放射性衰变基本知识课件
合集下载
放射性元素的衰变 课件
放射性元素衰变的快慢是由核内部自身的 因素决定的,跟原子所处的状态和外部条件 没有关系。例如,一种放射性元素,不管是 以单质的形式存在,还是与其它元素形成化 合物,或者对它施加压力、提高温度。都不 能改变它的半衰期。这是因为压力、温度、 或与其它元素的化合等,都不会影响原子核 的结构。
1、衰变 原子核放出α或β粒子,由于核电荷数变
23892U→23490Th+42He
4、衰变方程式遵守的规律: (1)质量数守恒 (2)核电荷数守恒
α衰变规律:AZX→A-4Z-2Y+42He
基本粒子的衰变
原子发生衰变
粒子发生α衰变
在α衰变中,新核的质量数与原来的核 的质量数有什么关系?相对于原来的核在周 期表中的位置,新核在周期表中的位置应当 向前移还是向后移?要移动几位?你能概括 出α衰变的质量数,核电荷数变化的一般规 律吗?
放射性元素的衰变
一、原子核的衰变
1、衰变 原子核放出α或β粒子,由于核电荷数变
了,它在周期表中的位置就变了,变成另一 种原子核。我们把这种变化称为原子核的衰 变。 2、实质:
真实的将一种物质变成另一种物质,原 来就是原子核的衰变。
3、α衰变
铀238核放出一个α粒子后,核的质量数 减少4,核电荷数减少2,变成新核-----钍234 核。那这种放出α粒子的衰变叫做α衰变。 用衰变方程式来表示:
了,它在周期表中的位置就变了,变成另 一种原子核。我们把这种变化称为原子核 的衰变。
真实的将一种物质变成另一种物质,原 来就是原子核的衰变。
2、α衰变 放出α粒子的衰变叫做α衰变。
3、β衰变 当核内的中子转化为质子时同时要产生一个电
子 10n→11H+0-1e 这个电子从核内释放出来,就形成了β衰变。 β衰变的实质是核内少了一个中子,却增加了
放射性衰变基本知识(共32张PPT)
〔二〕康普顿效应(Compton effect):
当光子的能量远大于壳层电子的 结合能时,γ光子将其局部能量传给被 作用物质原子核的核外电子,使其脱离 原子核的束缚成为自由电子,这个自由 电子称为康普顿电子,γ射线失去局部 能量改变运动方向射出,称为康普顿散 射光子,这个过程称为康普顿效应。
(三)电子对生成效应(pair production): 能量超过1.02Mev的γ射线与物质相
半衰期和其出厂到使用时的间隔时间〔t〕计 比方125I(碘)衰变式如下:
(三) 湮没辐射:β+与物质相互作用会受到原子核电场的吸引,正负电子结合成为一对能量各为0.
算出使用时的放射性活度。 一、衰变规律:对大量放射性核的群体进行研究,发现其衰变遵循一种普遍的衰减规律,即各种放射性核的群体〔样品〕其总的放射性核的数目
二、衰变类型
(一)α衰变(alpha decay):指母核放出一 个α粒子〔氦原子核〕的过程。
比方226Ra(镭)衰变式如下:
226Ra→222Rn+α+4.86Mev
α粒子的质量大且带电荷,故射程短,穿透 力弱,在空气中只能穿透几厘米,一张纸就可 屏蔽,因而不适合作核医学显像用。但α粒子 对局部的电离作用强,对开展体内恶性组织的 放射性核素治疗具有潜在的优势。
射线通过低原子序数物质时以康普顿效 应为主;而高能γ射线通过高原子序数 物质时以电子对生成效应为主。
γ射线与物质相互作用产生的光 电子、康普顿电子、生成电子对等次 级电子可以进一步引起物质的电离和 激发。
三、中子与物质的相互作用
〔一〕弹性散射〔碰撞〕:中子将一局部能 量传给被碰撞的原子核,使其脱离电子层而 运动形成反冲核,反称为弹性散射。实验说明: 中子与其质量相近的原子核碰撞时损失的能 量最多〔如氢核〕,所以,中子易于被含氢 多的物质如水、石蜡等减速吸收,这在中子 防护上具有重要意义。
放射性元素的衰变(ppt)
放大了1000倍的铀矿石
天然放射性元素的原子核发出的射线 可使照相底片感光
铅盒
照相底片 射 线
放 射 源
天然放射现象
放射性型物质发出的射线有三种:
二、三种射线
阅读课文填写表格:
射线
射线
射线
成分
氦原子核
高速 电子流 高能量 电磁波
速度
1/10光 速
接近光 速
光速
贯穿能力 电离能力
弱
很容易
较强
较弱
电荷数变了,它在周期表中的位置就变 了,变成另一种原子核。
2.衰变原则: 质量数守恒,电荷数守恒。
U238在 衰变时产生的钍234也具有 放射性,放出 离子后变为(镤)Th234, 上述的过程可以用下面的衰变方程表示:
U 238
234 90
Th
+
4 2
He
234 91
Pa
+
人们认识原子 核的结构就是 从天然放射性 开始的。
一、天然放射现象
法国物理学家贝克勒尔 1、放射性:物质发射射线的性质称为放射性.
2、放射性元素:具有发射性的元素称为放射性元 素.
3、天然放射现象:元素这种自发的放出射线的现 象叫做天然放射现象.
天然放射现象
放射性不是少数几种元素才有的,研究 发现,原子序数大于或等于83的所有元素, 都能自发的放出射线,原子序数小于83的 元素,有的也具有放射性.
1.半衰期:半衰期是放射性元素的原子核有半数发生衰变需要的 时间用T表示。
注意: (1)每种放射性元素都有一定的半衰期,不同元素半衰期不同。 (2)半衰期由核内部本身的因素决定,而跟原子所处的物理状态 或化学状态无关。 (3)半衰期是一个宏观统计规律,只对大量的原子核才适用,对 少数原子核是不适用的. 2.半衰期公式:N=N0(1/2)t/T 或 m=m0(1/2)t/T 说明式中各量的意义
天然放射性元素的原子核发出的射线 可使照相底片感光
铅盒
照相底片 射 线
放 射 源
天然放射现象
放射性型物质发出的射线有三种:
二、三种射线
阅读课文填写表格:
射线
射线
射线
成分
氦原子核
高速 电子流 高能量 电磁波
速度
1/10光 速
接近光 速
光速
贯穿能力 电离能力
弱
很容易
较强
较弱
电荷数变了,它在周期表中的位置就变 了,变成另一种原子核。
2.衰变原则: 质量数守恒,电荷数守恒。
U238在 衰变时产生的钍234也具有 放射性,放出 离子后变为(镤)Th234, 上述的过程可以用下面的衰变方程表示:
U 238
234 90
Th
+
4 2
He
234 91
Pa
+
人们认识原子 核的结构就是 从天然放射性 开始的。
一、天然放射现象
法国物理学家贝克勒尔 1、放射性:物质发射射线的性质称为放射性.
2、放射性元素:具有发射性的元素称为放射性元 素.
3、天然放射现象:元素这种自发的放出射线的现 象叫做天然放射现象.
天然放射现象
放射性不是少数几种元素才有的,研究 发现,原子序数大于或等于83的所有元素, 都能自发的放出射线,原子序数小于83的 元素,有的也具有放射性.
1.半衰期:半衰期是放射性元素的原子核有半数发生衰变需要的 时间用T表示。
注意: (1)每种放射性元素都有一定的半衰期,不同元素半衰期不同。 (2)半衰期由核内部本身的因素决定,而跟原子所处的物理状态 或化学状态无关。 (3)半衰期是一个宏观统计规律,只对大量的原子核才适用,对 少数原子核是不适用的. 2.半衰期公式:N=N0(1/2)t/T 或 m=m0(1/2)t/T 说明式中各量的意义
放射性元素的衰变 课件
关键。
能级跃迁,放出γ光子。
②γ射线是伴随着α射线和β射线产生的,γ辐射并不能独立发生,所
以,只要有γ射线必有α衰变或β衰变发生。
③γ粒子不是带电粒子,因此γ射线并不影响原子核的核电荷数,故
γ射线不会改变元素在周期表中的位置。
特别提醒(1)衰变方程的书写:衰变方程用“→”表示,而不用“=”表
示。
(2)衰变方程表示的变化:衰变方程表示的是原子核的变化,而不
放射性元素的衰变
一、原子核的衰变
1.衰变的定义是什么?
答案:原子核放出α粒子或β粒子,变成另一种原子核的过程。
2.衰变有几种类型?写出其衰变规律。
-4
答案:(1)α 衰变: X→-2 Y+42 He(新核的质量数减少 4,电荷数减
少 2)。
(2)β 衰变: X→+1
Y+-1 0 e(新核的质量数不变,电荷数增加 1)。
)
222
A.目前地壳中的 86 Rn 主要来自于其他放射性元素的衰变
222
B.在地球形成的初期,地壳中元素 86 Rn 的含量足够高
218
222
C.当衰变产物 84 Po 积累到一定量以后,218
84 Po 的增加会减慢
Rn 的衰变进程
D.222
86 Rn 主要存在于地球深处的矿石中,温度和压力改变了它
(2)当原子核发生β衰变时,新核的核电荷数相对于原来增加了1个。
新核在元素周期表中的位置向后移动了1个位次。
1.衰变规律
原子核衰变时,电荷数和质量数都守恒。
2.衰变方程
-4
(1)α 衰变: X→-2 Y+42 He(新核的质量数减少 4,电荷数减少 2)。
能级跃迁,放出γ光子。
②γ射线是伴随着α射线和β射线产生的,γ辐射并不能独立发生,所
以,只要有γ射线必有α衰变或β衰变发生。
③γ粒子不是带电粒子,因此γ射线并不影响原子核的核电荷数,故
γ射线不会改变元素在周期表中的位置。
特别提醒(1)衰变方程的书写:衰变方程用“→”表示,而不用“=”表
示。
(2)衰变方程表示的变化:衰变方程表示的是原子核的变化,而不
放射性元素的衰变
一、原子核的衰变
1.衰变的定义是什么?
答案:原子核放出α粒子或β粒子,变成另一种原子核的过程。
2.衰变有几种类型?写出其衰变规律。
-4
答案:(1)α 衰变: X→-2 Y+42 He(新核的质量数减少 4,电荷数减
少 2)。
(2)β 衰变: X→+1
Y+-1 0 e(新核的质量数不变,电荷数增加 1)。
)
222
A.目前地壳中的 86 Rn 主要来自于其他放射性元素的衰变
222
B.在地球形成的初期,地壳中元素 86 Rn 的含量足够高
218
222
C.当衰变产物 84 Po 积累到一定量以后,218
84 Po 的增加会减慢
Rn 的衰变进程
D.222
86 Rn 主要存在于地球深处的矿石中,温度和压力改变了它
(2)当原子核发生β衰变时,新核的核电荷数相对于原来增加了1个。
新核在元素周期表中的位置向后移动了1个位次。
1.衰变规律
原子核衰变时,电荷数和质量数都守恒。
2.衰变方程
-4
(1)α 衰变: X→-2 Y+42 He(新核的质量数减少 4,电荷数减少 2)。
放射性衰变PPT课件
D.加速向左运动
19
12、如图是一类磁悬浮列车直线电动机的原理图,在水平面上,
两根平行直导轨间有竖直方向且等距离间隔的匀强磁场B1和B2 ( B1=B2=1T),导轨上有金属框架abcd。当匀强磁场同时以速度 v=5m/s向右运动时,金属框也会眼导轨运动。设直导轨间距为
L=0.4M,,金属框电阻R=2,
(2)相E关物n理量: =2n
t
e=Emsin t、
Em=nBS 、
E、
(3)有效值和平均值 2、电感电容对交变电流的作用 3、变压器(1)工作原理:互感 (2)基本关系 4、电能输送:电路图,各物理量的关系
18
4、在匀强磁场中放一电阻不计的平行金属导轨,导轨 跟大线圈M相接,如图4所示.导轨上放一根导线ab,磁 感线垂直于导轨所在平面.欲使M所包围的小闭合线圈N 产生顺时针方向的感应电流,则导线的运动可能是 () A.匀速向右运动 B.加速向右运动 C.匀速向左运动
3.3《放射性衰变》
1
教学目标
❖ 一、知识与能力: ❖ (1)理解什么是“天然放射现象”,掌握天然放射线的性
质; ❖ (2)掌握原子核衰变规律,理解半衰期概念; ❖ (3)结合天然放射线的探测问题,提高学生综合运用物理
知识的能力. ❖ (4)在复习过程中,适当介绍天然放射性的发现过程,
以及有关科学家的事绩,对学生进行科学道德与唯物史观 的教育. ❖ 二、重点、难点分析 ❖ 1.重点. ❖ (1)衰变规律; ❖ (2)用电场和磁场探测天然射线的基本方法. ❖ 2.难点:用力学和电学知识如何分析天然射线的性质.
2
复习
1.关于α粒子散射实验的下述说法中正确的是( )
A.在实验中观察到的现象是绝大多数α粒子穿过
19
12、如图是一类磁悬浮列车直线电动机的原理图,在水平面上,
两根平行直导轨间有竖直方向且等距离间隔的匀强磁场B1和B2 ( B1=B2=1T),导轨上有金属框架abcd。当匀强磁场同时以速度 v=5m/s向右运动时,金属框也会眼导轨运动。设直导轨间距为
L=0.4M,,金属框电阻R=2,
(2)相E关物n理量: =2n
t
e=Emsin t、
Em=nBS 、
E、
(3)有效值和平均值 2、电感电容对交变电流的作用 3、变压器(1)工作原理:互感 (2)基本关系 4、电能输送:电路图,各物理量的关系
18
4、在匀强磁场中放一电阻不计的平行金属导轨,导轨 跟大线圈M相接,如图4所示.导轨上放一根导线ab,磁 感线垂直于导轨所在平面.欲使M所包围的小闭合线圈N 产生顺时针方向的感应电流,则导线的运动可能是 () A.匀速向右运动 B.加速向右运动 C.匀速向左运动
3.3《放射性衰变》
1
教学目标
❖ 一、知识与能力: ❖ (1)理解什么是“天然放射现象”,掌握天然放射线的性
质; ❖ (2)掌握原子核衰变规律,理解半衰期概念; ❖ (3)结合天然放射线的探测问题,提高学生综合运用物理
知识的能力. ❖ (4)在复习过程中,适当介绍天然放射性的发现过程,
以及有关科学家的事绩,对学生进行科学道德与唯物史观 的教育. ❖ 二、重点、难点分析 ❖ 1.重点. ❖ (1)衰变规律; ❖ (2)用电场和磁场探测天然射线的基本方法. ❖ 2.难点:用力学和电学知识如何分析天然射线的性质.
2
复习
1.关于α粒子散射实验的下述说法中正确的是( )
A.在实验中观察到的现象是绝大多数α粒子穿过
放射性元素的衰变 课件
发生衰变所需的时间.
(2)决定因素 放射性元素衰变的快慢是由 核内部自身
的因素决
定的,跟原子所处的化学状态和外部条件没有关系.不同的 放射性元素,半衰期 不同 .
(3)应用 利用半衰期非常稳定这一特点,可以测量其衰变程度、 推断时间. 2.思考判断 (1)半衰期可以表示放射性元素衰变的快慢.(√) (2)半 衰期是放射性元 素的大量原子核 衰变的统计规 律.(√) (3)半衰期可以通过人工进行控制.(×)
2.α 衰变的实质是原子核中的 2 个质子和 2 个中子结合 在一起发射出来的,α 衰变方程为:AZX→AZ--24Y+24He,实质是: 211H+201n→42He.
3.β 衰变的实质是原子核内的一个中子变成一个质子和 电子,放出高速电子流,β 衰变的方程为:AZX→Z+A1Y+-10e, 实质是:10n→11H+-10 e.
放射性元素的衰变
原子核的衰变
1.基本知识 (1)定义 原子核放出 α粒子 或 β粒子 ,则核电荷数变了, 变成另一种 原子核 ,这种变化称为原子核的衰变.
(2)衰变分类
放出 α 粒子的衰变叫 α衰变
叫 β衰变
.
.放出 β 粒子的衰变
(3)衰变方程
29328U→29304Th+ 42He
29304Th→29314Pa+ -01e.
3.探究交流 某放射性元素的半衰期为 4 天,若有 100 个这样的原子 核,经过 4 天后还剩 50 个,这种说法对吗? 【提示】 半衰期是大量放射性元素的原子核衰变时所 遵循的统计规律,不能用于少量的原子核发生衰变的情况, 因此,经过 4 天后,100 个原子核有多少发生衰变是不能确 定的,所以这种说法不对.
.
(4)衰变规律
放射性元素的衰变课件
(2)α 衰变:放射性元素放出 α 粒子的衰变叫作 α 衰变. (3)β 衰变:放射性元素放出 β 粒子的衰变叫作 β 衰变. 2.(1)衰变规律:原子核衰变时,衰变前后的电荷数和 质量数都守恒. (2)衰变方程:α 衰变:AZX→AZ--24Y+24He; β 衰变:AZX→Z+A1Y+-0 1e.
个质子结合得比较紧密,有时会作为一个整体从较大的原子核中抛
射出来,这就是放射元素的_α_衰___变___现象;原子核里虽没有电子, 但核内的___中__子___可转化成质子和电子,产生的电子从核内发射出 来,这就是__β_衰__变___.
(4)γ 射线产生的本质:原子核的能量只能取一系列不连续数
值,当原子核发生 α 衰变、β 衰变后,新核往往处于高能级.这时
2.公式.
N
余=N
原21Tt ,m
余=m
1 t 原2T
式中 N 原、m 原表示衰变前的放射性元素的原子数或质量,N 余、
m 余表示衰变后尚未发生衰变的放射性元素的原子数或质量,t 表示
衰变时间,T 表示半衰期.
注:半衰期由放射性元素的原子核内部本身的因素决定,跟原子
所处的物理状态(如压强、温度、环境)或化学状态(如单质、化合物)
放射性元素的衰变
1.原子核的衰变. (1)原子核的衰变:原子核放出 α 粒子或 β 粒子,由于 _核__电__荷__数_ 变 了 , 它 在 周 期 表 中 的 位 置 变 了 , 变 成 另 一 种 ___原__子__核_.这种变化称为原子核的___衰__变___. (2)衰变规律:原子核衰变时,衰变前后的电荷数和质 量数都___守__恒___. α 衰变:质量数减少 4,电荷数减少 2,衰变方程为:AZ
解析:原子核的衰变是由原子核内部因素决定 的,与一般外界环境无关.原子核的衰变有一定的 速率,每隔一定的时间即半衰期,原子核就衰变了 总数的一半.不同种类的原子核,其半衰期也不 同.若开始时原子核数目为 N0,经时间 t 剩下的原 子核数目为 N,半衰期为 T,则有如下关系式:N= N012Tt .若能测定出 N 与 N0 的比值.则就可求出时间 t 值,依此公式就可测定地质年代、生物年代或考察 出土文物存在年代等.
个质子结合得比较紧密,有时会作为一个整体从较大的原子核中抛
射出来,这就是放射元素的_α_衰___变___现象;原子核里虽没有电子, 但核内的___中__子___可转化成质子和电子,产生的电子从核内发射出 来,这就是__β_衰__变___.
(4)γ 射线产生的本质:原子核的能量只能取一系列不连续数
值,当原子核发生 α 衰变、β 衰变后,新核往往处于高能级.这时
2.公式.
N
余=N
原21Tt ,m
余=m
1 t 原2T
式中 N 原、m 原表示衰变前的放射性元素的原子数或质量,N 余、
m 余表示衰变后尚未发生衰变的放射性元素的原子数或质量,t 表示
衰变时间,T 表示半衰期.
注:半衰期由放射性元素的原子核内部本身的因素决定,跟原子
所处的物理状态(如压强、温度、环境)或化学状态(如单质、化合物)
放射性元素的衰变
1.原子核的衰变. (1)原子核的衰变:原子核放出 α 粒子或 β 粒子,由于 _核__电__荷__数_ 变 了 , 它 在 周 期 表 中 的 位 置 变 了 , 变 成 另 一 种 ___原__子__核_.这种变化称为原子核的___衰__变___. (2)衰变规律:原子核衰变时,衰变前后的电荷数和质 量数都___守__恒___. α 衰变:质量数减少 4,电荷数减少 2,衰变方程为:AZ
解析:原子核的衰变是由原子核内部因素决定 的,与一般外界环境无关.原子核的衰变有一定的 速率,每隔一定的时间即半衰期,原子核就衰变了 总数的一半.不同种类的原子核,其半衰期也不 同.若开始时原子核数目为 N0,经时间 t 剩下的原 子核数目为 N,半衰期为 T,则有如下关系式:N= N012Tt .若能测定出 N 与 N0 的比值.则就可求出时间 t 值,依此公式就可测定地质年代、生物年代或考察 出土文物存在年代等.
放射性衰变的种类和规律ppt课件
6
二、基本衰变类型
1. 衰变
+ +
+
++
+
+
+ +
放射性母核
238U → 234Th + 4He + Q 粒子得到大部分衰变能, 粒子含2个质子,
2个中子
238U4He + 234Th
从母核中射出 的4He原子核
7
AX AY 4 Z X ZY -2
α衰变表达式:
元素周期表 左移2格
A Z
X
21
α 衰变 β+ 衰变
β- 衰变 衰变
22
第二节 衰变纲图
Decay scheme用以综合反映某核素放射性衰变的主要特征和数的示意图
23
第三节 衰变的基本规律
➢ 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所 有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。放 射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都 有自己特有的衰变速度。放射性核素原子随时间而呈指数规律减少,其 表达式为: N=N0e-λt
λ: decay constant t: decay time e: base of natural logarithm
24
1、衰变规律
指数衰减规律 N = N0e-t
N0: (t = 0)时放射性原子 核的数目
N: 经过t时间后未发生衰变的放射性原子核 数目
:放射性原子核衰变常数(单位时间内一个原 子核衰变的几率)
正电子衰变 137N → 136C + β+ + υ + 1.190MeV
β射线本质是高速运动的电子流
二、基本衰变类型
1. 衰变
+ +
+
++
+
+
+ +
放射性母核
238U → 234Th + 4He + Q 粒子得到大部分衰变能, 粒子含2个质子,
2个中子
238U4He + 234Th
从母核中射出 的4He原子核
7
AX AY 4 Z X ZY -2
α衰变表达式:
元素周期表 左移2格
A Z
X
21
α 衰变 β+ 衰变
β- 衰变 衰变
22
第二节 衰变纲图
Decay scheme用以综合反映某核素放射性衰变的主要特征和数的示意图
23
第三节 衰变的基本规律
➢ 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所 有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。放 射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都 有自己特有的衰变速度。放射性核素原子随时间而呈指数规律减少,其 表达式为: N=N0e-λt
λ: decay constant t: decay time e: base of natural logarithm
24
1、衰变规律
指数衰减规律 N = N0e-t
N0: (t = 0)时放射性原子 核的数目
N: 经过t时间后未发生衰变的放射性原子核 数目
:放射性原子核衰变常数(单位时间内一个原 子核衰变的几率)
正电子衰变 137N → 136C + β+ + υ + 1.190MeV
β射线本质是高速运动的电子流
第一章、放射性衰变基本知识
(二)核反应:快中子与物质的原 子核作用放出带电粒子而形成新核 的过程称为核反应。形成的新核如 果是放射性核素则继续衰变放射出 β、γ射线,使物质原子产生电离 或激发,称为感生放射性。中子与 物质相互作用产生核反应是中子反 应堆工作的基础,也是中子弹的杀 伤因素。 比如 23 Na+10n→24Na+γ可 写成23Na(n、γ) 24Na 等 。
引入半衰期概念以后,核衰变的公式 可改写成: N=Noe-0.693t/T1/2 或A=A0e-0.693t/T1/2 按照这一公式,可根据某种放射性核 素的半衰期和其出厂到使用时的间隔时间 (t)计算出使用时的放射性活度。 三、放射性活度及其单位 (一)放射性活度 单位时间内核衰变的次数,用 dps 或dpm来表示。
二、半衰期 (一)物理半衰期 (T1/2):放射性核素由于 衰变,其原子核数目或活度减少到原来一半 所需的时间,用T 1/2表示。 (二)生物半衰期 (Tb): 放射性核素由 于生物代谢 ,其原子核数目或活度减少到原 来一半所需的时间。 (三)有效半衰期 (Te):放射性核素由于 生物代谢和衰变的共同作用 ,其原子核数目 或活度减少到原来一半所需的时间。 三者的关系可用下式表示: Te=(T1/2· Tb) /(T1/2+Tb)
( 二 ) 放射性活度单位:在国际单位制 (SI) 中,放射性活度专名是贝可勒尔 (Bequeral),简称贝可,符号是 Bq,单位 是秒 -1 (s-1) 其派生单位有 KBq、MBq、GBq 和 TBq。 1TBq=103GBq=106MBq=109KBq 四、放射性比活度:单位质量(摩尔、容 积)物质所含放射性的多少。 单 位 是 MBq/mg、GBq/mg、TBq/g 或 MBq/mmol、GBq/mmol、MBq/ml。 后 者 常 称 为放射性浓度。
放射性元素的衰变(课件)高中物理(人教版2019选择性必修第三册)
-1e
0
30
30
1e
(4)15P→14Si+________________________;
1
90
136
1
(5)235
U+________________________→
92
38Sr+ 54Xe+100n;
0n
1
14
4
17
1H
(6) 7N+2He→ 8O+________________________。
→
′
′
+ + −
(2)衰变次数n 和 m
质量数守恒: A A '+ 4n
A A'
解得: n =
4
电荷数守恒:
Z Z '+ 2n m
A A'
m=
Z ' Z
2
【注意】为了确定衰变次数,一般是由质量数的改变先确定α衰变的次数,这是因为
β衰变的次数的多少对质量数没有影响,然后再根据衰变规律确定β衰变的次数。
俘获一个α粒子,产生
13
15并放出一个粒子
C. 115俘获一个质子,产生 84并放出一个粒子
D. 63俘获一个质子,产生 32并放出一个粒子
1、半衰期(τ)
放射性元素的原子核有半数发生衰变所需的时间。
氡的衰变
m/m0
t /天
1/2
3.8
1/4
2×3.8
1/8
3×3.8
1/16
A.1∶4
B.4∶1
C.2∶1
D.1∶2
核反应
1、定义:原子核在其他粒子的轰击下产生新原子核或发生状态变化的过程。
0
30
30
1e
(4)15P→14Si+________________________;
1
90
136
1
(5)235
U+________________________→
92
38Sr+ 54Xe+100n;
0n
1
14
4
17
1H
(6) 7N+2He→ 8O+________________________。
→
′
′
+ + −
(2)衰变次数n 和 m
质量数守恒: A A '+ 4n
A A'
解得: n =
4
电荷数守恒:
Z Z '+ 2n m
A A'
m=
Z ' Z
2
【注意】为了确定衰变次数,一般是由质量数的改变先确定α衰变的次数,这是因为
β衰变的次数的多少对质量数没有影响,然后再根据衰变规律确定β衰变的次数。
俘获一个α粒子,产生
13
15并放出一个粒子
C. 115俘获一个质子,产生 84并放出一个粒子
D. 63俘获一个质子,产生 32并放出一个粒子
1、半衰期(τ)
放射性元素的原子核有半数发生衰变所需的时间。
氡的衰变
m/m0
t /天
1/2
3.8
1/4
2×3.8
1/8
3×3.8
1/16
A.1∶4
B.4∶1
C.2∶1
D.1∶2
核反应
1、定义:原子核在其他粒子的轰击下产生新原子核或发生状态变化的过程。
放射性元素的衰变PPT课件
注意:要以实验为基础,不能杜撰。
.
3
请看下列两个通过实验检验的方程:
U 238
92
234 90
Th +24
He
23940Th29314Pa 10e
大家能看出哪些规律呢?
1、用单箭头,不用等号;
2、质量数守恒,质量守恒;
3、电荷数守恒,电荷守恒;
4、方程及生成物要以实验为基础,
不能杜撰。
.
经n个3.8天后
剩余氡核数N
N
N0 2
N N0 22
N N0 23
.
N N0 2n
23
二、半衰期
1、半衰期
放射性元素的原子核有半数发生衰变所需的 时间,叫做这种元素的半衰期。
放射性元素的剩余质量
m m ( 12 ) 与原有质量的关系:
t
0
N
N
0
(
1 2
t
)
.
24
二、半衰期(T)
(2)β衰变:原子核放出β粒子的衰变叫做β衰变.
注意: γ射线总是伴随衰变或衰变产生的电磁波,它不能单独发 生且不改变电荷数与质量数。
.
18
6.课堂检验:
练习1:在垂直于纸面的匀强磁场中,有一原
来静止的原子核,该核衰变后,放出的带电粒
子和反冲核的运动轨迹如图所示。由图可以判
定( BD )
a
A、该核发生的是α衰变
4
放射性元素的衰变又有怎样的规律呢?
1.衰变的定义:
2.衰变的原则:
3.衰变的分类:
4.衰变的通式:
5.衰变的实质:
.
5
放射性元素的衰变又有怎样的规律呢?
.
3
请看下列两个通过实验检验的方程:
U 238
92
234 90
Th +24
He
23940Th29314Pa 10e
大家能看出哪些规律呢?
1、用单箭头,不用等号;
2、质量数守恒,质量守恒;
3、电荷数守恒,电荷守恒;
4、方程及生成物要以实验为基础,
不能杜撰。
.
经n个3.8天后
剩余氡核数N
N
N0 2
N N0 22
N N0 23
.
N N0 2n
23
二、半衰期
1、半衰期
放射性元素的原子核有半数发生衰变所需的 时间,叫做这种元素的半衰期。
放射性元素的剩余质量
m m ( 12 ) 与原有质量的关系:
t
0
N
N
0
(
1 2
t
)
.
24
二、半衰期(T)
(2)β衰变:原子核放出β粒子的衰变叫做β衰变.
注意: γ射线总是伴随衰变或衰变产生的电磁波,它不能单独发 生且不改变电荷数与质量数。
.
18
6.课堂检验:
练习1:在垂直于纸面的匀强磁场中,有一原
来静止的原子核,该核衰变后,放出的带电粒
子和反冲核的运动轨迹如图所示。由图可以判
定( BD )
a
A、该核发生的是α衰变
4
放射性元素的衰变又有怎样的规律呢?
1.衰变的定义:
2.衰变的原则:
3.衰变的分类:
4.衰变的通式:
5.衰变的实质:
.
5
放射性元素的衰变又有怎样的规律呢?
放射性衰变基本知识课件
中子衰变
总结词
释放出一个或多个电子和质子的衰变过程
详细描述
中子衰变是一种特殊类型的核衰变,其中中子转变为一个质子、一个电子和一个反中微子的过程。这 个过程伴随着能量的释放,并导致原子序数增加1。
03
CATALOGUE
放射性衰变的规律
半衰期
定义
放射性衰变过程中,一半原子核发生 衰变所需要的时间。
是时间。
应用
用于估算放射性物质的剩余寿命 、预测未来放射性活度等。
放射性活度与时间的关系
定义
描述放射性物质随时间 变化而产生的辐射能量
的变化规律。
影响因素
放射性核素的类型、初 始活度、衰变类型等。
计算方法根据指数衰减规律和半来自衰期等参数进行计算。应用
用于监测环境中的放射 性污染、评估放射性医
疗效果等。
核能发电
核裂变
重核分裂成两个或多个较轻的原子核,同时释放出大量的能 量。在核裂变过程中,中子是关键因素,因为只有中子能够 轰击重核并引发分裂。
核聚变
轻原子核聚合在一起形成较重的原子核,同时释放出大量的 能量。在太阳等恒星内部,氢原子核通过聚变反应释放出巨 大的能量。
考古学年代测定
放射性衰变在考古学中的应用主要是通过测定古物中放射性元素的半衰期来推算 其年代。例如,碳-14测年法就是利用放射性衰变测定文物年代的一种方法。
随后,其他科学家相继发 现了多种放射性核素,揭 示了放射性衰变的多样性 。
放射性衰变的重要性
医学应用
放射性衰变在医学上具有重要应 用,如放射性治疗、诊断成像等
。
工业应用
在工业上,放射性衰变可用于工业 检测、测井、核能发电等领域。
科学研究
放射性衰变及衰变方程式课件
CHAPTER
在医学领域的应用
放射性同位素标记
放射成像技术
利用放射性同位素标记生物体内的物 质,如示踪剂,以研究生物体内物质 代谢和功能机制。
利用放射性同位素产生的辐射信号, 如X射线、核磁共振等,进行医学影 像诊断。
放射性药物
利用放射性同位素制备的药物,如放 射性核素标记的肿瘤诊断和治疗药物 ,用于诊断和治疗肿瘤等疾病。
详细描述
幂律衰变方程式是描述放射性衰变物质随时 间按幂次方减少的数学模型,其形式为
N(t)=N0(1-λt)^n,其中 N(t) 表示经过时 间 t 后的剩余放射性物质的量,N0 是初始 量,λ 是衰变常数,t 是时间,n 是幂次方 。该方程表示放射性物质的量随时间呈幂次
方方式减少。
03 放射性衰变的实际应用
放射性衰变及衰变方程式课件
目录
CONTENTS
• 放射性衰变简介 • 放射性衰变的方程式 • 放射性衰变的实际应用 • 放射性衰变的影响因素 • 放射性衰变的未来发展
01 放射性衰变简介
CHAPTER
放射性衰变的定义
01
02
03
放射性衰变
是指放射性核素自发地转 变成另一种核素,同时释 放出射线的过程。
详细描述
指数衰变方程式是描述放射性衰变物质随时间减少的数学模型,其形式为 N(t)=N0e^(-λt),其中 N(t) 表示经过 时间 t 后的剩余放射性物质的量,N0 是初始量,λ 是衰变常数,t 是时间。该方程表示放射性物质的量随时间呈 指数方式减少。
线性衰变方程式
总结词
描述放射性衰变物质随时间线性减少的规律。
详细描述
线性衰变方程式是描述放射性衰变物质随时间线性减少的数学模型,其形式为 dN/dt = -λN,其中 dN/dt 表示放射性物质随时间的变化率,λ 是衰变常数,N 是当前放射性物质的量。该方程表示放射性物质的量随时间呈线性方式减少。
在医学领域的应用
放射性同位素标记
放射成像技术
利用放射性同位素标记生物体内的物 质,如示踪剂,以研究生物体内物质 代谢和功能机制。
利用放射性同位素产生的辐射信号, 如X射线、核磁共振等,进行医学影 像诊断。
放射性药物
利用放射性同位素制备的药物,如放 射性核素标记的肿瘤诊断和治疗药物 ,用于诊断和治疗肿瘤等疾病。
详细描述
幂律衰变方程式是描述放射性衰变物质随时 间按幂次方减少的数学模型,其形式为
N(t)=N0(1-λt)^n,其中 N(t) 表示经过时 间 t 后的剩余放射性物质的量,N0 是初始 量,λ 是衰变常数,t 是时间,n 是幂次方 。该方程表示放射性物质的量随时间呈幂次
方方式减少。
03 放射性衰变的实际应用
放射性衰变及衰变方程式课件
目录
CONTENTS
• 放射性衰变简介 • 放射性衰变的方程式 • 放射性衰变的实际应用 • 放射性衰变的影响因素 • 放射性衰变的未来发展
01 放射性衰变简介
CHAPTER
放射性衰变的定义
01
02
03
放射性衰变
是指放射性核素自发地转 变成另一种核素,同时释 放出射线的过程。
详细描述
指数衰变方程式是描述放射性衰变物质随时间减少的数学模型,其形式为 N(t)=N0e^(-λt),其中 N(t) 表示经过 时间 t 后的剩余放射性物质的量,N0 是初始量,λ 是衰变常数,t 是时间。该方程表示放射性物质的量随时间呈 指数方式减少。
线性衰变方程式
总结词
描述放射性衰变物质随时间线性减少的规律。
详细描述
线性衰变方程式是描述放射性衰变物质随时间线性减少的数学模型,其形式为 dN/dt = -λN,其中 dN/dt 表示放射性物质随时间的变化率,λ 是衰变常数,N 是当前放射性物质的量。该方程表示放射性物质的量随时间呈线性方式减少。
放射性物质的衰变课件
使用个人防护用品
使用适当的个人防护用品,如防护服、手套 、面罩等,以减少辐射暴露。
限制暴露时间
尽量减少暴露于放射性物质的时间,以减少 辐射剂量。
避免放射性污染
避免将放射性物质与非放射性物质混淆,防 止污染环境。
放射性废物的处理与处置
分类收集
将放射性废物按照不同的放射性强度 和性质进行分类收集,以便后续处理 和处置。
指数衰变是一种特殊的衰变过 程,其衰变速度与时间成正比
。
数学表达式
N(t) = N₀ * e^(-λt)
解释
其中N(t)表示在时刻t的放射 性原子核数,N₀表示初始时 刻的原子核数,λ表示衰变常
数。
特征
指数衰变的特征是随着时间的 推移,原子核数逐渐减少,且
减少的速度逐渐加快。
对数衰变规律
定义
对数衰变是一种特殊的衰变过 程,其衰变速度与时间成反比
02
放射性衰变是指原子核自发地放 射出各种射线,如α射线、β射线 、γ射线等,并转变为另一种原子 核的过程。
放射性物质的分类
根据放射性衰变的类型和速度,可以 将放射性物质分为不同的类别,如铀 、钍、镭等。
常见的放射性物质分类包括:天然放 射性物质、人工放射性物质、医用放 射性物质等。
放射性物质的应用
放射性物质在多个领域具有广泛的应用,如医学、工业、科 研等。
在医学领域,放射性物质可用于治疗肿瘤、诊断疾病等;在 工业领域,放射性物质可用于检测材料的质量和厚度等;在 科研领域,放射性物质可用于研究原子核结构和化学元素的 性质等。
02
放射性物质的衰变原理
原子核的稳定性与放射性衰变
原子核的稳定性
原子核的稳定性取决于其质子数 和中子数,当质子数和中子数处 于某种特定比例时,原子核才能 保持稳定。
使用适当的个人防护用品,如防护服、手套 、面罩等,以减少辐射暴露。
限制暴露时间
尽量减少暴露于放射性物质的时间,以减少 辐射剂量。
避免放射性污染
避免将放射性物质与非放射性物质混淆,防 止污染环境。
放射性废物的处理与处置
分类收集
将放射性废物按照不同的放射性强度 和性质进行分类收集,以便后续处理 和处置。
指数衰变是一种特殊的衰变过 程,其衰变速度与时间成正比
。
数学表达式
N(t) = N₀ * e^(-λt)
解释
其中N(t)表示在时刻t的放射 性原子核数,N₀表示初始时 刻的原子核数,λ表示衰变常
数。
特征
指数衰变的特征是随着时间的 推移,原子核数逐渐减少,且
减少的速度逐渐加快。
对数衰变规律
定义
对数衰变是一种特殊的衰变过 程,其衰变速度与时间成反比
02
放射性衰变是指原子核自发地放 射出各种射线,如α射线、β射线 、γ射线等,并转变为另一种原子 核的过程。
放射性物质的分类
根据放射性衰变的类型和速度,可以 将放射性物质分为不同的类别,如铀 、钍、镭等。
常见的放射性物质分类包括:天然放 射性物质、人工放射性物质、医用放 射性物质等。
放射性物质的应用
放射性物质在多个领域具有广泛的应用,如医学、工业、科 研等。
在医学领域,放射性物质可用于治疗肿瘤、诊断疾病等;在 工业领域,放射性物质可用于检测材料的质量和厚度等;在 科研领域,放射性物质可用于研究原子核结构和化学元素的 性质等。
02
放射性物质的衰变原理
原子核的稳定性与放射性衰变
原子核的稳定性
原子核的稳定性取决于其质子数 和中子数,当质子数和中子数处 于某种特定比例时,原子核才能 保持稳定。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,该自由电子称为内转换电子。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
原子是由原子核和核外电子组成的,原子 核带正电,核外电子带负电,整个原子呈电中 性的。核外电子在轨道上运动时不吸收也不辐 射能量的状态称为定态(Stationary state); 能量最低的定态称为基态(Ground state); 能量较高的定态称为激发态(Excited state)。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
同位素
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
四、同质异能素( isomer) 核内质子数 和中子数均相同,但所处能量状态不同的 核素。如99Tc与99mTc,99mTc是处于激发态 的原子核,激发态向基态过渡时将放出多 余的能量。
§3 核衰变规律
一、衰变规律:对大量放射性核的群体进
行研究,发现其衰变遵循一种普遍的衰减
规律,即各种放射性核的群体(样品)其
总的放射性核的数目N都随时间t按指数规
律衰减。
衰变公式:
N=Noe-λt
该式是表示核衰变的基本公式,适用
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
β-粒子穿透力弱,例如2Mev的β-粒子在软组 织中的射程约为2cm,不能用于核医学显像。 某些β-核素可用于核素治疗,例如:131I用于 治疗甲亢和甲状腺癌,32P可用于血液和皮肤 病的治疗。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
(二)β衰变(beta decay) (1)β-衰变:指母核放出一个负电子的过程
。β-衰变发生在中子过剩的原子核。 比如:32P(磷)衰变式如下:
32P→32S+e-1+ υe +1.711 Mev β-衰变时放出一个β-粒子பைடு நூலகம்反中微子 ,核内一个中子转变为质子,因而子核比母 核中子数减少1,原子序数增加1,原子质量 数不变。β-射线的本质是高速运动的电子流 ,β-衰变时,衰变能随机分配给β-粒子和 反中微子,因而β-粒子的能量分布形成连续 能谱。
(3)电子俘获(electron capture decay, EC)核内的一个质子可以俘获一个核外电子 并发射一个中微子而转变为一个中子,所 形成的子核质量数不变,原子序数少1。
比如125I(碘)衰变式如下: 125I+e-→125Te(碲)+υ+0.0355 Mev。 原子核发生电子俘获后,外层电子留
出一个α粒子(氦原子核)的过程。 比如226Ra(镭)衰变式如下: 226Ra→222Rn+α+4.86Mev
α粒子的质量大且带电荷,故射程短, 穿透力弱,在空气中只能穿透几厘米,一 张纸就可屏蔽,因而不适合作核医学显像 用。但α粒子对局部的电离作用强,对开 展体内恶性组织的放射性核素治疗具有潜 在的优势。
(2)β+衰变:指母核放出一个正电子的过 程。发生在中子相对缺乏的核素,也可认为 是质子过剩。比如:13N(氮)衰变式如下:
13N→13C+β++υ+1.190 Mev 衰变时放出一个β+粒子和中微子,核内一 个质子转变为中子。正电子的射程仅1-2mm 即发生湮灭辐射。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
原子核是由质子(p)和中子(n)组成的, 质子和中子统称为核子(nucleon),质子带 正电,其电量与电子的电量相等,中子不带电。 质子数和中子数之和称为原子核的质量数(A)。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
二、核素(nuclide) 具有特定的质量数、 原子序数和核能态的原子,统称为核素。 可用通式AX表示,目前已知的元素虽仅100 多种,但已知的核素却有2700多种。核素 可分为稳定性核素与放射性核素二种,其 中绝大多数为放射性核素。 三、同位素(isotope)凡原子核内质子 数相同(原子序数相同),而中子数不同的 一类原子,彼此互称为同位素, 比如:1H 、2H、3H互称为同位素。每种同位素也是 一种核素。
1、同质异能跃迁(isomeric transition):原子核 发生α衰变、β衰变后的子核吸收衰变能处于激发 态,激发态的子核向基态过渡时将多余的能量以电 磁辐射或光子流的形式释放出去,这种电磁辐射或 光子流称为γ射线,这个过程称为γ衰变。99mTc( 锝)衰变式如下:
99mTc→99Tc+γ
2、内转换(internal conversion):激发态的原子 核从激发态跃迁到基态时不放出γ射线,而将多余 的能量直接交给核外壳层电子,使轨道上的电子获 得足够能量后脱离轨道成为自由电子称之为内转换
§2 核的稳定性和放射性衰变 一、原子核的稳定性:取决核子之间的 引力和短程核力。只有当核子总数以及中 子数和质子数的比例在一定的范围内才能 使这两种力平衡,原子核才是稳定的。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
二、衰变类型 (一)α衰变(alpha decay):指母核放
下一个空轨道,更外层电子填补空轨道, 将多余的能量以电磁辐射或光子流的形式 释放出去,这种电磁辐射或光子流称为“ 标识X线” 。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
(三)γ跃迁(γ transition)
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
原子是由原子核和核外电子组成的,原子 核带正电,核外电子带负电,整个原子呈电中 性的。核外电子在轨道上运动时不吸收也不辐 射能量的状态称为定态(Stationary state); 能量最低的定态称为基态(Ground state); 能量较高的定态称为激发态(Excited state)。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
同位素
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
四、同质异能素( isomer) 核内质子数 和中子数均相同,但所处能量状态不同的 核素。如99Tc与99mTc,99mTc是处于激发态 的原子核,激发态向基态过渡时将放出多 余的能量。
§3 核衰变规律
一、衰变规律:对大量放射性核的群体进
行研究,发现其衰变遵循一种普遍的衰减
规律,即各种放射性核的群体(样品)其
总的放射性核的数目N都随时间t按指数规
律衰减。
衰变公式:
N=Noe-λt
该式是表示核衰变的基本公式,适用
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
β-粒子穿透力弱,例如2Mev的β-粒子在软组 织中的射程约为2cm,不能用于核医学显像。 某些β-核素可用于核素治疗,例如:131I用于 治疗甲亢和甲状腺癌,32P可用于血液和皮肤 病的治疗。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
(二)β衰变(beta decay) (1)β-衰变:指母核放出一个负电子的过程
。β-衰变发生在中子过剩的原子核。 比如:32P(磷)衰变式如下:
32P→32S+e-1+ υe +1.711 Mev β-衰变时放出一个β-粒子பைடு நூலகம்反中微子 ,核内一个中子转变为质子,因而子核比母 核中子数减少1,原子序数增加1,原子质量 数不变。β-射线的本质是高速运动的电子流 ,β-衰变时,衰变能随机分配给β-粒子和 反中微子,因而β-粒子的能量分布形成连续 能谱。
(3)电子俘获(electron capture decay, EC)核内的一个质子可以俘获一个核外电子 并发射一个中微子而转变为一个中子,所 形成的子核质量数不变,原子序数少1。
比如125I(碘)衰变式如下: 125I+e-→125Te(碲)+υ+0.0355 Mev。 原子核发生电子俘获后,外层电子留
出一个α粒子(氦原子核)的过程。 比如226Ra(镭)衰变式如下: 226Ra→222Rn+α+4.86Mev
α粒子的质量大且带电荷,故射程短, 穿透力弱,在空气中只能穿透几厘米,一 张纸就可屏蔽,因而不适合作核医学显像 用。但α粒子对局部的电离作用强,对开 展体内恶性组织的放射性核素治疗具有潜 在的优势。
(2)β+衰变:指母核放出一个正电子的过 程。发生在中子相对缺乏的核素,也可认为 是质子过剩。比如:13N(氮)衰变式如下:
13N→13C+β++υ+1.190 Mev 衰变时放出一个β+粒子和中微子,核内一 个质子转变为中子。正电子的射程仅1-2mm 即发生湮灭辐射。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
原子核是由质子(p)和中子(n)组成的, 质子和中子统称为核子(nucleon),质子带 正电,其电量与电子的电量相等,中子不带电。 质子数和中子数之和称为原子核的质量数(A)。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
二、核素(nuclide) 具有特定的质量数、 原子序数和核能态的原子,统称为核素。 可用通式AX表示,目前已知的元素虽仅100 多种,但已知的核素却有2700多种。核素 可分为稳定性核素与放射性核素二种,其 中绝大多数为放射性核素。 三、同位素(isotope)凡原子核内质子 数相同(原子序数相同),而中子数不同的 一类原子,彼此互称为同位素, 比如:1H 、2H、3H互称为同位素。每种同位素也是 一种核素。
1、同质异能跃迁(isomeric transition):原子核 发生α衰变、β衰变后的子核吸收衰变能处于激发 态,激发态的子核向基态过渡时将多余的能量以电 磁辐射或光子流的形式释放出去,这种电磁辐射或 光子流称为γ射线,这个过程称为γ衰变。99mTc( 锝)衰变式如下:
99mTc→99Tc+γ
2、内转换(internal conversion):激发态的原子 核从激发态跃迁到基态时不放出γ射线,而将多余 的能量直接交给核外壳层电子,使轨道上的电子获 得足够能量后脱离轨道成为自由电子称之为内转换
§2 核的稳定性和放射性衰变 一、原子核的稳定性:取决核子之间的 引力和短程核力。只有当核子总数以及中 子数和质子数的比例在一定的范围内才能 使这两种力平衡,原子核才是稳定的。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
二、衰变类型 (一)α衰变(alpha decay):指母核放
下一个空轨道,更外层电子填补空轨道, 将多余的能量以电磁辐射或光子流的形式 释放出去,这种电磁辐射或光子流称为“ 标识X线” 。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
(三)γ跃迁(γ transition)