人教版9年级下册数学 由三视图确定几何体(导学案)

合集下载

数学人教版九年级下册三视图的导学案

数学人教版九年级下册三视图的导学案

三视图(第二课时)一、复习回顾1、平行投影:_______________________________________________________________。

2、填空:_________________________称为物体的视图。

主视图是从______方向看到的图形,俯视图是从______方向看到的图形,主视图是从______方向看到的图形。

二、应用新知例1画出下图2所示的一些基本几何体的三视图.【解题小结】画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1、确定主视图的位置,画出主视图;2、在主视图______方画出俯视图,注意与主视图“_________”;3、在主视图_______方画出左视图.注意与主视图“________”,与俯视图“_________”。

三、双基过关1、一个几何体的主视图、左视图和俯视图是全等图形,这个几何体可能是()A、圆柱B、立方体C、三棱柱D、圆锥2、将矩形硬纸板绕他的一条边旋转180°所形成的几何体的主视图和俯视图不可能是()A、矩形,矩形B、半圆、矩形C、圆、矩形D、矩形、半圆3、你能画出下图1中几何体的三视图吗小明画出了它们的三种视图(图2),他画的对吗请你判断一下.俯视图左视图主视图4、如果一个圆锥的左视图是边长为2cm的等边三角形,则这个圆锥的体积是多少?四、小试牛刀1、一个六角螺帽的毛坯如图,底面正六边形的边长为250mm,高为200mm,内孔直径为200mm.请画出六角螺帽毛坯的三视图2、根据上面的三视图说出立体图形的名称.3、如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。

4、(1)、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。

(2)、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。

(3)、某几何体的三种视图分别如下图所示,那么这个几何体可能是()。

人教版九年级下册数学29.2 三视图导学案

人教版九年级下册数学29.2  三视图导学案

第二十九章 投影与视图师者,所以传道,授业,解惑也。

韩愈 东进学校 陈思思 29.2 三视图 第1课时 三视图 学习目标:1. 会从投影的角度理解视图的概念,明确视图与投影.2. 能识别物体的三视图,会画简单几何体的三视图. 重点:1.会从投影的角度理解视图的概念,明确视图与投影. 2. 能识别物体的三视图,会画简单几何体的三视图. 难点:能识别物体的三视图,会画简单几何体的三视图.一、知识链接1.说一说你可以从哪几个方向描绘出一个物体.2.你用上述方法描绘出的物体是唯一的吗?只从其中一个或者两个方向描绘出的物体又是唯一的吗?一、要点探究探究点1:三视图的概念及关系观察与思考 下图为某飞机的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?【归纳总结】当我们从某一方向观察一个物体时,所看到的图形叫做物体的一个视图.视图也可以看作物体在某一个方向的光线下的正投影,对于同一物体,如果从不同方向观察,所得到的视图可能不同.【典例精析】画出图中基本几何体的三视图:【归纳总结】三视图的具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图长对正;3.在主视图正右方画出左视图,注意与主视图高平齐,与俯视图宽相等;4.为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线表示对称轴.注意:不可见的轮廓线,用虚线画出.探究点2:通过三角函数值求角度画出如图所示的支架的三视图,其中支架的两个台阶的高度和宽度相等.练一练画出图中的几何体的三视图.画出图中简单组合体的三视图:练一练找出对应的的三视图. 主视图 ( )左视图 ( )俯视图 ( )二、课堂小结1.下图的几何体中,主视图、左视图、俯视图均相同的是( )2. 一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( ) A.球 B.三棱锥 C.正方体 D.圆柱3.如图摆放的几何体的俯视图是( )4. 将矩形硬纸板绕它的一条边旋转180°所形成的几何体的主视图和俯视图不可能是()A.矩形、矩形 B.半圆、矩形 C.圆、矩形 D.矩形、半圆5.下图中①表示的是组合在一起的模块,那么这个模块的俯视图是 ( )A.② B.③ C.④ D.⑤6.画出下列几何体的三视图.参考答案自主学习一、知识链接1.解:前、后、左、右、上、下2.略合作探究一、要点探究探究点1:三视图的概念及关系【观察与思考】从左面、从前面、从上面【典例精析】1 解:如图所示:【典例精析】例2 解:下图是支架的三视图.练一练解:【典例析】例3 解:三视图如下:练一练解:A A B当堂检测1.D2.D3.B4.C5.A6.解:【素材积累】1、冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒原上,闪着寒的银光。

新人教版九年级下册初中数学 课时2 由三视图确定几何体 教案(教学设计)

新人教版九年级下册初中数学 课时2 由三视图确定几何体 教案(教学设计)

第二十九章投影与视图29.2 三视图课时2 由三视图确定几何体【知识与技能】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.【过程与方法】1.经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象能力.2.通过观察探究等活动使学生能根据物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系.【情感态度与价值观】1.使学生学会关注生活中有关投影的数学问题,提高数学的应用意识.2.在探究三视图向立体图形转化的过程中,使学生感受数学的和谐美,培养学生动手实践能力,发展空间想象能力.3.通过学生对“三视图”的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.根据物体的三视图描述出几何体的基本形状或实物原型.根据物体的三视图想象几何体的形状.多媒体课件.导入一:【复习提问】1.画一个立体图形的三视图时要注意什么?2.说一说直三棱柱、圆柱、圆锥、球的三视图.【师生活动】教师提出问题,学生回顾上节课内容并作出回答,教师点评.导入二:【课件展示】动手操作:下图是一根钢管,画出它的三视图.【师生活动】学生独立完成后小组交流答案,小组代表板演,教师点评,最后强调易错点:画图时规定,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.解:如图是钢管的三视图,其中的虚线表示钢管的内壁.[设计意图]通过有针对性的复习引入新课,让学生初步了解研究三视图是生活的需要,激发学生的学习兴趣,同时为本节课的学习做好铺垫.[过渡语]上节课我们讨论了由立体图形(实物)画出三视图,那么由三视图能否想象出立体图形(实物)呢?这就是我们这节课要探究的内容.一、观察体验欣赏机械制图中三视图与对应的立体图形的图片,说说三视图与对应的立体图形有怎样的关系.【师生活动】教师出示图片,学生观察,探讨二者之间的关系,初步感知由图想物的过程.[设计意图]学生通过观察探讨三视图与立体图形之间的对应关系,培养学生的空间观念,为新课的探索做好铺垫,同时通过认识三视图与其对应的立体图形在工件生产中的作用,使学生感受知识的应用价值,激发学生学习数学的兴趣.二、探究新知如图,分别根据三视图说出立体图形的名称.思路一学生通过自主学习解答.【师生活动】学生独立思考后小组合作交流,尝试画出立体图形,板书答案,教师巡视过程中帮助有困难的学生,点评结果,强调注意事项.解:(1)从三个方向看立体图形,视图都是矩形,可以想象出这个立体图形是长方体,如图(1).(2)从正面、侧面看立体图形,视图都是等腰三角形,从上面看,视图是带圆心的圆,可以想象这个立体图形是圆锥,如图(2).【归纳】由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.思路二教师引导分析解答.【思考】(1)长方体与圆锥的三视图分别是什么形状?(2)如果一个物体的三个视图均是长方形,那么这个物体是什么形状?(3)如果一个物体的主视图和左视图是等腰三角形,俯视图是带圆心的圆,那么这个物体的形状是什么?(4)由三视图想象几何体,分别通过观察哪个视图确定几何体的前面、左面和上面?【师生活动】学生在教师提出的问题下思考回答,然后尝试画出立体图形,教师及时点评,最后归纳总结.解:(同思路一)【归纳】(同思路一)根据物体的三视图(如图),描述物体的形状.教师引导分析:由主视图可知,物体正面是;由俯视图可知,由上向下看物体有两个面的视图是,且有一条棱(中间的实线表示)可见到,两条棱(虚线表示)被遮挡;由左视图知,物体的左侧有两个面的视图是,且有一条棱(中间的实线表示)可见到.综合各视图可知,物体的形状是. 【师生活动】教师引导学生总结由图想物的基本方法,学生结合例题小组讨论交流,师生共同归纳总结.解:物体是正五棱柱形状的,如下图.【追问】仔细观察以上两题的解题思路,由视图还原立体图形时应注意什么? 【师生活动】学生独立思考后小组合作交流,师生共同归纳结论.【结论】主视图反映物体的长和高,主要提供正面的形状;左视图反映物体的高和宽,主要提供左侧面的形状;俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)教师引导分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际生产中,三视图和展开图往往结合在一起使用.解决本题的思路是先由三视图想象出密封罐的形状,再进一步画出展开图,从而计算面积.【思考】(1)根据三视图,该物体的形状是什么?(2)该立体图形的展开图是什么?(3)如何求立体图形展开图的面积?(1)【师生活动】教师引导学生分析解题思路,学生思考问题后独立完成,小组内交流答案,教师巡视过程中帮助有困难的学生,对学生的答案进行点评,规范解题格式.解:由三视图可知,密封罐的形状是正六棱柱(如图(1)).密封罐的高为50mm,底面正六边形的直径为100mm,边长为50mm,如图(2)是它的展开图.(2)由展开图可知,制作一个密封罐所需钢板的面积为:6×50×50+2×6××50×50sin60°=6×502×≈27990(mm2).[设计意图]学生在教师的引导下分析、观察、思考、想象、讨论,由三视图得出对应的实物,进一步掌握由图想物的技能,培养学生的空间想象能力,发展学生的空间观念,同时小组合作交流,提高学生与他人合作的能力.例3是例1、例2的拓展,由图到物,再由物到图,提高学生分析问题、解决问题的能力.[知识拓展](1)由一个视图不能确定物体的空间形状,根据三视图描述几何体形状或实物原型时,必须将各视图对照起来看.(2)一个摆好的几何体的三视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性.例如,正放的正方体的主视图是正方形,但主视图是正方形的几何体还可能是长方体、圆柱等.1.由三视图到立体图形.(1)由一个视图不能确定物体的空间形状,根据三视图描述几何体形状时,必须将各视图对照起来看.(2)一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体或实物时,它有多种可能.(3)对于较复杂的物体,由三视图想象物体的原型时,应搞清三个视图之间的前后、左右、上下的对应关系.2.由三视图还原立体图形时应注意:(1)主视图反映物体的长和高,主要提供正面的形状;(2)左视图反映物体的高和宽,主要提供左侧面的形状;(3)俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.第2课时1.观察体验2.探究新知例1例2例3一、教材作业二、课后作业【基础巩固】1.如图是某几何体的三视图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥2.如图是某几何体的三视图,则该几何体的形状是()A.长方体B.圆锥C.圆柱D.三棱柱3.一个几何体的三视图如图,则该几何体可能是()4.已知一个正棱柱的俯视图和左视图如下图,则其主视图是()5.某几何体的三视图如图,则组成该几何体的小正方体的个数是()A.3B.4C.5D.66.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8桶B.9桶C.10桶D.11桶7.某几何体的三视图如图,则组成该几何体共用了个小方块.8.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图(单位:mm),按照三视图制作每个密封罐所需钢板的面积至少是.9.下图是由一些小正方体搭成的几何体的俯视图,小正方形上的数字表示在该位置的小正方体的个数,试画出它的主视图和左视图.【能力提升】10.如图是由一些大小相同的小正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数可能是.11.如图是一个几何体的三视图,其中主视图、左视图都是腰长为13cm,底边长为10cm的等腰三角形,则这个几何体的侧面积是cm2.12.如图是一个几何体的三视图,则这个几何体的表面积是.13.已知某几何体的三视图如图,求该几何体的表面积.【拓展探究】14.如图是一个几何体的三视图.(单位:厘米)(1)写出这个几何体的名称;(2)根据图中数据计算这个几何体的表面积.【答案与解析】1.C解析:∵三视图中有两个视图为矩形,另外一个视图的形状为圆,∴这个几何体为圆柱.故选C.2.D解析:根据主视图和左视图为矩形,俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.3.C解析:主视图和左视图上边是等腰三角形,下边是矩形,俯视图为带圆心的圆,所以该几何体上边是圆锥,下边是圆柱.故选C.4.D解析:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有两条实线,一条虚线.故选D.5.B解析:首先可以判断该几何体的底层共有3个小正方体,而根据主视图与左视图可知第二层有1个小正方体,故共有4个小正方体.故选B.6.B解析:根据三视图易得第一层有4桶,第二层最少有3桶,第三层有2桶,所以至少共有9桶.故选B.7.7解析:观察该几何体的三视图发现该几何体共有三层,第一层有三个,第二层有两个,第三层也有两个,故该几何体共有3+2+2=7(个)小方块.8.20000πmm2解析:由三视图可知茶叶罐的形状为圆柱,并且茶叶罐的底面直径2R为100mm,高H为150mm,每个密封罐所需钢板的最少面积即为该圆柱体的表面积,S =2πR2+表2πRH=2π×502+2π×50×150=20000π(mm2),故制作每个密封罐所需钢板的面积至少为20000πmm2.9.解:如图.10.3或4或5解析:根据主视图与左视图知,第一行的正方体有1(只有右边有)或2(左右都有)个,第二行的正方体可能有2(左边有)或3(左右都有)个,1+2=3,1+3=4,2+2=4,2+3=5,故可能有3,4,5个.11.65π解析:依题意知母线长l=13,底面半径r=5,则由圆锥的侧面积公式得S=πrl=π·5·13=65π.12.π+3π解析:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是2,高是2,∴圆锥的母线长为=,∴圆锥的侧面积是π×1×=π;下面是一个圆柱,圆柱的底面直径是2,高是1,∴圆柱表现出来的表面积是π×12+2π×1×1=3π,∴空间组合体的表面积是π+3π. 13.解:由三视图可知该几何体的下面是长、宽、高分别为4,4,2的长方体,上面为四棱锥,且高是2,底面为边长是4的正方形,∴S表面积=4×2×4+4×4+4××4×2=48+16.14.解:(1)根据三视图的知识,主视图以及左视图都是等腰三角形,俯视图为带圆心的圆,故可判断该几何体是圆锥.(2)表面积S=S扇形+S圆=πrl+πr2=12π+4π=16π(平方厘米),即该几何体的表面积为16π平方厘米.本节课课前的复习提问,为本节课的学习做好铺垫,以生活实例导入新课,让学生初步了解三视图是生活的需要,激发学生学习兴趣.探究已知三视图和实物之间的关系,学生经过观察、讨论,初步了解三视图与物体之间的对应关系,然后探究新知环节,以课本三个层层递进的例题展开,以学生活动为主,通过观察、思考、讨论、操作、归纳等数学活动,探究出由三视图得到立体图形的一般思路和方法,体现了学生在课堂上的主体作用.学生在课堂上思维活跃,积极发言,经历知识的形成过程,体验成功的快乐,达到提高能力的目的.本节课的重点是由三视图还原立体图形,认识三视图与立体图形之间的关系,教学过程中注重了教师的引导和学生的主体作用在课堂上的展示,重点设计在自主探究、合作交流等活动上,过于追求课堂形式,学生数学能力尤其是空间想象能力,没有得到很好的发挥,课堂形式是为了让学生更好地掌握知识、提高能力,所以在以后的教学中要尽量让两者有机结合,重在通过课堂学习提高学生能力.本节课是上节课由立体图形画三视图的一个延续,主要探究由三视图画对应的立体图形,重点培养学生的空间想象能力,所以在教学设计中,复习上节课知识,为本节课的学习做好铺垫,然后从生活实例的三视图与实物对应到由三视图画出立体图形,再到由三视图求立体图形的表面积,由浅入深,由易到难引导学生观察、分析、讨论、归纳,得出由图到物的一般思路和方法,课堂上注重学生的参与性,多设计数学教学活动,让学生经历知识的形成过程,从而促进数学能力的提升.。

人教版九年级数学下册 29.2 3视图 精品导学案3 新人教版

人教版九年级数学下册 29.2 3视图 精品导学案3 新人教版

三视图课题:29.2三视图(3)序号:学习目标:1、知识和技能:学会根据物体的三视图描述出几何体的基本形状或实物原型。

2、过程和方法:经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。

3、情感、态度、价值观:培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。

学习重点:根据三视图描述基本几何体和实物原型。

学习难点:根据三视图想象基本几何体实物原型。

导学方法:课时:导学过程一、课前预习:预习课本第P112——114的有关内容,尝试完成《导学案》的教材导读和自主测评。

二、课堂导学:1、导入前面我们讨论了由立体图形(实物)画出三视图,那么由三视图能否也想象出立体图形(实物)呢?2、出示任务自主学习阅读课本第P112——114的例4、例5的有关内容,并完成下列问题:1)根据下面的三视图你能描述这个几何体的形状吗2)由三视图想象立体图形时,可以由三视图想象到立体图形的哪些面?3)三视图中的虚线代表什么线?3、合作探究见《导学》P120难点探究三、展示与反馈:检查自学情况,解释学生疑惑。

四、学习小结:1、一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。

例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.3、对于较复杂的物体,由三视图想象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系.五、达标检测1、课后练习2、《导学案》自主测评3、画出符合下列三视图的小立方块构成的几何体。

课后作业:板书设计:课题:29.2三视图(3)由三视图想象立体图形,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左面,然后再综合起来考虑整体图形。

课后反思:教学反思在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

人教版九年级下数学29.2三视图(1)导学案

人教版九年级下数学29.2三视图(1)导学案

第二十九章投影与视图§29.2三视图——第一课时(P94-P97)一、自主探究(看书理解、记忆,把重点知识句划在书上,并把课后简单练习完成在书上)1.回顾: ________________________________ 叫正投影.2•当我们从某一个角度观察一个物体时,______________________ 叫做物体的一个视图.视图也可以看做___________________ .其中正对着我们的叫做__________ ,正面下方的叫做 ________ ,右边的叫做___________ .3._______________________________________________________ —个物体在三个投影面内同时进行正投影,_____________________________________ ,叫做主视图;叫做俯视图; _______________ 叫做左视图.4.将三个投影面展开在一个平面内,得到这一物体的一张三视图.注意:(1)主视图反映的是物体的长和高;俯视图反映的是物体的长和宽;左视图反映的是物体的宽和高. 因此,在画三种视图时,主视图与俯视图要长对正,主视图与左视图要高平齐,俯视图与左视图要宽相等.(2)三视图与投影密切相关,某些物体的三视图实际上是该物体在一定条件下所形成的平行投影,某些物体的主视图、俯视图、左视图可以看成在一束平行光线分别从物体的正面,上面,左面照射下,在垂直于这一方向的平面上所形成的投影•、合作探究(自主学习时完成,课上交流展示)1•小明从正面观察如图1所示的两个物体,看到的是()23OD—U图L D.2.如图2,水杯的俯视图是()W23.我们从不同的方向观察同一物体时,的左面看这个几何体的所得左视图是(可以看到不同的平面图形, 如图3,从图、探究应用(课上完成并交流展示) 例1.画出右图所示的一些基本几何体的三视图 解:例2.画出如图所示的支架(一种小零件)的三视图•支架的两个台阶的高度和宽度 都是同一长度出它的三视图解:(补充)例•右图是一根钢管的直观图,画出它的三视图解:总结:基本几何体包括圆柱、圆锥、球、直棱柱、圆台,它们的三视图是画复杂 几何体三视图的基础•基本几何体的三视图:(1) 正方体的三视图都是正方形.(2) 圆柱的三视图中有两个是长方形,另一个是圆 .B.C. D.(3)圆锥的三视图中有两个是三角形,另一个是圆和一个点.(4)四棱锥的三视图中有两个是三角形,另一个是矩形和它的对角线(5)球体的三视图都是圆形.四、巩固再现:P97练习五、能力提升:1.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是(2.如图所示,画出该物体的三视图六、探究小结:1•你学会了什么? ____________________________________________________________2.你存在的问题?____________________________________________________________。

29.2.3 由三视图确定几何体的面积或体积导学案九年级数学下册教材配套教学课件(人教版)

29.2.3 由三视图确定几何体的面积或体积导学案九年级数学下册教材配套教学课件(人教版)

人教版九年级下册第29章《投影与视图》导学案[29.2.3 由三视图确定几何体的面积或体积]1.能熟练地画出物体的三视图和由三视图想象出物体形状,进一步提高空间想象能力.(重点)2.由三视图想象出立体图形后能进行简单的面积或体积的计算.(难点)复习回顾根据三视图确定几何体的基本思路:由三视图想象立体图形时,先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面的局部形状,然后再综合起来考虑整体图形.【练习】如图所示是一个立体图形的三视图,(1) 请根据视图说出立体图形的名称,并画出它的展开图.(2) 请指出三视图、立体图形、展开图之间的对应边.典例解析【例1】某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).【归纳】三视图的有关计算1. 三种图形的转化:2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.(2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分.(3) 最后根据已知数据,求出展开图的面积.【针对练习】如图是一个几何体的三视图.根据图示,可计算出该几何体的侧面积为 .【例2】如图是一个几何体的三视图,根据所示数据,求该几何体的表面积和体积.【针对练习】一个机器零件的三视图如图所示(单位:cm),这个机器零件是一个什么样的立体图形?它的体积是多少?达标检测1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为 ( )A. 6B. 8C. 12D. 242. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得这个几何体的体积为 .3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为_______cm2.4. 如图是一个由若干个棱长为1cm的正方体构成的几何体的三视图.(1) 请写出构成这个几何体的正方体的个数为;(2) 计算这个几何体的表面积为.5. 如图是一个几何体的三视图,试描绘出这个零件的形状,并求出此三视图所描述的几何体的表面积.6. 某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为1的矩形;左视图是半径为1的四分之一圆以及高为1的矩形;俯视图是半径为1的圆,求此图形的体积 (参考公式:V球=43πR3).。

新人教版九年级数学下册《由三视图确定几何体》精品导学案

新人教版九年级数学下册《由三视图确定几何体》精品导学案

29.2 三视图第2课时由三视图确定几何体【学习目标】1、学会根据物体的三视图描述出几何体的基本形状或实物原型。

2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。

【学习重点】根据三视图描述基本几何体和实物原型。

【学习难点】根据三视图想象基本几何体实物原型。

【学习过程】【复习引入】前面我们讨论了由立体图形(实物)画出三视图,那么由三视图能否也想象出立体图形(实物)呢?【合作探究】1.完成课本例4:根据下面的三视图说出立体图形的名称.分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.(1)从三个方向看立体图形,图象都是矩形,可以想象出:整体是,如图(1)所示;(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看,图象是圆;可以想象出:整体是,如图(2)所示.2.完成课本例5根据物体的三视图,如下图(1),描述物体的形状.分析.由主视图可知,物体正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到。

两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的.且有一条棱〔中间的实线)可见到,综合各视图可知,物体是形状的,如上图(2)所示. 3.画出符合下列三视图的小立方块构成的几何体。

分析:首先应由三种视图从三个方向确定分别有几层,每层有几个,每个小正方体的具体位置在哪儿?画出之后再看一是否和所给三视图保持一致【自主探究】完成课本99页练习【归纳总结】1、一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。

例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.3、对于较复杂的物体,由三视图想象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系.【布置作业】教材习题29.2 必做题: 4,5学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。

29.2由三视图确定几何体(教案)-2022-2023学年九年级下册初三数学同步备课(人教版)

29.2由三视图确定几何体(教案)-2022-2023学年九年级下册初三数学同步备课(人教版)
-强调三视图在几何体认识中的应用,使学生能够将理论知识与实际操作相结合。
举例解释:例如,讲解主视图时,重点强调它能够展示几何体的前后面;左视图则展示左右面;俯视图展示上下底面。通过具体的几何体示例,让学生理解三视图之间的互补关系,以及如何综合这些视图来完整地描述一个几何体。
2.教学难点
-理解三视图之间的转换关系,尤其是当几何体的某些面在某一视图中不可见时的处理方法。
首先,对于三视图之间的相互关系,部分学生仍然存在理解上的困难。在讲授过程中,我意识到需要更多具体实例和实物模型的展示来帮助学生建立起三视图与几何体之间的联系。在今后的教学中,我打算增加一些互动环节,如让学生亲自制作和观察三视图模型,以提高他们的空间想象力。
其次,在实践活动和小组讨论中,我发现学生在解决问题时,有时会忽略三视图中的某些细节。这说明学生在观察和分析视图时,还需加强对细节的关注。为此,我计划在下一节课中,特别强调这一点,引导学生学会从细节中捕捉关键信息。
29.2由三视图确定几何体(教案)-2022-2023学年九年级下册初三数学同步备课(人教版)
一、教学内容
本节课选自《人教版初中数学九年级下册》第29章第2节“由三视图确定几何体”。教学内容主要包括以下两个方面:
1.理解主视图、左视图、俯视图的概念,掌握三视图的绘制方法。
2.学会通过三视图来确定几何体的种类和形状,培养空间想象力和逻辑思维能力。
-培养学生从三视图到几何体的空间想象能力,特别是对于复杂或不规则的几何体。
-解决实际问题时,如何将三视图中的线段、角度等信息准确地对应到几何体的具体尺寸和位置上。
-对于三视图中的隐藏线、虚线的理解,以及如何正确绘制和识别这些线条。
举例解释:例如,对于圆柱的三视图,学生可能难以理解为什么在主视图中看不到底面边缘,而需要在俯视图中表示。教师需要通过具体的图示和模型,帮助学生理解圆柱的侧面在主视图中表现为一条直线,而底面在俯视图中完整展示。此外,对于隐藏线的处理,教师应详细解释在何种情况下需要画隐藏线,以及如何正确地画出来,以培养学生的空间感和图形表达能力。

人教版九年级数学下册29.2:三视图 导学案设计

人教版九年级数学下册29.2:三视图  导学案设计

人教版九年级数学下册第二十九章29.2三视图导学案学习目标1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.预习反馈阅读教材P94~97,完成下列问题.1.当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图,也可以看作物体在某一方向光线下的正投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在正下方,左视图在右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.5.如图是一个由五个小正方体组成的立体图形,请你画出从三个不同的方向看这个立体图形所得到的平面图形. 解:如图所示.6.在下列几何体中,主视图是圆的是(D)A B C D例题讲解例1画出图中基本几何体的三视图.圆柱正三棱柱球(1)(2)(3)【分析】画这些基本几何体的三视图时,要注意从三个方面观察它们.具体方法为:(1)确定主视图的位置,画出主视图;(2)在主视图正下方画出俯视图,注意与主视图“长对正”;(3)在主视图正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”;(4)为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线(———)表示对称轴. 【解答】如图所示.圆柱正三棱柱球(1)(2)(3)【跟踪训练1】下列四个立体图形中,左视图为矩形的是(B)①长方体②球③圆锥④圆柱A.①③B.①④C.②③D.③④例2画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【分析】支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置关系.【解答】如是支架的三视图.【点拨】对于由几种基本几何体组合而成的组合体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.【跟踪训练2】一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图.课后巩固训练1.小明从正面观察如图所示的两个物体,看到的是(C)A B C D2.左下图表示一个用于防震的L形包装泡沫塑料,当俯视这一物体时,看到的图形形状是(B)A B C D3.如图,从不同方向看下面左图中的物体,下图中三个平面图形分别是从哪个方向看到的?正面从上面看从前面看从左面看4.如图是由5个大小相同的小正方体组合成的简单几何体.请在下面方格纸中画出它的三个视图.解:如图所示.课堂小结1.画物体的三视图时,先确定主视图的位置,在主视图的右边画左视图,在主视图的正下方画俯视图.2.画物体的三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.3.画简单组合体的三视图时,要把组合体分割成规则的几何图形.第2课时由三视图确定几何体学习目标进一步明确三视图的意义,由三视图想象出实物原型.预习反馈阅读教材P98~99,完成下列问题.1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形前面、上面、左侧面,然后再结合起来考虑整体图形.2.一个立体图形的俯视图是圆,则这个图形可能是圆柱.3.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥例题讲解例1如图,分别根据三视图(1)(2)说出立体图形的名称.【分析】由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.【解答】(1)从三个方向看立体图形,视图都是矩形,可以想象这个立体图形是长方体,如图(1)所示.(2)从正面、侧面看立体图形,视图都是等腰三角形;从上面看,视图是圆;可以想象这个立体图形是圆锥,如图(2)所示.【点拨】由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.【跟踪训练1】如图是某个几何体的三视图,则该几何体的形状是(D)A.长方体B.圆锥C.圆柱D.三棱柱例2如图是一个几何体的三视图,则该几何体是(C)A B C D【点拨】(1)观察三视图,看其可分解为哪些简单几何体的三视图;(2)想象出各简单几何体;(3)根据三视图反映的位置关系组合简单几何体便得物体原形;(4)可对想象出的物体作三视图检验正误.注意虚线与实线的区别.【跟踪训练2】一个几何体的三视图如图所示,那么这个几何体是(D)A B C D课后巩固训练1.一个几何体的三视图如图所示,则这个几何体是(B)A.三棱锥B.三棱柱C.圆柱D.长方体2.如图是某个几何体的三视图,则该几何体是(A)A.长方体B.三棱柱C.圆柱D.圆台3.如图是一个几何体的三视图,则此三视图所对应的直观图是(B)A B C D4.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.课堂小结学生试述:这节课你学到了些什么?第3课时 由三视图确定几何体的表面积或体积学习目标能根据几何体的三视图求几何体的侧面积、表面积、体积等,进而解决实际生活中的面积、体积方面的用料问题.预习反馈阅读教材P99~100,完成下列问题.1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)4.如图是一个几何体的三视图,则这个几何体是(B)A.正方体B.长方体C.三棱柱D.三棱锥 5.如下左图是一个长方体包装盒,则它的平面展开图是(A)A B C D例题讲解例 根据如图所示的三视图求几何体的表面积,并画出物体的展开图.【解答】 由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成.则圆锥,圆柱底面半径为r =5. 由勾股定理,得圆锥母线长R =5 2. S 圆锥侧面积=12lR =12×10π×52=252π.∴S 表面积=π×52+10π×20+252π=25π+200π+252π =225π+252π =(225+252)π.该物体的展开图如图所示.【点拨】 由物体三视图求它的表面积:(1)由三视图想象出物体的形状;(2)画出物体的展开图;(3)根据几何体的表面积计算公式求表面积.由展开图确定三视图:(1)由表面展开图确定物体的形状;(2)画出物体的三视图;(3)图或题中所给数据的合理转化.【跟踪训练】一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm. ∴菱形的边长为(32)2+(42)2=52(cm), 棱柱的侧面积为52×8×4=80(cm 2).课后巩固训练1.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为(C)A.2πB.12π C.4π D.8π 2.长方体的主视图与俯视图如图所示,则这个长方体的体积是(C)A.52B.32C.24D.93.如图是一个几何体的三视图(含有数据),则这个几何体的展开图侧面积等于(A)A.2πB.12π C.4 D.24.如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)解:这个立体图形为圆柱,其中高是10,底面圆的半径为5,所以体积为π×52×10=250π.课堂小结1.由三视图求几何体的表面积和体积,可首先根据三视图想象出几何体,然后进行几何体的相关计算.2.利用几何体的表面展开图可以计算几何体的表面积以确定实际生产中的用料问题,还可以解决一些最优化问题,可以起到化曲折为平直的作用;用到“空间问题平面化”的数学思想.。

人教版数学九年级下册 由三视图确定几何体(导学案)

人教版数学九年级下册 由三视图确定几何体(导学案)

29.2三视图知人者智,自知者明。

《老子》原创不容易,【关注】店铺,不迷路!前事不忘,后事之师。

《战国策·赵策》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!灵师不挂怀,冒涉道转延。

——韩愈《送灵师》第2课时由三视图确定几何体一、导学1.课题导入情景:根据下图中的椅子的视图,工人就能制造出符合设计要求的椅子.你能说明其中的数学道理吗?由于三视图不仅反映了物体的形状,还反映了各个方向的尺寸大小,设计人员可以把自己构思的创造物用三视图表示出来,再由工人制造出符合各种要求的机器、工具、生活用品等,因此三视图在许多行业有着广泛的应用.这节课我们研究由三视图想象几何体的问题.(板书课题)2.学习目标能由三视图描述几何体的基本形状或实物原型.3.学习重、难点根据物体的三视图描述出几何体的基本形状或实物原型.4.自学指导(1)自学内容:教材P98~P99例3和例4.(2)自学时间:8分钟.(3)自学方法:阅读、观察、归纳.(4)自学参考提纲:①由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.②教材P98例4中,由主视图知,物体的正面是正五边形;由俯视图知,由上向下看物体有两个面的视图是矩形,它们的交线是一条棱,可见到,另有两条棱被遮挡;由左视图知,物体的左侧有两个面的视图是矩形,它们的交线是一条棱,可见到.综合各视图可知,该物体是正五棱柱形状的.③由三视图想象实物形状:④根据三视图描述物体的形状:这是一个由半圆柱(上部)和长方体(下部)组合而成的几何体.⑤下图是由几个小立方体所搭成的几何体的主视图和俯视图,小正方形中的数字表示该位置上的小立方体的个数.确定x、y的值;完成这个几何体的左视图.x=3,y=2;这个几何体的左视图如图所示.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:明了学生能否根据三视图发挥自己的想象得到相应的实物原型.(2)差异指导:根据学情对学困生进行个别或分类指导.2.生助生:小组内相互交流、研讨、订正.四、强化1.解题要领.2.点4名学生展示自学参考纲第③题,然后老师给出点评;点2名学生口答自学参考提纲第④、⑤并评.五、评价1.学生学习的自我评价:这节课你有哪些收获?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时教学要充分发挥学生的空间想象能力和动手能力,对于一些较复杂的立体图形,可借助多媒体进行展示,使图形变得更加直观.根据物体的三视图想象物体的形状,可由俯视图确定物体在平面上的形状,然后再根据左图、主视图嫁接出它在空间里的形状,从而确定物体的形状.鼓励生多、多练,提高自己的空间想象能力.一、基础巩固(70分)1.(10分)一个立体图形的三视图是一个正方形和两个长方形,则这个图形是(B)A.正方体B.长方体C.四面体D.四棱锥2.(10分)若一个物体的俯视图是圆,则这个物体可能的形状是(D)①球②圆柱③圆锥A.①B.②C.①②D.①②③3.(10分)在下面的个几何体,它们各自的左视图与主视图不一样的是(B)ABC4.(10分)如图是一个几何体的三视图,则该几何体的形状正六棱柱.第4题图第5题图5.(10分)由若干个相同的小立方体搭成的几何体的三视图图所示,则搭成这个几体的小立方体的个数是4.6.(10分)如图①是一个几何体的主视图和左视图.某班同学在探它的俯视图时,画出了图②的几个图形,其中,可能是该几何俯视图的有a、b、ce、f.图①图②7.(10分)某几何体的三视图如图所示,画出该几何体.解:如图所示.二、综合应用(2分)8.(10分)某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,俯视图如图所示,则此工件的左视图是(A)9.(10分)右图表示一个由相同小立方体搭成的几何体的俯图,小正方形中的数字表示该位置上小立方体的个数,则该何体的主视图是(C)三、拓展延伸(10分)10.(10分)由5个相同的小正方体搭成的几何体的俯视图如图所示,这个几何体有几种搭法?解:一共有3种搭法.【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。

人教版数学九年级下册29.2.2由三视图描述几何体教案

人教版数学九年级下册29.2.2由三视图描述几何体教案
3.重点难点解析:在讲授过程中,我会特别强调三视图的识别和转换这两个重点。对于难点部分,如视图之间的对应关系和几何体的绘制,我会通过举例和逐步引导来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三视图相关的实际问题,如如何从给定的三视图中确定几何体的尺寸。
五、教学反思
在今天的教学中,我发现学生们对于三视图的概念和运用有着不错的基础,但在具体的绘制和识别过程中,还是存在一些困难。我尝试通过案例分析和实验操作来帮助他们理解,感觉效果还不错,但我觉得还可以做得更好。
在理论介绍部分,我注意到了一些学生在理解主视图、左视图、俯视图之间的相互关系时显得有些吃力。我意识到,可能需要更多的直观教具或者动画来展示这些视图是如何相互转换的。这样,他们可以更直观地理解视图之间的联系,而不是仅仅依靠想象。
-对于给定三视图求解几何体参数的问题,学生可能不知道如何入手,教师需要教授一些解题技巧和方法,如如何从视图中读取信息、如何利用已知信息推断未知部分等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“由三视图描述几何体”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过建筑图纸或者立体图形的展示?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三视图的奥秘。
3.培养学生的几何直观和审美意识,通过对几何体的观察与描绘,感受几何图形的美,激发对数学学科的兴趣和热爱。
4.培养学生的合作交流能力,通过小组讨论、互动交流等形式,促进学生分享观点,共同解决问题,提高团队协作能力。
三、教学难点与重点
1.教学重点
-理解和掌握主视图、左视图、俯视图的概念及其相互关系。

2022年人教版数学九下《三视图》导学案(精品)

2022年人教版数学九下《三视图》导学案(精品)

三视图课题: 29.2三视图〔1〕序号:学习目标:1、知识和技能:会从投影角度理解视图的概念。

会画简单几何体的三视图。

2、过程和方法:通过具体活动,积累观察,想象物体投影的经验。

培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。

3、情感、态度、价值观:在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。

学习重点:从投影的角度加深对三视图概念的理解。

会画简单几何体的三视图。

学习难点:对三视图概念理解的升华。

正确画出三棱柱的三视图和小零件的三视图。

导学方法:课时:导学过程一、课前预习:预习课本第P108——110的有关内容,尝试完成《导学案》的教材导读和自主测评。

二、课堂导学:1、导入还记得苏轼的《题西林壁》这首诗吗?它告诉我们从不同的方向看同一物体时,看到的图象可能不一样?这节课我们就来学习从不同的方向看物体。

2、出示任务自主学习阅读课本第P108——110的有关内容,尝试答复以下问题:什么叫视图?什么是三视图三视图包括哪些视图?学习三视图的意义是什么?三视图的位置有什么规定?5〕画三视图时我们应注意什么?6〕阅读例1,反思三视图的具体画法,你还知道哪些几何体的三视图?(三视图取决于物体的摆放位置) 3、合作探究见《导学》P115难点探究三、反应与反应:检查自学情况,解释学生疑惑。

四、学习小结:1、视图:从某一角度观察一个物体时,所得到的图象叫做物体的一个视图。

2、三视图的定义3、三视图的位置规定4、三视图的具体画法画这些根本几何体的三视图时,要注意从三个方面观察它们.具体画法为:.确定三视图的位置,画出主视图;.在主视图正下方画出俯视图,注意与主视图“长对正〞。

.在主视图正右方画出左视图.注意与主视图“高平齐〞,与俯视图“宽相等〞.五、达标检测1、课后练习2、《导学案》自主测评3、画出图中的几何体的三视图。

题后小结:画三视图时,看得见的轮廓线通常画成实线,看不见的局部通常画成虚线。

人教版数学九年级下册 29.2三视图(第四课时) 导学案

人教版数学九年级下册 29.2三视图(第四课时) 导学案

29.2三视图(第四课时)【学习内容】教材P99-100【学习目标】1、学会根据物体的三视图描述出几何体的基本形状或实物原型。

2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。

3、了解将三视图转换成立体图形在生产中的作用,使学生体会到所学知识有重要的实用价值。

【学习重点】根据三视图描述基本几何体和实物原型及三视图在生产中的作用。

【学习难点】根据三视图想象基本几何体实物原型。

【学习过程】【问题情境】让学生欣赏事先准备好的机械制图中三视图与对应的立体图片,借助图片信息,让学生体会本章知识的价值。

并借此可以讲述一下现在一些中专、中技甚至大学开设的模具和机械制图专业的课程都需要这方面的知识,激发学生学习兴趣,导入本课。

【自主探究】根据下列几何体三视图,画出它们的表面展开图:(1解:(1)该物体是:(2)该物体是:画出它的展开图是:画出它的展开图是:【合作探究】例5某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积。

问题:要想救出每个密封罐所需钢板的面积,应先解决哪些问题?小组讨论结论:1、应先由三视图想象出物体的;2、画出物体的;解:该物体是:画出它的展开图是:它的表面积是:变式训练:如图,上下底面为全等的正六边形的礼盒,其主视图与左视图均由矩形构成,主视图中大矩形的边长如图所示,左视图中包含两个全等的矩形。

如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A、120cmB、395.24cmC、431.76cmD、480cm【归纳总结】物体的形状、物体的三视图、物体的展开图三者相互联系、相互转化,我们可以由三构造几何原型,进而画出它的展开图,还可求表面积和体积等。

【学以致用】1、在一仓库里堆放着若干相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来。

如图所示,则这堆正方体货箱共有箱。

2、如图是一个由若干个棱长相等的正方体构成的几何体的三视图。

人教版初三数学下册三视图导学案.2_三视图教案

人教版初三数学下册三视图导学案.2_三视图教案

三视图(一)教学设计一、学习目标1、会从投影的角度理解视图的概念2、会画简单几何体的三视图3、培养实践动手能力,发展空间想象能力二、教学重、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图难点:对三视图概念理解及画简单的三视图三、学习过程(一)温故知新什么是投影?什么是正投影?(二)创设情境,引入新课1.我们看在一次军事演习中展示了各种飞机图案,(聪明的同学,你发现了吗?我们总是从哪几个角度来展示的.)学生自己总结教师总结:在生活中我们应从不同角度,多方面地去看待一件事物,分析一件事情。

但是在数学中我们只从三个不同方向看同一物体,所以,每一个物体都有三视图。

2、物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影。

如图(1),我们用三个互相垂直的平面作为投影面,正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图俯视图的宽相等通过以上的学习,你有什么发现? (三)探究三视图的特征: 1、物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图2、长对正、高平齐3、宽相等主视图左视图俯视图从左面看(四)拓展延伸提升能力1.、画出如图所示四棱锥的三视图。

人教版九年级下册数学人教版九年级下册数学 第1课时 三视图导学案

人教版九年级下册数学人教版九年级下册数学   第1课时  三视图导学案

29.2 三视图第1课时三视图【学习目标】(一)知识技能:1.会从投影角度理解视图的概念。

2.会画几何体的三视图。

(二)数学思考:通过具体活动,积累观察,想象物体投影的经验。

(三)解决问题:会画实际生活中简单物体的三视图。

(四)情感态度:1.培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。

2.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。

【学习重点】1.从投影的角度加深对三视图概念的理解。

2.会画简单几何体的三视图。

【学习难点】1.对三视图概念理解的升华。

2.正确画出三棱柱的三视图和小零件的三视图。

【学习过程】【情境引入】活动一如图,直三棱柱的侧棱与水平投影面垂直。

请与同伴一起探讨下面的问题:(1)以水平投影面为投影面,在正投影下,这个直棱柱的三条侧棱的投影是什么图形?(2)画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?(3)这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?【自主探究】活动二学生观察思考:(1)三个视图位置上的关系。

(2)三个视图除了位置上的关系,在大小尺寸上,彼此之间又存在什么关系?小结:1.三视图位置有规定,主视图要在,俯视图应在,左视图要在。

2.三视图中各视图的大小也有关系。

主视图与俯视图表示同一物体的,主视图与左视图表示同一物体的,左视图与俯视图表示同一物体的。

因此三视图的大小是互相联系的。

画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的,主视图与左视图的,左视图与俯视图的。

活动三例1 画出下图2所示的一些基本几何体的三视图.题后小结:画这些基本几何体的三视图时,要注意从个方面观察它们.具体画法为:1.确定视图的位置,画出视图;2.在视图正下方画出视图,注意与主视图“”。

3.在视图正右方画出视图.注意与主视图“”,与俯视图“”.【巩固练习】1.画出图中的几何体的三视图。

数学:29.2《三视图》导学案2(人教版九年级下)

数学:29.2《三视图》导学案2(人教版九年级下)

数学:29.2《三视图》导学案2(人教版九年级下)课 题 29.2 课 型 新授课执笔人审核人级部审核学习时间 第15周第 4导学稿教师寄语今日事,今日毕。

不要把今天的事拖到明天。

学习目标 1、学会根据物体的三视图描述出几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。

3、由三视图进行简单几何体的有关计算学习重点 根据物体的三视图描述出几何体的基本形状或实物原型 学习难点学生空间想象能力的培养.学生自主活动材料一、前置自学1、球体的三种视图是( )A.三个圆B.两个圆和一个长方形C.两个圆和一个半圆D.一个圆和两个半圆 2、如右图是某几何体的三种视图,则该几何体是( )A.正方体B.圆锥体C.圆柱体D.球体 3、如果一个立体图形的主视图为矩形,则这个立体图形可能是 。

二、合作探究一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积。

三、拓展提升1、圆柱的左视图是 ,俯视图是 . 、2、如果一个几何体的主视图、左视图与俯视图都是一样的图形,那么这个几何体可能是__.3、一个圆柱的轴截面平行于投影面,圆柱的正投影是一个边长为10的正方形,求圆柱的体积主视图俯视图左视图4cm 3cm8cm俯视图主(正)视图左视图和表面积.四、当堂反馈1、一个物体的三视图如右图所示,该物体是( )A. 圆柱B. 圆锥C. 棱锥D. 棱柱 2、如图,上下底面为全等的正六边形礼盒,其正视图与左视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为( )A .320c mB .395.24 cmC .431.76 cmD .480 cm3、如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A .5个 B. 6个 C. 7个 D. 8个4、一个几何体的三视图如图所(其中标注的a b c ,,为相应的边长),则这个几何体的体积是 .acbcba5、长方体的主视图与左视图如图所示,则其俯视图的面积是多少?实物图正视图左视图20cm20cm60cm左视图主视图俯视图左视图主视图2342。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29.2 三视图
第2课时由三视图确定几何体
一、导学
1.课题导入
情景:根据下图中的椅子的视图,工人就能制造出符合设计要求的椅子.你能说明其中的数学道理吗?
由于三视图不仅反映了物体的形状,还反映了各个方向的尺寸大小,设计人员可以把自己构思的创造物用三视图表示出来,再由工人制造出符合各种要求的机器、工具、生活用品等,因此三视图在许多行业有着广泛的应用.
这节课我们研究由三视图想象几何体的问题.(板书课题)
2.学习目标
能由三视图描述几何体的基本形状或实物原型.
3.学习重、难点
根据物体的三视图描述出几何体的基本形状或实物原型.
4.自学指导
(1)自学内容:教材P98~P99例3和例4.
(2)自学时间:8分钟.
(3)自学方法:阅读、观察、归纳.
(4)自学参考提纲:
①由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.
②教材P98例4中,由主视图知,物体的正面是正五边形;由俯视图知,由上向下看物体有两个面的视图是矩形,它们的交线是一条棱,可见到,另有两条棱被遮挡;由左视图知,物体的左侧有两个面的视图是矩形,它们的
交线是一条棱,可见到.综合各视图可知,该物体是正五棱柱形状的.
③由三视图想象实物形状:
④根据三视图描述物体的形状:
这是一个由半圆柱(上部)和
长方体(下部)组合而成的几
何体.
⑤下图是由几个小立方体所搭成的几何体的主视图和俯视图,小正方形中的数字表示该位置上的小立方体的
个数.确定x、y的值;完成这个几
何体的左视图.
x=3,y=2;
这个几何体的左视图如图所示.
二、自学
学生结合自学指导进行自学.
三、助学
1.师助生:
(1)明了学情:明了学生能否根据三视图发挥自己的想象得到相应的实物原型.
(2)差异指导:根据学情对学困生进行个别或分类指导.
2.生助生:小组内相互交流、研讨、订正.
四、强化
1.解题要领.
2.点4名学生展示自学参考提纲第③题,然后老师给出点评;点2名学生口答自学参考提纲第④、⑤题并点评.
五、评价
1.学生学习的自我评价:这节课你有哪些收获?还有哪些疑惑?
2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思).
本课时教学要充分发挥学生的空间想象能力和动手能力,对于一些较复杂的立体图形,可借助多媒体进行展示,使图形变得更加直观.根据物体的三视图想象物体的形状,可由俯视图确定物体在平面上的形状,然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.鼓励学生多想、多练,提高自己的空间想象能力.
一、基础巩固(70分)
1.(10分)一个立体图形的三视图一个正方形和两个长方形,则这个图形是(B )
A.正方体
B.长方体
C.四面体
D.四棱锥
2.(10分)若一个物体的俯视图是圆,则这个物体可能的形状是(D)
①球②圆柱③圆锥
A.①
B.②
C.①②
D.①②③
3.(10分)在下面的四个几何体中,它们各自的左视图与主视图不一样的是
(B)
A B C D
4.(10分)如图是一个几何体的三视图,则该几何体的形状为正六柱 .
第4题图第5题图
5.(10分)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是 4 .
6.(10分)如图①是一个几何体的主视图和左视.某班同学在探究它的视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的有 a、b、c、e、f .
图①图②
7.(10分)某几何体的三视图如图所示,画出该几何
体.
解:如图所示.
二、综合应用(20分)
8.(10分)某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,俯视图如图所示,则此件的左视图是(A)
9.(10分)右图表示一个由相同小立方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方体的个数,则该几何体的主视图是
(C)
三、拓展延伸(10分)
10.(10分)由5个相同的小正方体搭成的几何体的俯视图如图所示,这个几何体有几种搭法?
解:一共有3种搭法.
【素材积累】
1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。

这一年,他摘心里对自己的定位,从穷人变成了有钱人。

一些人哪怕有钱了,心里也永远甩不脱穷的影子。

2、10月19 日下战书,草埠湖镇核心学校组织全镇小学老师收看了江苏省泰安市洋思中学校长秦培元摘宜昌所作的教训呈文录象。

秦校长的讲演时光长达两个多小时,题为《打造高效课堂实现减负增效全面提高学生素质》。

相关文档
最新文档