雷击过电压的危害与预防
雷击的危害和防御措施

雷击的危害和防御措施雷电是大自然中一种强大而具有破坏力的自然现象。
当雷电横扫天空时,它所产生的电极化反应会释放出巨大的能量,造成严重的损失和危害。
为了保护人们和财产的安全,我们需要采取一系列的防御措施来减少雷击的危害。
雷击的危害主要包括以下几个方面:1. 人身安全威胁:雷电是一种极具破坏力的电能,它可以直接伤害、甚至杀死人体。
当雷击发生在人体附近时,人体会成为电流的最短路径,导致电击伤害或者灼伤。
此外,雷击还会引发爆炸、火灾和倒塌等危险情况,致使人们受伤甚至死亡。
2. 建筑物破坏:雷击会对建筑物产生直接的破坏作用。
当雷电击中建筑物时,电流会通过建筑物的金属结构向地下接地,这会引发严重的电弧和火灾。
同时,雷击还会损坏建筑物的电气设备,如空调、电梯、电脑等,给生活和工作带来麻烦。
3. 电子设备损坏:雷击对电子设备也会造成严重的损害。
随着信息技术的迅猛发展,人们的生活中充斥着大量的电子设备,如电视、电脑、手机等。
雷击会导致这些电子设备瞬间过载或损坏,造成数据丢失、系统崩溃等后果。
针对雷击的危害,我们需要采取一系列的防御措施:1. 了解雷击的规律:首先,我们需要了解雷电的形成和发展规律。
雷电一般发生在严重的雷暴天气中,尤其是在夏季的午后和晚间。
了解雷电发生的时间和地点,可以提前做好防御准备。
2. 避免暴露在雷电环境下:在雷暴天气中,我们要尽量避免暴露在室外环境中。
特别是在开放的地区,如高山、平原、水边等。
这些地方容易成为雷电的发生地点。
3. 寻找安全避雷点:寻找安全的避雷点是降低雷击危害的重要措施之一。
室内建筑物一般都有接地系统,能够将雷电引至地下。
所以,在雷暴天气中,我们应该尽可能待在室内建筑物中,尤其是有避雷设施的建筑物中。
4. 安装避雷装置:在一些高风险的地区,如高楼、山顶、电力站等,我们要安装避雷装置。
避雷装置能够吸收和分散雷电的能量,减少雷击的危害。
安装避雷装置需要由专业人士进行,确保其安装质量和有效性。
过电压问题及其解决方案

过电压问题及其解决方案过电压问题及其解决方案1. 引言过电压是在电力系统中经常遇到的一个问题,它给电力设备和系统带来了许多隐患和安全风险。
在本篇文章中,我们将探讨过电压的概念、原因和解决方案。
希望通过深入了解这个主题,可以帮助读者更好地理解和应对过电压问题。
2. 过电压的定义和原因过电压是指电力系统中电压瞬时或持续上升到超过额定电压的现象。
它可能由电力系统中的各种原因引起,包括雷击、开关操作、电力设备故障、突然负载变化等等。
2.1 雷击雷击是导致过电压的最常见原因之一。
当雷电击中地面或电力线路附近的物体时,会引发短暂而强大的电压脉冲,进而导致电力系统中的过电压。
2.2 开关操作电力系统中的开关操作也会导致过电压问题。
当电力系统中的开关打开或关闭时,会产生感应电动势,导致电压瞬时上升。
如果这种瞬时电压超过了设备的额定电压,则可能产生过电压。
2.3 电力设备故障电力设备故障是另一个常见的过电压原因。
变压器内部短路或绕组接地故障可能会导致电压上升。
2.4 突然负载变化突然的负载变化也可能引发过电压。
一台大型电机的突然开动可能使电压短期内上升。
3. 过电压的危害过电压问题对电力设备和系统都带来了一系列的危害。
过电压会导致设备的过载和过热,从而降低设备的寿命。
过电压可能引发设备的击穿和损坏,甚至会导致火灾和爆炸风险。
过电压还会导致系统的不稳定和停电,给用户带来不便和损失。
4. 过电压的解决方案为了应对过电压问题,我们可以采取以下几种解决方案:4.1 避雷器避雷器是一种能够保护电力设备不受雷击和过电压影响的装置。
它通过将过电压分散到大地来保护设备。
避雷器通常安装在输电线路、变压器和电力设备之间。
4.2 电力保护装置电力保护装置是另一种解决过电压问题的常用方法。
它可以及时检测到过电压事件,并采取相应的保护措施,例如切断电力供应或将过电压引导到地面。
4.3 负载调节和平衡合理的负载调节和平衡是减少过电压问题的一种有效方法。
浅谈雷电的危害与防护措施

浅谈雷电的危害与防护措施雷电是一种自然放电现象,具有很大的破坏性。
雷电发生后会产生危险的过电压和过电流造成电力设施设备的绝缘损坏引发短路及过电流、过电压事故的发生,还会造成人身和财产的重大损失。
因此,做好防雷电措施是非常必要的。
标签:雷电;危害;防护措施前言雷电是一种大气中的放电现象。
大气中的雷云在过程形成中,由于积累了大量的正负电子,当这些正负电子积累到了一定的程度并且发生碰撞后就会发生激烈放电现象。
同时,伴有强烈的闪光和轰鸣声。
这就是雷电形成的原因。
因此,根据雷电的产生和造成危害的特点,可采取必要的预防措施,防止雷电给电力设施设备及人身安全造成危害。
1 雷电的种类及其危害自然界中雷电按照其危害的方式分有;直击雷、感应雷及雷电侵入波。
按其形状分有线型、片型及球型三种。
雷电的危害就是雷电的破坏效应;主要有电效应、热效应和机械效应。
当雷电发生时会产生数十万甚至数百万的冲击电压,而冲击能迅速击穿电力设施设备的绝缘保护造成电力线路短路而毁坏电力设备。
甚至还会引起火灾和爆炸事故的发生。
巨大的雷电电流通过导体,在极短的时间内能转换成热能使金属物体迅速熔化,产生火花,火花飞溅引起火灾和爆炸。
遭到雷击的物体通过巨大的雷电流,能瞬间产生大量的热量,使物体内部的水分或其他液体迅速气化,以至物体剧烈膨胀而遭到破坏或爆炸。
以上雷电发生的破坏是综合出现的,其中以伴有的爆炸和火灾的出现是最为严重的。
2 防雷装置防雷电伤害的装置主要有;避雷针、避雷线、避雷网、避雷带及避雷器等。
完整的避雷置应由接闪器、引下线和接地装置组成。
避雷针主要用来保护露天的变配电设备、建筑物和构筑物。
避雷线主要用来保护电力线路。
避雷网和避雷带主要用来保护建筑物。
避雷器主要用来保护电力设施设备。
避雷针、避雷线、避雷网及避雷带实际上就是接闪器,是用来接受雷击的金属导体。
当发生雷电时,吸引雷电接受雷击放电。
接闪器一般是采用圆钢或扁钢制成,所用材料尺寸应符合技术规定的要求。
雷电过电压

工程上衡量输电线路防雷性能优劣的指标:
耐雷水平:线路遭受雷击时,其绝缘不发生闪络的最大雷 电流幅值(kA)
雷击跳闸率:每100km线路每年(40雷电日)因雷击引起 的跳闸次数(次/100km· 年) §9-1 输电线路的感应雷过电压
一、雷击线路附近的大地时感应过电压
先导放电阶段导线上出现与雷电流极性相反的束缚电荷, 主放电时束缚电荷突然被释放形成感应雷过电压的静电分 量,同时主放电通道中雷电流的急剧变化在通道周围空间 产生很强的脉冲磁场,在线路导线上产生感应雷过电压的 电磁分量 感应雷过电压=静电分量+电磁分量
MOA阀片只流过10-5A以下的工频续流 优点:
不用串间隙(无间隙)
(1)结构简单,体积小,可作为其它电器的支柱
(2)无间隙:
a.无电弧燃烧
b.易制成直流避雷器
c.动作无时延、动作早,及时减低过电压水平
(3)通流容量大
故现MOA广泛地用于不同电压等级的电网
§8-4 接地装臵 接地是指将地面上的金属物体或电气回路中的某一节点 通过导体与大地保持等电位
解决方法:a.提高电气设备的冲击绝缘水平 b.避雷器伏秒特性低且平直
U冲击 U工频
不经济
kch → 1
冲击系数
k ch
2)避雷器绝缘强度的自恢复能力强 冲击电压→冲击放电→对地短 路→工频短路 (工频续流以电弧形式出现)
要求避雷器具有很强的绝缘强 度自恢复能力,在工频续流第 一次过零时熄弧,不再重燃 灭弧电压:工频电流第一次过 零后间隙所能承受的不至于引 起电弧重燃的最大工频电压 灭弧电压 避雷器性能越好
1间隙为不均匀电场放电分散性大伏秒特性陡不易进行伏秒特性配合2灭弧能力差引起断路器跳闸3放电时产生截波威胁绕组绝缘保护间隙放电后电弧的熄灭是靠短路电流过零时的自然熄弧当短路电流较大时可能发生电弧的重燃如果短路电流引起的电弧长期存在就可能产生弧光接地过电压危及设备绝缘因此需采用跳断路器来消除接地故障管型避雷器利用电弧燃烧时产生的热量使产气管里的产气材料纤维塑料橡胶等产生气体纵吹电弧使电弧熄灭保护间隙动作后会产生截波因此保护间隙和管型避雷器都不能承担主变和发电机等重要设备的保护任务只能用于线路保护和进线段的保护阀型避雷器主要由火花间隙和阀片非线性电阻组成火花间隙接近均匀电场ch11避免截波和减小工频续流电阻要大残压雷电流流过时产生的电压电阻要小非线性电阻普通阀型避雷器火花间隙避雷器间隙就是由多个火花间隙串联而成火花间隙放电电压稳定分散性小从而具有平坦的伏秒特性和较高的灭弧性能c金刚砂焙烧成55100mm园饼状阀片非线性电阻主要两个重要指标
第六 雷电过电压防护

地电阻时,可采用多根放射形接地体,或连续伸 长接地体,或采用某种有效的降阻剂降低接地电
Hale Waihona Puke 阻值土壤电阻 率 Ω.m接地电阻 Ω
≤10 100~5 0 00
≤10 ≤15
500~10 00
≤20
1000~20 00
≤25
>200 0
≤30
3)尽量缩短避雷器与被保护设备间的电气距 离。
三、变电站避雷器保护配置
(1)配电装置每组母线上应装设避雷器,但是进出 线都装有避雷器的除外。
(2)旁路母线是否装设避雷器视其运行时避雷器到 被保护设备的电气距离是否满足要求而定。
(3)330KV及以上变压器和并联电抗器处必须装设 避雷器,避雷器应尽可能靠近设备本体。
第六章 雷电过电压防护
输电线路上的雷电过电压
1、直击雷过电压:是由雷电直接击中杆塔、避雷 线或导线引起的过电压;一般采用避雷线保护
2、感应雷过电压:是由雷击线路附近大地,由于 电磁感应在导线产生的过电压
运行经验表明,直击雷过电压对电力系统的危害 最大,感应雷过电压只对35KV及以下的线路会造 成雷害。
3
五、采用消弧线圈接地方式
适用条件: 雷电活动强烈、接地电阻又难以降低的地区
作用原理: 单相对地闪络时,消弧线圈使其不至于发展成持
续工频电弧 两相或三相对地闪络时,第一相闪络并不会造成
跳闸,先闪络的导线相当于一根避雷线,增加了分流和对 未闪络相的耦合作用,使未闪络相绝缘上的电压下降,从 而提高了线路的耐雷水平。
与通信线路之间的交叉跨越档、过江大跨越高杆塔、变电 站的进线保护段等处。
九、采用线路型金属氧化物避雷器
电气设备的防雷与过电压保护

电气设备的防雷与过电压保护随着科技的不断发展,电气设备在我们的生活中扮演着越来越重要的角色。
然而,雷击和过电压问题成为我们在使用电气设备时需要面对的挑战之一。
本文将讨论如何有效地进行电气设备的防雷与过电压保护。
一、防雷保护雷击是指由于大气激发电荷不平衡而产生的电流放电现象。
电气设备一旦遭受雷击,会造成严重的损坏甚至失效。
因此,防雷保护是至关重要的。
1. 接地系统接地系统是防雷保护中的关键措施之一。
通过将设备的金属外壳或导体与地下的导体相连接,可以将雷击引流至大地,并减少对设备的损坏。
接地系统应该保持良好的导电性能,确保电流能够有效地通过地下导体流入地面。
2. 避雷针避雷针是传统的防雷保护工具之一。
它通常安装在高架建筑物的顶部,可以吸引雷电,并通过导线将电流引入地下。
避雷针的安装应符合相关的安全规范,并经常进行检查和维护,确保其正常工作。
3. 避雷器避雷器是一种可以吸收和分散过电压的设备。
它通常安装在电气设备的输入端,当遭遇过电压时,避雷器会迅速反应,将电压分散到接地系统中,从而保护设备免受损坏。
二、过电压保护过电压是指系统中超过额定电压的电压波动。
过电压可能是由于雷击、电力系统故障或其他原因引起的。
过电压会对电气设备造成严重的损坏,因此过电压保护也是非常重要的。
1. 过电压保护器过电压保护器是专门用于保护电气设备免受过电压的损害。
它可以迅速检测到过电压,并通过自动切断或分散电压的方式来保护设备。
过电压保护器应根据系统的需求进行适当选择,并定期检查和更换以确保其正常工作。
2. 断路器断路器是一种用于保护电气设备免受过电压的开关装置。
当系统中出现过电压时,断路器会自动切断电流,防止电流超过设备的承受能力。
选择合适的断路器对于过电压保护至关重要,并应根据设备的负载和额定电压进行合理设置。
3. 绝缘保护绝缘保护是通过绝缘材料和绝缘设备来预防过电压。
合适的绝缘材料可以减少电压波动对设备的影响,并保护设备免受过电压的损害。
雷击对电力设施的影响

雷击对电力设施的影响正文:雷击是指大气中的雷电放电现象,在某些特定的天气条件下形成。
雷击产生的强大电能和能量往往对周围的环境和设施造成严重的影响,尤其是电力设施。
本文将探讨雷击对电力设施的影响及相应的防护措施。
1. 雷击对电力设施的危害雷击对电力设施造成的主要危害有如下几个方面:1.1 直接破坏:雷电放电过程中释放出的巨大能量可能直接损坏电力设施,如变压器、电缆、开关设备等。
雷击可能导致设备烧坏、内部元件熔化,甚至引发火灾和爆炸。
1.2 感应电压:雷击时,通过磁场的感应作用,电力设施中可能产生感应电压。
感应电压对设备的绝缘性能和电器元件的正常工作具有破坏性。
长期受到雷击的电力设施容易发生感应电压相关的故障。
1.3 波及范围扩大:雷击产生的过电压可能通过传导、辐射和感应等方式传递给附近的电力设施,进而造成连锁反应,导致更大范围的设施损坏。
这将严重影响电力系统的可靠性和连续供电能力。
2. 雷击防护技术为了减轻雷击对电力设施的影响,以下是一些常见的雷击防护技术:2.1 接地系统:合理的接地系统可以有效降低雷击对电力设施的危害。
良好的接地系统能够将雷击电流快速引入地下,减小电力设施所受的雷击冲击。
2.2 避雷针:在高耸的建筑物和设备上安装避雷针是一种有效的防护措施。
避雷针可以吸收雷电放电,并引导雷电流经过接地系统释放到地面,避免对电力设施造成直接破坏。
2.3 避雷网:在电力设施的周围建立避雷网可以形成一个保护层,减少雷电放电对设施的威胁。
避雷网由导电材料制成,通过将雷击电流引向大地,保护设备的完整性。
2.4 避雷器:避雷器是用来抵御过电压的装置,可以在雷击时吸收过电压的能量,避免过电压对设备的损坏。
合理使用避雷器可有效保护电力设施。
3. 雷击防护措施的重要性雷击对电力设施的危害不可忽视,因此采取合理的雷击防护措施至关重要。
3.1 保障供电可靠性:电力设施承担着供电的重要任务,合理的雷击防护措施可以降低设备故障率和停电率,保障供电的可靠性。
雷电的危害和预防措施

雷电的危害和预防措施雷电的危害和预防措施雷电的危害和预防措施大家了解过多少呢?可能很多人都不是很清楚,下面就是店铺分享的雷电的危害和预防措施介绍,一起来看一下吧。
雷电的危害和预防措施雷电是大自然中最壮观的自然现象之一,它是一把锋利无比的双刃剑,具有巨大的能量及破坏力。
其电压可高达几十万伏甚至数百万伏,瞬时电流可高达数十万安培,放电时温度高达30000℃。
世界各地每年遭受雷击而造成破坏的重大事故不计其数,仅我国每年就有数万人遭受雷击伤亡。
因此,我们必须了解和掌握防雷知识,采取切实可行的防雷措施,才能有效地避免或减少雷电事故的发生。
雷电的主要危害根据雷电产生的危害特点,它的破坏作用主要是雷电流引起的。
通常雷电以三种形式出现,即直接雷击、感应雷击和雷电波。
一般人所说的雷击是由直接雷造成的,由于它瞬间放出的电流相当大,产生的高温高压引起爆炸、火灾和建筑物倒塌,造成人畜伤亡事故。
感应雷的主要危害是由电流沿着金属导线或导体形成雷电冲击波,并进入建筑物内造成用户的仪器设备或家用电器的损坏,在一定的条件下还会造成人员伤亡和火灾等重大雷击事故。
在雷击事故中90%是感应雷造成的,随着现代化高科技的迅速发展,在电子设备、供电设备、通信广播、计算机网络的信息传输等领域都是感应雷的主要袭击对象。
雷电波是由于雷击而在架空线路或空中金属管道上产生的冲击电压,沿线路或管道的两个方面迅速传播,其传播速度为300m/us(在电缆中为150m/us),若侵入建筑内可造成配电装置和电气线路绝缘层击穿产生短路或使建筑物的易燃易爆物品燃烧和爆炸。
造成雷电击事频繁发生的原因,除了不可抵御的自然现象外,人们的防知识缺乏、防雷意识淡薄是主要原因。
有的人认为避雷针是万能的灵丹妙药,有了它就会任凭电闪雷鸣而安然无恙,有的单位舍不得花这笔钱来搞防雷工程,有的单位即使安装了避雷设施,但安置不规范或长期得不到维护、保养,成了引雷入室的'祸根;雷期间,野外作业及行走不能及时地离开所处环境的最高点;有人甚至跑到大树下、屋檐下躲雨,室内人员甚至打开门窗观赏雨景或收看电视、打电话,对家用电器电源插头不及时拨掉,从而导致雷电击伤亡悲剧频发。
过电压保护

切、合电容器,开断高压电动机等。
切空载变压器:若开关分断能力极强,在 i 未到 零点之前 ,就强行将电流截断,则可能产生过电压,因为i的突变引 起Φ变化,产生很高的感应E,产生截断过电压。 电弧接地过电压:在中性点不接地系统中发生单相不稳定 电弧接地时,接地点的电弧间歇性的熄灭和重燃,则在健 全相和故障相都可能产生过电压。 原因:间歇性电弧作用下电磁能量的转换产生强烈震荡, 引起过电压。 特点:持续t不超过几个工频半波,幅值与电网结构、开关 特性、故障类型等因素有关。
机绝缘的电压升高称为过电压。
2、过电压的危害:
过电压对电力系统的安全运行有极大危害,如雷击会
造成人员伤亡。同样,雷击会造成电力线路或电气设
备绝缘击穿损坏,不仅中断供电,甚至引起火灾。而
且由于电气设备运行操作不当引起的内部过电压,同
样也会引起电气设备绝缘击穿损坏,造成电力系统的 极大破坏。
3、过电压的分类: 直击雷过电压 外部过电压 感应雷过电压
(6)金属氧化物避雷器使用电压 ①避雷器额定电压—指正常运行时避雷器所承受的最大 工频电压有效值。 根据行业标准,无间隙氧化物避雷器额定电压的确定应 考虑系统可能出现的暂时过电压,以及电网中单相接 地时,健全相电压升高等不利因素。因此它的额定电 压要高于系统额定电压。 ②系统额定电压(系统标称电压)和持续运行电压。
7.引下线 引下线是连接防雷装置与接地装置的一段导线,其作用 是将雷电流引入接地装置。一般可用圆钢或扁钢制成。圆钢直径 不小于8 mm;扁钢截面积不小于48 mm2,厚度不小于4 mm。 引下线可以明装,也可以暗装。明装时,必须沿建筑物的 外墙敷设。引下线应在地面上1.7 m和地面下0.3 m的一段线上用 钢管或塑料管加以保护;在1.8 m处设断接卡。暗装时,可以利 用建筑物本身的金属结构,如钢筋混凝土柱子的主筋作为引下线, 但暗装的引下线应比明装时增大一个规格,每根柱子内要焊接两 根主筋,各构件之间必须连成电气通路。屋内接地干线与防感应 雷接地装置的连接不应少于2处。
2024年配电变压器雷击及预防(3篇)

2024年配电变压器雷击及预防引言:配电变压器作为电力系统中的重要设备,承担着将输送到变电站的高压电能降低到用户所需的低压电能的功能。
然而,由于其在运行过程中处于露天环境中,容易受到雷击的影响,从而导致压变故障和停电事故的发生。
因此,对于配电变压器雷击和预防问题的研究具有重要的理论和实际意义。
一、配电变压器雷击原因分析1.1 气象因素雷电是一种自然现象,其产生与大气的电荷分布、电势差和空间结构有关。
当大气电荷分布不均匀时,会形成局部电荷积聚区,从而产生雷击。
而各地的气象条件不同,对雷电的发生也会有影响。
1.2 变压器结构和位置配电变压器通常是处于露天环境中的,其结构和位置会对雷电的影响造成一定的影响。
例如,在长杆式变压器中,杆塔及其附近的构筑物是雷击的容易目标。
而在箱式变压器中,箱体本身还具有一定的防雷功能。
二、配电变压器雷击后果分析2.1 压变损坏雷电的高电流通过配电变压器,会引起其内部设备的损坏,如绕组短路、线圈烧毁等,造成压变的无法工作。
2.2 系统停电配电变压器的故障会导致电力系统的局部或整体停电。
一旦发生停电,用户的日常生活和工业生产都会受到影响,给社会带来很大的损失。
三、配电变压器雷击预防措施3.1 防雷装置在配电变压器周围设置合适的避雷设施,例如接闪器、耐雷线等,能够引导雷电流从地面引流,减小雷击对变压器的影响。
3.2 地理位置选择选择合适的地理位置来安装配电变压器也是预防雷击的重要因素。
避免安装在雷电活跃区域或者高度地带,尽量选择平坦地区。
3.3 变压器外壳设计设计并制造适合的变压器外壳,使其能够防止雷电直接打击变压器设备。
例如,一些箱式变压器在外壳上设有防雷针,能够吸收和分散雷击带来的电荷。
3.4 维护保养定期对配电变压器进行检查和维护保养,及时更换老化和损坏的部件,确保其正常运行状态。
特别是对于外壳和避雷装置的检查,要保证其完好无损。
四、配电变压器雷击事故处理4.1 维修处理一旦发生雷击事故,及时采取维修措施,更换受损的部件,并进行系统的检修,确保变压器能够正常运行。
弱电设备雷击过电压危害分析

科技凰捌翻龇弱电设备雷击过电压危害分析张新德(浚县供电有限责任公司,河南浚县456250)脯要】弱电设备一般都放置在室内,它们承受瞬间过电压的能力非常低,极易受到过电压和雷电电磁脉冲等外界干扰,遭受到雷电直接袭击的可船挫不大。
但雷击形成的冲击过电压过电流,都有可能与弱电设备相连的电源线、信号传输线、接地线等通过各种接口。
以传导、辐射、耦合等形式侵入弱电系统和弱电设各缱成弱电设备毁坏、系统瘫痪或酿威严重事故。
因此,雷击对于弱电设备的危害集中体现在雷击过电压方面。
汝j键词】雷击;弱电设备;雷电过电压2007年8月25日中午12点左右,浚县遭受强雷电风雨侵袭,最大降雨量130.6毫米、最大风速5秒米。
电力线路跳闸37条次,其中l O kV工3线路动作”次并重合成功,配变、避雷器、绝缘子等设施也遭到了损坏。
这次强雷电天气还导致供电公司的弱电设备也不同程度的遭到损坏:办公楼内计算机主板8台;信息中,b的网卡2块、终端服务器1台、交换机用户板1块;调度中心的交换机主控机1台、监视器1台、录音设备的电源1台、语音板2块、硬盘2块、烟雾探测器1只:计量中心的24袁位单相电能表标准装置4台电脑主机串口:变电站内的锶栅保护测频板2块、网关1块等等被损坏。
近年来,通信、监控、调度、信息、计算机网络等系统大量应用了集成电路、C PU单元等电子弱电设备,它们承受瞬间过电压的能力非常低,极易受到过电压和雷电电磁脉冲等外界干扰,从而产生误动或损坏,影响系统的正常运行,甚至造成重大损失。
弱电设备一般都放置在室内,遭受到雷电直接袭击的可能性不大,但雷击避雷针、建筑物、大地、架空线或空中雷云放电时直接形成的,或由静电感应、电磁感应形成的冲击过电压过电流,都有可能与相连的电源线、信号线、接地线等通过各种接口,以传导、辐射、耦合等形式侵入弱电系统和弱电设备造成弱电设备毁坏、系统瘫痪或酿成严重事故。
1雷击分类雷电是~种自然现象,实测表明:对地放电的雷云绝大多数带有负电荷,在雷云电场的作用下,大地被感应出与雷云极性相反的电荷,就象一个巨大的电容器,其问的电场强度平均小于1kV/m,但雷云个别的电荷密度可能很大,当雷云附近—部分的电场强度超过大气的绝缘强度时,就使空气游离,放电由此开始。
35kV输电线路雷击及防雷建议-最新文档

35kV输电线路雷击及防雷建议在我国电力系统各类事故、障碍中,输、配电线路的雷害事故占有很大的比例.由于输电线路对于保“网”的重要地位,如何减少输电线路雷害事故引起的跳闸,不但影响电力系统正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上落雷,雷电波还会沿线路侵入变电所甚至用户,影响人身财产安全。
而在电力系统中,线路的绝缘最强,变电所次之发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。
1输电线路遭受雷击的原因输电线路雷击闪电由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应过电压。
按雷击的性质可分为直击雷和感应雷:1)直击雷。
当带电的雷云接近输电线路时雷电流沿空中通道注入雷击点,如避雷线、杆(塔)顶部导线等产生直击雷过电压。
雷云放电时,引起很大的雷电流,可达几十甚至几百kA,从而产生极大的破坏作用;2)感应雷。
当雷击于输电线路附近的大地或物品时,导致产生静电感应,致使先导路径附近的导线上积累了大量的异号束缚电荷,雷击后,主放电开始,导线中感应电压就会很大。
根据实测,感应雷电压幅值一般为300~400kV,击穿60~80cm的空气间隙,对于35kV及以下水泥杆线引起一定的闪络事故.雷电主要危害有以下几种:1)电流高压效应会产生高达数万伏甚至十万伏的冲击电压,如此巨大的电压瞬间冲击电力设备,足以击穿绝缘体,使设备发生短路,导致燃烧、爆炸等直接灾害。
2)电流高热效应会放出几十至上百千安的强大电流,并产生大量热能,在雷击点温度会很高,可导致金属熔化,引起火灾和爆炸。
3)雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象,导致财产损失和人员伤亡。
输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带.输电线路的安全运行,直接影响到了电网的稳定和向用户可靠供电。
35kV输电线路雷害分析及预防

- 137 -生 产 与 安 全 技 术一、35kV输电线路雷害分析以及防雷的重要性1.35kV 输电线路的雷害分析一般来说,35kV 输电线路的架空线路遭受雷击主要分为4个阶段:雷击后的过电压对输电线路的作用;架空线路的闪络现象;输电线路的工频电压趋于稳定以及线路短路跳闸导致停电事故发生。
雷击危害一般有3种形式,分别是:(1)雷电直击。
雷电直击是35kV 输电线路中常发的雷击事故。
当雷击产生的电流较大时,雷击产生的过电压也会相对较高,这种过高的雷击过电压会对35kV 输电线路附近的绝缘子进行对地放电,然后造成电力线路的闪络现象。
如果雷击过电压特别高时,会引发更为严重的闪络现象,导致线路出现断线、击穿绝缘子等故障发生。
(2)雷电反击。
雷电反击主要是因为雷电击打在线路杆塔或者避雷线上,造成35kV 输电线路绝缘体上的电压超出绝缘体的冲击放电电压范围,然后导致线路杆塔到导线之间产生绝缘反击现象。
反击产生的电压相当于线路杆塔和导线之间的电位差。
与此同时,雷击到线路杆塔上时,会使雷击电流全部流经线路杆塔以及杆塔的接地装置,并且随着雷击电流在线路杆塔中的时间增加,会造成线路杆塔电位的大幅度降低,影响线路杆塔的稳定性和安全性,进而影响电力线路的防雷效果。
(3)雷电绕击。
雷电绕击就是指雷电直接击中电力线路的相线。
架空线路上雷电的定向先导和迎面先导会影响雷击的概率。
如果发生雷击时的迎面先导从导线往上发展,就会导致雷电绕击现象发生。
导致雷电绕击产生的原因有:导线的数量和分布,35kV 输电线路附近的电力线路影响,档距中导线的弧度等。
2.对35kV 输电线路进行防雷的重要性我国的城市化进程不断加快,经济水平和科学技术手段也在不断提高,人们对电力需求出现很大变化:不仅对电力能源的使用量增加,并且对电力系统的安全性和稳定性也有更高的要求。
而输电线路是直接影响用户的用电体验的电力设施,如果输电线路发生故障或者问题,就会对用户的用电需求产生不良影响,影响电力企业的形象以及经济效益。
220kV输电线雷击危害及变电所防雷

220kV输电线雷击危害及变电所防雷摘要:220KV输电线路中的变电所是保证供电安全的重要设施,但是在线路遭受雷击的时候,因为雷击电流和工频短路电流的双重作用下,会直接影响变电所的正常运行。
所以应根据实际的线路情况,采用最佳的防雷措施,防止雷击影响变电所的设备安全与供电运行。
关键词:雷击断线危害成因防雷措施1雷击导致导线断线的原理从工作的架空的绝缘导线和裸露的导线的耐受雷电的特性是完全不同的,当直击雷和感应雷所产生的过电压作用在裸露的导线上的时引起的绝缘子闪络,连续的工频电流电弧在电磁力的影响下,沿着导线向着背离电源的方向快速的移动,电弧的根部固定在导线的表面移动,电弧的腹部则随着根部同时向前运动,产生的热应力也不断的向上空漂浮。
按照电弧放热的情况,其根部的温度最高,对导线的损害严重,电弧的腹部温度较低,不会对导线产生损害。
2架空的接地线路的断线2.1电流热效应雷电击中架空地线的时候,雷击点的电流密度增加,雷击点温度也骤然增加,电弧的温度可以达到数千K。
虽然雷击电流通过导体的时候产生的热量并不是很大,但是在直接与放电通路相接处的地方仍可产生高温的效应,有时可以产生几毫米的熔断效果。
这种情况是一些架空地线不正常的断股主要原因。
雷击电流的电弧热效应可以看做是绝热过程。
在其产生电弧的热效应是可以利用公式进行计算的。
由于雷击电流的大部分能量都集中在电弧上,而电弧的作用点很小,因此雷击电流所引发的电弧所导致的接地导线的温度会很高。
通过研究发现,利用29-57KA的振荡波对1.8股径的GJ-50钢绞线的时候,钢丝虽然不会产生完全的熔断,但是还是会出现一定程度的灼伤,利用57KA的振荡波冲击3.0钢丝的时候,镀锌层受到损伤明显;而冲击直径1.8的钢丝则会熔断。
这就说明了如果仅仅参考雷击电流的热效应仍然不能完全解释雷击导线使其断线的真正原因,不同的是导线钢丝的直径如何,就会产生不同的熔断能量,因此较细的导线容易出现断股的原因。
防止雷电过电压事故

防雷安全标准需要得到更广泛的普及和应用,以确保各种建筑物和设备的安全。
更加完善的防雷安全标准
系统的智能化发展
未来的防雷系统将会更加智能化,能够自动识别雷电威胁,自动采取相应的防护措施。
系统的综合化发展
未来的防雷系统将会与其他安全系统更加综合化,实现联动和协同工作,提高综合安全性能。
更加智能化的防雷系统
配置接地装置
在建筑物、设备等部位配置接地装置,将雷电电流引入大地,避免对建筑物、设备等造成损害。
配置防雷装置
安装雷电预警系统
建立雷电预警系统,对雷电进行实时监测和预警,以便及时采取防雷措施。
安装防雷地网电阻测试仪
对防雷地网电阻进行实时监测和测试,确保防雷装置的有效性。
建立防雷监测系统
防雷安全管理制度
2023
防止雷电过电压事故
contents
目录
雷电过电压事故的危害雷电过电压事故的预防措施现有防雷措施的检测与维护雷电过电压事故的应对措施防雷措施的未来发展展望结论
雷电过电压事故的危害
01
雷电过电压可能导致设备电压过高,从而造成设备损坏。
设备损坏
即使雷电过电压没有直接造成设备损坏,也可能导致设备性能下降。
对防雷设备进行维护和保养,保证其长期有效。
针对防雷设备的检测和维护工作制定具体的操作规程和技术要求。
加强防雷设备的检测和维护工作
提升应对雷电过电压事故的能力
制定雷电过电压事故的应急预案,并组织演练,提高应急响应速度和处理能力。
积极推广和应用新技术、新设备和新材料,提高雷电过电压事故的防范水平和应对能力。
对防雷设备、装置进行定期检Fra bibliotek,一般要求每年至少一次;
雷击高速铁路接触网动车组过电压研究

雷击高速铁路接触网动车组过电压研究雷击高速铁路接触网动车组过电压研究引言:随着高速铁路的迅速发展,雷击对其运行安全和可靠性产生了重要影响。
在高速铁路建设中,为了保障动车组行驶过程中接触网及其设备的正常工作,对雷电侵袭引起的过电压进行研究至关重要。
本文旨在探讨雷击高速铁路接触网动车组过电压的相关问题,并提出相应的预防和保护措施。
一、雷电对高速铁路接触网过电压的影响1. 雷电击穿带来的直接影响雷电对高速铁路接触网的冲击会导致电弧现象,这可能导致接触网与动车组之间形成电弧间隙,进而引发过电压。
过电压的存在可能损坏动车组的设备,甚至造成火灾和事故。
2. 瞬态过电压影响雷击引起的瞬态过电压可能会对接触网及其设备产生瞬时的高电压,这可能导致设备的击穿和毁坏。
此外,随着高速铁路运行速度的增加,动车组与接触网之间的电弧间隙会加大,进而产生更高的瞬态过电压。
二、动车组防护系统的研究和改进1. 接触网绝缘性能改善绝缘系统在高速铁路接触网的设计中具有重要意义。
通过提高接触网的绝缘性能,可以有效防止雷电击穿现象的发生,从而减少过电压的产生。
采用新型的绝缘材料和改进的绝缘设计将是未来的研究与开发方向。
2. 瞬态过电压防护设计在动车组的设计中,防护系统需要考虑瞬态过电压引起的设备破坏。
通过在关键电气设备位置增加瞬态过电压防护装置,能够有效吸收和消除过电压,提高设备的可靠性。
3. 接触网与动车组之间的电弧间隙控制研究动车组与接触网之间的电弧间隙控制是防止过电压产生的重要手段。
通过控制电弧间隙的大小和稳定性,可以降低过电压的水平,保障动车组的正常运行。
三、雷击高速铁路接触网过电压研究的实验方法1. 模拟雷击实验通过模拟雷击实验,可以模拟实际雷电击穿的情况,探究雷电对高速铁路接触网过电压的影响。
实验中可以使用高压发生器和合适的模拟设备,通过对接触网施加合适的电压,模拟雷击引起的过电压情况,进而研究其影响。
四、实际案例分析针对某高速铁路线路,曾发生过雷击引发的过电压事件。
雷击对变电所电子设备的危害及其防护

雷击对变电所电子设备的危害及其防护一、引言雷击是一种自然现象,常常伴随着暴风雨的天气,对变电所电子设备造成严重的危害。
本文将分析雷击对变电所电子设备的危害,并探讨有效的防护措施。
二、雷击对变电所电子设备的危害1. 损坏设备雷击会产生高电压和大电流,对变电所电子设备造成直接的损坏。
例如,雷电击中变电所的输电线路会导致线路的中断,使电力系统瘫痪。
同时,雷击还可能导致变压器、断路器等设备受损,严重影响电力系统的正常运行。
2. 数据丢失雷击引起的电流冲击会导致电子设备内部的电路烧毁,从而使存储在设备中的数据丢失。
对于变电所来说,数据的丢失会导致设备运行状态的不可控,给系统的维护和管理带来很大的困难。
3. 安全隐患雷击会产生较高的电弧温度和气体爆炸,可能引发火灾和爆炸等安全事故。
变电所内存在大量的易燃物质,如油和柴油,一旦发生火灾,将对该地区造成严重的破坏和人员伤亡。
三、防护雷击的有效措施1. 避免雷击首先,应选择合适的变电所建设位置。
应尽量避开高山、高楼等易受雷击的区域,选择开阔地带进行建设。
其次,应确保变电所与周围环境形成一个整体。
例如,可以通过增加接地体数量和规格,提高接地电阻,增加排雷装置等方式来增强周围环境的防护能力。
2. 防护设备在变电所内部,应安装专门的防雷设备。
首先,需要安装避雷针或者风(全)线系统。
避雷针能够吸引雷电,保护变电所内的电子设备免受雷击。
另外,还应设置雷电监测装置,实时监测雷电活动的情况,及时采取相应的防护措施。
此外,还需要针对电子设备进行防护策略。
例如,使用避雷器或浪涌保护器来吸收过电压,保护设备不受雷击的影响。
3. 维护与检测及时维护和检测防护设备的性能也是防护雷击的重要环节。
定期检查避雷针、雷电监测装置等设备的工作状态,确保其正常运行。
同时,定期进行设备的防护性检测,评估其效果和性能,在发现问题时及时进行修复和更换。
四、结论雷击对变电所电子设备造成的危害不可忽视,但通过合理的防护措施可以有效地减少风险。
雷击对变电所电子设备的危害及其防护范本

雷击对变电所电子设备的危害及其防护范本引言雷击是指大气中产生的雷电直接对地面设施进行打击,造成电子设备损坏甚至引发事故。
对于变电所来说,电子设备是其核心组成部分,雷击带来的危害不容忽视。
本文将详细介绍雷击对变电所电子设备的危害以及常见的防护方法和范本。
一、雷击对变电所电子设备的危害1. 直接损坏设备雷击直接打击设备,如发电机、变压器等,造成电气设备烧毁、损坏。
这会导致设备的正常运行受到影响,甚至无法正常工作。
2. 引发电弧雷电对设备产生冲击和放电,可能引发电弧,导致电路短路、设备故障、电气火灾等严重后果。
3. 破坏电缆雷电的高能量冲击可能损坏电缆,导致电缆短路、放电,进一步影响设备的正常运行和电力系统的稳定性。
4. 干扰电子设备雷电产生的电磁波辐射可能对电子设备产生干扰,导致设备失效、数据丢失,甚至引发事故。
二、防护方法1. 突击电流的防护为了防止雷电的高能电流通过设备,可在设备上加装足够强度的避雷针或避雷装置。
避雷针和避雷装置可将雷电引入到设备外部的接地系统中,保护设备不受雷击损坏。
2. 避雷导线的防护为了防止雷电的电压脉冲通过导线传导到设备,可在变电所的电缆和导线上安装避雷器。
避雷器能够在雷电过电压发生时迅速导通,将雷电的能量引入地线而不是设备。
3. 过电压保护装置的防护过电压保护装置能够在电压超过设定值时自动短路,将过电压引导到接地,保护设备不受雷击的影响。
在变电所中应配置合适的过电压保护装置,如熔断器、放电管等。
4. 接地系统的防护良好的接地系统能够有效降低设备受到雷击的损害。
接地网应具备合适的导电性能和良好的接地效果,确保将雷电迅速引入地下。
5. 信号线防雷对于变电所的信号线,可采取屏蔽措施,如使用带屏蔽的电缆、增加滤波器等,减少雷电干扰对信号的影响。
6. 环境监测与预警通过安装雷电监测系统,及时发现雷电活动,以便采取必要的防护措施。
同时,还可以安装雷电预警装置,发出警报,提醒工作人员进行预防措施。
雷击中杆塔塔顶引起的雷过电压例题

雷击中杆塔塔顶引起的雷过电压例题【主题】雷击中杆塔塔顶引起的雷过电压例题【引言】雷电对电力系统运行安全和电器设备的正常工作造成了巨大的威胁。
在电力系统中,高耸的杆塔是雷击的主要目标之一。
当雷电击中杆塔塔顶时,会产生雷过电压,进而对电力设备和系统造成严重的影响。
本文将以给出的雷击中杆塔塔顶引起的雷过电压例题为基础,深入探讨雷过电压的形成机理和防护措施。
【正文】1、雷过电压的形成机理雷电击中杆塔塔顶后,会产生一股巨大的电流。
根据法拉第电磁感应定律,通过这一电流在杆塔附近的地面和线路上都会产生一定的电压。
这种电压被称为雷过电压,是由于雷电击中和通过电流引起的感应电压。
雷过电压的大小与雷电的能量、触击位置以及杆塔结构等因素有关。
2、雷击中杆塔塔顶引起的雷过电压例题以一个具体的例子来说明,一座高压输电线路的杆塔被雷电击中,雷电电流为10kA,击中位置距地面高度为60米。
根据经验公式,此时雷过电压可以计算如下:U雷= K × I × d其中,U雷为雷过电压,K为干扰距离系数,I为雷电电流,d为击中地点距离杆塔塔顶的垂直距离。
根据实测数据,K的典型取值范围为0.2-0.4。
在此例题中,取K=0.3进行计算。
则雷过电压为:U雷= 0.3 × 10 × 60 = 180kV在这个例子中,雷电击中杆塔塔顶后产生的雷过电压高达180kV,远远超过了正常运行电压的数倍,给电力设备带来了严重的威胁。
3、雷过电压的防护措施为了保护电力设备的安全运行,减轻雷电对电力系统的影响,科学合理的防护措施不可或缺。
(1)杆塔避雷器:安装杆塔避雷器是防止雷电击中杆塔塔顶的有效措施。
杆塔避雷器通过引导雷电电荷分布和抑制雷电电势,能将雷电引向大地,有效减轻雷过电压的产生。
(2)全线避雷器:全线避雷器是指将特制的避雷器安装在输电线路上每个杆塔上。
这样一来,就可以在雷击时使得电流分布到每个杆塔上,减小每个杆塔所承受的雷电电流,从而减小雷过电压的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
process frame (in industrial install.), cables, etc.
2b
1a Voltage drop at the surge earth resistance Rst
2a
1b Induced voltages in loops
1 L1 L2 L3 PEN
20 kV
Structure 2
Telecom. cable
i1
S341
U1
some 100kV
i2
U2
0V
341e.ppt / 04.09.97
Impulse Sparkover/Puncture Voltages in Electr. Systems and Equipment up to 1000 V
2c Fields of lightning channel
535e.ppt / 04.09.97
Calculation of lightning voltage
Prot. Level Current Amplit. kA
i
I
200
II
150
î
III - IV
100
Lit.: IEC 61024-1-1
EBB
PS
External LPS
Water Gas
Cathodic protection of filler pipe
S532/3e
Z
Foundation earth electrode
532-3e.ppt / 08.09.97
Standardization in IEC TC 81
Standard IEC 61312 "Protection against lightning electromagnetic impulses (LEMP)"
Devices
Part 4: LEMP for existing structures
Part 5: Application
Guide
S877e_c
877e / 10.09.97
Screening factor Sf Magnetic screen attenuation (dB)
d
Magnetic Screen Attenuation of
V
10
110
20
1
1100
200
0.1
11000
Source: Clark, O.; Gavender, R. : Lightning Protection for Microprocessor based Electronic Systems. Recond of Conference Papers Industrial Applications Society, 36th Annual Petroleum and Chemical Industriy Conference 11-13 Sept. 1989, San Diego, CA, USA
ûE = î·Rst
t Waveform 10/350 µs
Example:
Rst ûE = 100 kA ·1 = 100 kV
S88e
88e.ppt / 04.09.97
Voltages due to lightning inside a building
100 kA
230 V
S1500e
Standardization in IEC TC 81 in November 1996
IEC TC 81
"Lightning Protection"
IEC 61024
"Protection of structures against lightning"
IEC 61312
"Protection against lightning electromagnetic impulses (LEMP)"
230 V
100 kV 100 kV
100 kV 1
1500e.ppt / 04.09.97
A Direct Lightning Stroke into Structure 1 Causes Damage due to Overvoltages in Structures 1 and 2
i
Structure 1
some kA some
230 V~ some kA
Water / Gas some kA
553e.ppt / 26.10.98 / ESC
ûs
S91/1e_a
Maximum Induced Voltages in Installation Loops
Max. Voltage
ûs
=
ku2
·
Dangerous Surges in Neighbouring Buildings
some 100 kA
some 10 kV
some 100 kV
some 10 kV 230V OV
Telecomm. Line
some kA
some 10 kA
some
553e
some kA
some
some 10 kA
Max. Voltage
ûs
=
ku3
·l
·
di dt
max.
b
ûs
l
s
Calculation Example
(di / dt) max. Distances
100 kA/µs s l ku3
b = 3 mm
= 1m
= 10 m
V
= 0.6 m ·kA/µs
ûs 600 V
91-1e.ppt / 04.09.97
1000
60
316
50
100
40
31.6
30
10
20
w
3.16
10
w = 12 mm d = 2 mm
w = 10 cm d = 12 mm
w = 20 cm d = 18 mm
w = 40 cm d = 25 mm
w = mesh width d = rod diameter
1
S761e
0
102 3
Equipment / Cables / Conductors
Impulse Sparkover/ Puncture Voltages
Longituninal volt. UL Electrical power units to enclosure/
ground
Telecommunications equipment
Integrated circuits , bipolar technique high level HTTL and operation amplifiers
Integrated circuits, MOS technique
5 ... 8 kV 1 ... 3 kV 0.5 ... 5 kV
6 ... 100 V *) 3 ... 300 V *)
di dt
max.
s a
Calculation Example
(di / dt) max. Distances
100 kA/µs s ku2
a = 10 m = 1m = 5000
V kA/µs
ûs 500 kV
91-1e.ppt / 04.09.97
S91/1e_b
Maximum Induced Voltages in Installation Loops
103
3 104
3
105
3 106 f
(Hz)
761e.ppt / 06.09.97
Reinf. Facade
Shielding of Structures
Concrete Structure
Insulating Support Ring Earth Electrode
Earthing Ref. Point Ground Plate
Causes and Effects of Overvoltages 雷击过电压的危害与预防
Causes of Thunderstorm Overvoltages
Direct/nearby stroke:
1 Stroke into external lightning protection system,
Reinforcing Steel
S665e
665e.ppt / 09.09.97
ROOF UF LF
Bonding of Roof Structures
Direct bonding
Bonding via spark gap
Transverse volt. Uq between the
of electronic equipment / circuits
Circuits with discrete components (resistances, capacitors etc.) input terminals Integrated circuits, bipolar technique (TTL)
2000
S738e
738e.ppt / 05.09.97
Surge Voltage Produced by Switching on a Fluorescent Tube
50 V div
2 µs div
S701e
701e.ppt / 05.09.97