.2*18.8 ≤ 4.8m即钢板桩周围土体不超过4.8m 时,地基土稳定,不会发生隆起。
(完整版)桥墩桩基础设计计算书
基础工程课程设计一.设计题目:某桥桥墩桩基础设计计算二.设计资料:某桥梁上部构造采用预应力箱梁。
标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。
1、水文地质条件:河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下:(1)地质情况c(城轨):2、标准荷载:(1)恒载桥面自重:N1=1500kN+8×10kN=1580KN;箱梁自重:N2=5000kN+8×50Kn=5400KN;墩帽自重:N3=800kN;桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN(2)活载一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m;两跨活载反力:N6=5030.04kN+8×100kN;(3)水平力制动力:H1=300kN,对承台顶力矩6.5m;风力:H2=2.7 kN,对承台顶力矩4.75m3、主要材料承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;4、墩身、承台及桩的尺寸墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3。
承台平面尺寸:长×宽=7×4.5m 2,厚度初定2.5m ,承台底标高20.000m 。
拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。
5、其它参数结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.46、 设计荷载(1) 桩、承台尺寸与材料承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。
桥墩桩基础
桥墩桩基础设计计算书一、荷载计算:永久荷载计算:永久荷载包括桥墩的自重,上部构造恒荷载反力。
1.承台重:3132330.33 1.40.520.460.9(17.7 2.14) 1.425110.6(17.7 2.14) 1.4[(2.0750.6) 1.4(2.0650.6) 1.4]2216.67 1.7414.93V m V m V mm =⨯⨯⨯==⨯+⨯==⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=-= 3123=V 16.67 1.7414.931009.75V V V mm G V KNγ++=-===总2.墩身重:23423523635641.23.14() 6.8437.7421.23.14() 6.7387.6221.23.14() 6.6337.50222.8657105V m V m V m V V V V m G V KNγ=⨯⨯==⨯⨯==⨯⨯==++===3、上部铺装自重:各梁恒载反力表表1—1边梁恒载:12.54⨯19.94⨯2=500.1KN 中梁荷载:10.28⨯19.94⨯15=3074.75KN上部铺装荷载: 3.5⨯19.94⨯18=1256KN(说明:边梁为2根,中梁数:17-2=15根) 取入土深度为1延米122(5.80.252)0.82252121.5[3.14()1]325.325132.47G V KN G V KNγγ==-⨯⨯⨯⨯===⨯⨯⨯=⨯==1009.75571.5500.13074.151256022212132.47=6756.19G KN++++++恒载可变荷载计算:采用公路一级车道荷载,3车道横向折减系数k q =10.5KN/m ,满跨布置。
1、车道荷载:跨径≤5m 时 ,K p =180kN ;跨径≥50m 时 ,K p =kN 360 当跨径为19.46时,内差得360180(19.465)()1802155051.2258K K K P KNP P KN-=-⨯+=-=⨯=剪力(见《公路桥涵设计规范》 P24 图、表4.3.1-1)支座反力:P=(215+1/2 ⨯1 ⨯19.46 ⨯10.28)⨯3 ⨯0.78=549.92KN 活载作用:P=(205+1/2 ⨯1 ⨯19.46 ⨯10.28 ⨯2)⨯3 ⨯0.78=971.21KN 而力臂=(20-19.46)/2=0.27m M=971.21 ⨯0.27=262.23KN ·m 汽车作用:P=(215+1/2 ⨯1 ⨯19.46 ⨯10.28)⨯3 ⨯0.78=737.16kN M=P ⨯0.27=199.03KN ·m 2.人群荷载的支座反力:在5.5m 的人行道上产生竖向力.3.019.94 5.5329.01=329.01/2=164.51mN kN R =⨯⨯=总支座由行人产生的弯矩:M=R ·l=164051 ⨯0.27=44.42KM ·m 3.计算汽车制动力因为公路一级汽车荷载的制动力标准值不得小于165kN R=(10.5 ⨯19.46+215)⨯0.1=41.93<165KN 显然计算值小于165kN ,那么直接取用165kN 因为同向行驶三车道为一个设计车道的2.34倍 4.车道的制动力: P=2.34 ⨯165=386.1KN 产生弯矩:M=P ⨯(1.5+6.843+1)=3607.33KN ·m 5.计算支座摩阻力: 固定支座摩阻系数f=0.05 则此时支座摩阻力:F=N`f=(500.1+3074.75+1256.22) ⨯0.05=241.55KN 产生弯矩:M=F ·(1.5+6.843+1)=2251.66KN ·m二.进行作用效应组合计算:对桥墩不计汽车荷载的冲击力;同时以上制动力与摩擦力与计算结合结果说明支座摩阻力大于制动力,因此;在以上的组合荷载中,车道的制动力作为控制设计。
桥墩基础计算书【范本模板】
某高速公路特大桥的桥墩基础一、基本任务1、在完成专业技术《基础工程》等课程学习的基础上,要求对歌类建筑物的浅基础设计、桩基设计、地基设计、软弱地基处理等方面的计算知识能融会贯通、灵活掌握合理的、正确地应用于具体工程的实际,独立的完成基础方案选取及其所要求的设计、校核的计算内容,以达到培养解决工程实际问题核分析问题的能力.2、对于所给的具体资料能够准确阅读、系统掌握、正确处理、灵活应变。
3、提供完整的计算资料处理、计算过程计算结果说明书核必要的制图。
二、目的通过所给的某高速公路上的**大桥的桥墩和桥台的基础设计(计算与校核),巩固所学专业相关课程的基本知识,熟悉和完成设计的各个环节,通过合理的技术方案选取,施工设计准确的计算过程的训练,以提高实际工作的能力。
三、设计荷载计算校核依据基础地面以上的荷载计算按以下数据1、设计荷载汽车Ⅰ级,确定桥面荷载.2、桥面结构3、桥面采用双向行车分离结构。
具体不支持存参照附图,详细尺寸结构可以简化,计算桥面自重参考尺寸:桥长18孔×30米,包括桥台耳长546。
96米。
桥面梁采用4孔一联、两个54孔一联。
4孔一联的预应力混凝土简支梁。
梁截面T型梁,横截面每半边布置5片梁,主梁间距2。
6米;等高度梁,梁高1.9米,每个4。
86米设横隔梁一道.具体尺寸可以拟定自重自由假定简化计算。
4、墩、台基础混凝土为25级。
墩、台自重的计算可以考虑双柱式,整体式任选.混凝土容25KN m重35、钢材Ⅰ、Ⅱ级.四、工程地址情况基本情况表述如下:桥位处于河谷“U”字形地域,具有较强的侧向侵蚀作用,因水库的拦蓄作用,河漫滩出现谷坡一般高于河底2-4米,成细波沿桥轴线锯齿状分布。
KN m,C=0 KPa ϕ=28o;路基土平均容重19。
03地基土层计算依据处理可选方案:1、具体选定位置时可参考附图中地层示意图自选。
除表土外,典型土层可以分三层:KN m,TK=200Kpa;中密。
⑴中(细、粗)7砂混卵石层,厚度0。
桩基础计算书
目录一.作用效应组合 (2)(一)、恒载计算 (2)(二)、活载反力计算 (3)(三)、人群荷载 (3)(四)、汽车制动力计算 (4)(五)、支座摩阻力 (4)(六)、荷载组合计算 (4)二.确定桩长 (6)三.桩基强度验算 (7)(一)、桩的内力计算 (7)(二)桩身材料截面强度验算 (11)四.桩顶纵向水平位移验算 (13)五.横系梁设计 (14)六.桩柱配筋 (14)七.裂缝宽度验算 (14)桥墩桩基础设计计算书一. 作用效应组合(一)恒载计算1、盖梁自重 )1(G =25⨯0.5⨯0.33⨯1.4=5.775 KN)2(G =(0.9+1.5)⨯2.075/2⨯25⨯1.4=87.15 KN)3(G =(0.25+1.2+5.8+1.2+5.8+1.2+0.25)⨯25⨯1.5⨯1.4=824.25KN )4(G =0.33⨯0.5⨯25⨯1.4=5.775 KN)5(G =(0.9+1.5)⨯2.065/2⨯25⨯1.4=86.73 KN1G =)1(G +)2(G +)3(G +)4(G +)5(G =1009.68 KN2、桥墩自重:2G =)]633.6738.6843.6(412.1[252++⨯⨯⨯⨯π=KN 54.5713.系梁自重:3G =253145.128.01)215.08.5(252⨯⨯⨯⨯+⨯⨯⨯⨯-⨯π=KN 54.3524.上部恒载:各梁恒载反力表 表一边梁自重:)1(G =2⨯12.54⨯19.94=500.10KN 中辆自重:)2(G =10.28⨯19.94⨯15=3074.75KN 一孔上部铺装自重:)3(G =3.5⨯19.94⨯17.5=1221.33KN 一孔上部恒载:4G =)1(G +)2(G +)3(G =4796.18KN 综上可得恒载为:G=1G +2G +3G +4G =6729.94KN(二)支座活载反力计算 1. 汽车荷载(1)一跨活载反力查规范三车道横向折减系数取0.78,根据规范的跨径在五米和五十米之内均布荷载标准值应该采用直线内插法180360180--x 4515= 解得x =237.84 故P K=237.84KN在桥跨上的车道荷载布置如图排列,均布荷载q k =10.5KN/m 满跨布置,集中荷载P K=237.84KN 布置在最大影响线峰值处,反力影响线的纵距分别为: h 1=1.0, h 2=0.0hh 1支座反力: KN l q P N k k 61.79578.03)2205.1084.237(78.03)2(6=⨯⨯⨯+=⨯⨯⨯+= 支座反力作用点离基底形心轴的距离:e a =(20-19.46)/2=0.27m由1N 引起的弯矩:KN M 81.21427.061.7951=⨯=(1) 两跨活载反力 支座反力: KN lq P N k k 68.103478.03)46.195.1084.237(78.03)22(2=⨯⨯⨯+=⨯⨯⨯⨯+= 由2N 产生的弯矩:m KN M .36.27927.068.10342=⨯= 2.行人荷载布置在5.5米人行道上,产生竖直方向力。
桥墩及桩基计算书b1
B 匝道第1联一、结构概况B 匝道第1联(K0+223.274~K0+293.774)为3*23.5=70.5m 的中间跨度较大,10.5m 宽、曲线半径较小(R =120m )的独柱高墩预应力混凝土连续箱梁桥。
桥墩为变截面实体结构,B0和B1桥墩基础为扩大基础。
B2和B3桥墩基础均对应直径分别为Ф1.8m 的两个嵌岩桩,桩顶设承台。
下部结构具体尺寸见桥墩一般构造图。
二、计算模型及内力计算 1.1 计算模型该联两端设滑动支座,中间三个墩均设板式橡胶支座,按m 法用土弹簧模拟桩侧土的水平约束,各个桥墩处的m 值的计算《公路桥涵地基与基础设计规范》要求,将地面以下h m =2(d+1) m 深度内的各层土按下列公式换算成一个m 值,作为整个深度的m 值。
对于刚性基础,h m 采用整个深度h 。
当h m =深度内存在两层不同的土时:12112222(2)mm h m h h h m h ++= 当h m =深度内存在三种不同的土时:1211222312332(2)(22)m h m h h h m h h h h m +++++=及相应轴力值,计算结果见下表:(2)边墩桩A.成桥状态计入恒载、汽车荷载、风载的作用,可求得成桥状态边墩内力组合如下表:考虑桩土相互作用,由计算模型确定桩最大弯距截面作为桩控制截面,墩底面至控制截面长度H=4.0m。
计入恒载、汽车荷载、风载的作用,可求得成桥状态时边墩的桩基内力组合如下表:B.施工阶段计入支座摩阻、恒载偏载、风载的作用,可求得施工阶段边墩内力组合如下表:考虑桩土相互作用,由计算模型确定桩最大弯距截面作为桩控制截面,墩底面至控制截面长度H=4.0m。
计入恒载、汽车荷载、风载的作用,可求得成桥状态时边墩的桩基内力组合如下表:三、墩横桥向内力计算 (1)离心力的计算离心力系数: 22400.105127127120V C R===⨯注:离心力的着力点在桥面处。
(2)风荷载主梁横桥向风荷载2.3kN/m, 桥墩每延米风荷载3.13kN/m墩底:B1: 3379 KN ;B2: 2369 KN ;(3)活载偏载按两车道布载,相对于箱梁中心线的偏心距e =0.80m ,按一车道布载,相对于箱梁中心线的偏心距e =3.35m 。
公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)
公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)桥梁桩基础课程设计任务书一、桩基础课程设计资料该公路桥梁采用桩柱式桥墩,预计尺寸如下图1所示。
桥面宽7米,两边各0.5米人行道。
设计荷载为公路Ⅱ级,人群:3.5kN/m2.1、桥墩组成该桥墩基础由两根钻孔灌注桩组成。
桩径采用φ=1.2m,墩柱直径采用φ=1.0m。
桩底沉淀土厚度t=(0.2~0.4)d。
局部冲刷线处设置横系梁。
2、地质资料标高25m以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=21%,液限ωl=22.7%,塑限ωp=16.3%。
标高25m以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=17.8%,液限ωl=22.7%,塑限ωp=16.3%。
3、桩身材料桩身采用25号混凝土浇注,混凝土弹性模量Eh=2.85×104MPa,所供钢筋有Ⅰ级钢和Ⅱ级钢。
4、计算荷载1)一跨上部结构自重G=2350kN;2)盖梁自重G2=350kN;3)局部冲刷线以上一根柱重G3应分别考虑最低水位及常水位情况;4)公路Ⅱ级:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。
支座对桥墩的纵向偏心距为b=0.3m(见图2)。
计算汽车荷载时考虑冲击力。
5)人群荷载:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。
6)水平荷载(见图3)制动力:H1=22.5kN(4.5);盖梁风力:W1=8kN(5);柱风力:W2=10kN(8)。
采用常水位并考虑波浪影响0.5m,常水位按45m计,以产生较大的桩身弯矩。
W2的力臂为11.25m。
活载计算应在支座反力影响线上加载进行。
支座反力影响线见图4.5、设计要求确定桩的长度,进行单桩承载力验算。
桥梁桩基础课程设计计算书一、恒载计算(每根桩反力计算)在进行恒载计算时,需要计算上部结构横载反力N1、盖梁自重反力N2、系梁自重反力N3、一根墩柱自重反力N4以及桩每延米重N5.其中,需要考虑浮力对桩每延米重的影响。
桥梁桩基础计算书
桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯= (2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=Ⅲ、双孔布载 2 3.524.485.4R kN =⨯=q —人群荷载集度 l —跨径 2、柱反力横向分布系数ϕ的计算柱反力横向分布影响线见图5。
70.50.51图5图5⑴、汽车荷载汽ϕ ()111.1670.7670.4780.078 1.24522q η=∑=+++=⑵、人群荷载人ϕ =1.33 三、荷载组合1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21= 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
桥梁桩基础设计计算
桥梁桩基础设计计算 The document was finally revised on 2021第一章桩基础设计一、设计资料 1、地址及水文河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。
2、土质指标表一、土质指标3、桩、承台尺寸与材料承台尺寸:7.0m ×4.5m ×2.0m 。
拟定采用四根桩,设计直径1.0m 。
桩身混凝土用20号,其受压弹性模量h E =×104MPa 4、荷载情况上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时:5659.4NKN =∑、298.8HKN =∑、3847.7MKN m =∑恒载及二孔活载时:6498.2NKN =∑。
桩(直径1.0m )自重每延米为:21.01511.78/4q KN m π⨯=⨯=故,作用在承台底面中心的荷载力为:5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN=+⨯⨯⨯===+⨯=∑∑∑ 恒载及二孔活载时:6498.2(7.0 4.5 2.025)8073.4N KN =+⨯⨯⨯=∑桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为3h ,则:002221[]{[](3)}2h i i N p U l m A k h τλσγ==++-∑当两跨活载时:8073.213.311.7811.7842h N h =+⨯+⨯计算[P]时取以下数据:桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长22202021211.15 3.6,0.485,0.740.9, 6.0,[]550,12/40,120,a a a u m A m m K Kp KN m Kp Kp ππλσγττ⨯=⨯==========1[] 3.16[2.740( 2.7)120]0.700.90.7852[550 6.012( 3.33)]2057.17 5.898.78k p h h N h m=⨯⨯+-⨯+⨯⨯⨯+⨯⨯+-==+∴= 现取h=9m ,桩底标高为26.2m 。
完整版)桩基础设计计算书
完整版)桩基础设计计算书设计任务书设计要求:1.确定桩基持力层、桩型、桩长;2.确定单桩承载力;3.确定桩数布置及承台设计;4.进行复合桩基荷载验算;5.进行桩身和承台设计;6.进行沉降计算;7.确定构造要求及施工要求。
设计资料:场地土层自上而下划分为5层,勘查期间测得地下水混合水位深为2.1m,建筑安全等级为2级,已知上部框架结构由柱子传来的荷载,承台底面埋深为2.1m。
桩基持力层、桩型、桩长的确定:根据场地的土层特征和勘查数据,确定了桩基持力层、桩型和桩长。
单桩承载力确定:通过计算,确定了单桩竖向承载力。
桩数布置及承台设计:根据单桩承载力和建筑荷载,确定了桩数布置和承台设计方案。
复合桩基荷载验算:进行了复合桩基荷载验算,确保了基础的稳定性和安全性。
桩身和承台设计:根据桩基的荷载情况,进行了桩身和承台的设计。
沉降计算:进行了沉降计算,确保了基础的稳定性和安全性。
构造要求及施工要求:确定了基础的构造要求和施工要求,确保施工的质量和安全。
预制桩的施工、混凝土预制桩的接桩、凝土预制桩的沉桩、预制桩沉桩对环境的影响分析及防治措施:详细介绍了预制桩的施工、混凝土预制桩的接桩、凝土预制桩的沉桩、预制桩沉桩对环境的影响分析及防治措施。
结论与建议:总结了本次基础设计的主要内容,并提出了建议。
参考文献:列出了本次设计中所使用的参考文献。
根据设计任务书提供的资料,分析表明在柱下荷载作用下,天然地基基础难以满足设计要求,因此考虑采用桩基础。
经过地基勘查,确定选用第四土层黄褐色粉质粘土为桩端持力层。
同时,根据工程情况,承台埋深为2.1m,预选钢筋混凝土预制桩断面尺寸为45㎜×45㎜,桩长为21.1m。
为了确定单桩承载力,首先需要根据地质条件选择持力层,确定桩的断面尺寸和长度。
在本工程中,采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层1.0m,镶入承台0.1m,承台底部埋深2.1m。
公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)
桥梁桩基础课程设计任务书1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。
桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。
桩底沉淀土厚度t = (0.2~0.4)d 。
局部冲刷线处设置横系梁。
2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限%7.22=l ω,塑限%3.16=p ω。
标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。
3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量αMP E h 41085.2⨯=,所供钢筋有Ⅰ级钢和Ⅱ级纲。
4、计算荷载⑴ 一跨上部结构自重G=2350kN ;⑵ 盖梁自重G 2=350kN⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况;⑷公路Ⅱ级 :双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。
支座对桥墩的纵向偏心距为3.0=b m (见图2)。
计算汽车荷载时考虑冲击力。
⑸ 人群荷载:双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。
⑹ 水平荷载(见图3)制动力:H 1=22.5kN (4.5);盖梁风力:W 1=8kN (5);柱风力:W 2=10kN (8)。
采用常水位并考虑波浪影响0.5m ,常水位按45m计,以产生较大的桩身弯矩。
W2的力臂为11.25m。
活载计算应在支座反力影响线上加载进行。
支座反力影响线见图4。
2、桩基础配筋图3、桩基础钢筋数量表桥梁桩基础课程设计计算书一、恒载计算(每根桩反力计算)1、上部结构横载反力N1N1=1/2*G1=1/2*2000(30/20)^1.2=1626.7KN2、盖梁自重反力N2221135017522N G kN=⨯=⨯=3、系梁自重反力N331(0.71)(11) 3.325292N kN =⨯⨯⨯⨯⨯⨯=(?)4、一根墩柱自重反力N4低水位:()22411258.32510 5.1223.8544N kNππ⨯⨯=⨯⨯+-⨯⨯=常水位:()2241125 4.825108.6196.9144N kNππ⨯⨯=⨯⨯+-⨯⨯=5、桩每延米重N5(考虑浮力)()25 1.22510116.964N kN π⨯=-⨯⨯=二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路II 级:7.875/k q kN m =,193.5k p kN =Ⅰ、 单孔布载 1290.76R kN =Ⅲ、双孔布载 2581.52R kN =⑵、人群荷载ϕ人=1.33三、荷载组合1、计算墩柱顶最大垂直反力R组合Ⅰ:R= 恒载 +(1+u )汽ϕ汽车+ 人ϕ人群 (汽车、人群双孔布载)1175175(10.3) 1.25581.521 1.33 3.524.42408.55R kN =+++⨯⨯⨯+⨯⨯=2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力组合Ⅰ:R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21(汽车、人群单孔布载)11175175 1.3 1.25290.761 1.33 3.524.41879.282R kN =++⨯⨯⨯+⨯⨯⨯=⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)2408.5529196.912631.71kN=++=0Q = 1H + 1W + 2W 22.581040.5kN=++= 0M = 14.71H + 14.051W + 11.252W + 0.3活max R=()14.722.514.05811.25100.32408.551175175873.22kN m⨯+⨯+⨯+⨯--=⋅活max R ——组合Ⅰ中活载产生的竖向力的较大者。
桥墩桩长计算书
桥墩桩长计算书注:1、工程文件名2、桥梁通单机版7.78版本计算。
原始数据表(单位:kN-m制)稳定时的杆件计算长度系数注:1、加载方式为自动加载。
重要性系数为1.1。
2、横向布载时车道、车辆均采用1到2列分别加载计算。
车道荷载数据注:集中荷载Pk已经乘以1.2系数,使得竖直力效应最大。
双孔加载按左孔或右孔的较大跨径作为计算跨径。
梁(板)数、梁(板)横向距离每片上部梁(板)恒载反力基桩地质材料注:冲刷线以下桩基重量的扣除部分桩重,取决于桩端持力层透水性。
注:单位:地基土比例系数:kN/m4,摩阻力标准值qik或基本承载力fa0:kPa。
墩身材料桩基材料注:1、盖梁容重25kN/m3,墩身容重25,系梁容重25,桩基容重25。
水容重10。
注:1、“人群/每米”指横向1米宽度的支反力,不是总宽度对应的支反力。
总宽度为0米。
2、“总轴重”指一联加载长度内(双孔或左孔或右孔加载)的轮轴总重。
计算水平制动力使用。
3、“左、右支反力”未计入汽车冲击力的作用。
4、双孔加载车道均布荷载、集中荷载的跨径采用“单孔左或右跨不利作为计算跨径”。
5、双孔、左孔、右孔分别加载车道均布荷载为10.5、10.5、10.5kN/m,集中荷载为288、288、288kN。
6、左右支反力已计入车道、车辆荷载的提高系数0.2,即乘以1.2。
7、双孔支反力合计:人群荷载0kN/m,1辆车辆荷载516.84kN,1列车道荷载597.6kN。
8、左孔(或右孔)单孔加载时1辆车轮轴只作用在左孔(或右孔)内,同车辆的前后轮轴不进入另一孔。
见示意图。
①单孔内加载不进入另一孔+------++------+↓↓↓↓--> 轮轴不进入另一孔---+ +--------------------------------+ +--------------------------------+ +---| | 单孔内加载| | 另一孔| |---+ +--------------------------------+ +--------------------------------+ +---↑↑R计算↑↑R另孔=0 ↑↑+-----+ +-----+ +-----+| | | | 计算墩| |②可进入另一孔但只计单孔不计另一孔+------++------++------+↓↓↓↓↓↓--> 轮轴进入另一孔---+ +--------------------------------+ +--------------------------------+ +---| | 单孔内加载| | 另一孔| |---+ +--------------------------------+ +--------------------------------+ +---↑↑R计算↑↑R另孔存在但视为0参与计算↑↑+-----+ +-----+ +-----+| | | | 计算墩| |墩顶活载作用力、制动力表(表3)注:1、左右孔的支座支撑线到墩盖梁中心线的桥轴方向距离分别是0米、0米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥墩桩基础设计计
算书
1
2020年4月19日
基础工程课程设计
一.设计题目:
某桥桥墩桩基础设计计算
二.设计资料:
某桥梁上部构造采用预应力箱梁。
标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。
1、水文地质条件:
河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下:
(1)地质情况c(城轨):
2、标准荷载:
(1)恒载
2
2020年4月19日
桥面自重:N1=1500kN+8×10kN=1580KN;
箱梁自重:N2=5000kN+8×50Kn=5400KN;
墩帽自重:N3=800kN;
桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN
(2)活载
一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m;
两跨活载反力:N6=5030.04kN+8×100kN;
(3)水平力
制动力:H1=300kN,对承台顶力矩6.5m;
风力:H2=2.7 kN,对承台顶力矩4.75m
3、主要材料
承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;
4、墩身、承台及桩的尺寸
墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m3。
承台平面尺寸:长×宽=7×4.5m2,厚度初定 2.5m,承台底标高
3
2020年4月19日
4
2020年4月19日
20.000m 。
拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。
5、其它参数
结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.4
6、 设计荷载
(1)
桩、承台尺寸与材料
承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。
桩身及承台
混凝土用30号,其受压弹性模量h E =3×410MPa 。
(2)
荷载情况
上部为等跨30m 的预应力箱梁桥,混凝土桥墩,作用在承台底面中心的荷载为: 恒载及一孔活载时:
1.2(158054008009751507 4.5
2.515 1.42835.751571
3.55N KN =⨯+++-+⨯⨯⨯+⨯=∑)
1.4(300
2.7)42
3.78H KN
=⨯+=∑
[3334.3300(2.5 6.5) 2.7 4.75 2.5 1.48475.425M KN =+⨯++⨯
+⨯=∑()] 恒载及二孔活载时:
1.2(158054008009751507 4.5
2.515N =⨯+++-+⨯⨯⨯⨯∑)+1.45830.04=19905.556KN
5
2020年4月19日
桩(直径1m )自重每延米为:
q= 2
11511.781/4
KN m ⨯⨯=π(已扣除浮力) 三、计算
1、根据《公路桥涵地基与基础设计规范》反算桩长
根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,
设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为h 2,则:
[][]{}
)3(2
1
22200-++==∑h k A m l U P N i i h γσλτ
桩的设计桩径1m ,冲抓锥成孔直径为1.1m ,桩周长和面积为 U=π×1.1=3.456m ,21
0.7854
m π⨯=,假定桩长<20m 取λ=0.70
t/d<0.3取0m =0.80
查表得2K =6.0 已知 []0σ=550KPa
h 019905.556
0.55058.856 5.8914
N q l q h h =
+⋅+⋅=+ 216 4.617 3.8h 2 4.6 3.82029.8
1010h 2h 2γ⨯+⨯++--⨯=-=-
++()土换算加权重度。