黄冈中学七年级数学下学期末试题

合集下载

黄冈市七年级下学期期末考试数学试题

黄冈市七年级下学期期末考试数学试题

黄冈市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八下·合肥期中) 下列四个选项中,正确是()A .B . 2﹣3=﹣6C .D . (﹣5)4÷(﹣5)2=﹣522. (2分)如图,AB∥ED,∠ECF=70°,则∠BAF的度数为()A . 130°B . 110°C . 70°D . 20°3. (2分) (2017七下·海安期中) 在平面直角坐标系中,点(-1,m2+1)一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)以方程组的解为坐标的点(x,y)位于平面直角坐标系中的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2017七下·岳池期末) 若,则下列不等式错误的是()A .B .C .D .6. (2分)下列调查中,比较适合用全面调查方式的是()A . 了解某班同学立定跳远的情况B . 了解某种品牌奶粉中是否含三聚氰胺C . 了解一批炮弹的杀伤半径D . 了解全国青少年喜欢的电视节目7. (2分)在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是()A .B .C .D .8. (2分)用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1);②可以画出∠AOB的平分线OP,如图(2);③可以检验工作的凹面是否成半圆,如图(3);④可以量出一个圆的半径,如图(4)。

上述四个方法中,正确的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分) (2017八上·三明期末) 能说明命题“对于任何实数a,a2≥a”是假命题的一个反例可以是()A . a=﹣2B . a=1C . a=0D . a=0.210. (2分)(2020·梧州模拟) 小芳给校方提供学生体育锻炼的情况报告,在校内对全校学生进行了抽样调查,每位学生只选择一项自己最喜欢的体育运动.其中,a代表最喜欢参加兵乒球运动;b代表最喜欢参加羽毛球运动;c代表最喜欢气排球运动;d代表最喜欢篮球运动,下图是她还未完成的条形统计图与扇形统计图,根据统计图所给出的信息,这个样本中最喜欢篮球运动(即d)的百分率与人数是()A . 24,26%B . 33,26.4%C . 28,22.4%D . 25,23.6%二、填空题 (共6题;共6分)11. (1分) (2016八上·长春期中) ﹣27的立方根是________.12. (1分)七(2)班全体同学准备分成几个小组比赛,若每组7人,就多出3人,若每组8人,就会少5人,若设七(2)班共有x名同学,共分为y个小组,则可列方程组________13. (1分)宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有________ 种.14. (1分)某公司从超市购买了墨水笔和圆珠笔共15盒,所付金额超过570元,但不到580元.已知墨水笔的单价为每盒34.90元,圆珠笔的单价为每盒44.90元.设购买圆珠笔x盒,可列不等式组为________15. (1分)如图,∠1=82°,∠2=98°,∠4=80°,∠3=________16. (1分) (2020七下·云梦期中) 如图,长方形BCDE的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点同时出发,沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位/秒匀速运动,则两个物体运动后的第2020次相遇地点的坐标是________.三、解答题 (共8题;共87分)17. (10分) (2018七下·龙岩期中)(1)解方程:(2)解方程:(x-5)3 .18. (7分) (2020七下·金华期中) 阅读材料,解答问题:在(x²+ax+b)(2x²-3x-1)的结果中,x3项的系数为-5,x²项的系数为-6,求a,b的值。

湖北省黄冈市2023-2024学年七年级下学期期末数学试题

湖北省黄冈市2023-2024学年七年级下学期期末数学试题

湖北省黄冈市2023-2024学年七年级下学期期末数学试题一、单选题1.下列实数中,是无理数的是( ) A .2B .0C .3.14D2.在平面直角坐标系中,属于第三象限的点是( ) A .()3,5PB .()3,5P -C .()3,5P --D .()3,5P -3.要调查下列问题,你觉得应用全面调查的是( ) A .了解黄冈市居民的环保意识 B .对某品牌口罩合格率的调查 C .企业招聘,对应聘人员进行面试D .对洋澜湖水质情况的调查4.要反映台州市某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图D .频数分布统计图5.“x 的18与x 的和不超过6”可以表示为( )A .68xx +=B .68xx +≥C .865x ≤+ D .68xx +≤6.下列说法中正确的是( )A .如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等B .18-没有立方根C .有公共顶点,并且相等的角是对顶角D .同一平面内,无公共点的两条直线是平行线7.我国古代数学著作《增删算法统宗》记载了“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺.下列符合题意的方程组是( ) A .5152x y x y =-⎧⎪⎨=+⎪⎩B .5152x y x y =+⎧⎪⎨=-⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩8.如图,已知直线a b ∥,将一个直角三角尺按如图所示的位置摆放,若160∠=︒,则2∠的度数为( )A .30︒B .32︒C .42︒D .58︒9.如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为()2,3-,棋子“炮”的坐标为()3,2,则棋子“马”的坐标为( )A .()1,3B .()3,1C .()1,3-D .()1,3-10.若x 为实数,则[]x 表示不大于x 的最大整数,例如[][][]1,61,3,2,823π==-=-等.[]1x +是大于x 的最小整数,则方程[]6390x x -+=的解是( )A .83x =-B .196x =-C .72x =-或3x =-D .83x =-或196x =-二、填空题11.9的算术平方根是.12.一次数学测试后,某班40名学生按成绩分成4组,第1~3组的频数分别为12、10、6、则第4组的频率为 .13.在平面直角坐标系中,点()2,3P -到y 轴的距离是.14.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至多可打折.15.如图,四边形ABCD 为一长方形纸带,AB CD ∥,将纸带ABCD 沿EF 折叠,A 、D 两点分别与A '、D ¢对应,若2CFE CFD ∠∠'=,则BEA '∠的度数是︒.16.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩(其中12a a ≠),则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是.17.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙均由点()2,0A 同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2024次相遇地点的坐标为.18.如图,在平面直角坐标系中,四边形OBCD 各个顶点的坐标分别是()()0,0,2,6O B ,()()8,9,10,0C D .现将点C 平移,平移后的对应点C '的坐标为()2,8a +,若32BDC S '=△,则a 的值为.三、解答题 19.计算:(1)(2)()214- 20.解下列不等式(组): (1)解不等式:3534x x --≥; (2)解不等式组:2442x x ->⎧⎪⎨≤⎪⎩①②.21.如图,12180,3B ∠+∠=︒∠=∠.(1)请判断DE 与BC 的位置关系,并说明理由; (2)若360,2C A B ∠=︒=∠∠,求3∠的度数.22.ABC V 与A B C '''V 在平面直角坐标系中的位置如图所示,A B C '''V 是由ABC V 经过平移得到的.(1)分别写出点A ',B ',C '的坐标;(2)说明A B C '''V 是由ABC V 经过怎样的平移得到的;(3)若点(),P a b 是ABC V 内的一点,平移后点P 在A B C '''V 内的对应点为()2,1P '--,求P O B V 的面积.23.为了了解国家“双减”政策的落实情况,某校随机调查了部分学生在家完成作业的时间,按时间由短到长划分为,,,A B C D四个等级,并绘制了如下不完整的条形统计图和扇形统计图.根据以上信息,解答以下问题:(1)请将条形统计图补充完整;(2)扇形统计图中m =______.n =______;(3)若该校有2000名学生,请估计全校在家完成作业时间为1小时及以下的学生有多少人? 24.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买3套A 型和2套B 型课桌凳共需980元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的23,求该校本次购买A 型和B 型课桌凳共有哪几种方案?哪种方案的总费用最低?25.如图1,把一块含30︒的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上.(1)【特例初探】如图2,现把三角板绕B 点逆时针旋转n ︒,当090n <<,且点C 恰好落在DG 边上时,请求12∠+∠的度数.(2)【技能提升】在(1)的条件下,若2∠比1∠的一半多90︒,求n 的值.(3)【综合运用】如图2,现将射线BC 绕点B 以每秒5︒的转速逆时针旋转得到射线BC ',同时射线QA 绕点Q 以每秒4︒的转速顺时针旋转得到射线QA ',当射线QA 旋转至与QB 重合时,则射线,BC QA 均停止转动,设旋转时间为()s t .在旋转过程中,是否存在QA BC ''∥?若存在,求出此时t 的值;若不存在,请说明理由.26.如图1,在平面直角坐标系中,已知点()()2,4,4,2A B --,连接AB 与x 轴,y 轴分别相交于点,G H ,点(),0G a ,点()0,H b 满足()220a +=.(1)【基础训练】请你直接写出,G H 两点的坐标;(2)【能力提升】如图2,点(),C m n 在线段GH 上,,m n 满足1n m +=-,点D 在y 轴负半轴上,连接CD 交x 轴的负半轴于点M ,且CGM MOD S S =△△,求点D 的坐标;(3)【拓展延伸】如图3,P 为直线AB 上一点(异于,,A B G 三点),过P 点作AB 的垂线交x 轴于点,E PEG ∠和BGE ∠的平分线所在的直线相交于Q 点.当P 在直线AB 上运动时,请直接写出EQG ∠的度数.。

湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案百度文库

湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案百度文库

湖北省黄冈中学人教版七年级下册数学期末压轴难题试卷及答案百度文库一、选择题1.9的算术平方根是()A .3±B .9±C .3D .-3 2.下列生活现象中,属于平移的是( ).A .钟摆的摆动B .拉开抽屉C .足球在草地上滚动D .投影片的文字经投影转换到屏幕上 3.点A (-2,-4)所在象限为( ).A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行 B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角 5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124° 6.下列运算正确的是( ) A .164=± B .()3327-= C .42= D .393= 7.如图,在ABC 中,//DF AB 交AC 于点E ,交BC 于点F ,连接DC ,70A ∠=︒,38D ∠=︒,则DCA ∠的度数是( )A .42°B .38°C .40°D .32°8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)二、填空题9.125的算术平方根是___. 10.在平面直角坐标系中,若点()27,2M a -和点()3,N b a b --+关于y 轴对称,则b a =____.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.16.在平面直角坐标系中,对于点(),P x y ,我们把点()1,1M y x -++叫做点P 的和谐点.已知点1A 的和谐点为2A ,点2A 的和谐点为3A ,点3A 的和谐点为4A ,……,这样依次得到点1A ,2A ,3A ,…,n A .若点1A 的坐标为()2,4,则点2021A 的坐标为______.三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8- 18.求下列各式中x 的值:(1)30.008x =;(2)3338x -=; (3)3(1)64x -=.19.根据下列证明过程填空:已知:如图,AD BC ⊥于点D ,EF BC ⊥于点F ,4C ∠=∠.求证:12∠=∠.证明:∵AD BC ⊥,EF BC ⊥(已知)∴______=90ADC ∠=︒(______________)∴//AD EF (_____________)∴1______∠=(_____________)又∵4C ∠=∠(已知)∴//______AC (_________)∴2______∠=(_________)∴12∠=∠(__________)20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.阅读下面的文字,解答问题. 22的小数部分我们不可能全部写出来,但是由于1222121,差就是21).解答下列问题:(110的整数部分是 ,小数部分是 ;(26a 13b ,求a +b 6(3)已知3x +y ,其中x 是整数,且0<y <1,求x -y 的相反数.二十二、解答题22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm 2的正方体纸盒,则这个正方体的棱长是 .(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm 2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm 2,请你根据此方案求出各小路的宽度(π取整数).二十三、解答题23.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.24.如图,以直角三角形AOC 的直角顶点О为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.(1)C 点的坐标为______;A 点的坐标为______.(2)如图1,已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为()0t t >.问:是否存在这样的t ,使ODP ODQ SS =?若存在,请求出t 的值:若不存在,请说明理由. (3)如图2,过O 作//OG AC ,作AOF AOG ∠=∠交AC 于点F ,点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.25.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时,∵∠ACD -∠ABD =∠______∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A 1CD -∠A 1BD =12(∠ACD -∠ABD ) ∴∠A 1=______°;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题1.C解析:C【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可.【详解】解:9的算术平方根是3,故选C.【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.B【分析】根据平移的定义,对选项进行分析,排除错误答案.【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误.只有B选项为平移.故选:B.【点睛】解析:B【分析】根据平移的定义,对选项进行分析,排除错误答案.【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误.只有B选项为平移.故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键.3.C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180°,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D.【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.5.D【分析】根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数.【详解】解:由题意可知AD//BC,∠FEG=90°,∵∠1=34°,∠FEG=90°,∴∠AEF=90°-∠1=56°,∵AD//BC,∴∠2=180°-∠AEF=124°,故选:D.【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键.6.C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.【详解】解:A 、164=,故本选项错误;B 、()3327-=-,故本选项错误;C 、42=,故本选项正确;D 、393≠,故本选项错误;故选:C .【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键.7.D【分析】由//DF AB 可得到A ∠与FEC ∠的关系,利用三角形的外角与内角的关系可得结论.【详解】解://DF AB ,70A ∠=︒,70A FEC ∴∠=∠=︒. FEC D DCA ∠=∠+∠,38D ∠=︒,DCA FEC D ∴∠=∠-∠7038=︒-︒32=︒.故选:D .【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(1,﹣1),A 5(2,﹣1),A 6(2,0),A 7(2,1),…,点A 坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位, 则2021÷6=336…5,所以,前336次循环运动点A 共向右运动336×2=672个单位,且在x 轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A 2021的坐标是(674,﹣1).故选:C .【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.二、填空题9.【分析】直接利用算术平方根的定义计算得出答案.【详解】解:的算术平方根是:.故答案为:.【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:15【分析】直接利用算术平方根的定义计算得出答案.【详解】解:12515 . 故答案为:15. 【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.10.【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a-7,2)和N (-3﹣b ,a+b )关于y 轴对称,∴,解得:,则=.故 解析:116【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a -7,2)和N (-3﹣b ,a +b )关于y 轴对称,∴2732a b a b -=+⎧⎨+=⎩, 解得:42a b =⎧⎨=-⎩, 则b a =()21416-=. 故答案为:116. 【点睛】本题考查关于y 轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键. 11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB ),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE的邻补角的度数为:180°-120°=60°.考点:角的度量.12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DE C、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 15.(2,2)或(4,-4).【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标.【详解】解:∵点P到两坐标轴的距离相等∴=∴解析:(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16.【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A解析:()2,4【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A 1的坐标为(2,4),∴A 2(−3,3),A 3(−2,−2),A 4(3,−1),A 5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A 2021的坐标与A1的坐标相同,为(2,4).故答案为:()2,4.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“和谐点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解. 【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(21 2【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x-=;∴12x-=±∴x=3或x=-1(2)原式1122-+ 12=,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2)32;(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x -1的值,进而得出x 的值.【详解】解:(1)x 3=0.008,则x =0.2;(2)x 3-3=38则x 3=3+38故x 3=278解得:x =32; (3)(x -1)3=64则x -1=4,解得:x =5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD ;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】解析:FEC ∠;垂直的定义;同位角相等,两直线平行;3∠;两直线平行,同位角相等;GD ;同位角相等,两直线平行;3∠;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】证明:证明:∵AD BC ⊥,EF BC ⊥(已知)∴=90ADC FEC ∠=∠︒(垂直的定义)∴//AD EF (同位角相等,两直线平行)∴13∠=∠(两直线平行,同位角相等)又∵4C ∠=∠(已知)∴//AC GD (同位角相等,两直线平行)∴23∠∠=(两直线平行,内错角相等)∴12∠=∠(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 20.(1)见解析,,;(2)5;(3) 或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2) 计算 111A B C △ 的面积 111442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P 点得坐标为(t ,0), 因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,解得 3t = 或 5t =, 即 P 点坐标为 (3,0) 或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,-3;(2)1;(3)−14【分析】(1)根据的大小,即可求解;(2)分别求得a 、b ,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解.【详解】解:(1)解析:(1)3-3;(2)1;(314【分析】(1(2)分别求得a、b,即可求得代数式的值;(3)求得x,小数部分y,即可求解.【详解】解:(1)∵34∴3-3;(2)∵2<3,34∴a2,b=3∴a+b=1;(3)∵12,∴13<14,∴x=13,y1∴x-y=13−1)∴x-y14.【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键.二十二、解答题22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(1;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解.【详解】解:(1)∵正方体有6个面且每个面都相等,∴正方体的一个面的面积=2 dm2.∴正方形的棱长=2dm;故答案为:2dm;(2)甲方案:设正方形的边长为xm,则x2 =121π∴x =11π∴正方形的周长为:4x=44πm乙方案: 设圆的半径rm为,则πr2==121π∴r =11∴圆的周长为:2rπ= 22πm∴ 44π-22π=22π(2-)π∵ 4>π∴ 2π>∴20π->∴正方形的周长比圆的周长大故从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)依题意可进行如图所示的平移,设小路的宽度为ym ,则(π–y)2=121π-21π∴π–yπ∴yπ∵π取整数∴y33m;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;二十三、解答题23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB ∥CD ,∴∠PQB =∠PCD =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG ,∵EH 平分∠BEG ,∴∠GEH =12∠BEG ,∴∠PEH =∠PEG -∠GEH =12∠FEG -12∠BEG =12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 24.(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP=t ,OP=2-t ,OQ=2t ,AQ=4-解析:(1)()2,0C ,()0,4A ;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠+∠∠进行计算即可. 【详解】解:(1)∵+|b -2|=0, ∴a -2b =0,b -2=0, 解得a =4,b =2,∴A (0,4),C (2,0).(2)存在, 理由:如图1中,D (1,2),由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒, ∴0<t ≤2时,点Q 在线段AO 上, 即 CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,∴S △DOP =12•OP •y D =12(2-t )×2=2-t ,S △DOQ =12•OQ •x D =12×2t ×1=t ,∵S △ODP =S △ODQ ,∴2-t =t ,∴t =1.(3)结论:OHC ACE OEC ∠+∠∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC , ∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124414OHC ACE OEC ∠+∠∠+∠+∠+∠=∠∠+∠=2. 【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.25.(1)∠A ;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H解析:(1)EAF EDG AED∠+∠=∠,证明见解析;(2)证明见解析;(3)80EKD∠=︒.【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

2021-2022学年湖北省黄冈市七年级(下)期末数学试卷及答案解析

2021-2022学年湖北省黄冈市七年级(下)期末数学试卷及答案解析

2021-2022学年湖北省黄冈市七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)下列选项中能由如图平移得到的是()A.B.C.D.2.(3分)下列各数:,,,25,π﹣3.14,,其中无理数的个数为()A.2个B.3个C.4个D.5个3.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)若m>n,则下列各式一定成立的是()A.m+3<n+3B.m﹣3<n﹣3C.>D.﹣3m>﹣3n 5.(3分)如图,下列不能判定AB∥EF的条件有()A.∠B+∠BFE=180°B.∠1=∠2C.∠3=∠4D.∠B=∠56.(3分)下列各式计算正确的是()A.2﹣3=B.|﹣1.7|=1.7﹣C.=±D.=﹣17.(3分)已知点P(2a+1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.8.(3分)已知x,y,z满足,则2x+y﹣z的值为()A.2B.3C.4D.5二、填空题(每小题3分,共24分)9.(3分)已知(x﹣1)2=4,则x的值为.10.(3分)若n<<n+1,且n是正整数,则n=.11.(3分)某校为了调查七年级12个班600名学生的身体发育状况,决定在12个班的每个班中抽取10名学生进行分析,在这个问题中的样本容量是.12.(3分)已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为.13.(3分)把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的周长等于cm.14.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别落在D′,C′的位置上,ED′与BC交于G点,若∠EFG=56°,则∠AEG=.15.(3分)若干学生分苹果,每人4个余20个,每人8个有一人分得的不够8个,则学生数为人.16.(3分)平面直角坐标系中,A(﹣3,1),B(﹣1,4),直线AB交x轴于C点,则C 点坐标为.三、解答题(共72分)17.(8分)计算:(1)﹣(﹣)﹣|﹣2|;(2).18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)用如图①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?20.(8分)如图,已知DE⊥AC于E点,BC⊥AC于点C,FG⊥AB于G点,∠1=∠2,求证:CD⊥AB.21.(10分)如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.22.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x小时进行分组整理,并绘制了不完整的频数分布直方图和扇形统计图(如图),根据图中提供的信息,解答下列问题:(1)这次抽样调查的学生人数是人;(2)扇形统计图中“A”组对应的圆心角度数为,并将条形统计图补充完整;(3)若该校有2000名学生,试估计全校有多少名学生每周的课外阅读时间不少于6小时?23.(10分)浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(12分)如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y 轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣8|=0.(1)点A的坐标为;点C的坐标为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).2021-2022学年湖北省黄冈市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.2.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,是分数,属于有理数;25是整数,属于有理数;无理数有,π﹣3.14,,共3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…(每两个1之间的0增加一个)等有这样规律的数.3.【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.4.【分析】利用不等式的基本性质化简,判断即可.【解答】解:A、∵m>n,∴m+3>n+3,错误;B、∵m>n,∴m﹣3>n﹣3,错误;C、∵m>n,∴,正确;D、∵m>n,∴﹣3m<﹣3n,错误;故选:C.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.5.【分析】根据平行线的判定逐项进行判断即可.【解答】解:A、∵∠B+∠BFE=180°,∴AB∥EF(同旁内角互补,两直线平行),故A不符合题意;B、∵∠1=∠2,∴DE∥BC(内错角相等,两直线平行),故B符合题意;C、∵∠3=∠4,∴AB∥EF(内错角相等,两直线平行),故C不符合题意;D、∵∠B=∠5,∴AB∥EF(同位角相等,两直线平行),故D不符合题意;故选:B.【点评】本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.6.【分析】根据二次根式的减法运算法则可判断A选项;根据绝对值的性质可判断B选项;根据算术平方根的计算可判断C选项;根据立方根的计算可判断D选项.【解答】解:A.=﹣,故A选项错误;B.=﹣1.7,故B选项错误;C.=,故C选项错误;D.=﹣1,故D选项正确.故选:D.【点评】本题考查二次根式的性质与化简、绝对值、算术平方根与立方根,熟练掌握基础知识是解答本题的关键.7.【分析】根据点在坐标系中位置得关于a的不等式组,解不等式组求得a的范围,即可判断.【解答】解:根据题意,得:,解不等式①,得:a>﹣,解不等式②,得:a<1,∴该不等式组的解集为:﹣<a<1,故选:C.【点评】本题考查的是解一元一次不等式组,根据题意准确列出不等式组,求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.【分析】按照解三元一次方程组的步骤先求出x=1+2z,y=1﹣3z,然后代入式子中进行计算即可解答.【解答】解:,①+②得:6x﹣12z=6,x﹣2z=1,x=1+2z,把x=1+2z代入①中得:4(1+2z)+3y+z=7,4+8z+3y+z=7,9z+3y=3,y=1﹣3z,把x=1+2z,y=1﹣3z代入2x+y﹣z中得:2(1+2z)+1﹣3z﹣z=2+4z+1﹣3z﹣z=3,故选:B.【点评】本题考查了解三元一次方程组,求代数式的值,熟练掌握解三元一次方程组是解题的关键.二、填空题(每小题3分,共24分)9.【分析】根据平方根的定义得到x﹣1=±2,进而求出x的值.【解答】解:(x﹣1)2=4,由平方根的定义可知,x﹣1=±2,即x=3或x=﹣1,故答案为:3或﹣1.【点评】本题考查平方根,理解平方根的定义是正确解答的前提.10.【分析】依据被开方数越大,对应的算术平方根越大,可估算出的大致范围,从而可确定出n的值.【解答】解:∵9<13<16,∴3<<4.∵n是正整数,∴n=3.故答案为:3.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.11.【分析】根据样本容量是样本中包含的个体的数目,可得答案.【解答】解:某校为了调查七年级12个班600名学生的身体发育状况,决定在12个班的每个班中抽取10名学生进行分析,在这个问题中的样本容量是12×10=120.故答案为:120.【点评】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位.12.【分析】根据不等式组的解集即可得出关于a、b的二元一次方程组,解方程组即可得出a、b值,将其代入方程ax+b=0中,解出方程即可得出结论.【解答】解:∵不等式组的解集是2<x<3,∴,解得:,∴方程ax+b=0为2x+1=0,解得:x=﹣.故答案为:﹣.【点评】本题考查了解一元一次不等式以及一元一次方程的解,解题的关键是求出a、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.13.【分析】设小长方形的长为xcm,宽为ycm,则大长方形的长为(2x+y)cm,宽为(x+2y)cm,利用长方形的周长公式结合大长方形的周长为888cm,即可得出关于x,y的二元一次方程,解之即可求出x+y的值,再将其代入2(x+y)中即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,则大长方形的长为(2x+y)cm,宽为(x+2y)cm,根据题意得:2(2x+y+x+2y)=888,解得:x+y=148,∴2(x+y)=296.故答案为:296.【点评】本题考查了生活中的平移现象以及二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14.【分析】先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.【解答】解:∵AD∥BC,∴∠DEF=∠GFE=56°,由折叠可得,∠GEF=∠DEF=56°,∴∠DEG=112°,∴∠AEG=180°﹣112°=68°.故答案为:68°【点评】本题以折叠问题为背景,主要考查了平行线的性质,解题时注意:矩形的对边平行,且折叠时对应角相等.15.【分析】设有x个学生,可得:0<4x+20﹣8(x﹣1)<8,而x是整数,可得x=6.【解答】解:设有x个学生,根据题意得:0<4x+20﹣8(x﹣1)<8,解得:5<x<7,∵x是整数,∴x=6,故答案为:6.【点评】本题考查不等式组的应用,解题的关键是读懂题意,列出不等式.16.【分析】如图,根据A、B两点的坐标可以求出梯形ADEB的面积,然后再利用S△BCE =S梯形ADEB即可求出C点坐标﹣S△ADC【解答】解:如图,过A作AD⊥x轴于D,过B作BE⊥x轴于E.∵A(﹣3,1),B(﹣1,4),∴AD=1,BE=4,DE=(﹣1)﹣(﹣3)=2.===5.∴S梯形ADEB设C点坐标为(x,0),则CE=﹣1﹣x,CD=﹣3﹣x,﹣S△ADC=S梯形ADEB,∵S△BCE即﹣=5,∴﹣=5,解得x=﹣,∴C点坐标为(﹣,0).故答案为:(﹣,0).【点评】此题考查的知识点事:在平面直角坐标系中,根据点的坐标求面积的方法.三、解答题(共72分)17.【分析】(1)根据立方根,绝对值的定义化简计算即可.(2)加减消元法消掉y求出x,把x代入第一个方程求出y即可.【解答】解:(1)原式==.(2),①+②得:9x=3,解得x=,把x=代入①得:1+2y=4,解得y=,∴方程组的解是.【点评】本题考查实数运算和解二元一次方程组,解题关键是熟知立方根,绝对值的定义以及消元法解方程组的步骤.18.【分析】首先解两个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得:x≥﹣2.则不等式组的解集是﹣2≤x<2.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.【分析】设做第一种x个,第二种y个,根据共有1000张正方形纸板和2000张长方形纸板,列方程组求解.【解答】解:设做第一种x个,第二种y个,由题意得,,解得:.答:做第一种200个,第二种400个.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【分析】根据垂直于同一直线的两直线互相平行可得DE∥BC,再根据两直线平行,内错角相等可得∠2=∠DCF,然后求出∠1=∠DCF,根据同位角相等两直线平行可得GF ∥CD,再根据垂直于同一直线的两直线互相平行证明.【解答】证明:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠2=∠DCF,又∵∠1=∠2,∴∠1=∠DCF,∴GF∥DC,又∵FG⊥AB,∴CD⊥AB.【点评】本题考查了平行线的判定与性质以及垂直的判定,垂直于同一直线的两直线平行,熟记性质是解题的关键.21.【分析】(1)先利用点B和点C的坐标画出直角坐标系,然后根据点的坐标的意义即可得到点A、D、E、F的坐标;(2)利用正方形的面积公式和勾股定理解答即可.【解答】解:(1)如图:A(﹣6,3),D(2,1),E(1,3),F(﹣1,2);(2)因为CD=,所以正方形CDEF的面积=5.【点评】本题考查了坐标与图形性质:利用点的坐标求相应的线段长和判断线段与坐标轴的位置关系;记住坐标系中各特殊点的坐标特征.22.【分析】(1)由A时间段的人数及其所占百分比可得总人数;(2)用360°乘以A组的百分比可得,用总人数乘以B组的百分比求得其人数,再用总人数减去其他各组人数之和求得D组人数即可得;(3)用总人数乘以样本中D、E人数之和所占比例即可得.【解答】解:(1)这次调查的学生人数为8÷16%=50人,故答案为:50;(2)扇形统计图中“A”组对应的圆心角度数为360°×16%=57.6°,B时间段的人数为50×30%=15人,则D时间段的人数为50﹣(8+15+20+2)=5人,补全图形如下:故答案为:57.6°;(3)估计全校每周的课外阅读时间不少于6小时的学生有2000×=280人.【点评】本题考查频率分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的风扇的进价和售价,B型号的风扇的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【解答】(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.【分析】(1)利用非负性即可求出a,b即可得出结论;(2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出结论.【解答】解:(1)∵+|b﹣8|=0,∴a﹣b+2=0,b﹣8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8﹣2t,∵D(4,3),=OQ×|x D|=t×4=2t,∴S△ODQS△ODP=OP×|y D|=(8﹣2t)×3=12﹣3t,∵△ODP与△ODQ的面积相等,∴2t=12﹣3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)∴2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点评】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.。

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若2ym+5xn+3与﹣3x2y3是同类项,则mn=()A .B . -C . 1D . -22. (2分)如果a+b>0,ab>0,那么()A . a>0,b>0B . a<0,b<0C . a>0,b<0D . a<0,b>03. (2分)若关于x的不等式组的解集是x>4,则a的取值范围是()A . a≤4B . a>4C . a<4D . a≥44. (2分)二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A . .B . .C . .D . .5. (2分)下列条件中能得到互相平行的直线的是()A . 互为邻补角的角平分线所在的直线B . 对顶角的平分线所在的直线C . 两条平行线的一对内错角的平分线所在的直线D . 两条平行线的一对同旁内角的平分线所在的直线6. (2分)三角形两边长为6与8,那么周长l的取值范围()A . 2<l<14B . 16<l<28C . 14<l<28D . 20<l<247. (2分)下列命题是真命题的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的四边形是矩形C . 对角线互相垂直的四边形是菱形D . 对角线互相垂直的四边形是正方形8. (2分)如图所示,∠1=∠2,BC=EF ,欲证△ABC≌△DEF ,则还须补充的一个条件是()A . AB=DEB . ∠ACE=∠DFBC . BF=ECD . ∠ABC=∠DEF9. (2分)关于x的不等式组有四个整数解,则a的取值范围是()A . a≥1B . 1<a≤2C . 1≤a<2D . 1<a<210. (2分)(2019·武汉模拟) 点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A .B .C .D .二、填空题 (共8题;共10分)11. (1分)某种生物细胞的直径约为0.000056米,用科学记数法表示为________米.12. (1分)(2017·柳江模拟) 因式分解:ab+a=________13. (1分)若n为正整数,且x2n=3,则(3x3n)2的值为________.14. (1分) (2017七下·江都月考) 一个多边形的内角和是1800°,这个多边形是________边形.15. (3分)如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加一个条件是________(2)若以“AAS”为依据,则需添加一个条件是________(3)若以“ASA”为依据,则需添加一个条件是________16. (1分) (2018八上·东城期末) 如果实数满足 ________;17. (1分) (2019八下·温江期中) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC 交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD= AE+AF= 则,其中正确结论有________(填序号).18. (1分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为________ .三、解答题 (共8题;共70分)19. (10分) (2020八上·昆明期末)(1)计算:(2)分解因式:20. (10分) (2016八上·东城期末) 因式分解:(1) 4x2 -9(2) 3ax2 -6axy+3ay221. (5分)求不等式组的整数解.22. (5分) (2018八上·重庆期中) 先化简,再求值.(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=- .23. (10分) (2017七下·滦南期末) 解方程(不等式)组(1)解方程组;(2)解不等式组24. (5分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△C GF;(2)四边形EFGH是菱形.25. (15分)(2017·邗江模拟) 如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.26. (10分)(2017·阜宁模拟) 县内某小区正在紧张建设中,现有大量的沙石需要运输,“建安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“建安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“建安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分) 19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、25-1、25-2、25-3、26-1、26-2、。

2022-2023学年湖北省黄冈市黄州区七年级(下)期末数学试卷(含解析)

2022-2023学年湖北省黄冈市黄州区七年级(下)期末数学试卷(含解析)

2022-2023学年湖北省黄冈市黄州区七年级(下)期末数学试卷一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各图中,∠1与∠2是对顶角的是( )A. B. C. D.2. 下列各数:π2,0, 9,0.23,3.1415,227,1− 2中,无理数的个数有( )A. 2个 B. 3个 C. 4个 D. 5个3. 若点A(−1,m)在x 轴上,则点B(m−1,m +1)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 如图,能判断直线AB//CD 的条件是( )A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°5. 若(x−2)2=9,则x 的值是( )A. −1B. 5C. 5或−1D. 5或16. 用白铁皮做罐头盒,每张铁片可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是( )A. {x +y =362×25x =40yB. {x +y =36x =2yC. {x +y =36y =2xD. {x +y =3625x =2×40y7. 若关于x 的一元一次等式组{x−2m ≤0x +1>2有三个整数解,则m 的取值范围为( )A. m ≥2 B. 2≤m <52 C. 2<m ≤52 D. 2<m <528. 若关于x ,y 的方程组{3x−y =k +1x +y =3的解满足x 为正数,y 为负数,则k 的取值范围( )A. k >8 B. k >−4 C. k <−4 D. −4<k <8二、填空题(本大题共8小题,共24.0分)9. 点A(−4,3)到x 轴的距离是______ .10. 81的算术平方根是______ .11. 为了解某七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析,样本是______ .12. 已知a ,b 满足方程组{2a−b =2a +2b =5,则3a +b 的值为______.13. 若一个正数的两个平方根分别是2a +1和a−4,则a 的值是______.14. 不等式x +2m >1的解集为x >3,则m 的值为______ .15. 王经理出差带回黄冈特产——东坡饼若干袋,分给朋友们品尝,如果每人分5袋,还余1袋;如果每人分7袋,那么最后一个朋友分到了东坡饼,但不足3袋,则王经理带回东坡饼______ 袋.16. 如图,将面积为4的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的2倍,则图中四边形ACED 的面积为______ .三、解答题(本大题共8小题,共72.0分。

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·渠县模拟) 数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a>2,那么a2>4.下列命题中,具有以上特征的命题是()A . 两直线平行,同位角相等B . 如果|a|=1,那么a=1C . 全等三角形的对应角相等D . 如果x>y ,那么mx>my2. (2分) (2020七上·温岭期末) 下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A . ①④B . ②③C . ①②④D . ①③④3. (2分)如图,以BC为边的三角形有()个.A . 3个B . 4个C . 5个D . 6个4. (2分)(2013·淮安) 不等式组的解集是()A . x≥0B . x<1C . 0<x<1D . 0≤x<15. (2分) (2020七下·南宁月考) 下列语句中,是真命题的是()A . 相等的角是对顶角B . 同旁内角互补C . 过一点不只有一条直线与已知直线垂直D . 对于直线 a、b、c,如果b∥a,c∥a,那么b∥c6. (2分)为了了解某年级同学每天参加体育锻炼的时间,比较恰当的收集数据的方法是()A . 查阅资料B . 问卷调查C . 实地调查D . 实验7. (2分)一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x元,装订机的价格为y元,依题意可列方程组为()A .B .C .D .8. (2分) (2019八上·乐东月考) 下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A . 2,2,5B . 3,2,6C . 1,2,2D . 1,2,39. (2分) (2019七上·松滋期中) 下列语句:①没有绝对值为-3的数;②-a一定是一个负数;③倒数等于它本身的数是1;④平方数和立方数都等于它本身的数有两个,是0和1;⑤1.249精确到十分位的近似值是1.3.其中正确的有()A . 1个B . 2个C . 3个D . 4个10. (2分) (2020八上·包河月考) 在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是()A . P(2,5)表示这个点在平面内的位置B . 点P的纵坐标是5C . 点P到x轴的距离是5D . 它与点(5,2)表示同一个坐标二、填空题 (共6题;共7分)11. (1分) (2017七下·黔东南期末) 己知是方程kx﹣2y=3的解,则k=________.12. (1分)一组数据的最大值与最小值的差为23,若确定组距为3,则分成的组数是________ .13. (2分) (2020八上·黑龙江期中) 已知一个多边形的内角和等于1260°,则这个多边形是________边形.14. (1分) (2020七上·重庆月考) 对有理数a、b,定义运算★如下,a★b=,则﹣5★6=________.15. (1分)(2018·安顺) 如图,C为半圆内一点,O为圆心,直径AB长为2cm,,,将绕圆心O逆时针旋转至,点在OA上,则边BC扫过区域(图中阴影部分)的面积为________ .(结果保留)16. (1分)(2018·开封模拟) 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则y与x的解析式是________.三、解答题 (共9题;共63分)17. (5分) (2020九上·覃塘期末)(1)计算:;(2)解方程:.18. (5分) (2020七下·渝中期末) 已知不等式组有且只有两个整数解,求实数a的取值范围,并用数轴把它表示出来.19. (5分)(2019·广西模拟) 如图(1)如图,若以火车站为坐标原点,建立平面直角坐标系,超市的坐标为:(2,-3),则市场的坐标:________,文化宫的坐标:________;.(2)如图,若已知医院坐标:(1,-1),宾馆的坐标:(5,3),请根据题目条件,画出合适的平面直角坐标系,并直接写出体育馆的坐标20. (2分) (2019九下·无锡期中) 某厂生产A,B两种产品.其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)6 5.2 6.5B产品单价(元/件) 3.543并求得A产品三次单价的平均数和方差:: .(1)补全图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了百分之几?(2)求B产品三次单价的方差,并比较哪种产品的单价波动小:(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1.求m的值.21. (5分)解方程组:22. (5分) (2015七下·滨江期中) 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC的位置关系,并说明理由.23. (10分)某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.24. (11分) (2020九上·佳木斯期中) 如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;(2)写出A1、C1的坐标;(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1 ,求线段B1C1旋转过程中扫过的面积(结果保留π).25. (15分)(2010·华罗庚金杯竞赛) 如图,ABCD是梯形,面积是1,已知 = , = ,=。

湖北省黄冈中学2020-2021学年七年级下学期期末考试数学试题

湖北省黄冈中学2020-2021学年七年级下学期期末考试数学试题

黄冈中学2021年度七年级下册期末试卷一、精心选一选(每小题3分,共30分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的, 请把符合要求的选项前面的字母填写在指定的位置. 1.下列运算正确的是( )。

A.1055a a a=+; B.2446a a a =⨯ ; C.a a a =÷-10 ; D.044a a a -2.如图,AB ∥ED ,则∠A +∠C +∠D =( ) A .180° B .270°C .360°D .540°3.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD , 使其不变形,这样做的根据是( ).A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性 4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标 有1、2、3、4的四块),你认为将其中的哪一些块带去,就能 配一块与原来一样大小的三角形? 应该带( ).A .第1块B .第2 块C .第3 块D .第4块 5.下列轴对称图形中,只有两条对称轴的图形是 ( )6.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是( ).A .1.677025×10—14B .1.677025×1014C .(1.677025×10)—14D .1.677025×10×(—14)7. 下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( ) A 、12cm, 3cm, 6cm ; B 、8cm, 16cm, 8cm ; C 、6cm, 6cm, 13cm ; D 、2cm, 3cm, 4cm 。

8.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟。

如果在镜子里看到该电子钟的时间显示如图所示,那么它的实际时间是( ) A .12∶51 B .15∶21 C .15∶51 D .12∶219.将一圆形纸片对折后再对折,得到图3,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )题目虽然简 单,也要 仔细呦!AB C DF12341.677025×10-14图3(第3题图)图 2A .B .C .D .ABCDABCDE 第4题图10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示 水的最大深度h 与时间t 之间的关系的图像是( )二、耐心填一填:(每小题3分,共30分)11.单项式c b a 3252-的系数是 . 12. 小明量得课桌长为1.025米,四舍五入到十分位为_____米,有_____个有效数字. 13. 如图,∠1+∠2=284°,b ∥c ,则∠3= ,∠4= .14.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是_____ _ .15.科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是 . 16.丽丽在洗手后,没有把水龙头拧紧,该水龙头每秒会滴下2滴水,每滴水约0.05毫升,设t 小时内该水龙头共滴了m 毫升水,请你写出该水龙头流失的水量m 与时间t 的关系式: 。

【3套打包】湖北省黄冈中学最新七年级下册数学期末考试试题(含答案)

【3套打包】湖北省黄冈中学最新七年级下册数学期末考试试题(含答案)

最新七年级(下)数学期末考试题(含答案)人教版七年级下学期期末考试数学试题一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4的平方根是(A)±16 (B)(C)(D)2.2019年4月29日中国北京世界园艺博览会开幕,会徽取名“长城之花”,如图1所示. 在下面右侧的四个图形中,能由图1经过平移得到的图形是3.在平面直角坐标系中,如果点P在第三象限,那么m的取值范围为(A)(B)(C)(D)4.如图,直线,相交于点,平分,OF⊥CD,若∠BOE=72°,则的度数为(A)72°(B)60°(C)54°(D)36°5.若a=,把实数a在数轴上对应的点的位置表示出来,可能正确的是(A)(B)(C)(D)6.下列条件:①∠AEC=∠C ,②∠C=∠BFD,③∠BEC+∠C=180°,其中能判断AB∥CD的是(A)①②③(B)①③(C)②③(D)①7.在参观北京世园会的过程中,小欣发现可以利用平面直角坐标系表示景点的地理位置,在正方形网格中,她以正东、正北方向为轴、轴的正方向建立平面直角坐标系,表示丝路驿站的点坐标为(0,0). 如果表示丝路花雨的点坐标为(7,-1),那么表示清杨洲的点坐标大约为(2,4);如果表示丝路花雨的点坐标为(14,-2),那么这时表示清杨洲的点坐标大约为(A)(4,8)(B)(5,9)(C)(9,3)(D)(1,2)8.我们规定:在平面直角坐标系xOy中,任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为,例如图①中,点M(-2,3)与点N(1,-1)之间的折线距离为. 如图②,已知点P(3,-4),若点Q的坐标为(t,2),且,则t的值为(A)-1(B)5(C)5或-13(D)-1或7二、填空题(本题共16分,每小题2分)9.写出一个大于-3的负无理数.10.物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.11.若关于,的二元一次方程组的解也是二元一次方程的解,则= .12.如图,连接直线l外一点P与直线l上各点O,,,,…,其中PO⊥l,这些线段PO,,,,…中,最短的线段是 .第12题图13. 已知关于x的一元一次不等式的解集是,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是. 第13题图14.下列调查四项调查:①本市居民对“垃圾分类”有关内容的了解程度,②本市初中生对全国中小学生“安全教育日”2019年主题“关注安全、关爱生命”的了解情况,③选出本校跳高成绩最好的学生参加全区比赛,④本市初中学生每周课外阅读时间情况,其中最适合采用全面调查方式开展调查的的是 .15.小颖在我国数学名著《算法统宗》看到一道题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”她依据本题编写了一道新题目:“大、小和尚分一百个馒头,大和尚每人吃三个,小和尚三人吃一个,问大、小和尚各多少人?”写出一组能够按照新题目要求分完一百个馒头的和尚人数:大和尚人,小和尚人.16.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB∥CD,那么∠EOB=∠EO'D.”如图2,假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实,可得A'B'∥CD.这样过点O就有两条直线AB,A’B’都平行于直线CD,这与基本事实矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.请补充上述证明过程中的两条基本事实.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:..18.解不等式,并把它的解集在数轴上表示出来.19.解方程组:20.解不等式组并写出这个不等式组的所有整数解.21.完成下面的证明.已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF平分∠BED.证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EFB=90°.()∴∠ACB=∠EFB.∴.()∴∠A=∠2.(两直线平行,同位角相等)∠3=∠1.()又∵∠A=∠1,∴∠2=∠3.∴EF平分∠BED.22.如图,已知三角形ABD,AC是∠DAB的平分线,平移三角形ABC,使点C移动到点D,点B的对应点是E,点A的对应点是F.(1)在图中画出平移后的三角形FED;(2)若∠DAB =72º,EF与AD相交于点H,则∠FDA=º,∠DHF=º.23.在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,-2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标;(2)直接写出以A,B,O为顶点的三角形的面积;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程.24.阅读下列材料:时间利用调查以自然人为调查对象,通过连续记录被调查者一天24小时的活动,获得居民在工作学习、家务劳动、休闲娱乐等活动上花费的时间,为分析居民身心健康和生活质量等提供数据支撑.2008年,我国第一次开展了时间利用调查,相距十年后的2018年,开展了第二次时间利用调查.2018年5月,北京调查总队对全市1700户居民家庭开展了入户调查,下面是根据此次调查的结果对北京市居民时间利用的特点和变化进行的分析.一、北京市居民一天的时间分布情况北京市居民一天的时间分布情况统计图二、十年间北京市居民时间利用的变化北京市居民2008年上下班的交通时间为1小时29分钟,2018年依然为1小时29 分钟;2008年人均家庭劳务时间为2小时32分钟,2018年为2小时52分钟;2008年人均自由支配时间为4小时17分钟,2018年为4小时34分钟;2008年上网时间为25分钟,2018年上网时间是2008年的7.44倍.(说明:以上内容摘自北京市统计局官网)根据以上材料解答下列问题:(1)2018年采用的调查方式是;(2)图中m的值为;(3)①利用统计表,将2008年和2018年北京市居民上下班的交通时间、人均家庭劳务时间、人均自由支配时间和上网时间表示出来;②根据以上信息,说明十年间北京市居民时间利用变化最大的是,请你分析变化的原因是.25. 如图,∠A=90°,BD平分∠ABC,交AC于点D,DE⊥BC于点E,DF∥AB交BC于点F.(1)依题意补全图形;(2)设∠C=α,①∠ABD=(用含α的式子表示);②猜想∠BDF与∠DFC的数量关系,并证明.26. 某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查. 过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 867481757687497491 757981717481 866983新七年级下册数学期末考试题及答案人教版七年级下学期期末考试数学试题数学试卷(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D4.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A、90°B、110°C、108°D、100°答案:D5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需()A、3元B、5元C、8元D、13元答案:C6.将点A(2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B,则点B 的坐标是()A、(-1,3)B、(5,3)C、(﹣1,﹣5)D、(5,﹣5)答案:A7.不等式组215xx m-<⎧⎨<⎩的解集是x<3,那么m的取值范围是()A、m>3B、m≥3C、m<2D、m≤2答案:B8.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A、ab>0B、a+b<0C、|a|<|b|D、a﹣b>0答案:C二、填空题(每小题3分,共21分)9.16的平方根是.答案:±410.如图,直线a,b相交,若∠1与∠2互余,则∠3的度数为.答案:135°11.某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=°.答案:12012.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是.答案:25013.已知关于x的不等式323x ax-≥⎧⎨-≥-⎩的整数解共有3个,则a的取值范围是.答案:0<a≤114.如图把“QQ笑脸”图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B 的坐标为(0,3),则嘴唇C点的坐标是.答案:(﹣1,1)15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有人.答案:34016.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x为正整数,则x可以取的所有值是.答案:2或3三、解答题:17.(12分)计算题:(1|1|(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:解:(1)原式=3-21…………………………..4分18.(6分)已知5a+2的立方根是3,4b+1的算术平方根是3,c求a+b+c 的值.解:19.(6分)已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.解:20.(6分)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)解:(1)如下图,(2)B(1,2),B’(3,5)21.(6分)如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.解:22.(8分)我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.解:(1)样本容量是:510%=50(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30(3)答对9题人数:30%×50=15,答对10题人数:20%×50=10,如下图,23.(9分)某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?解:(1)设购买一个足球需要x元,一个篮球需y元,则有x+2y=2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。

黄冈市数学七年级下学期期末考试试卷

黄冈市数学七年级下学期期末考试试卷

黄冈市数学七年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)解方程时,去分母、去括号后,正确结果是()A . 4x+1﹣10x+1=1B . 4x+2﹣10x﹣1=1C . 4x+2﹣10x﹣1=6D . 4x+2﹣10x+1=62. (2分)二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是是()A .B .C .D .3. (2分)四边形ABCD中,AB=2,BC=4,CD=7,求线段AD的取值范围是()A . 2<AD<7B . 2<AD<13C . 6<AD<13D . 1<AD<134. (2分)四边形ABCD的对角线相交于点O,且AO=BO=CO=DO,则这个四边形()A . 仅是轴对称图形B . 仅是中心对称图形C . 既是轴对称图形又是中心对称图形D . 既不是轴对称图形,又不是中心对称图形5. (2分)一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为()A . 正三角形B . 正方形C . 正五边形D . 正六边形6. (2分)(2019·徽县模拟) 如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠l=28°,则∠2的度数是()A . 108°B . 118°C . 128°D . 152°7. (2分) (2019八上·恩施期中) 已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A . 4B . 5C . 6D . 不能确定8. (2分)(2015·温州) 不等式组的解是()A . x<1B . x≥3C . 1≤x<3D . 1<x≤3二、填空题 (共16题;共78分)9. (2分)(2018·泰州) 已知,,若,则实数的值为________.10. (2分)(2017·仪征模拟) 如图,用若干个全等的正五边形可以拼成一个环状,如图是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是________.11. (1分)若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是________ 三角形.12. (1分) (2020八上·青山期末) 如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点C处,点D落在点H处若∠1=62°,则图中∠BEG的度数为________。

2020-2021学年湖北省黄冈市七年级(下)期末数学试卷(附答案详解)

2020-2021学年湖北省黄冈市七年级(下)期末数学试卷(附答案详解)

2020-2021学年湖北省黄冈市七年级(下)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.在下列实数中,是无理数的是()A. 227B. √3 C. √−83 D. √162.点P在第四象限,其到x轴的距离是3,到y轴的距离是2,则点P的坐标是()A. (2,−3)B. (−2,3)C. (3,−2)D. (−3,2)3.如图,AB//CD,EF分别交AB,CD于点G,H,若∠1=39°,则∠2的度数为()A. 51°B. 39°C. 129°D. 78°4.下列说法不一定成立的是()A. 若a<b,则a+c<b+cB. 若a+c<b+c,则a<bC. 若a<b,则ac2<bc2D. 若ac2<bc2,则a<b5.下列调查方式中,最合适的是()A. 为了解某品牌灯泡的使用寿命,采用全面调查的方式B. 为了解我市居民的节水意识,采用全面调查的方式C. 对一枚用于发射卫星的运载火箭各部件的检查,采用抽样调查的方式D. 为了解我市八年级学生对在线学习课程的满意度情况,采用抽样调查的方式6.不等式组{4−2x≥03+x>2的解集在数轴上表示为()A. B. C. D.7.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数分为正实数和负实数;③2的算术平方根是√2;④无理数是带根号的数.正确的是()A. ①B. ②C. ③D. ④8.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付()小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A. 10元B. 11元C. 12元D. 13元二、填空题(本大题共8小题,共24.0分)9. 64的算术平方根是______.10. 满足不等式组{x ≤3x >−2的整数解有______个. 11. 已知方程组{x +y =m x −y =n +1的解是{x =3y =2,则m +n 的值为______. 12. 若一个正数的两个不同的平方根分别是2a −1和−a +2,则这个正数是______.13. 如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是______.14. 如图所示,在平面直角坐标系中,A(2,0),B(0,1),将线段AB 平移至A 1B 1的位置,则a +b 的值为______.15. 如图,已知直线a//b ,c//d ,若∠1,∠2是图中角的两边分别平行的一对角,且∠1的度数为(2x −3)°,∠2的度数为(3x −17)°,则x 值为______.16. 如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的12.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm ,若铁钉总长度为5cm ,则a 的取值范围是______.三、解答题(本大题共8小题,共72.0分)17. 计算:(1)(−√2)2+|1−√2|+√−83;(2)−22+√(−4)2+√32+42−(−1)2021.18. 解方程(或不等式)组:(1){x +2y =102x −y =5;(2){x <3(x −2)1+2x3>x −1.19. 如图,直线AB ,CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠COF 度数.20. 甲,乙两位同学在解方程组{ax +3y =42x −by =−1时,甲把字母a 看错了得到方程组的解为{x =4y =3,乙把字母b 看错了得到方程组的解为{x =−2y =2. (1)求a ,b 的正确值;(2)求原方程组的解.21. 某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,扇形统计图中,其中安全意识为“很强”所在圆心角的度数是______;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有多少名?22.已知:AB//CD.(1)如图①,点E在直线AB与CD之间,连接AE,CE,试说明∠AEC=∠A+∠C.(2)当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°;(3)如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为______.(请直接写出答案)23.为落实“菜篮子”工程,我市某绿色无公害蔬菜基地的甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲3112500乙2316500说明:不同种植户种植的同类蔬菜每亩平均收入相等.(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有种植方案.(3)在(2)中,该种植户选择哪种方案,能使总收入最大?最大总收入是多少?24.在平面直角坐标系中,点A,B的坐标分别为(2,0),(−2,0),现将线段AB先向上平移3个单位,再向右平移1个单位,得到线段DC,连接AD,BC.(1)如图1,求点C,D的坐标及四边形ABCD的面积;(2)如图1,在y轴上是否存在点P,连接PA,PB,使S△PAB=S四边形ABCD?若存在这样的点,求出点P的坐标;若不存在,试说明理由;(3)如图2,点E为CD与y轴交点,在直线CD上是否存在点Q,连接QB,使S△QCB=1 4S四边形ABCD?若存在这样的点,直接写出点Q的坐标;若不存在,试说明理由;(4)在坐标平面内是否存在点M,使S△MAB=23S四边形ABCD?若存在这样的点M,直接写出点M的坐标的规律;若不存在,请说明理由.答案和解析1.【答案】B是分数,属于有理数,故此选项不符合题意;【解析】解:A.227B.√3是无限不循环小数,是无理数,故此选项符合题意;3=−2,是整数,属于有理数,故此选项不符合题意;C.√−8D.√16=4,是整数,属于有理数,故此选项不符合题意;故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽得到的数;以及像0.1010010001…,等有这样规律的数.2.【答案】A【解析】解:∵点P在第四象限,且到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是2,纵坐标是−3,∴点P的坐标为(2,−3).故选:A.根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3.【答案】B【解析】解:∵AB//CD,∴∠2=∠FHD,∵∠FHD=∠1=39°,∴∠2=39°.故选:B.根据平行线的性质和对顶角相等即可得∠2的度数.本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.4.【答案】C【解析】【分析】根据不等式的基本性质逐一判断可得.本题主要考查不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要注意字母为0的情况.【解答】解:A、若a<b,则a+c<b+c,此选项正确;B、若a+c<b+c,则a<b,此选项正确;C、若a<b,当c=0时ac2=bc2,此选项错误;D、若ac2<bc2,则a<b,此选项正确;故选:C.5.【答案】D【解析】解:A.为了解某品牌灯泡的使用寿命,适合采用抽样调查,故本选项不合题意;B.为了解我市居民的节水意识,适合采用抽样调查,故本选项不合题意;C.对一枚用于发射卫星的运载火箭各部件的检查,适合采用全面调查,故本选项不合题意;D.为了解我市八年级学生对在线学习课程的满意度情况,适合采用抽样调查,故本选项符合题意;故选:D.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【答案】A【解析】解:{4−2x ≥0 ①3+x >2 ②由①得,x ≤2,由②得,x >−1,故原不等式组的解集为:−1<x ≤2.故选:A .先求出每一个不等式的解集,在数轴上表示出来,其公共部分即为不等式组的解集. 本题考查的是在数轴上表示不等式组的解集,熟知实心原点与空心原点的区别是解答此题的关键.7.【答案】C【解析】解:①一个数的平方根等于它本身,这个数是0,故原题说法错误; ②实数分为正实数、负实数和0,故原题说法错误;③2的算术平方根是√2,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如√4=2是有理数.故选:C .直接利用有关实数的性质分别分析得出答案.此题主要考查了实数,正确掌握实数的分类及概念是解题关键.8.【答案】C【解析】解:设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意得{5x +3y =523x +5y =44, 解得8x +8y =96,即x +y =12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付8+4=12元, 故选:C .设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x +3y =52和3x +5y =44,进而求出x +y 的值.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.9.【答案】8【解析】解:∵82=64∴√64=8.故答案为:8.直接根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义,解题的关键是算术平方根必须是正数,注意平方根和算术平方根的区别.10.【答案】5【解析】解:∵不等式组{x ≤3x >−2, ∴不等式组的解集为−2<x ≤3,所以不等式组的整数解为−1、0、1、2、3共5个,故答案为5.根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.【答案】5【解析】解:∵方程组{x +y =m x −y =n +1的解是{x =3y =2, ∴代入得:{3+2=m 3−2=n +1, 解得:m =5,n =0,∴m +n =5+0=5,故答案为:5.把方程组的解代入方程组,即可求出m、n的值,再求出m+n即可.本题考查了二元一次方程组的解,能求出m、n的值是解此题的关键.12.【答案】9【解析】解:∵一个正数的两个平方根分别是2a−1与−a+2,∴2a−1−a+2=0,解得:a=−1,故2a−1=−3,则这个正数是:(−3)2=9.故答案为:9.根据一个正数的两个平方根互为相反数得出a的值,进而得出答案.此题主要考查了平方根,正确得出a的值是解题关键.13.【答案】20°【解析】【分析】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠1=∠2=50°时,a//b,∴要使木条a与b平行,木条a旋转的度数至少是70°−50°=20°.故答案为20°.14.【答案】2【解析】解:由题意,线段AB向右平移1个单位,再向上平移1个单位得到线段A1B1,∴a=1,b=1,∴a +B =2,故答案为:2.根据平移变换的规律解决问题即可.本题考查坐标与图形变化−平移,解题的关键是掌握平移变换的性质,属于中考常考题型.15.【答案】14或40【解析】解:因为∠1,∠2是图中角的两边分别平行的一对角,所以∠1与∠2相等或互补,所以(2x −3)°=(3x −17)°或(2x −3)°+(3x −17)°=180°,解得x =14或40.则x 值为14或40.故答案为:14或40.根据平行线的性质和已知条件可得∠1与∠2相等或互补,列式计算即可求出x 的值. 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.16.【答案】207≤a <103【解析】解:依题意得:{a +12a <5a +12a +12×12a ≥5, 解得:207≤a <103. 故答案为:207≤a <103.根据这个铁钉被敲击3次后全部进入木块(木块足够厚),即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围.本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.17.【答案】解:(1)(−√2)2+|1−√2|+√−83=2+√2−1+(−2)=√2−1.(2)−22+√(−4)2+√32+42−(−1)2021=−4+4+5−(−1)=6.【解析】(1)首先计算乘方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:(1){x +2y =10①2x −y =5②, ①+②×2,得5x =20,解得:x =4,把x =4代入①,得:4+2y =10,解得:y =3,∴方程组的解为{x =4y =3;(2){x <3(x −2)①1+2x 3>x −1②, 由①得:x >3;由②得:x <4.不等式组的解集为:3<x <4.【解析】(1)利用加减消元法求解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集即可.此题考查了解二元一次方程组以及解一元一次不等式组,熟练掌握解方程组和解不等式组的方法是解题的关键.19.【答案】解:∵OE ⊥CD ,OF ⊥AB ,∴∠BOE +∠BOD =90°,∠DOF +∠BOD =90°,∠AOF =90°,∴∠BOE =∠DOF ,∵∠DOF =65°,∴∠BOE =65°,∴∠COF =180°−∠DOF =180°−65°=115°.【解析】根据同角的余角相等可得∠BOE 的度数,根据平角定义可得∠COF 的度数. 本题考查了对顶角相等的性质,垂直的定义以及角的计算,是基础题,比较简单.准确识图是解题的关键.20.【答案】解:(1)由题意,将{x =4y =3代入2x −by =−1,得8−3b =−1,∴b =3,将{x =−2y =2代入ax +3y =4, 得−2a +6=4,∴a =1;(2){x +3y =4①2x −3y =−1②, ①+②,得x =1,将x =1代入①得,y =1,∴方程组的解为{x =1y =1.【解析】(1)由题意将{x =4y =3代入2x −by =−1,将{x =−2y =2代入ax +3y =4,分别求解a 、b 即可;(2)由(1)的方程组{x +3y =42x −3y =−1,再由加减消元法解二元一次方程组即可. 本题考查二元一次方程组的解法,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.21.【答案】解:(1)120;108°;(2)安全意识“较强”的人数是:120×45%=54(人),=450(人),(3)估计全校需要强化安全教育的学生约1800×12+18120答:估计全校需要强化安全教育的学生约有450名.【解析】【分析】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,然后利用百分比的意义求得安全意识为“很强”的学生占被调查学生总数的百分比,即可求得所在圆心角的度数;(2)利用总人数乘以对应的百分比即可求解;(3)利用总人数1800乘以对应的比例即可.【解答】解:(1)调查的总人数是:18÷15%=120(人),36×100%=30%,360°×30%=108°,120故答案为120;108°;(2)见答案.(3)见答案.22.【答案】70°【解析】(1)证明:如图①,过点E作EF//AB,∴∠A=∠AEF(两直线平行,内错角相等),∵AB//CD(已知),∵EF//AB(辅助线作法),∴CD//EF(平行于同一直线的两条直线平行),∴∠CEF=∠C(两直线平行,内错角相等),∵∠AEC=∠AEF+∠CEF,∴∠AEC=∠A+∠C(等量代换),(2)证明:过点E作EF//AB,如图②所示∵AB//CD,∴EF//CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;(3)解:同(2)得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°−∠A−∠DCE=360°−130°−120°=110°,∴∠MEC=180°−∠AEC=180°−110°=70°,故答案为:70°.(1)过点E作EF//AB,由平行线的性质得出∠A=∠AEF,证出CD//EF,由平行线的性质得出∠CEF=∠C,即可得出结论;(2)过点E作EF//AB,则EF//CD,由平行线的性质得出∠A+∠AEF=180°,∠C+∠CEF=180°,即可得出结论;(3)同(2)得∠A+∠AEC+∠DCE=360°,得出∠AEC=110°,即可得出答案.本题考查了平行线的判定与性质;正确作出辅助线运用平行线的判定和性质是解题的关键.23.【答案】解:(1)设A 类蔬菜每亩平均收入是x 元,B 类蔬菜每亩平均收入是y 元,依题意得:{3x +y =125002x +3y =16500, 解得:{x =3000y =3500. 答:A 类蔬菜每亩平均收入是3000元,B 类蔬菜每亩平均收入是3500元.(2)设种植A 类蔬菜m 亩,则种植B 类蔬菜(20−m)亩,依题意得:{m >20−m 3000m +3500(20−m)≥63000, 解得:10<m ≤14.又∵m 为正整数,∴m 可以为11,12,13,14,∴该种植户共有4种种植方案,方案1:种植A 类蔬菜11亩,B 类蔬菜9亩;方案2:种植A 类蔬菜12亩,B 类蔬菜8亩;方案3:种植A 类蔬菜13亩,B 类蔬菜7亩;方案4:种植A 类蔬菜14亩,B 类蔬菜6亩.(3)选择方案1获得的总收入为3000×11+3500×9=64500(元);选择方案2获得的总收入为3000×12+3500×8=64000(元);选择方案3获得的总收入为3000×13+3500×7=63500(元);选择方案4获得的总收入为3000×14+3500×6=63000(元).∵64500>64000>63500>63000,∴该种植户选择方案1,能使总收入最大,最大总收入是64500元.【解析】(1)设A 类蔬菜每亩平均收入是x 元,B 类蔬菜每亩平均收入是y 元,根据两种植户种植的两类蔬菜的种植面积与总收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设种植A 类蔬菜m 亩,则种植B 类蔬菜(20−m)亩,根据“总收入不低于63000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各种植方案;(3)利用总收入=每亩收入×种植数量,即可分别求出选择各方案获得的总收入,再比较后即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总收入=每亩收入×种植数量,求出选择各方案获得的总收入.24.【答案】解:(1)∵点A,B的坐标分别为(2,0),(−2,0),线段AB先向上平移3个单位,再向右平移1个单位,得到线段DC,∴点C的坐标为(−1,3),点D的坐标为(3,3),AB=4,∴四边形ABCD的面积=4×3=12;(2)存在,设点P的坐标为(0,b),由题意得:12×4×|b|=12,解得:b=±6,∴点P的坐标为(0,6)或(0,−6);(3)设点Q的坐标为(a,3),则CQ=|a+1|,由题意得:12×|a+1|×3=14×12,解得:a=1或−3,则点Q的坐标为(1,3)或(−3,3);(4)设点M的坐标为(m,n),则△MAB的面积=12×4×|n|=2|n|,由题意得:2|n|=23×12,解得:n=±4,∴点M的横坐标是任意实数,纵坐标为±4.【解析】(1)根据平移的性质求出点C,D的坐标,根据平行四边形的面积公式求出四边形ABCD的面积;(2)根据三角形的面积公式计算即可;(3)根据直线CD上点的坐标特征设出点Q的坐标,根据三角形的面积公式计算即可;(4)三角形的面积公式计算,根据点的坐标特征找出点M的坐标的规律.本题考查的是平移的性质、三角形的面积计算、点的坐标特征,根据平移变换的性质求出点C,D的坐标是解题的关键.。

【3套打包】黄冈市七年级下册数学期末考试试题(含答案)

【3套打包】黄冈市七年级下册数学期末考试试题(含答案)

最新七年级下册数学期末考试题及答案一、选择题(本大题共 8 小题,每题 3 分,共 24 分) 1.如图,是一个“七”字形,与∠1 是内错角的是( )A .∠2B .∠3C .∠4D .∠52.如图,有一底角为 35°的等腰三角形纸片,现过底边上一点, 沿与腰垂直的方向将其剪开,分成三角形和四边形两部分, 则四边形中,最大角的度数是( )A .110°B .125°C .140°D .160°3.点 P (-2,3)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.某班共有学生 49 人,一天该班某男生因事请假,当天的男生人数恰为女生人数的一 半.若该班男生人数为 x ,女生人数为 y ,则下列方程组中,能正确求出 x 、y 的是( )A .492(1)x y y x -=⎧⎨=+⎩B .492(1)x y y x +=⎧⎨=+⎩C .492(1)x y y x -=⎧⎨=-⎩D .492(1)x y y x +=⎧⎨=-⎩5.在正整数范围内,方程 3x +y =10 的解有( ) A .0 组B .1 组C .2 组D .3 组6.已知 a <b ,则下列不等式中正确的是()A .a +3>b +3B .3a >3bC .-3a >-3bD .33a b> 7.不等式-3x ≤6 的解集在数轴上正确表示为()8.下面各调查中,最适合使用全面调查方式收集数据的是()A .了解一批节能灯的使用寿命B .了解某班全体同学的身高情况C .了解动物园全年的游客人数D .了解央视“新闻联播”的收视率 二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9.如图,把长方形 ABCD 沿 E F 对折后,使两部分重合,若∠1=52°,则∠AEF = 度. 10.在平面直角坐标系中,若点 Q (m ,-2m +4)在第一象限 则 m 的取值范围是 . 11.在△ABC 中,已知两条边 a =3,b =4,则第三边 c 的取值 范围是 .12.方程 3x -5y =15,用含 x 的代数式表示 y ,则 y = .13.已知57x y =⎧⎨=⎩是二元一次方程 k x -2y -1=0 的一组解,则 k =.14.某种药品的说明书上,贴有如右表所示的标签,一次服用这种药品的剂量 xmg (毫克)的范围是 .15.如图,是小恺同学 6 次数学测验的成绩统计表,则该同学 6 次成绩中的最低分是 .16.本学期实验中学组织开展课外兴趣活 动,各活动小班根据实际情况确定了计 划组班人数,并发动学生自愿报名,报 名人数与计划人数的前 5 位情况如下:若用同一小班的计划人数与报名人数的比值大小来衡量进入该班的难易程度,学生 中对于进入各活动小班的难易有以下预测:①篮球和航模都能进;②舞蹈比写作容 易;③写作比奥数容易;④舞蹈比奥数容三、解下列方程组、不等式(组)(本大题共 4 小题,每小题 6 分,共 24 分) 17.43624x y x y +=⎧⎨+=⎩ 18.15(2)3224x x y x y ⎧-+=⎪⎨⎪+=⎩19.2151132x x -+-< 20.936325x x -≥⎧⎨-≤⎩四、应用题(本大题共2小题,每小题8分,共16 分)21.某风景点的团体购买门票票价如下:今有甲、乙两个旅行团,已知甲团人数少于50 人,乙团人数不超过100 人.若分别购票,两团共计应付门票费1950 元,若合在一起作为一个团体购票,总计应付门票费1545 元.(1)请你判断乙团的人数是否也少于50 人;(2)求甲、乙两旅行团各有多少人?(3)甲旅行团单独购票,有无更省钱的方案?说明理由.22.“你记得父母的生日吗?”这是某中学在七年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50 名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)已知该校七年级共900 名学生,据此推算,该校七年级学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?五、综合题(本题12 分)23.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4 位选手的短信支持率,情况如图2,第二次公布短信支持率时,每位选手的短信支持条数均有增加,且每位选手增加的短信支持条数相同.图1图2(1)比较图1,图2的变化情况,写出2条结论;(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,写出a、b之间的等式关系,并证明这个等式关系.(3)若第三次公布4 位选手的短信支持率情况时,1、2、3 号选手没有增加短信支持,而4号选手增加短信支持30 条,因此高于1号的短信支持率但仍低于3号的短信支持率,求第一次4位选手短信支持总条数a的取值范围.参考答案1.A.2.B.3.B.4.D.5.D.6.C.7.D.8.B.9.116;10.0<m<2;11.c>7;12.0.6x-3;13最新人教版七年级第二学期下册期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是()A、x•x2=x2B、(x+y)2=x2+y2C.(x2)3=x6D、x2+x2=x4答案:C2.一片金箔的厚度为0.000000091m,用科学记数法表示0.000000091为()A、0.91×10﹣7B、9.1×10﹣8C、-9.1×108D、9.1×108答案:B3.如果a<b,下列各式中正确的是()A、ac2<bc2B、11a b>C、﹣3a>﹣3b D、44a b>答案:C4.下列长度的三条线段能组成三角形的是()A、1.5cm,2cm,2.5cmB、2cm,5cm,8cmC.1cm,3cm,4cm D、5cm,3cm,1cm答案:A5.下列从左到右边的变形,是因式分解的是()A、(3﹣x)(3+x)=9﹣x2B、(y+1)(y﹣3)=﹣(3﹣y)(y+1)C、4yz﹣2y2z+z=2y(2z﹣yz)+zD、﹣8x2+8x﹣2=﹣2(2x﹣1)2答案:D6.下列各图中,正确画出AC边上的高的是()答案:D7.不等式组24357xx>-⎧⎨-≤⎩的解集在数轴上可以表示为()答案:B8.已知12x y =⎧⎨=⎩是方程组120ax y x by +=-⎧⎨-=⎩的解,则a +b =( )A 、2B 、﹣2C 、4D 、﹣4 答案:B9.如图AB ∥CD ,∠E =40°,∠A =110°,则∠C 的度数为( ) A 、60° B 、80° C 、75° D 、70°答案:D10.若(a ﹣1)2+|b ﹣2|=0,则以a 、b 为边长的等腰三角形的周长为( ) A 、5 B 、4 C 、3 D 、4或5 答案:A11.边长为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为( ) A 、35 B 、70 C 、140 D 、280 答案:D12.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x 、y 分钟,列出的方程是( )A 、142502502900x y x y ⎧+=⎪⎨⎪+=⎩ B 、158********x y x y +=⎧⎨+=⎩ C 、14802502900x y x y ⎧+=⎪⎨⎪+=⎩ D 、152********x y x y +=⎧⎨+=⎩ 答案:D 13.下列命题:①三角形内角和为180°;②三角形的三条中线交于一点,且这点在三角形内部;③三角形的一个外角等于两个内角之和;④过一点,有且只有一条直线与已知直线平行;⑤对顶角相等.其中真命题的个数有()A、1个B、2个C、3个D、4个答案:C14.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A、50°B、100°C、45°D、30°答案:D15.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A、a≥1B、a>1C、a≤﹣1D、a<﹣1答案:A16.如图,△ABC的面积为1.第一次操:分别延长AB,BC,CA至点A1,B1,C1,使A1B =AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过()次操作.A、6B、5C、4D、3答案:C二、填空题(共4小题,每小题3分,满分12分)17.分解因式:2a3﹣2a=.答案:2a(a+1)(a﹣1);18.把一副三角板按如图所示拼在一起,则∠ADE=.答案:135°19.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为.答案:a<420.如图,一张长方形纸片ABCD,分别在边AB、CD上取点M,N,沿MN折叠纸片,BM 与DN交于点K,若∠1=70°,则∠CNK=°.答案:40三、解答题(本大题共6个大题,共56分,解答应写出文字说明、证明过程或演算步骤) 21.(9分)(1)用简便方法计算:1992+2×199+1(2)已知x 2﹣3x =1,求代数式(x ﹣1)(3x +1)﹣(x +2)2﹣4的值. 答案:(1)原式=(199+1)2=40000(2)原式=3x 2-2 x -1-(x 2+4 x +4)-4=2 x 2-6 x -9=2(x 2-3 x )-9=2-9=-722.(12分)(1)解方程组:5316232x y x y +=⎧⎨-=-⎩(2)解不等式组3221152x xx x -≤⎧⎪++⎨<⎪⎩,并找出整数解.答案:(1)22x y =⎧⎨=⎩(2)31x -<≤,整数解为:-2,-1,0,123.(8分)如图,将方格纸中的三角形ABC 先向右平移2格得到三角形DEF ,再将三角形DEF 向上平移3格得到三角形GPH .(1)动手操作:按上面步骤作出经过两次平移后分别得到的三角形; (2)设AC 与DE 相交于点M ,则图中与∠BAC 相等的角有 个; (3)若∠BAC =43°,∠B =32°,则∠PHG = °.答案:(1)如下图,(2)4(3)10524.(8分)“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.答案:(1)﹣2;1;(2)原方程化为:(x-2)2+(y+1)2=0,所以,x=2,y=-1,x+y=1(3)x2﹣1-(2x﹣3)=x2﹣2x+2=(x-1)2+1>0所以,x2﹣1>2x﹣325.(9分)某公司分两次采购甲、乙两种商品,具体情况如下:(1)求甲、乙商品每件各多少元?(2)公司计划第三次采购甲、乙两种商品共31件,要求花费资金不超过475元,问最多可购买甲商品多少件?答案:26.(10分)发现:已知△ABC 中,AE 是△ABC 的角平分线,∠B =72°,∠C =36° (1)如图1,若AD ⊥BC 于点D ,求∠DAE 的度数;(2)如图2,若P 为AE 上一个动点(P 不与A 、E 重合),且PF ⊥BC 于点F 时,∠EPF = °.(3)探究:如图2△ABC 中,已知∠B ,∠C 均为一般锐角,∠B >∠C ,AE 是△AB最新七年级(下)期末考试数学试题及答案一、选择题(每小题3分,共42分.) 1.点A (-3,4)所在象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.解方程组322510x y y x --⎧⎨⎩=①=②时,把①代入②,得( ) A .2(3y -2)-5x=10 B .2y -(3y -2)=10 C .(3y -2)-5x=10D .2y -5(3y -2)=103.要反映我县2019年6月30日-7月6日这一周内每天的最高气温的变化情况,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图D .频数分布直方图4.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .50°B .45°C .35°D .30°5.下列不等式变形中,一定正确的是( ) A .若ac >bc ,则a >b B .若a >b ,则am 2>bm 2 C .若ac 2>bc 2,则a >bD .若m >n ,则-22m n->6.不等式组21102x x x +≥-⎧⎪⎨⎪⎩<的解集在数轴上表示正确的是( )7.如图,直线a 、b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a ∥bB .当a ∥b 时,一定有∠1=∠2C .当a ∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a ∥b8.已知|a+b -,则(b -a )2019的值为( ) A .1 B .-1C .2019D .-20199.已知12x y -⎧⎨⎩==是二元一次方程组325x y a bx y ⎨-⎩+⎧==的解,则b -a 的值是( )A .1B .2C .3D .410.若关于x 的不等式组324x a x a ⎩+-⎧⎨<>无解,则a 的取值范围是( )A .a≤-3B .a <-3C .a >3D .a≥311.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .1512.某校组织部分学参加安全知识竞赛,并将成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则: ①参加本次竞赛的学生共有100人; ②第五组的百分比为16%; ③成绩在70-80分的人数最多; ④80分以上的学生有14名; 其中正确的个数有( )A .1个B .2个C .3个D .4个13.已知关于x 的不等式组(235)322x a x x -≥-+⎧⎨⎩>仅有三个整数解,则a 的取值范围是( )A .12≤a <1 B .12≤a≤1 C .12<a≤1 D .a <114.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种B .3种C .2种D .1种二、填空题(每小题3分,共15分) 15的立方根是 .16.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是. 17.若二元一次方程组3354x y x y +-⎧⎨⎩==的解为0x ay b⎧⎨⎩==,则a -b= .18.已知关于x 的不等式3x -m+1>0的最小整数解为2,则实数m 的取值范围是 . 19.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P (x ,y )的终结点已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 3的坐标为 . 三、解答题20.(1|1-; (2)解不等式2223x xx +--<,并把解集在数轴上表示出来;(3)解方程组:521123x y y x +--⎧⎪⎨⎪⎩==. 21.求不等式组121232x x -+≤⎧⎪⎨⎪⎩<22.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a= ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?23.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a、b的值.24.已知关于x,y的方程组22324x y mx y m⎨-⎧++⎩=①=②的解满足不等式组3050x yx y+≤+⎧⎨⎩>,求满足条件的m的整数值.25.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.26.为培养学生自主意识,拓宽学生视野,促进学习与生活的深度融合我市某中学决定组织部分学生去青少年综合实践基地进行综合实践活动在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生现有甲、乙两种大客车它们的载客量和租金如表所示学校计划此实践活动的租车总费用不超过300元,为了安全每辆客车上至少要有2名老师.(1)参加此次综合实践活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,租用客车总数为多少辆?(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案与试题解析1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.【分析】根据二元一次方程组解法中的代入消元法求解.【解答】解:把①代入②得:2y-5(3y-2)=10,故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想.3.【分析】根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:根据统计图的特点,知要反映我县2019年6月30日-7月6日这一周内每天的最高气温的变化情况,最适合使用的统计图是折线统计图.故选:C.【点评】此题主要考查了统计图的选择.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.4.【分析】由条件可先求得∠B,再由平行线的性质可求得∠2.【解答】解:∵AC⊥AB,∴∠BAC=90°,∵∠1=60°, ∴∠B=30°, ∵a ∥b , ∴∠2=∠B=30°, 故选:D .【点评】本题主要考查平行线的性质,掌握两直线平行同位角相等是解题的关键. 5. 【分析】利用不等式的性质和c <0对A 进行判断;利用不等式的性质和m=0对B 进行判断;利用不等式的性质对C 、D 进行判断.【解答】解:A 、若ac >bc ,则c <0,所以a <b ,所以A 选项错误; B 、若a >b ,m=0,则am 2>bm 2不成立,所以B 选项错误; C 、若ac 2>bc 2,c 2>0,则a >b ,所以C 选项正确; D 、若m >n ,则-12m <-12n ,所以D 选项错误. 故选:C .【点评】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 6. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式2x+1≥x ,得:x≥-1, 解不等式2x-1<0,得:x <2, 则不等式组的解集为-1≤x <2, 故选:A .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 7. 【分析】根据平行线的判定定理与性质对各选项进行逐一判断即可. 【解答】解:A 、若∠1=∠2不符合a ∥b 的条件,故本选项错误; B 、若a ∥b ,则∠1+∠2=180°,∠1不一定等于∠2,故本选项错误; C 、若a ∥b ,则∠1+∠2=180°,故本选项错误;D 、如图,由于∠1=∠3,当∠3+∠2=180°时,a ∥b ,所以当∠1+∠2=180°时,一定有a ∥b ,故本选项正确.故选:D.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.8.【分析】利用非负数的性质列出方程组,求出方程组的解得到a与b的值,代入原式计算即可求出值.【解答】【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.9.【分析】把x与y的值代入方程组求出a与b的值,即可求出所求.【解答】【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组324x a x a ⎩+-⎧⎨<>无解, ∴a -4≥3a+2,解得:a≤-3,故选:A . 【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.11. 【分析】设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据前两束气球的价格,即可得出关于x 、y 的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个, 根据题意得:316320x y x y ++⎧⎨⎩=①=②,方程(①+②)÷2,得:2x+2y=18.故选:B .【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12. 【分析】根据条形统计图逐项分析即可.【解答】解:①参加本次竞赛的学生共有8÷(1-4%-12%-40%-28%)=50(人),此项错误; ②第五组的百分比为1-4%-12%-40%-28%=16%,此项正确;③成绩在70-80分的人数最多,此项正确;④80分以上的学生有50×(28%+16%)=22(名),此项错误;故选:B .【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.13. 【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:由x >2a -3,由2x≥3(x -2)+5,解得:2a -3<x≤1,由关于x 的不等式组()232325x a x x -≥-+⎧⎨⎩>仅有三个整数: 解得:-2≤2a -3<-1,解得12≤a<1,故选:A.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.14.【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=4043x,∵x、y均为非负整数,∴x=1、y=12;x=4、y=8;x=7、y=4;x=10、y=0所以购买资金恰好用尽的情况下,购买方案有4种,故选:A.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.15.【分析】,再根据立方根的定义即可得出答案.【解答】=8,2;故答案为:2.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故答案为:16°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.17.【分析】把x、y的值代入方程组,再将两式相加即可求出a-b的值.【解答】解:将x ay b⎧⎨⎩==代入方程组3354x yx y+-⎧⎨⎩==,得:3354a ba b+-⎧⎨⎩=①=②,①+②,得:4a-4b=7,则a-b=7 4故答案为:74.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.18.【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x-m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故答案为4≤m<7.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.19.【分析】根据坐标变换的定义,求出P3即可.【解答】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(-3,3),故答案为(-3,3).【点评】本题考查了几何变换:四种变换方式:对称、平移、旋转、位似.掌握在直角坐标系中各种变换的对应的坐标变化规律,是解决问题的关键.20. 【分析】(1)先计算立方根、算术平方根和绝对值,再计算加减可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(3)利用加减消元法求解可得.【解答】解:(1)原式=5--;(2)去分母,得 6x -3(x+2)<2(2-x ),去括号,得 6x -3x -6<4-2x ,移项,合并得 5x <10,系数化为1,得x <2,不等式的解集在数轴上表示如下:(3)②×6得:6x -2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=-2,则方程组的解为12x y -⎧⎨⎩==.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.21. 【分析】先求出不等式组的解集,再求出不等式组的正整数解即可.【解答】解:121232x x -⎧+≤⎪⎨⎪⎩<①② ∵解不等式①得:x >-1,解不等式②得:x≤3,∴不等式组的解集为-1<x≤3,∴不等式组的正整数解为1、2、3.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.22.分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1)根据题意得:2÷0.04=50(人),则a=50-(2+3+15+5)=25;b=5÷50=0.10;故答案为:25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.【分析】(1)根据点的位置,直接写出点的坐标;(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a、b的值.【解答】解:(1)由图象可知,点A(2,3),点D(-2,-3),点B(1,2),点E(-1,-2),点C(3,1),点F(-3,-1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4-b+2b-3=0,解得a=-1,b=-1.【点评】本题考查了坐标系中点的坐标确定方法,对应点的坐标特征.关键是通过观察发现规律,列方程求解.24.【分析】首先根据方程组可得34040mm+≤+⎧⎨⎩>,再解不等式组,确定出整数解即可.【解答】解:①+②得:3x+y=3m+4,②-①得:x+5y=m+4,∵不等式组3050x yx y+≤+⎧⎨⎩>,∴34040mm+≤+⎧⎨⎩>,解不等式组得:-4<m≤-43,则m=-3,-2.【点评】此题主要考查了一元一次不等式组的整数解,关键是用含m的式子表示x、y.25.【分析】(1)根据平行线的性质,得到∠ACE=40°,根据平角的定义以及角平分线的定义,即可得到∠ACF=70°,进而得出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,运用等角的余角相等,即可得到∠GCO=∠GCD,即CG平分∠OCD;(3)当∠O=60°时,。

湖北省黄冈市七年级下学期期末考试数学试题

湖北省黄冈市七年级下学期期末考试数学试题

湖北省黄冈市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列各组图形中,一定是全等图形的是()A . 两个周长相等的等腰三角形B . 两个面积相等的长方形C . 两个斜边相等的直角三角形D . 两个直角边相等的等腰直角三角形2. (2分)对于解不等式->,正确的结果是()A . x<﹣B . x>﹣C . x>﹣1D . x<﹣13. (2分)下列各式中,不能分解因式的是()A . 4x2+2xy+ y2B . 4x2-2xy+ y2C . 4x2- y2D . -4x2- y24. (2分) (2017九上·浙江月考) 下列命题中:①直径是弦;②圆上任意两点都能将圆分成一条优弧和一条劣弧;③三个点确定一个圆;④外心是三角形三条高线的交点;⑤等腰三角形的外心一定在它的内部;正确的是()A . ①B . ②④C . ②D . ①③⑤5. (2分)如图,∠3=∠4,则从下列条件中不能推出AB∥CD的是()A . ∠1与∠2互余B . ∠1=∠2C . ∠ABC=∠DCBD . BM∥CN6. (2分) 7x+1是不小于﹣3的负数,表示为()A . ﹣3≤7x+1≤0B . ﹣3<7x+1<0C . ﹣3≤7x+1<0D . ﹣3<7x+1≤0二、填空题 (共10题;共12分)7. (1分)科学记数法表示:0.000 000 234=________.8. (2分)含有________未知数,未知数的次数是1且不等号两边都是________的不等式,叫做一元一次不等式.9. (1分) (2019八上·温州开学考) 把命题“同位角相等,两直线平行”改写成“如果…那么…”的形式__________.10. (2分)不等式3(x+2)≥4+2x的解集为________;负整数解为________.11. (1分)计算:(﹣a2)•a3=________12. (1分)如图,已知△ABC≌△BAD,A和B、C和D是对应顶点.如果AB=6,BD=5,AD=4,那么BC的长度是________13. (1分)(2017·虎丘模拟) 如图,直线l1∥l2 ,CD⊥AB于点D,若∠1=50°,则∠BCD的度数为________°.14. (1分) (2019九上·贵阳期末) 在Rt△ABC中,∠BAC=90,AB=AC,AD⊥BC于点D,P是线段AD上的一个动点,以点P为直角的顶点,向上作等腰直角三角形PBE,连接DE,若在点P的运动过程中,DE的最小值为3,则AD的长为________.15. (1分) (2016八上·萧山月考) 若关于的不等式的解如图所示,则的值是________。

湖北省黄冈市七年级下学期期末数学试卷

湖北省黄冈市七年级下学期期末数学试卷

湖北省黄冈市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·东莞期中) 下列图形是中心对称图形,但不是轴对称图形的是()A .B .C .D .2. (2分) (2019七下·洪江期末) 下列说法错误的是()A . 平移不改变图形的形状和大小B . 对顶角相等C . 两个直角一定互补D . 同位角相等3. (2分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A . 0B . 2a2C . ﹣6a2D . ﹣4a24. (2分)计算3a•2b的结果是()A . 3abB . 5abC . 6aD . 6ab5. (2分) (2017七下·泗阳期末) 下列各式正确的是()A . a2·a3=a6B . a3÷a2=aC . (a3)2=a5D . a2+a2=2a46. (2分) (2019八上·浏阳期中) 给出下列命题:①等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;②有两边和其中一边的对角分别相等的两个三角形全等;③三角形的三条高不一定有交点.其中属于真命题的是()A . ①②B . ②③C . ①③D . ①②③7. (2分)甲、乙两人各自掷一个普通的正方体骰子,如果两者之积为偶数,甲得1分;如果两者之积为奇数,乙得1分,此游戏()A . 对甲有利B . 对乙有利C . 是公平的D . 以上都有不对8. (2分)下列各式中能用平方差公式计算的是()A . (﹣5+a)(﹣5﹣a)B . (a﹣b)(a+c)C . (a+b)(﹣a﹣b)D . (x+1)(2﹣x)9. (2分)(2018·福田模拟) 下列运算正确的是()A . a+b=abB . a2·a3=a6C . a2+2ab-b2= (a+b)2D . 3a-2a=a10. (2分)如图,△ABC中,AB=AC,BD=CD,下列说法不正确的是()A . ∠BAD= ∠BACB . AD=BCC . ∠B=∠CD . AD⊥BC二、填空题 (共6题;共7分)11. (1分) (2017八上·北部湾期中) 已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是________.12. (1分) (2017八下·万盛开学考) 计算: =________.13. (1分) (2016九上·济宁期中) 如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为________.14. (1分) (2015八下·蓟县期中) 如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是________.15. (2分) (2017七下·东港期中) 一个圆柱的高为8cm,则圆柱体的体积Vcm3与底面直径Rcm的关系式为________,当R为5cm时,V=________cm3 .16. (1分) (2018八上·龙湖期中) 如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=________三、解答题(一) (共3题;共30分)17. (10分) (2019八上·叙州期中) 已知x+y=4,xy=2.试求(1) x2+y2(2)(x-y)2+2x+2y18. (5分)已知x2+4x﹣1=0,求代数式(x+2)2﹣(x+2)(x﹣2)+x2的值19. (15分) (2020八上·文水期末) 综合与实践问题情境在中,,,于点,点是射线上一点,连接,过点作于点,且交直线于点 .(1)如图1,当点在线段上时,求证: .自主探究(2)如图2,当点在线段上时,其它条件不变,请猜想与之间的数量关系,并说明理由.拓展延伸(3)如图3,当点在线段的延长线上时,其它条件不变,请直接写出与之间的数量关系.四、解答题(二) (共3题;共18分)20. (6分) (2020九上·南山期末) 深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为________ .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.21. (2分)38°41′的角的余角等于________,27°14′24″=________度.22. (10分)(2017·蓝田模拟) 如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.五、解答题(三) (共3题;共40分)23. (15分)小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:(1)小明家离超市的距离是多少千米;(2)小明在超市买东西时间为多少小时;(3)小明去超市时的速度是多少千米/小时.24. (15分) (2016七上·德州期末) 化简,求值(1) 5x2y+{xy﹣[5x2y﹣(7xy2+ xy)]﹣(4x2y+xy)}﹣7xy2 ,其中x=﹣,y=﹣16.(2) A=4x2﹣2xy+4y2 , B=3x2﹣6xy+3y2 ,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.25. (10分) (2015八上·哈尔滨期中) 已知:如图1,点D是△ABC的边BC的中点,DE⊥A C,DF⊥AB,垂足分别为E,F,且BF=CE.(1)求证:AE=AF;(2)如图2,若∠BAC=60°,△ABD的面积为4,连接AD交EF于M,连接BM、CM,在不添加任何辅助线的情况下,请直接写出图中所有面积为1的三角形.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(一) (共3题;共30分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:四、解答题(二) (共3题;共18分)答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:五、解答题(三) (共3题;共40分)答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、考点:解析:。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年春季七年级数学下学期末试题 数 学 试 题
满分:120分 时间:120分钟
分,共24分):
1、已知⎩⎨+=t
y 23,则x 与y 的关系式是___________
2、如果0,>>b b a 且0<+b a ,请用""<把a 、a b -、b -连接起来________________
3、一个角的补角与这个角的余角的度数比为3:1,则这个角是______度
4、对于整数d c b a ,,,,符号c d b
a 表示bd ac -,已知3411<<d b
,则d b +的值是_________
5、已知点)6,23(+-a a M ,点)5,2(N ,且直线X MN //轴,则M 坐标为__________
6、方程组⎩
⎨⎧=+=++224)2(2y x y x x 的解是______________ 7、如图BC AC CD AB ⊥,//,图中与CAB ∠互余的角有
____个 8、若方程组⎩⎨⎧=++=+3414y x k y x 的解满足条件10<+<y x ,则k 的取值范围为____________
二、选择题(ABCD 四个答案有且仅有一个是正确的,每题3分,共24分)
9、已知三角形的三边长分别为3、8、x ,过x 为偶数,则x 的取值为( )
A 、6个
B 、5个
C 、4个 D3个
10、如果方程组⎩
⎨⎧=+=+c by ax y x 1有唯一的一组解,那么c b a ,,的值应满足( ) A 、a=1,c=1 B 、b a ≠ C 、1,1≠==c b a D 、1,1≠=c a
11、若),1(m m P -在第二象限,则下列关系式正确的是( )
A 、10<<m
B 、0<m
C 、0>m
D 、1>m
12、已知直线AB 和一点P ,过点P 画直线与AB 的平行线可画( )
A 、1条
B 、0条
C 、1条或0条
D 、无数条
13、如图点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为 ︒︒y x ,,那么下列求出度数的方程组是( )
A 、⎩⎨⎧-==+10180y x y x
B 、⎩
⎨⎧-==+103180y x y x C 、⎩⎨⎧+==+103180y x y x D 、⎩⎨⎧-==1031803y x y 14、不等式组⎩
⎨⎧>>-m x x 312的解集是2>x ,那么m 的取值范围是( ) A 、2>m B 、2≥m C 、2<m D 、2≤m
15、若a 为整数且点)102,93(--a a M 在第四象限,则12+a 的值为( )
A 、17
B 、16
C 、5
D 、4
16、过X 轴上的点P 到Y 轴的距离为3,则P 的坐标为( )
A 、)0,3(
B 、)3,0(
C 、)0,3(或)0,3(-
D 、)3,0(或)3,0(-
三、解答题(本大题共72分)
17、(6分)求不等式75
742<-≤-x 的整数解,并把它的解在数轴上表示出来。

18、(6分)已知斜三角形ABC 中,高CE BD ,所在的直线交于H ,︒=∠45A ,求BHC ∠的度数。

19、(6分)当3=x 和4时,代数式b ax +的值分别为97、,求当1=x 时,代数式b ax +的值。

20、(6分)已知凸多边形去掉一个角后的内角和为︒2520,则原多边形的边数为多少?
21、(8分)如图,在矩形ABCD 中,)1,4(-A ,)1,0(B ,)3,0(C ,
则D 点坐标为_________,矩形ABCD 的面积为?
A C O B
1
2
22、(8分)某地寄往香港的包裹资费标准时1kg (不足1 kg 按1 kg 计算)收77.1元,达到或超过1kg 后每增加1kg (不足1 kg 按1 kg 计算)加价21.1。

李先生寄出一个包裹的邮费是161.5元,李先生的包裹重量应该在什么范围内?
23、(10分)有大小两种货车,3辆大车与5辆小车一次可运货24.5吨,2辆大车与3辆小车一次可运15.5吨,求7辆大车和8辆小车一次可运多少货物?
24、(10分)如图,AD 是ABC ∆的角平分线,ADE BAD ∠=∠,︒=∠76BDE ,求C ∠的度数。

25、(12分)某糖果店新进60kg 散装奶糖,为了获得利润,商店决定将其全部包装后再出售。

现有3kg 装和2kg 装两种包装盒,每只包装盒的成本分别为0.8元和0.6元
⑴若全部用3kg 装共需包装盒成本______元,若全部用2kg 装共需包装盒成本_______元 ⑵若考虑到顾客需求,商店要求2kg 的奶糖不少于20kg ,则怎么样设计包装方案使包装盒成本最省?最节省的成本是多少元? A
E
B D C。

相关文档
最新文档