支持向量机数据分类预测

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

支持向量机数据分类预测

一、题目——意大利葡萄酒种类识别

Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。

二、模型建立

模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。

三、Matlab实现

3.1 选定训练集和测试集

在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。

% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量

load chapter12_wine.mat;

% 选定训练集和测试集

% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集

train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];

% 相应的训练集的标签也要分离出来

train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];

% 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集

test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];

% 相应的测试集的标签也要分离出来

test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];

3.2数据预处理

对数据进行归一化:

%% 数据预处理

% 数据预处理,将训练集和测试集归一化到[0,1]区间

[mtrain,ntrain] = size(train_wine);

[mtest,ntest] = size(test_wine);

dataset = [train_wine;test_wine];

% mapminmax为MATLAB自带的归一化函数

[dataset_scale,ps] = mapminmax(dataset',0,1);

dataset_scale = dataset_scale';

train_wine = dataset_scale(1:mtrain,:);

test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );

3.3 训练与预测

用训练集对SVM分类器进行训练,用得到的模型对测试集进行标签预测,其中SVM的实现采用的是libsvm工具箱。

%% SVM网络训练

model = svmtrain(train_wine_labels, train_wine, '-c 2 -g 1');

%% SVM网络预测

[predict_label, accuracy] = svmpredict(test_wine_labels, test_wine, model);

四、分类结果

%% 结果分析

% 测试集的实际分类和预测分类图

% 通过图可以看出只有一个测试样本是被错分的

figure;

hold on;

plot(test_wine_labels,'o');

plot(predict_label,'r*');

xlabel('测试集样本','FontSize',12);

ylabel('类别标签','FontSize',12);

legend('实际测试集分类','预测测试集分类');

title('测试集的实际分类和预测分类图','FontSize',12);

grid on;

运行结果:

Accuracy = 98.8764% (88/89) (classification)

图1 测试集的分类结果图

相关文档
最新文档