高考模拟题复习试卷习题资料高考数学试卷附详细答案37

合集下载

新高考高三数学模拟试卷及答案

新高考高三数学模拟试卷及答案

新高考高三数学模拟试卷及答案新高考高三数学模拟试卷及答案一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个备选项中只有一个符合题目要求,不选、多选、错选均不给分.) 1.函数22101y x x =-+的值域为 A .(0,)+∞B .(1,)+∞C .[0,)+∞D .[4,)+∞解析:选D 因为222101(1)914y x x x =-+=-+≥,所以函数22101y x x =-+的值域为[4,)+∞,故选D .2.1和4的等比中项为()A.2B.2-C.2±D.4± 解析:选C 由题可得,设等比中项为a ,则24a =,解得2a =±.故选C.3.在ABC ?中,角,,A B C 所对的边分别为,,a b c .若222a b c bc =++,则角A 的大小为()A.60B.120C.45D.135 解析:选B 由余弦定理可知222222cos a b c bc A b c bc =+-=++,所以1cos 2A =-,因为0180A <<,所以120A =.故选B.4.若某几何体的三视图如图所示,则该几何体的体积是() A.23π B.2πC.223πD.π 解析:选 A 由题可得,该几何体是半个圆锥.所以其体积为11222323V ππ=??=.故选A.5.要得到函数sin y x =的图象,只需将函数sin()3y x π=+的图象()A.向左平移3π个单位长度 B.向右平移3π个单位长度 C.向左平移6π个单位长度 D.向右平移6π个单位长度解析:选 B 将函数sin()3y x π=+的图象向右平移3π个单位长度即可得到函数sin y x =的图象.故选B.6.已知经过(2,1),(1,)A B m 两点的直线的倾斜角为锐角,则实数m 的取值范围是()A.1m <B.1m >-C.11m -<<D.1m >或1m <- 解析:选A 因为经过(2,1),(1,)A B m 两点的直线的倾斜角为锐角,所以1012AB m k -=>-,解得1m <.故选A.7.设平面向量(2,),(3,1)a x b ==-,若//a b ,则实数x 的值为()A.32 B.23 C.32- D.23-解析:选D 因为//a b ,所以230x +=,解得23x =-.故选D.8.设n S 为等差数列{}n a 的前n 项和.已知6636,324,144(6)n n S S S n -===>,则n 为()A.16B.17C.18D.19 解析:选C因为6324,144(6)n n S S n -==>,所以612345n n n n n n n n S S a a a a a a -------=+++++180=,所以6616()36180216n n n S S S a a -+-=+=+=,所以136n a a +=.所以1()3632422n n n a a nS +===,解得18n =.故选C. 9.已知抛物线2:C y x =的焦点为00,(,)F A x y 是C 上一点,03AF x =,则0x =()A.14 B.12C.1D.2 解析:选 B 由题可得,抛物线的准线方程为14x =-.因为03 2AF x =,由抛物线的定义可知,001342x AF x +==,解得012x =.故选B.10.点(3,1,5),(4,3,1)A B -的中点坐标为()A.1(,2,3)2 B.7(,1,2)2- C.(12,3,5)-D.14(,,2)33解析:选B 设中点为P ,则其坐标满足341351(,,)222-+++,即为1(,2,3)2.故选B.11.若x、y满足约束条件36022x yx yy+-≤+≥≤,则22x y+的最小值为A.5B.4C.2D.2解析:选C 由不等式组做出可行域如图,目标函数22x y+可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y+=的距离的平方,由点到直线的距离公式可知,原点到直线2x y+=的距离为22d==,所以所求最小值为2.故选 B.12.设,a b R∈,则“4a b+>”是“2a>且2b>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B 当2a>且2b>时,4a b+>成立,所以是必要条件,当4,1a b==时,4a b+>,但2a>,2b<,所以是不充分条件.所以是必要不充分条件.故选B.13.在正方体1111ABCD A B C D-中,下列几种说法正确的是()A.11AC AD⊥ B.11D C AB⊥ C.1AC与DC成45角 D.11A C与1B C成60角解析:选D 由题可得,设1AB=,以D为坐标原点,1,,DA DC DD分别为,,x y z轴,建立空间直角坐标系D xyz -.则111(0,0,0),(0,0,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1) D D A A B B,1(0,1,0),(0,1,1)C C.所以11(1,1,0),(1,0,0)AC AD=-=-,因为1110AC AD=≠,所以选项A错误;11(0,1,0),(0,1,0)AB DC==,因为1110AB DC=≠,所以选项B错误;因为1(1,1,1),(0,1,0)AC DC=-=,所以6cos632θ==,所以1AC与DC不成45角,故选项C 错误.所以正确的选项是D.14.设,0a b >,则4(1)(1)b aab++的最小值为() A.5 B.7 C.9 D.13解析:选C 444(1)(1)14529b a b a b a a b a b a b++=+++≥+?=.故选C. 15.设,l m 是两条不同的直线,α是一个平面,则下列命题正确的是() A.若,l m m α⊥?,则l α⊥ B.若,//l l m α⊥,则m α⊥ C.若//,l m αα?,则//l m D.若//,//l m αα,则//l m 解析:选B 由直线与平面垂直的判定定理可知,选项A 错误;直线与平面平行,则直线与平面内的直线没有交点,则是平行或异面,故选项C 错误;平行于同一个平面的两条直线不一定平行,故选项D 错误.故选B. 16.下列四个命题中正确的是( )A.若,a b R ∈,则a b a b -<+B.若,a b R ∈,则a b a b -<+C.若实数,a b 满足a b a b -=+,则0ab ≤D.若实数,a b 满足a b a b -<+,则0ab <解析:选C 当2,0a b ==时,a b a b -=+,a b a b -=+,所以A,B 均不成立;当0,2a b ==时,a b a b -<+,但0ab =,所以D 不成立,故选C.17.已知F 是双曲线22221(,0)x y a b a b-=>的左焦点,E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ?是锐角三角形,则该双曲线的离心率e 的取值范围为()A.(1,)+∞B.(1,2)C.(1,12)+D.(2,12)+解析:选B 如图,因为2b AF BF a==,EF a c =+,要使ABE ?是锐角三角形,则只需AEB ∠为锐角,故45AEF ∠<,所以AF EF <,即22c a a c a-<+,化简得220e e --<,解得12e -<<.因为1e >,所以12e <<.故选B.18.如图所示,平行四边形ABCD 中,4,2AB AD ==,60DAB ∠=.,E F 在边CD ,CB 上,且满足CD CE CD=,CB CF CB=.若将CEF ?沿EF 折起,使得平面CEF 与平面ABFED 垂直.则直线AC 与直线BE 所成角的余弦值为()A.35 B.25 C.110 D.310解析:选 D 如图所示,设CO EF ⊥,则CO ⊥平面ABFED .因为CA CO OE ED DA =+++,所以532CA CO OE ED DA =+++=,3BE =.设直线AC与直线BE 所成角为θ,则5315cos 3cos cos 2CA BE CA BE θθθ?=?==|()CO OE ED DA =+++(BC ?)|CE +OE BC OE CE ED BC ED CE DA BC DA CE =?+?+?+?+?+?11|3324=+-+941|4-+=,所以3cos 10θ=.即直线AC 与直线BE 所成角的余弦值为310 .故选D. 二、填空题(本大题共5小空,每空3分,合计15分)19.已知集合{}{}21,2,,3A B a a ==+,若{}1AB =,则实数a = ,A B = .解析:{}1;1,2,4 因为{}1AB =,且233a +≥,所以1a =,所以{}1,4B =,所以{}1,2,4A B =.20.在ABC ?中,AB AC ⊥,2,4AB AC ==,则AB BC ?= . 解析:4- 因为AB AC ⊥,所以AB BC ?=24AB -=-.21.若直线10x y -+=与圆22()2x a y -+=恒有公共点,则实数a 的取值范围是 .解析:[3,1]- 将直线与圆方程联立,消去y ,化简得222(22)10x a x a +-+-=,由方程有解可知,22(22)8(1)0a a ?=---≥,即2230a a +-≤,解得31a -≤≤.故选C.22.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()3xf xg x +=.若对[1,2]x ∈,恒有()(2)0af x g x +≥,则实数a 的取值范围是 .解析:41[,)12-+∞ 因为()f x 是奇函数,所以()()f x f x -=-,()g x 是偶函数,所以()()g x g x -=.因为()()3x f x g x +=,所以可知()33x x f x -=-,()33x x g x -=+.所以()(2)af x g x +22(33)(33)0x x x xa --=-++≥对[1,2]x ∈恒成立,即22233(33)23333x x x x x x x xa ----+-+≥-=--- 23333x x x x--=-+-对[1,2]x ∈恒成立,令88033[,]39x xt -=-∈,所以2()a t t≥-+对880[,]39t ∈恒成立,所以4112a ≥-.所以实数a 的取值范围是41[,)12-+∞.三、(本大题共3小题,共31分.)23.在ABC ?中,内角,,A B C 所对的边分别为,,a b c .若222b a c ac =+-. (1)求角B 的大小;(2)求sin sin A C +的取值范围.解:(1)由余弦定理可得,222222cos b a c ac B a c ac =+-=+-,所以有1cos 2B =. 因为0B π<<. 所以3B π=.(2)因为3B π=,所以23A C π+=,即23C A π=-,且203A π<<.所以23sin sin sin sin()sin )326A C A A A A A ππ+=+-=+=+. 因为203A π<<,所以5666A πππ<+<.所以当62A ππ+=,3A C π==max )6A π+=;当566A ππ+=或66A ππ+=,即23A π=或0A =min )6A π+=.所以sin sin A C +∈.24.已知椭圆2222:1(0)x y C m n m n+=<<的离心率为2,且经过点,1)2P . (1)求椭圆C 的方程;(2)设直线:(0)l y kx t k =+≠交椭圆C 于,A B 两点,D 为AB 的中点,OD k 为直线OD 的斜率,求证:OD k k ?为定值.解:(1)根据题意有222223,43114n m n m n ?-=+=??解得221,4m n ==,所以椭圆C 的方程为2214y x +=. (2)联立方程组22,44y kx t x y =+??+=?消去y ,化简得:222(4)240k x ktx t +++-=. 设1122(,),(,)A x y B x y ,AB 中点坐标为00(,)D x y . 则有120224x x kt x k +==-+,00244ty kx t k =+=+. 所以004OD y k x k==-,所以44OD k k k k=-=-为定值. 25.已知函数2()()1x af x a R x +=∈+. (1)当1a =时,解不等式()1f x >;(2)对任意的(0,1)b ∈,当(1,2)x ∈时,()bf x x>恒成立,求实数a 的取值范围. 解:(1)因为1a =,所以21()1x f x x +=+. 所以21()11x f x x +=>+,即为211x x +<+. 即210,11x x x +≥??+<+?或210,1(1)x x x +<??+<-+? 解得01x <<. 所以不等式的解集为(0,1).(2)2()1x a b f x x x +=>+恒成立等价于1()x a b x x+>+恒成立,即1()x a b x x+>+或1()x a b x x+<-+恒成立.所以有(1)b a b x x >-+或(1)ba b x x <-+-恒成立. 所以21a b ≥-或5(2)2a b ≤-+对任意(0,1)b ∈恒成立,解得1a ≥或92a ≤-.所以实数a 的取值范围是9(,][1,)2-∞-+∞.。

高三下学期高考数学试卷附答案 (37)

高三下学期高考数学试卷附答案 (37)

2019-2020学年度第二学期第*次考试试卷高考数学模拟测试学校:__________题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题1.(2010北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )2.等差数列1,-1,-3,-5,…,-89,它的项数是 A.92 B.47C.46D.453.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A ),3()1,3(+∞⋃-B ),2()1,3(+∞⋃-C ),3()1,1(+∞⋃-D )3,1()3,(⋃--∞4.设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为 A .63B .64C .127D .128(福建卷3)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.【2014高考天津第19题】已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,q M =-L ,集合{}112,,1,2,,n n i A x x x x q x q x M in -+?==++L L .(Ⅰ)当2q =,3n =时,用列举法表示集合A ;(Ⅱ)设,s t A Î,112n n s a a q a q -=+++L ,112n n t b b q b q -=+++L ,其中,,1,2,,.i i a b M i n ?L 证明:若n n a b <,则s t <.6.要得到函数()3sin 2y x π=-3的图象,只需将函数3sin 2y x =的图象向右至少平移 个单位.7.已知点()()2,3,5,1A B -,则与AB u u u r向量同方向的单位向量为 ▲ .8. 在直角三角形ABC 中,C =90°,6AC =,4BC =.若点D 满足2AD DB =-u u u r u u u r,则||CD =u u u r▲ .9.给出以下命题:(1)在△ABC 中,sin sin A B >是A B >的必要不充分条件;(2)在△ABC 中,若tan tan tan 0A B C ++>,则△ABC 一定为锐角三角形; (3)函数11y x x =--{}sin ,1y x x π=∈是同一个函数;(4)函数(21)y f x =-的图象可以由函数(2)y f x =的图象按向量(1,0)a =r平移得到.则其中正确命题的序号是 ▲(把所有正确的命题序号都填上).10.已知实数x 、y 满足205040x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩,若不等式222()()a x y x y +≥+恒成立,则实数a的最小值是 . 11.函数)42sin()(π-=x x f 在]2,0[π上的单增区间是______________.12.已知0,0x y >>,满足22x y +=,则11x y+的最小值是_______________.13.已知集合{}0,1A =,{}2,2B a a =,其中a R ∈,我们把集合{}1212,,x x x x x A xB =+∈∈,记作A B ⨯,若集合A B ⨯中的最大元素是21a +,则a 的取值范围是 . 02a <<14.如果一个圆柱、一个圆锥的底面直径和高都等于一个球的直径,则圆柱、球、圆锥的体积之比为________. 15.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函数)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确的论断的个数是_______________216.已知复数()()cos 2sin z i i θθ=+-是纯虚数,[)0,2θπ∈,则θ= .17.一个平面图形的水平放置的斜二测直观图是一个等腰梯形,它的底角为45o,两腰和上底边长均为1,则这个平面图形的面积为 .18.直线y x b =+与圆2220x y x ++=有公共点的一个充要条件是 1⎡-⎣19.对于在区间[a ,b ]上有意义的两个函数)()(x n x m 与,如果对于区间[a ,b ]中的任意x 均有1|)()(|≤-x n x m ,则称)()(x n x m 与在[a ,b ]上是“密切函数”, [a ,b ]称为“密切区间”,若函数43)(2+-=x x x m 与32)(-=x x n 在区间[a ,b ]上是“密切函数”,则密切区间为三、解答题20.已知二次函数1)(2+-=bx ax x f .(Ⅰ)若()0f x <的解集是11(,)43,求实数a ,b 的值;(Ⅱ)若a 为正整数,2+=a b ,且函数)(x f 在[0,1]上的最小值为1-,求a 的值.21.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为21,F F ,线段 的中点分别为21,B B ,且△21B AB 是面积为4的直角三角形. (Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过 做直线l 交椭圆于P ,Q 两点,使22QB PB ⊥,求直线l 的方程【2012高考真题重庆理20】(本小题满分12分(Ⅰ)小问5分(Ⅱ)小问7分)22.已知函数22()32log ,()log f x x g x x =-=。

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解

高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。

答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。

2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。

答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。

3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。

答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。

4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。

答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。

5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。

答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。

二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。

答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。

高考模拟题复习试卷习题资料高考数学试卷附详细答案

高考模拟题复习试卷习题资料高考数学试卷附详细答案

高考模拟题复习试卷习题资料高考数学试卷(附详细答案)一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题. 【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力. 25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案37

高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案37

高考数学模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(3)一.选择题:本大题共12小题,每小题5分,共60分1.(5分)复数(3+2i)i等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i2.(5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}3.(5分)以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.14.(5分)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1B.2C.3D.45.(5分)命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(﹣∞,0),x3+x<0B.∀x∈(﹣∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0D.∃x0∈[0,+∞),x03+x0≥06.(5分)已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0B.x﹣y+2=0C.x+y﹣3=0D.x﹣y+3=07.(5分)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称8.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数正确的是()A. B. C.D.9.(5分)要制作一个容积为4m3,高为1m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元10.(5分)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A. B.2 C.3 D.411.(5分)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49B.37C.29D.512.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B. C.D.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为.14.(4分)在△ABC中,A=60°,AC=2,BC=,则AB等于.15.(4分)函数f(x)=的零点个数是.16.(4分)已知集合{a,b,c}={0,1,2},且下列三个关系:① a≠2;②‚b=2;③ c≠0有且只有一个正确,则100a+10b+c等于.三.解答题:本大题共6小题,共74分.17.(12分)在等比数列{an}中,a2=3,a5=81.(Ⅰ)求an;(Ⅱ)设bn=log3an,求数列{bn}的前n项和Sn.18.(12分)已知函数f(x)=2cosx(sinx+cosx).(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.20.(12分)根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035﹣4085美元为中等偏下收入国家;人均GDP为4085﹣12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10000(Ⅰ)判断该城市人均GDP是否达到中等偏上收入国家标准;(Ⅱ)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.21.(12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.22.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.高考模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(3)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分1.(5分)复数(3+2i)i等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简求值.【解答】解:(3+2i)i=3i+2i2=﹣2+3i.故选:B.【点评】本题考查了复数代数形式的乘法运算,是基础的计算题.2.(5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}【分析】由于两集合已是最简,直接求它们的交集即可选出正确答案【解答】解:∵P={x|2≤x<4},Q={x|x≥3},∴P∩Q={x|3≤x<4}.故选:A.【点评】本题考查交集的运算,理解好交集的定义是解题的关键3.(5分)以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.1【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:A.【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力.4.(5分)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1B.2C.3D.4【分析】根据框图的流程模拟运行程序,直到不满足条件2n>n2,跳出循环,确定输出的n值.【解答】解:由程序框图知:第一次循环n=1,21>1;第二次循环n=2,22=4.不满足条件2n>n2,跳出循环,输出n=2.故选:B.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.5.(5分)命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(﹣∞,0),x3+x<0B.∀x∈(﹣∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0D.∃x0∈[0,+∞),x03+x0≥0【分析】全称命题的否定是一个特称命题,按此规则写出其否定即可得出正确选项.【解答】解:∵命题“∀x∈[0,+∞),x3+x≥0”是一个全称命题.∴其否定命题为:∃x0∈[0,+∞),x03+x0<0故选:C.【点评】本题考查全称命题的否定,掌握此类命题的否定的规则是解答的关键.6.(5分)已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0B.x﹣y+2=0C.x+y﹣3=0D.x﹣y+3=0【分析】由题意可得所求直线l经过点(0,3),斜率为1,再利用点斜式求直线l的方程. 【解答】解:由题意可得所求直线l经过点(0,3),斜率为1,故l的方程是 y﹣3=x﹣0,即x﹣y+3=0,故选:D.【点评】本题主要考查用点斜式求直线的方程,两条直线垂直的性质,属于基础题.7.(5分)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称【分析】利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项A,B,再由cos=cos(﹣)=0即可得到正确选项.【解答】解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.即f(x)=cosx.∴f(x)是周期为2π的偶函数,选项A,B错误;∵cos=cos(﹣)=0,∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.故选:D.【点评】本题考查函数图象的平移,考查了余弦函数的性质,属基础题.8.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数正确的是()A. B. C.D.【分析】根据对数函数的图象所过的特殊点求出a的值,再研究四个选项中函数与图象是否对应即可得出正确选项.【解答】解:由对数函数的图象知,此函数图象过点(3,1),故有y=loga3=1,解得a=3,对于A,由于y=a﹣x是一个减函数故图象与函数不对应,A错;对于B,由于幂函数y=xa是一个增函数,且是一个奇函数,图象过原点,且关于原点对称,图象与函数的性质对应,故B正确;对于C,由于a=3,所以y=(﹣x)a是一个减函数,图象与函数的性质不对应,C错;对于D,由于y=loga(﹣x)与y=logax的图象关于y轴对称,所给的图象不满足这一特征,故D错.故选:B.【点评】本题考查函数的性质与函数图象的对应,熟练掌握各类函数的性质是快速准确解答此类题的关键.9.(5分)要制作一个容积为4m3,高为1m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元【分析】设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,∴底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,∴当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故选:C.【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题,由实际问题向数学问题转化是关键.10.(5分)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A. B.2 C.3 D.4【分析】虑用特殊值法去做,因为O为任意一点,不妨把O看成是特殊点,再代入计算,结果满足哪一个选项,就选哪一个.【解答】解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.【点评】本题考查了平面向量的加法,做题时应掌握规律,认真解答.11.(5分)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49B.37C.29D.5【分析】作出不等式组对应的平面区域,利用圆C与x轴相切,得到b=1为定值,此时利用数形结合确定a的取值即可得到结论.【解答】解:作出不等式组对应的平面区域如图:圆心为(a,b),半径为1∵圆心C∈Ω,且圆C与x轴相切,∴b=1,则a2+b2=a2+1,∴要使a2+b2的取得最大值,则只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B(6,1),∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.12.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B. C.D.【分析】设出F1,F2的坐标,在设出动点M的坐标,由新定义列式后分类讨论去绝对值,然后结合选项得答案.【解答】解:设F1(﹣c,0),F2(c,0),再设动点M(x,y),动点到定点F1,F2的“L﹣距离”之和等于m(m>2c>0),由题意可得:|x+c|+|y|+|x﹣c|+|y|=m,即|x+c|+|x﹣c|+2|y|=m.当x<﹣c,y≥0时,方程化为2x﹣2y+m=0;当x<﹣c,y<0时,方程化为2x+2y+m=0;当﹣c≤x<c,y≥0时,方程化为y=;当﹣c≤x<c,y<0时,方程化为y=c﹣;当x≥c,y≥0时,方程化为2x+2y﹣m=0;当x≥c,y<0时,方程化为2x﹣2y﹣m=0.结合题目中给出的四个选项可知,选项A中的图象符合要求.故选:A.【点评】本题考查轨迹方程的求法,考查了分类讨论的数学思想方法,解答的关键是正确分类,是中档题.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 0.18 .【分析】根据几何槪型的概率意义,即可得到结论.【解答】解:正方形的面积S=1,设阴影部分的面积为S,∵随机撒1000粒豆子,有180粒落到阴影部分,∴几何槪型的概率公式进行估计得,即S=0.18,故答案为:0.18.【点评】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.14.(4分)在△ABC中,A=60°,AC=2,BC=,则AB等于 1 .【分析】利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长. 【解答】解:∵在△ABC中,A=60°,AC=b=2,BC=a=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即3=4+c2﹣2c,解得:c=1,则AB=c=1,故答案为:1【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.15.(4分)函数f(x)=的零点个数是 2 .【分析】根据函数零点的定义,直接解方程即可得到结论.【解答】解:当x≤0时,由f(x)=0得x2﹣2=0,解得x=或x=(舍去),当x>0时,由f(x)=0得2x﹣6+lnx=0,即lnx=6﹣2x,作出函数y=lnx和y=6﹣2x在同一坐标系图象,由图象可知此时两个函数只有1个交点,故x>0时,函数有1个零点.故函数f(x)的零点个数为2,故答案为:2【点评】本题主要考查函数零点个数的判断,对于比较好求的函数,直接解方程f(x)=0即可,对于比较复杂的函数,由利用数形结合进行求解.16.(4分)已知集合{a,b,c}={0,1,2},且下列三个关系:① a≠2;②‚b=2;③ c≠0有且只有一个正确,则100a+10b+c等于 201 .【分析】根据集合相等的条件,列出a、b、c所有的取值情况,再判断是否符合条件,求出a、b、c的值后代入式子求值.【解答】解:由{a,b,c}={0,1,2}得,a、b、c的取值有以下情况:当a=0时,b=1、c=2或b=2、c=1,此时不满足题意;当a=1时,b=0、c=2或b=2、c=0,此时不满足题意;当a=2时,b=1、c=0,此时不满足题意;当a=2时,b=0、c=1,此时满足题意;综上得,a=2、b=0、c=1,代入100a+10b+c=201,故答案为:201.【点评】本题考查了集合相等的条件的应用,以及分类讨论思想,注意列举时按一定的顺序列举,做到不重不漏.三.解答题:本大题共6小题,共74分.17.(12分)在等比数列{an}中,a2=3,a5=81.(Ⅰ)求an;(Ⅱ)设bn=log3an,求数列{bn}的前n项和Sn.【分析】(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;(Ⅱ)把(Ⅰ)中求得的an代入bn=log3an,得到数列{bn}的通项公式,由此得到数列{bn}是以0为首项,以1为公差的等差数列,由等差数列的前n项和公式得答案.【解答】解:(Ⅰ)设等比数列{an}的公比为q,由a2=3,a5=81,得,解得.∴;(Ⅱ)∵,bn=log3an,∴.则数列{bn}的首项为b1=0,由bn﹣bn﹣1=n﹣1﹣(n﹣2)=1(n≥2),可知数列{bn}是以1为公差的等差数列.∴.【点评】本题考查等比数列的通项公式,考查了等差数列的前n项和公式,是基础的计算题.18.(12分)已知函数f(x)=2cosx(sinx+cosx).(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式为f(x)=sin(2x+)+1,从而求得f()的值.(Ⅱ)根据函数f(x)=sin(2x+)+1,求得它的最小正周期.令2kπ﹣≤2x+≤2kπ+,k∈Z,求得x的范围,可得函数的单调递增区间.【解答】解:(Ⅰ)∵函数f(x)=2cosx(sinx+cosx)=sin2x+1+cos2x=sin(2x+)+1,∴f()=sin(+)+1=sin+1=+1=2.(Ⅱ)∵函数f(x)=sin(2x+)+1,故它的最小正周期为=π.令2kπ﹣≤2x+≤2kπ+,k∈Z,求得kπ﹣≤x≤kπ+,故函数的单调递增区间为[kπ﹣,kπ+],k∈Z.【点评】本题主要考查三角函数的恒等变换,三角函数的周期性和单调性,属于中档题.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.【分析】(Ⅰ)证明:CD⊥平面ABD,只需证明AB⊥CD;(Ⅱ)利用转换底面,VA﹣MBC=VC﹣ABM=S△A BM•CD,即可求出三棱锥A﹣MBC的体积.【解答】(Ⅰ)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵CD⊥BD,AB∩BD=B,∴CD⊥平面ABD;(Ⅱ)解:∵AB⊥平面BCD,BD⊂平面BCD,∴AB⊥BD.∵AB=BD=1,∴S△ABD=,∵M为AD中点,∴S△ABM=S△ABD=,∵CD⊥平面ABD,∴VA﹣MBC=VC﹣ABM=S△ABM•CD=.【点评】本题考查线面垂直,考查三棱锥A﹣MBC的体积,正确运用线面垂直的判定定理是关键.20.(12分)根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035﹣4085美元为中等偏下收入国家;人均GDP为4085﹣12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10000(Ⅰ)判断该城市人均GDP是否达到中等偏上收入国家标准;(Ⅱ)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.【分析】(Ⅰ)利用所给数据,计算该城市人均GDP,即可得出结论;(Ⅱ)利用古典概型概率公式,即可得出结论.【解答】解:(Ⅰ)设该城市人口总数为a,则该城市人均GDP为=6400∴该城市人均GDP达到中等偏上收入国家标准;(Ⅱ)从该城市5个行政区中随机抽取2个,共有=10种情况,GDP都达到中等偏上收入国家标准的区域有A,C,E,抽到的2个行政区人均GDP都达到中等偏上收入国家标准,共有=3种情况,∴抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.【点评】本题考查概率与统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然、或然思想.22.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex. 【分析】(1)利用导数的几何意义求得a,再利用导数法求得函数的极值;(2)构造函数g(x)=ex﹣x2,利用导数求得函数的最小值,即可得出结论;(3)利用(2)的结论,令x0=,则ex>x2>x,即x<cex.即得结论成立.【解答】解:(1)由f(x)=ex﹣ax得f′(x)=ex﹣a.又f′(0)=1﹣a=﹣1,∴a=2,∴f(x)=ex﹣2x,f′(x)=ex﹣2.由f′(x)=0得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=eln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=ex﹣x2,则g′(x)=ex﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=eln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<ex;(3)对任意给定的正数c,总存在x0=>0.当x∈(x0,+∞)时,由(2)得ex>x2>x,即x<cex.∴对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.【点评】本题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词、存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、划归与转化思想、分类与整合思想、特殊与一般思想.属难题.21.(12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.【分析】(Ⅰ)设S(x,y)曲线Γ上的任意一点,利用抛物线的定义,判断S满足配额我想的定义,即可求曲线Γ的方程;(Ⅱ)通过抛物线方程利用函数的导数求出切线方程,求出A、M的坐标,N的坐标,以MN为直径作圆C,求出圆心坐标,半径是常数,即可证明当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变.【解答】解:(Ⅰ)设S(x,y)曲线Γ上的任意一点,由题意可得:点S到F(0,1)的距离与它到直线y=﹣1的距离相等,曲线Γ是以F为焦点直线y=﹣1为准线的抛物线,∴曲线Γ的方程为:x2=4y.(Ⅱ)当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变,证明如下:由(Ⅰ)可知抛物线的方程为y=,设P(x0,y0)(x0≠0)则y0=,由y得切线l的斜率k==∴切线l的方程为:,即.由得,由得,又N(0,3),所以圆心C(),半径r==∴点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变.【点评】本题考查轨迹方程的求法,直线与抛物线的位置关系的应用,圆的方程函数的导数等指数的应用,难度较大.高考数学试卷解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{124}A =,,,{246}B =,,,则A B =▲.【答案】{}1,2,4,6。

(完整版)高三数学模拟试题及答案

(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。

2023年全国高考数学模拟试卷(附答案)

2023年全国高考数学模拟试卷(附答案)

2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案13786

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案13786

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.OBA xy高考数学高三模拟试卷试题压轴押题高三3月联考试题数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分。

2021年新高考数学模拟试卷全国卷(附参考答案和详解)

2021年新高考数学模拟试卷全国卷(附参考答案和详解)

绝密★启用前2021年普通高等学校招生模拟考试(3)数学(适用新高考地区)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数3i1i+=-( )A.12i +B.24i +C.12i --D.2i -2.设常数a ∈R ,集合{|(1)()0}A x x x a =--≥,{|1}B x x a =≥-,若A B =R ,则a 的取值范围为( )A.(,2)-∞B.(,2]-∞C.(2,)+∞D.[2,)+∞3.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=( )A.2B.1C.0D.2-4.设向量=a (1,cos )θ与b (1,2cos )θ=-垂直,则cos2θ等于( )A.2 B.12C.0D.1-5.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则“1k =”是“OAB 的面积为12”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件6.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2πa B.27π3a C.211π3a D.25πa7.已知命题122121:,,(()())()0p x x f x f x x x ∀∈--≥R ,则p ⌝是( ) A.122121,,(()())()0x x f x f x x x ∃∈--≤R B.122121,,(()())()0x x f x f x x x ∀∈--≤R C.122121,,(()())()0x x f x f x x x ∃∈--<RD.122121,,(()())()0x x f x f x x x ∀∈--<R8.函数()2ln f x x =的图像与函数2()45g x x x =-+的图像的交点个数为( ) A.3B.2C.1D.0二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图.根据这两幅图中的信息,下列统计结论中正确的有( )A.样本中的女生数量等于男生数量B.样本中有理科意愿的学生数量多于有文科意愿的学生数量C.样本中的男生偏爱理科D.样本中的女生偏爱文科10.已知两定点(1,0)A -,(1,0)B ,若直线l 上存在点M ,使得||||3MA MB +=,则称直线l 为“M 型直线”.则下列给出的直线中,是“M 型直线”的有( )A.2x =B.3y x =+C.21y x =--D.23y x =+11.如图,在正方体1111-ABCD A B C D 中,M ,N 分别是1BC ,1CD 的中点,则下列判断正确的为( )A.MN 与1CC 垂直B.MN 与AC 垂直C.MN 与BD 平行D.MN 与11A B 平行12.下列结论中正确的有( ) A.命题:”(0,2)x ∀∈,33x x >“的否定是“(0,2)x ∃∈,33x x ≤” B.若直线l 上有无数个点不在平面α内,则l αC.若随机变量ξ服从正态分布2(1,)N σ,且(2)0.8P ξ<=,则(01)0.2P ξ<<=D.等差数列{}n a 的前n 项和为n S ,若43a =,则721S =第Ⅱ卷本卷包括填空题和解答题两部分,共90分. 三、填空题:本题共4小题,每小题5分。

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)本试卷共19题。

全卷满分120分。

考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。

高考模拟数学试卷及答案

高考模拟数学试卷及答案

高考模拟数学试卷及答案高考模拟数学试卷及答案高考即将到来,数学作为一门重要的科目,对于许多学生来说都是一个挑战。

为了帮助大家更好地备考,我们为大家提供了一份高考模拟数学试卷及答案,希望对大家有所帮助。

一、选择题(每题5分,共40分)1、在等差数列{an}中,a1=1,an=6n-5,则公差d的值为() A. 1B. 2C. 3D. 4 答案:B2、已知复数z满足|z|=1,则|z-i|的最大值为() A. 1 B. 2 C. 3D. 4 答案:B3、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A4、已知双曲线x2-y2=1的焦点为F1、F2,点P在双曲线上,且∠F1PF2=90°,则|PF1|•|PF2|的值为() A. 2 B. 4 C. 8 D. 16 答案:B5、已知{an}为等比数列,a1=1,公比为q,则“q>1”是“{an}为递增数列”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件答案:A6、已知向量a、b的夹角为60°,|a|=2,|b|=4,则|a-b|=() A.2 B. 4 C. 6 D. 8 答案:C7、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A8、等差数列{an}的前n项和记为Sn,已知a2=3,S9=45,则数列{an}的前多少项的和最大() A. 7 B. 8 C. 9 D. 10 答案:C二、填空题(每题6分,共30分)9、已知角α的终边过点P(3,-4),则sin(α-π)=__________。

答案:-4/591、若空间中有四个点A、B、C、D,则直线AB和直线CD的位置关系为____________。

高考模拟数学试卷带答案

高考模拟数学试卷带答案

一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若函数f(x) = 2x + 3在区间[1, 4]上单调递增,则下列结论正确的是:A. f(1) > f(2)B. f(2) > f(3)C. f(3) > f(4)D. f(4) > f(1)2. 已知数列{an}的通项公式为an = 3n - 2,则数列的前10项之和S10为:A. 28B. 55C. 82D. 1273. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限4. 下列函数中,在其定义域内是奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^45. 已知等差数列{an}的前n项和为Sn,若a1 = 3,d = 2,则S10等于:A. 50B. 55C. 60D. 656. 若等比数列{bn}的公比为q,且b1 = 1,b3 = 8,则q的值为:A. 2B. 4C. 8D. 167. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为:A. ±1B. ±2C. ±3D. ±48. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,则cosB的值为:A. 3/5B. 4/5C. 5/7D. 7/59. 已知函数f(x) = x^2 - 4x + 4,则函数的对称轴为:A. x = 2B. x = 4C. y = 2D. y = 410. 若sinA + sinB = 1,cosA + cosB = 1,则sin(A + B)的值为:A. 0B. 1C. -1D. 211. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = -1,则S10等于:A. -10B. -20C. -30D. -4012. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限二、填空题(本大题共6小题,每小题5分,共30分。

2023年普通高等学校招生全国统一考试高三数学仿真模拟卷+答案解析(附后)

2023年普通高等学校招生全国统一考试高三数学仿真模拟卷+答案解析(附后)

2023年普通高等学校招生全国统一考试高三数学仿真模拟卷✽一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,,则的子集共有( )A. 2个B. 3个C. 4个D. 8个2.已知复数,i 为虚数单位,则( )A. 1B.C.D.3.在中,记,,则( )A. B. C. D.4.已知函数,则的单调递增区间为( )A. B. C. D.5.如图,已知正四棱锥的底面边长和高分别为2和1,若点E是棱PD的中点,则异面直线PA 与CE所成角的余弦值为( )A. B. C. D.6.某芯片制造厂有甲、乙、丙三条生产线均生产5 nm规格的芯片,现有25块该规格的芯片,其中甲、乙、丙生产的芯片分别为5块,10块,10块,若甲、乙、丙生产该芯片的次品率分别为,,,则从这25块芯片中任取一块芯片,是正品的概率为( )A. B. C. D.7.已知若存在,使不等式有解,则实数m的取值范围为( )A. B.C. D.8.已知a ,b ,,且,,,其中e 是自然对数的底数,则( )A.B. C. D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.空气质量指数大小分为五级,指数越大说明污染的情况越严重,对人体危害越大,指数范围分别对应“优”“良”“轻度污染”“中度污染”“重污染”五个等级.如图是某市连续14天的空气质量指数趋势图,下面说法正确的是( )A. 这14天中有5天空气质量指数为“轻度污染”B. 从2日到5日空气质量越来越好C. 这14天中空气质量的中位数是D. 连续三天中空气质量指数方差最小是5日到7日10.密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“”,478密位写成“”.若,则角可取的值用密位制表示可能是( )A.B.C.D.11.已知点A ,B 分别是双曲线C :的左,右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记PA 、PB 的斜率分别为、,则下列说法正确的是( )A. 双曲线C 的离心率为B. 双曲线C 的焦点到其渐近线的距离为1C.为定值D. 存在点P ,使得12.已知,,若关于x的方程有四个不同的实数根,则满足上述条件的a值可以为( )A. B. C. D. 1三、填空题:本题共4小题,每小题5分,共20分。

高考数学模拟试卷(理科)-Word版含解析

高考数学模拟试卷(理科)-Word版含解析

云南省多校联考高考数学模拟试卷(理科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P、Q是两个集合,定义集合P﹣Q={x|x∈P且x∉Q}为P、Q的“差集”,已知P={x|1﹣<0},Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|2≤x<3}2.已知(a﹣i)2=﹣2i,其中i是虚数单位,a是实数,则|ai|=()A.2 B.1 C.﹣1 D.﹣23.同时具有性质:①图象的相邻两条对称轴间的距离是;②在[﹣,]上是增函数的一个函数为()A.y=sin(+)B.y=cos(2x+) C.y=sin(2x﹣)D.y=cos(﹣)4.若向量=(1,﹣2),=(2,1),=(﹣4,﹣2),则下列说法中正确的个数是()①⊥;②向量与向量的夹角为90°;③对同一平面内的任意向量,都存在一对实数k1,k2,使得=k1+k2.A.3 B.2 C.1 D.05.已知函数f(x)=f(log23)的值为()A.B.C.D.6.直线l:y=k(x+)与曲线C:x2﹣y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是()A.(,)∪(,)B.(,)C.(0,)∪(,π)D.[0,π)7.执行如图所示的程序框图,若输入的a,b分别为36,28,则输出的a=()A.4 B.8 C.12 D.208.某几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的表面积为()A.B.C. +4+D.π+8+9.图所示的阴影部分由坐标轴、直线x=1及曲线y=e x﹣lne围成,现向矩形区域OABC内随机投掷一点,则该点落在非阴影区域的概率是()A.B. C.1﹣D.1﹣10.设△ABC的三个内角A,B,C所对的边分别为a,b,c,若(a+b+c)(b+c﹣a)=3bc,且sinA=2sinBcosC,那么△ABC的外接圆面积与内切圆面积的比值为()A.4 B.2 C.D.111.已知A是抛物线M:y2=2px(p>0)与圆C在第一象限的公共点,其中圆心C(0,4),点A到M的焦点F的距离与C的半径相等,M上一动点到其准线与到点C的距离之和的最小值等于C的直径,O为坐标原点,则直线OA被圆C所截得的弦长为()A.2 B.2 C.D.12.已知函数f(x)=x2﹣tcosx.若其导函数f′(x)在R上单调递增,则实数t的取值范围为()A.[﹣1,﹣]B.[﹣,]C.[﹣1,1]D.[﹣1,]二、填空题(本大题共4小题,每小题5分,共20分)13.若(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),则++…+的值为.14.已知等差数列{a n}满足:a1+a5=4,则数列{2}的前5项之积为(用数字作答)15.设实数x ,y 满足约束条件若目标函数z=ax +by (a >0,b >0)的最大值为2,记m 为+的最小值,则y=sin (mx +)的最小正周期为 .16.已知三棱锥O ﹣ABC 中,A ,B ,C 三点均在球心O 的球面上,且AB=BC=1,∠ABC=120°,若球O 的体积为,则三棱锥O ﹣ABC 的体积是 .三、解答题(共70分)17.(12分)已知函数f (x )=,函数y=f (x )﹣在(0,+∞)上的零点按从小到大的顺序构成数列{a n }(n ∈N*) (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设b n =,求数列{b n }的前n 项和S n .18.(12分)拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由附:独立性检验统计量K 2=,n=a +b +c +d19.(12分)如图,在多面体ABCDE 中,DB ⊥平面ABC ,AE ⊥平面ABC ,且△ABC 是的边长为4的等边三角形,AE=2,CD与平面ABDE所成角的余弦值为,F是线段CD上一点.(Ⅰ)若F是线段CD的中点,证明:平面CDE⊥面DBC;(Ⅱ)求二面角B﹣EC﹣D的平面角的正弦值.20.(12分)已知椭圆C: +=1(a>b>0)的离心率为,P是椭圆C上任意一点,且点P到椭圆C的一个焦点的最大距离等于+1(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,设N为椭圆上一点,是否存在整数t,使得t•=+(其中O为坐标原点)?若存在,试求整数t的所有取值;若不存在,请说明理由.21.(12分)设函数f(x)=e x﹣ax2﹣ex+b,其中e为自然对数的底数.(Ⅰ)若曲线f(x)在y轴上的截距为﹣1,且在点x=1处的切线垂直于直线y=x,求实数a,b的值;(Ⅱ)记f(x)的导函数为g(x),g(x)在区间[0,1]上的最小值为h(a),求h(a)的最大值.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程ρ=2sin(θ+).倾斜角为,且经过定点P(0,1)的直线l与曲线C交于M,N两点(Ⅰ)写出直线l的参数方程的标准形式,并求曲线C的直角坐标方程;(Ⅱ)求+的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x﹣2|,x∈R(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求++的最小值.2017年云南省曲靖一中等多校联考高考数学模拟试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P、Q是两个集合,定义集合P﹣Q={x|x∈P且x∉Q}为P、Q的“差集”,已知P={x|1﹣<0},Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|2≤x<3}【考点】元素与集合关系的判断;绝对值不等式的解法.【分析】首先分别对P,Q两个集合进行化简,然后按照P﹣Q={x|x∈P,且x∉Q},求出P ﹣Q即可.【解答】解:∵化简得:P={x|0<x<2}而Q={x||x﹣2|<1}化简得:Q={x|1<x<3}∵定义集合P﹣Q={x|x∈P,且x∉Q},∴P﹣Q={x|0<x≤1}故选B【点评】本题考查元素与集合关系的判断,以及绝对值不等式的解法,考查对集合知识的熟练掌握,属于基础题.2.已知(a﹣i)2=﹣2i,其中i是虚数单位,a是实数,则|ai|=()A.2 B.1 C.﹣1 D.﹣2【考点】复数求模.【分析】利用复数的运算法则、复数相等、模的计算公式即可得出.【解答】解:(a﹣i)2=﹣2i,其中i是虚数单位,a是实数,∴a2﹣1﹣2ai=﹣2i,∴a2﹣1=0,﹣2a=﹣2,∴a=1.则|ai|=|i|=1.故选:B.【点评】本题考查了复数的运算法则、复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题.3.同时具有性质:①图象的相邻两条对称轴间的距离是;②在[﹣,]上是增函数的一个函数为()A.y=sin(+)B.y=cos(2x+) C.y=sin(2x﹣)D.y=cos(﹣)【考点】三角函数的周期性及其求法.【分析】由题意求出函数周期,可知满足条件的函数是选项B或C,再由在[﹣,]上是增函数进一步判断只有C符合.【解答】解:由图象的相邻两条对称轴间的距离是,可知,T=π,选项B、C满足.由x∈[﹣,],得2x∈[0,π],函数y=cos(2x+)为减函数,不合题意.由x∈[﹣,],得2x﹣∈[,],函数y=sin(2x﹣)为增函数,符合合题意.故选:C.【点评】本题考查三角函数的周期性及其求法,考查y=Asin(ωx+φ)型函数的图象和性质,是基础题.4.若向量=(1,﹣2),=(2,1),=(﹣4,﹣2),则下列说法中正确的个数是()①⊥;②向量与向量的夹角为90°;③对同一平面内的任意向量,都存在一对实数k1,k2,使得=k1+k2.A.3 B.2 C.1 D.0【考点】向量在几何中的应用.【分析】运用向量垂直的条件:数量积为0,计算即可判断①②;由向量共线定理,可得,共线,由平面向量基本定理,即可判断③.【解答】解:向量=(1,﹣2),=(2,1),=(﹣4,﹣2),由•=1×2+(﹣2)×1=0,可得⊥,故①正确;由•=1×(﹣4)+(﹣2)×(﹣2)=0,可得⊥,故②正确;由=﹣2可得,共线,由平面向量基本定理,可得对同一平面内的任意向量,不都存在一对实数k1,k2,使得=k1+k2.故③错误.综上可得,正确的个数为2.故选:B.【点评】本题考查向量的数量积的性质,主要是向量垂直的条件:数量积为0,考查平面向量基本定理的运用以及向量共线的坐标表示,考查运算能力,属于基础题.5.已知函数f(x)=f(log23)的值为()A.B.C.D.【考点】分段函数的应用.【分析】根据log23的范围循环代入分段函数的下段,当满足自变量的值大于等于3时代入f(x)的解析式求值.【解答】解:由f(x)=,∵log23<3,∴f(log23)=f(log23+1)=f(log26),由log26<3,∴f(log26)=f(log26+1)=f(log212),∵log212>3,∴f(log23)=f(log212)==.故选:C.【点评】本题考查了对数的运算性质,考查了分段函数的函数值的求法,关键是注意适用范围,是基础题.6.直线l:y=k(x+)与曲线C:x2﹣y2=1(x<0)相交于P,Q两点,则直线l的倾斜角的取值范围是()A.(,)∪(,)B.(,)C.(0,)∪(,π)D.[0,π)【考点】直线与双曲线的位置关系.【分析】首先根据题意直线l:y=k(x+)与曲线x2﹣y2=1(x<0)相交于A、B两点,进一步判断直线的斜率和渐近线的斜率的关系求出结果.【解答】解:曲线x2﹣y2=1(x<0)的渐近线方程为:y=±x直线l:y=k(x+)与相交于A、B两点所以:直线的斜率k>1或k<﹣1α∈(,)由于直线的斜率存在:倾斜角a≠,故直线l的倾斜角的取值范围是(,)∪(,)故选:A.【点评】本题考查的知识要点:直线与双曲线的关系,直线的斜率和渐近线的斜率的关系.7.执行如图所示的程序框图,若输入的a,b分别为36,28,则输出的a=()A.4 B.8 C.12 D.20【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=4,b=4时,不满足条件a≠b,退出循环,输出a的值.【解答】解:第一次循环,a=36,b=28,a>b,a=8;第二次循环,a=8,b=28,a<b,b=20;第三次循环,a=8,b=20,a<b,b=12;第四次循环,a=8,b=12,a<b,b=4,第五次循环,a=8,b=4,a>b,a=4,第六次循环,a=4,b=4,a=b,不满足条件a≠b,退出循环,输出a=4,故选:A.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的a,b的值是解题的关键,属于基本知识的考查.8.某几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的表面积为()A.B.C. +4+D.π+8+【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知的三视图可得:该几何体是一个半圆锥与一个四棱锥组合而成的几何体,进而可得答案.【解答】解:由已知的三视图可得:该几何体是一个半圆锥与一个四棱锥组合而成的几何体,其表面积由半圆锥的曲面,底面及四棱锥的底面,前,后,右侧面组成,∵其侧视图是一个等边三角形,∴半圆锥的底面半径为1,高为,故圆锥的母线长为:2,故半圆锥的底面面积为:,曲侧面面积为:π,四棱锥的底面面积为:4,前后侧面均为腰长为2的等腰直角三角形,面积均为:2,右侧面是腰为2,底为2的等腰三角形,面积为:,故组合体的表面积为:π+8+,故选:D【点评】本题考查的知识点是棱锥的体积和表面积,圆锥的体积和表面积,简单几何体的三视图,难度中档.9.图所示的阴影部分由坐标轴、直线x=1及曲线y=e x﹣lne围成,现向矩形区域OABC内随机投掷一点,则该点落在非阴影区域的概率是()A.B. C.1﹣D.1﹣【考点】定积分;几何概型.【分析】求出阴影部分的面积,以面积为测度,即可得出结论.【解答】解:由题意,阴影部分的面积为(e x﹣1)dx=(e x﹣x)|=e﹣2,∵矩形区域OABC的面积为e﹣1,∴该点落在阴影部分的概率是=1﹣.故选D.【点评】本题考查概率的计算,考查定积分知识的运用,属于中档题.10.设△ABC的三个内角A,B,C所对的边分别为a,b,c,若(a+b+c)(b+c﹣a)=3bc,且sinA=2sinBcosC,那么△ABC的外接圆面积与内切圆面积的比值为()A.4 B.2 C.D.1【考点】余弦定理.【分析】(a+b+c)(b+c﹣a)=3bc,(b+c)2﹣a2=3bc,化为:b2+c2﹣a2=bc.再利用余弦定理可得A=.sinA=2sinBcosC,利用正弦定理与余弦定理可得:b=c.因此△ABC是等边三角形.即可得出.【解答】解:∵(a+b+c)(b+c﹣a)=3bc,∴(b+c)2﹣a2=3bc,化为:b2+c2﹣a2=bc.∴cosA==,A∈(0,π),∴A=.∵sinA=2sinBcosC,∴a=2b×,化为:b=c.∴△ABC是等边三角形.那么△ABC的外接圆面积与内切圆面积的比值==4.故选:A.【点评】本题考查了正弦定理余弦定理、等边三角形的性质,考查了推理能力与计算能力,属于中档题.11.已知A是抛物线M:y2=2px(p>0)与圆C在第一象限的公共点,其中圆心C(0,4),点A到M的焦点F的距离与C的半径相等,M上一动点到其准线与到点C的距离之和的最小值等于C的直径,O为坐标原点,则直线OA被圆C所截得的弦长为()A.2 B.2 C.D.【考点】直线与抛物线的位置关系.【分析】求得圆的圆心和半径,运用抛物线的定义可得A,C,F三点共线时取得最小值,且有A为CF的中点,设出A,C,F的坐标,代入抛物线的方程可得p,由抛物线的定义可得a,求得C到直线OA的距离,运用圆的弦长公式计算即可得到所求值.【解答】解:圆C:x2+(y﹣4)2=a2的圆心C(0,4),半径为a,则|AC|+|AF|=2a,由抛物线M上一动点到其准线与到点C的距离之和的最小值为2a,由抛物线的定义可得动点到焦点与到点C的距离之和的最小值为2a,可得A,C,F三点共线时取得最小值,且有A为CF的中点,由C(0,4),F(,0),可得A(,2),代入抛物线的方程可得,4=2p•,解得p=2,即有a=+=,A(,2),可得C到直线OA:y=2x的距离为d==,可得直线OA被圆C所截得的弦长为2=,直线OA被圆C所截得的弦长为,故选D【点评】本题考查圆的弦长的求法,注意运用抛物线的定义和三点共线和最小,同时考查弦长公式和点到直线的距离公式的运用,属于中档题.12.已知函数f(x)=x2﹣tcosx.若其导函数f′(x)在R上单调递增,则实数t的取值范围为()A.[﹣1,﹣]B.[﹣,]C.[﹣1,1]D.[﹣1,]【考点】利用导数研究函数的单调性.【分析】求导数f′(x)=x+tsinx,并设g(x)=f′(x),并求出g′(x)=1+tcosx,由f′(x)在R上单调递增即可得出tcosx≥﹣1恒成立,这样即可求出t的取值范围.【解答】解:f′(x)=x+tsinx,设g(x)=f′(x);∵f′(x)在R上单调递增;∴g′(x)=1+tcosx≥0恒成立;∴tcosx≥﹣1恒成立;∵cosx∈[﹣1,1];∴;∴﹣1≤t≤1;∴实数t的取值范围为[﹣1,1].故选:C.【点评】考查基本初等函数的求导公式,函数的单调性和函数导数符号的关系.二、填空题(本大题共4小题,每小题5分,共20分)13.若(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),则++…+的值为﹣1.【考点】二项式定理的应用.【分析】由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=,可得0=1+++…+,即可得出.【解答】解:由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=,可得0=1+++…+,∴++…+=﹣1,故答案为:﹣1.【点评】本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.14.已知等差数列{a n}满足:a1+a5=4,则数列{2}的前5项之积为1024(用数字作答)【考点】数列的求和.【分析】根据等差数列的性质可得a1+a5=a2+a4=2a3=4,即可求出前5项和,再根据指数幂的运算性质即可求出答案.【解答】解:∵等差数列{a n}满足:a1+a5=4,∴a1+a5=a2+a4=2a3=4,∴a1+a5+a2+a4+a3=4+4+2=10,∴数列{2}的前5项之积为2=210=1024,故答案为:1024【点评】本题考查了等差数列的性质和指数幂的运算性质,属于中档题15.设实数x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为2,记m 为+的最小值,则y=sin (mx +)的最小正周期为 π .【考点】简单线性规划.【分析】首先根据线性规划问题和基本不等式求出函数的最值,再利用正弦型函数的最小正周期,求出结果.【解答】解:设x 、y 的线性约束条件,如图所示:解得A (1,1)目标函数z=ax +by (a >0,b >0)的最大值为2, 即:a +b=2,所以: +=≥2,则y=sin (2x +)的最小正周期为π,故答案为:π.【点评】本题考查的知识要点:线性规划问题,基本不等式的应用,正弦型函数的最小正周期,属于基础题型.16.已知三棱锥O ﹣ABC 中,A ,B ,C 三点均在球心O 的球面上,且AB=BC=1,∠ABC=120°,若球O 的体积为,则三棱锥O ﹣ABC 的体积是.【考点】棱柱、棱锥、棱台的体积;球内接多面体.【分析】由已知条件可求出AC ,求出△ABC 的面积,设球半径为R ,由球的体积可解得R ,再设△ABC 的外接圆的圆心为G ,进一步求出OG ,则三棱锥O ﹣ABC 的体积可求.【解答】解:三棱锥O ﹣ABC 中,A ,B ,C 三点均在球心O 的球面上,且AB=BC=1,∠ABC=120°,则AC=,∴,设球半径为R ,由球的体积,解得R=4.设△ABC的外接圆的圆心为G,∴外接圆的半径为GA=,∴OG=.∴三棱锥O﹣ABC的体积是=.故答案为:.【点评】本题考查球的有关计算问题,考查棱锥的体积,考查学生空间想象能力,逻辑思维能力,是中档题.三、解答题(共70分)17.(12分)(2017•曲靖模拟)已知函数f(x)=,函数y=f(x)﹣在(0,+∞)上的零点按从小到大的顺序构成数列{a n}(n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(1)根据二倍角公式先化简得到f(x)=tanx,再根据函数零点定理可得x=+kπ,k∈Z,即可得到数列的通项公式,(Ⅱ)化简bn=(﹣),再裂项求和即可.【解答】解:(Ⅰ)f(x)===tanx,∵y=f(x)﹣=0,∴tanx=,∴x=+kπ,k∈Z,∵函数y=f(x)﹣在(0,+∞)上的零点按从小到大的顺序构成数列{a n},∴a n=+(n﹣1)π,(Ⅱ)b n====(﹣),∴数列{b n }的前n 项和S n =(1﹣+﹣+…+﹣)=(1﹣)=【点评】本题考查了三角函数的化简和函数零点定理以及数列的通项公式和裂项法求前n 项和,属于中档题18.(12分)(2017•曲靖模拟)拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由 附:独立性检验统计量K 2=,n=a +b +c +d【考点】离散型随机变量的期望与方差;独立性检验.【分析】(1)分层从40份女生问卷中抽取了8份问卷,有明显拖延症6人,“无明显拖延症2人,若从这8份问卷中随机抽取3份,随机变量X=0,1,2.利用“超几何分布”即可得出分布列及其数学期望;(2)根据“独立性检验的基本思想的应用”计算公式可得K2的观测值k,即可得出.【解答】解:(1)从40份女生问卷中抽取了8份问卷,有明显拖延症6人,“无明显拖延症2人.…(2分)则随机变量X=0,1,2,…(3分) ∴P (X=0)==;P (X=1)==,P (X=2)==…(6分)分布列为…(7分)E(X)=0×+1×+2×=.…(8分)(2)K2=≈2.930 …(10分)由表可知2.706<2.93<3.840;∴P=0.10.…(12分)【点评】本题考查了组合数的计算公式、古典概率计算公式、“超几何分布”分布列及其数学期望公式、“独立性检验的基本思想的应用”计算公式,考查了推理能力与计算能力,属于中档题.19.(12分)(2017•曲靖模拟)如图,在多面体ABCDE中,DB⊥平面ABC,AE⊥平面ABC,且△ABC是的边长为4的等边三角形,AE=2,CD与平面ABDE所成角的余弦值为,F是线段CD上一点.(Ⅰ)若F是线段CD的中点,证明:平面CDE⊥面DBC;(Ⅱ)求二面角B﹣EC﹣D的平面角的正弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)取AB中点O,连结OC,OD,取ED的中点为M,以O为原点,OC为x 轴,OB为y轴,OM为z轴,建立空间直角坐标系,利用向量法能证明平面CDE⊥平面DBC.(Ⅱ)求出平面DEC 的一个法向量和平面BCE的一个法向量,利用向量法能求出二面角B ﹣EC﹣D的平面角的正弦值.【解答】证明:(Ⅰ)取AB中点O,连结OC,OD,∵DB⊥平面ABC,DB⊂平面ABDE,∴平面ABDE⊥平面ABC,∵△ABC是等边三角形,∴OC⊥AB,又OC⊂平面ABC,平面ABDE∩平面ABC=AB,∴OC⊥平面ABD,∴OD是CD在平面ABDE上的射影,∠CDO是CD与平面ABDE所成角,∵CD与平面ABDE所成角的余弦值为,∴CD 与平面ABDE 所成角的正弦值为,∴sin ,∵OC=2,∴CD=4,BD=4,取ED 的中点为M ,以O 为原点,OC 为x 轴,OB 为y 轴,OM 为z 轴,建立空间直角坐标系,则A (0,﹣2,0),B (0,2,0),C (2,0,0),D (0,2,4),E (0,﹣2,2),F (,1,2),∴=(),=(2,﹣2,0),=(0,0,4),∴,,∴EF ⊥BC ,EF ⊥BD ,∵DB ,BC ⊂平面DBC ,且DB ∩BC=B , ∴∴EF ⊥平面DBC ,又EF ⊂平面BDF , ∴平面CDE ⊥平面DBC .解:(Ⅱ)由(Ⅰ)知,当F 是线段CD 的中点时,得BF ⊥平面DEC ,又=(),则可取平面DEC 的一个法向量==(),设平面BCE 的一个法向量=(x ,y ,z ),=(2,﹣2,0),=(2,2,﹣2),则,取x=1,得=(1,),则cos <>===,sin <>=,∴二面角B ﹣EC ﹣D 的平面角的正弦值为.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查等价转化思想、数形结合思想,是中档题.20.(12分)(2017•曲靖模拟)已知椭圆C: +=1(a>b>0)的离心率为,P是椭圆C上任意一点,且点P到椭圆C的一个焦点的最大距离等于+1(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,设N为椭圆上一点,是否存在整数t,使得t•=+(其中O为坐标原点)?若存在,试求整数t的所有取值;若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的定义.【分析】(Ⅰ)由离心率为,可得a2=2b2,代入点(0,﹣1),可求解a,b的值,则椭圆方程可求;(Ⅱ)设出直线方程,和椭圆联立后化为关于x的一元二次方程,由判别式大于0求出k的范围,利用根与系数关系得到A,B两点的横坐标的和与积,代入t•=+后得到P 点的坐标,把P点坐标代入椭圆方程后得到t与k的关系,由k的范围确定t的范围,可得结论.【解答】解:(Ⅰ)由题知离心率为,所以a2=2b2.又因为点P到椭圆C的一个焦点的最大距离等于+1,所以a+c=+1,所以b2=1,a2=2.故C的方程为=1…(3分)(Ⅱ)由题意知直线直线AB的斜率存在.设AB方程为y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由y=k(x﹣2)代入=1,得(1+2k2)x2﹣8k2x+8k2﹣2=0.△=64k2﹣4(2k2+1)(8k2﹣2)>0,∴k2<.…x1+x2=,x1x2=,∵t•=+,∴(x1+x2,y1+y2)=t(x,y).∴x=,y=﹣.…(8分)∵点N在椭圆上,∴[]2+2•[﹣]=2,∴16k2=t2(1+2k2),∴t2=<4,∴﹣2<t<2.∴整数t值为﹣1,0,1.…(12分)【点评】本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,考查了平面向量的坐标运算,训练了利用代入法求解变量的取值范围.属中档题.21.(12分)(2017•曲靖模拟)设函数f(x)=e x﹣ax2﹣ex+b,其中e为自然对数的底数.(Ⅰ)若曲线f(x)在y轴上的截距为﹣1,且在点x=1处的切线垂直于直线y=x,求实数a,b的值;(Ⅱ)记f(x)的导函数为g(x),g(x)在区间[0,1]上的最小值为h(a),求h(a)的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)将(0,﹣1),代入f(x),即可求得b的值,求导,由f′(1)=﹣2,即可求得a的值;(Ⅱ)求导,g′(x)=e x﹣2a,分类分别取得g(x)在区间[0,1]上的最小值h(a)解析式,根据函数的单调性即可求得h(a)的最大值.【解答】解:(Ⅰ)曲线f(x)在y轴上的截距为﹣1,则过点(0,﹣1),代入f(x)=e x﹣ax2﹣ex+b,则1+b=﹣1,则b=﹣2,求导f′(x)=e x﹣2ax﹣e,由f′(1)=﹣2,即e﹣2a﹣e=﹣2,则a=1,∴实数a,b的值分别为1,﹣2;(Ⅱ)f(x)=e x﹣ax2﹣ex+b,g(x)=f′(x)=e x﹣2ax﹣e,g′(x)=e x﹣2a,(1)当a≤时,∵x∈[0,1],1≤e x≤e,∴2a≤e x恒成立,即g′(x)=e x﹣2a≥0,g(x)在[0,1]上单调递增,∴g(x)≥g(0)=1﹣e.(2)当a>时,∵x∈[0,1],1≤e x≤e,∴2a>e x恒成立,即g′(x)=e x﹣2a<0,g(x)在[0,1]上单调递减,∴g(x)≥g(1)=﹣2a(3)当<a≤时,g′(x)=e x﹣2a=0,得x=ln(2a),g(x)在[0,ln2a]上单调递减,在[ln2a,1]上单调递增,所以g(x)≥g(ln2a)=2a﹣2aln2a﹣e,∴h(a)=,∴当a≤时,h(a)=1﹣e,当<a≤时,h(a)=2a﹣2aln2a﹣e,求导,h′(a)=2﹣2ln2a﹣2=2ln2a,由<a≤时,h′(a)<0,∴h(a)单调递减,h(a)∈(1﹣e,﹣e],当a>时,h(a)=﹣2a,单调递减,h(a)∈(﹣∞,﹣e),h(a)的最大值1﹣e.【点评】本题考查导数的综合应用,考查导数与函数单调性的关系,函数的最值的求法,考查计算能力,属于中档题.[选修4-4:坐标系与参数方程]22.(10分)(2017•曲靖模拟)在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程ρ=2sin(θ+).倾斜角为,且经过定点P(0,1)的直线l与曲线C交于M,N两点(Ⅰ)写出直线l的参数方程的标准形式,并求曲线C的直角坐标方程;(Ⅱ)求+的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)由倾斜角为,且经过定点P(0,1)的直线l的参数方程为:.曲线C的极坐标方程ρ=2sin(θ+),展开:ρ2=2×(sinθ+cosθ),利用互化公式可得直角坐标方程.(II)把直线l的参数方程代入圆C的方程为:t2﹣t﹣1=0,可得+=+==即可得出.【解答】解:(I)由倾斜角为,且经过定点P(0,1)的直线l的参数方程为:,化为:.曲线C的极坐标方程ρ=2sin(θ+),展开:ρ2=2×(sinθ+cosθ),可得直角坐标方程:x2+y2=2x+2y.(II)把直线l的参数方程代入圆C的方程为:t2﹣t﹣1=0,t1+t2=1,t1t2=﹣1.∴+=+====.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•曲靖模拟)已知函数f(x)=|x﹣a|+|x﹣2|,x∈R(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求++的最小值.【考点】柯西不等式在函数极值中的应用;绝对值不等式的解法.【分析】(Ⅰ)关于x的不等式f(x)≤a在R上有解,求出f(x)的最小值,即可求实数a的最小值M;(Ⅱ)利用柯西不等式,即可求++的最小值.【解答】解:(Ⅰ)f(x)=|x﹣a|+|x﹣2|≥|a﹣2|,∵关于x的不等式f(x)≤a在R上有解,∴|a﹣2|≤a,∴a≥1,∴实数a的最小值M=1;(Ⅱ)m+2n+3p=1, ++=(++)(m+2n+3p)≥(+2+)2=16+8,∴++的最小值为16+8.【点评】本题考查绝对值不等式的运用,考查柯西不等式在最值中的应用,考查计算能力.。

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数f(x)是定义域为R的偶函数,且满足f(x)=f(2一x),当x e[0,1]时,f(x)=x,则函数F(x)=f(x)+x+4在区间[一9,10]上零点的个数为() 1一2xA.9B.10C.18D.202.如图,ABC中经A=2经B=60。

,点D在BC上,经BAD=30。

,将△ABD沿AD旋转得到三棱锥B,一ADC,分别记B,A,B,D与平面ADC所成角为C,β,则C,β的大小关系是()A.C<β<2C B.2C<β<3CC.β<2C,2C<β<3C两种情况都存在D.存在某一位置使得β>3a3.为计算S=1一2x2+3x22一4x23+...+100x(一2)99,设计了如图所示的程序框图,则空白框中应填入()A.i<100B.i>100C.i<100D.i之1004.已知定义在[1,+伪)上的函数f(x)满足f(3x)=3f(x),且当1<x<3时,f(x)=1一x一2,则方程f (x )=f (2019)的最小实根的值为()A .168B .249C .411D .5615.已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点O 为坐标原点若PA .PB =0,则直线OA 与OB 的斜率之积为()11A .—-B .—3C .—-486.在复平面内,复数z =a +bi (a ,b e R )对应向量OZ (O 为坐标原点),设OZ =r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现了棣莫弗定理:z 1=r (cos θ+isin θ),111z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 2cos r (cos θ+isin θ)n =r n (cos n θ+isinn θ)(θ+θ)+isin (θ+121,已知z =(3+i )4θ2),由棣莫弗定理可以导出复数乘方公式:,则z =()A .23B .4C .83D .167.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18C .240,208.直角坐标系xOy 中,双曲线边三角形,则该双曲线的离心率x 2y 2—a 2b 2e =()A .43B .54B .200,20D .200,18=1(a ,b >0)与抛物线y 2=2bx?相交于A 、B 两点,若ΔOAB 是等C .65D .76119.在平行四边形ABCD 中,AB =3,AD =2,AP =AB,AQ =AD,若CP .CQ =12,则经ADC =()32A .5π6B .3π4C .2π3D .π210.在ABC 中,角A ,B,C 的对边分别为a ,b,c ,若c —a cos B =(2a —b)cos A ,则ABC 的形状为()D .—4A .直角三角形C .等腰或直角三角形B .等腰非等边三角形D .钝角三角形11.若复数z =21+i,其中i 为虚数单位,则下列结论正确的是()A .z 的虚部为-iB .z =2C .z 的共轭复数为-1-iD .z 2为纯虚数12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为()A .C .3336B .D .63336二、填空题:本题共4小题,每小题5分,共20分。

高考模拟卷数学试卷及答案

高考模拟卷数学试卷及答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,是奇函数的是:A. \( f(x) = x^2 + 1 \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = |x| \)D. \( f(x) = x^3 \)2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(3,4)关于直线y=x的对称点是:A. (3,4)B. (4,3)C. (3,-4)D. (-4,3)4. 若\( a^2 + b^2 = 25 \),且\( a - b = 3 \),则\( ab \)的最大值为:A. 12B. 15C. 18D. 205. 在三角形ABC中,若\( \angle A = 30^\circ \),\( \angle B = 45^\circ \),则\( \angle C \)的度数是:A. 105°B. 120°C. 135°D. 150°6. 已知函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(2) \)的值为:A. 3B. 5C. 7D. 97. 在等比数列中,若前三项分别为2,6,18,则该数列的公比是:A. 2B. 3C. 6D. 98. 若\( \sin \alpha = \frac{1}{2} \),\( \cos \beta = \frac{\sqrt{3}}{2} \),则\( \tan(\alpha + \beta) \)的值为:A. 1B. -1C. 0D. 无解9. 已知圆的方程为\( x^2 + y^2 - 4x + 6y - 12 = 0 \),则该圆的半径是:A. 2B. 3C. 4D. 510. 在直角坐标系中,点A(2,3)到直线\( 2x - y + 1 = 0 \)的距离是:A. 1B. 2C. 3D. 411. 若\( \log_2(x - 1) = 3 \),则\( x \)的值为:A. 3B. 4C. 5D. 612. 若\( \frac{a}{b} = \frac{c}{d} \),且\( a \neq 0 \),\( b \neq 0 \),\( c \neq 0 \),\( d \neq 0 \),则\( \frac{a + c}{b + d} \)的值为:A. 1B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. 无法确定二、填空题(本大题共6小题,每小题5分,共30分)13. 函数\( f(x) = x^3 - 3x \)的极值点是______。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(每题4分,共40分)1.(4分)已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求f(x)的单调递增区间。

A. (-∞, -1) ∪ (2, +∞)B. (-∞, 2) ∪ (4, +∞)C. (-∞, 1) ∪ (4, +∞)D. (-∞, 2) ∪ (3, +∞)2.(4分)设等差数列{an}的首项为a1,公差为d,若a1 = 2,a2 + a5 = 10,则数列{an}的前10项和S10为多少?A. 120B. 110C. 100D. 903.(4分)已知三角形ABC中,∠A = 60°,AB = 3,AC = 4,求BC 的长度。

A. √13B. √21C. √33D. √374.(4分)若复数z满足|z - 1| = |z + 1|,则z在复平面内对应的点的轨迹是什么?A. 直线y = xB. 直线y = -xC. 直线y = x + 2D. 直线y = -x + 25.(4分)已知数列{bn}满足b1 = 1,bn = (1/2)^(n-1) * (bn-1 +1),求b5的值。

A. 2B. 3C. 4D. 56.(4分)在直角坐标系中,圆的方程为(x - 2)^2 + (y + 3)^2 = 9,若圆与直线2x - y + 6 = 0相交,求交点坐标。

A. (1, -3)B. (3, 0)C. (2, -1)D. (0, 2)7.(4分)已知函数g(x) = x^2 - 4x + 3,求g(x)在区间[0, 3]上的最大值和最小值。

A. 最大值3,最小值0B. 最大值4,最小值0C. 最大值3,最小值-1D. 最大值4,最小值-18.(4分)已知等比数列{cn}的前n项和为Sn,若S3 = 7,S6 = 21,求S9。

A. 35B. 56C. 63D. 729.(4分)在三维直角坐标系中,点A(1, 2, 3)、B(4, 5, 6)和C(7, 8, 9),求三角形ABC的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟题复习试卷习题资料高考数学试卷(附详细答案)一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,si n2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.高考模拟复习试卷试题模拟卷高考数学讲练测【新课标版】练第二章 函数与基本初等函数Ⅰ第06节 指数与指数函数A 基础巩固训练1.【北京市东城区高三5月模拟】设0.8log 0.9a =, 1.1log 0.9b =,0.91.1c =,则a ,b ,c 的大小关系是( )(A )a b c <<(B )a c b << (C )b a c <<(D )c a b << 【答案】C2.【汕头市潮南区高三高考模拟】已知函数2,1()(1),1x x f x f x x ⎧<=⎨-≥⎩,则2(log 7)f 的值为( )A .72 B .74C .78D .716【答案】B3. 【高三高考适应性测试理科试卷】已知函数1()ln 2xf x x =-(),若实数x0满足01188()log sinlog cos88f x ππ>+,则0x 的取值范围是( )A .(,1)-∞B .(0,1)C .(1,)+∞D .1(,)2+∞ 【答案】B4.【余姚市高三第三次模拟理科数学】若指数函数()f x 的图像过点(2,4)-,则(3)f = _____________;不等式5()()2f x f x +-<的解集为. 【答案】18;(1,1)-5.【临川市一中期中考试】已知函数()f x 满足1()ln 1()f x x f x +=-,且12,x x 均大于e ,其中e 为自然对数的底数,12()()1f x f x +=, 则12()f ex x 的最小值为. 【答案】34【解析】 试题分析:1()ln 1()f x x f x +=-变形为()ln 121ln 1ln 1x f x x x -==-++12,x x 均大于e ,所以函数是增函数, 12()()1f x f x +=代入整理得2121212ln ln ln ln ln ln 32x x x x x x +⎛⎫=++≤ ⎪⎝⎭61212ln ln 6x x x x e ∴+≥∴≥ ()7123()4f ex x f e ≥=,最小值为34.B 能力提升训练1.【陕西高考理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x= (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =【答案】D考点:函数求值;函数的单调性.2.【高考数学全程总复习】已知函数()22xf x =-,则函数|()|y f x =的图象可能是( )【答案】B 【解析】|f(x)|=|2x2|=易知函数y=|f(x)|的图象的分段点是x=1,且过点(1,0),(0,1),又|f(x)|≥0,故选B.3.【高三新课程适应性考试理科数学】设y1=40.9,y2=80.48,y3=⎝⎛⎭⎫12-1.5,则( ) A .y3>y1>y2 B .y2>y1>y3 C .y1>y2>y3 D .y1>y3>y2【答案】D【解析】y1=21.8,y2=21.44,y3=21.5,∵y=2x在R上是单调递增函数,∴y1>y3>y2.选D.4.【高三十三校第二次联考】已知函数1,01 ()12,12xx xf xx+≤<⎧⎪=⎨-≥⎪⎩,设0a b>≥,若()(b)f a f=,则()bf a的取值范围是____.【答案】3()24bf a≤<【解析】由图可知,112b≤<,3()22f a≤<,且,()b f a的值依次增大,均为正值,所以3()24bf a≤<.5.【贵州遵义湄潭中学期末测试】已知[]2,1,4329)(-∈+⨯-=xxf xx(1)设[]2,1,3-∈=xt x,求t的最大值与最小值;(2)求)(xf的最大值与最小值;【答案】(1)最大值9,最小值13;(2)最大值67,最小值3【解析】(1)xt3=在[]2,1-是单调增函数∴932max==t,3131min==-tC 思维拓展训练1.【高考数学考前复习冲刺】已知函数f(x)=ax-1+3(a>0且a≠1)的图象过一个定点P,且点P在直线mx+ny-1=0(m>0,且n>0)上,则1m+4n的最小值是()A.12 B.16 C.25 D.24【答案】C2.【绍兴一中期中测试】已知函数,若,则的取值范围是()A. B. C. D.【答案】C3.已知2x2+x≤⎝⎛⎭⎫14x-2,则函数y=2x-2-x的值域是________.【答案】⎣⎡⎦⎤-25516,32【解析】∵2 x2+x≤2-2(x-2),⎩⎨⎧>≤=,log,2)(2xxxxfx2)]([-≥xff x]1,2[-),2[4+∞),2[]1,2[4+∞- ),2[]1,0[4+∞∴x2+x≤-2(x -2),解得-4≤x≤1.又∵y =2x -2-x 在[-4,1]上是增函数,∴2-4-24≤y≤2-2-1,故-25516≤y≤32. 4.【沈阳二中第三次模考】已知函数,,,实数是函数的一个零点.给出下列四个判断: ①;②;③;④.其中可能成立的是(填序号)【答案】①②④5.【赣州市赣县中学北校十月月考】已知函数()x f x a =的图像经过点1(2,)4,其中0a >且1a ≠ (1)求a 的值;(2)若函数45()a g x x=,解关于t 的不等式(21)(1)g t g t -<+ 【答案】(1)21=a ;(2)()2,0. (Ⅱ)∵45()ag x x =为定义在R 上的偶函数,在()0,∞-上递减,在()+∞,0上递增,∴不等式(21)(1)g t g t -<+等价为不等式()()112+<-t g t g . x x f x 2log )31()(-=0a b c <<<0)()()(<c f b f a f d()f x a d <b d >c d <c d >即112+<-t t ,平方得0632<-t t ,解得20<<t . 即不等式的解集为()2,0.高考模拟复习试卷试题模拟卷。

相关文档
最新文档