镁铝类水滑石的合成及其在纸张阻燃中的应用

合集下载

镁铝及镁锌铝水滑石的合成与表征

镁铝及镁锌铝水滑石的合成与表征

C e ii H nBn LuQ hnLqa , a ig ,i i n
(. colfPt ce i l n i e n C agh uU i rt,h nzo 1 14,hn ; 1 Sh o o e ohmc gn r g,h nzo nv sy C a gh u2 36 C i r aE ei ei a 2 Sh o o t i n i e n , aj gIs t e eho g ) . col Mae a E gn r g N ni ntu Tcnl y f rl ei n ito f o
t e k f y r tli . d i wa e n tae h tt e d n i fao n t e ly r d c e s d a d t e d s n e o e i p a so d oa ct An t sd mo srt d ta h e s y o tms i h a e e r a e n h it c ft c h e t a h l y r n r a e i h n r a ig o / 1r t t e d n i f tmsi h a e ce s d a d t ed sa c f h a e a es i ce s d w t te i c e sn fMg A ai h e st o o te ly ri r a e , n itn e o e ly r h o; y a n n h t
中图分类号 :6 1 0 1 文献标识码 : A 文章编号 :0 6— 90 2 1 )2— 0 8— 4 10 4 9 (0 1 1 0 3 0
Sy t ssa ha a t rz to fM . n he i nd c r c e i a i n o g /AIa g Zn nd M / /AIhy r t lie d o a ct

硅掺杂对阻燃填料镁铝水滑石性能的影响

硅掺杂对阻燃填料镁铝水滑石性能的影响
p o u t e r d h v r p ry o p c l a o a t l s wih p r e ty rd cs pr pa e a e a p o e t ft i a n p r i e , t e f c l y n c
般 按 使 用 方法 可以 分 为反应 型 阻 燃剂 和 添加 型阻 燃 剂 两
h d o act sp p rf me r t r a tf r y t li a a e l r e a e a d n il l e
O ANG W Son -n. g l HUANG ign eig Qig a nv ri f c n ea d e h oo y Qi d o2 6 4 , h n o g C ia C lg f e c l n ie r , n d oU i syo i c n c n lg , n a 6 0 2 S a d n , hn ) e C n e t Se T g

I) R
硅掺杂对阻燃填料镁铝水滑石性能的影响
。 王松 林 黄建 林 ( 岛科 技 大 学化 工学 院 , 青 山东青 岛 2 6 4 ) 6 0 2
E f c f i o igont e p op r iso - f to - pn h r e te fMg— e S- d AI

随 生性殊用燃 有 阻提合的须 求 高些生求 能 着活能对纸 性 越 ,高,纸 要 人水特活阻具 较 燃 ,更张 们在 场要 必 来平 高有 越的 的

纸 张 阻燃剂 的种 类繁 多,
A1hy r t lie a lme r tr a tpa r d o act nd fa e a d n pe .Th e ulss w ha he e r s t ho t tt

镁铝水滑石的合成、组成分析及其晶体结构表征、市场应用

镁铝水滑石的合成、组成分析及其晶体结构表征、市场应用

镁铝水滑石的合成、组成分析及其晶体结构表征、市场应用一、实验目的1.本实验采用共沉淀法制备镁铝水滑石;2.利用EDTA络合滴定法测定镁铝水滑石样品中Mg2+和Al3+的含量;3.热分析法确定镁铝水滑石样品中的结构水含量;4.并通过红外、X粉末衍射表征晶体结构。

二、实验原理1、合成材料水滑石是一种层柱状双金属氢氧化物,是一类近年来发展迅速的阴离子型粘土因为具有特殊的结构和物理化学性质,如带电性质阴离子可交换性吸附性能催化性能等,其在催化剂催化剂载体污水处理剂医药医药载体等众多领域具有广泛的应用典型的水滑石Mg6Al2(OH)16CO3 4H2O是一种天然存在的矿物,天然存在的水滑石大都是镁铝水滑石,且其层间阴离子主要局限为CO32-但天然镁铝水滑石在世界范围内很有限,因而人工合成镁铝水滑石的研究和应用引起了人们的高度重视和关注层状双金属氢氧化物(Layered double hydroxides,简称LDHs)是一类阴离子型粘土,又称类水滑石组成通式为:[M(II)1-xM(III)x(OH)2]x+Ax/nn-mH2O,M(II):二价金属离子,M(III):三价金属离子,An-:阴离子,x=M(III)/[M(II)+ M(III)],0.2≤x≤0.33。

本实验采用共沉淀法制备镁铝水滑石;利用EDTA络合滴定法测定镁铝水滑石样品中Mg2+和Al3+的含量;热分析法确定镁铝水滑石样品中的结构水含量;并通过红外、X粉末衍射表征晶体结构。

2、共沉淀法共沉淀法是制备水滑石的基本方法, 即以可溶性铝盐和镁盐与沉淀剂反应生成沉淀物,经过滤、洗涤、干燥后制得水滑石。

根据投料方式不同可分为单滴法和双滴法。

根据沉淀方式不同衍生出低过饱和沉淀法和高过饱和沉淀法。

共沉淀法合成温度低,过程简单,制得的水滑石具有较高的均匀性、颗粒尺寸分布较窄且具有一定形貌。

但由于反应各组分的沉淀速度和沉淀平衡浓度积不可避免地存在着差异,所以导致产品组成的局部不均匀性,而且沉淀物还需反复洗涤过滤, 才能除去混入的杂质离子。

镁铝类水滑石的介绍

镁铝类水滑石的介绍

类水滑石摘要根据近十几年的文献,对类水滑石的性质,制备及应用进行了综述。

介绍了类水滑石材料的合成方法以及作为催化剂,添加剂,吸附剂在有机合成反应,石油化学,塑料工业,水处理等方面的应用。

目录1类水滑石2性质3制备4应用目录1类水滑石2性质3制备4应用类水滑石类水滑石化合物(Hydrotalcite-like compounds,HTlc)是由带正电荷的金属氢氧化物层和层间电荷平衡阴离子构成的层状双金属氢氧化物。

可用通式表示为 [M2+1-xM3+x(OH)2]x+[An-x/n] ·mH2O,其中M2+ 是二价金属阳离子,可以有Fe2+,Co2+,Cu2+,Zn2+,Mn2+ 等;M3+ 是三价金属阳离子,可以有Fe3+,Cr3+等,由这些二价和三价金属离子的有效组合,可形成二、三元甚至四元的HTlcs。

An- 为层间阴离子,可为无机阴离子如Cl-、CO32-等;也可以是有机阴离子,如对苯二甲酸根以及配合物阴离子如Zn(BPS)34 -等;还可以为同多或杂多阴离子如V10O286 -及层状化合物如[ Mg2Al(OH)] -等。

A是价数为-n的阴离子,X是M3+与{M3++M2+}的摩尔比。

HTlc单元晶层相互平行重叠形成层状结构,层状结构中的每一层的结构和水镁石Mg(OH)2类似(水镁石为正八面体结构,结构中心为Mg2+,六个顶点为OH-,相邻的正八面体通过羟基共用边相互连接形成片层),是由金属(氢)氧八面体靠共用边相互连接而成,但化学组成与水镁石不同,其中部分二价金属离子被三价金属离子代替(称为同晶置换),称为类水镁石层。

类水镁石层相互平行重叠形成HTlc层状结构.层和层之间有孔隙,通常称为通道 (Gallery)。

水镁石层是电中性的,而类水镁石层中由于三价金属离子同晶置换部分二价金属离子而带有剩余正电荷。

这种由晶体结构本身产生的电荷与外界条件(如分散介质的pH,电解质等)无关,所以称为永久电荷。

镁铝水滑石阻燃剂表面改性及其机理

镁铝水滑石阻燃剂表面改性及其机理

樊慧庆等:掺杂三氧化二锑的钛酸铋钠钾陶瓷的显微结构和电学性能· 103 ·第41卷第4期DOI:10.7521/j.issn.0454–5648.2013.04.00 镁铝水滑石阻燃剂表面改性及其机理徐圣,曾虹燕,赵策,廖梦尘,杨永杰,张伟,陶静,肖华淼(湘潭大学化工学院,湖南湘潭 411105)摘要:采用三聚磷酸钠(STPP)对镁铝水滑石(MAH)进行表面改性。

X射线衍射、扫描电子显微镜、能谱、热重–差热、红外光谱比表积测试和粒度分析对改性前后的镁铝水滑石进行表征,考察了改性前后镁铝水滑石的吸油性能和润湿性能。

结果表明:三聚磷酸根(5310P O−)包覆于镁铝水滑石粒子表面,改性后的镁铝水滑石粒子表面疏水性增强,分散性明显提高。

将改性前后镁铝水滑石样品与聚丙烯(PP)混合固化,测试其复合材料(MAH/PP、SMAH/PP)阻燃性和力学性能,发现相对于MAH/PP,SMAH/PP复合材料力学性能有所提高,阻燃性能也得以改善。

关键词:镁铝水滑石;阻燃剂;改性;三聚磷酸钠;聚丙烯中图分类号:TQ132.2,TQ326.9 文献标志号:A 文章编号:0454–5648(2013)04–网络出版时间:网络出版地址:Surface Modification of the Mg–Al Hydrotalcite Flame-retardantXU Sheng,ZENG Hongyan,ZHAO Ce,LIAO Mengchen,YANG Yongjie,ZHANG Wei,TAO Jing,XIAO Huamiao (School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China)Abstract: The surface modification of Mg–Al hydrytalcite particle (MAH) by sodium tripolyphosphate (STPP) was carried out. The unmodified and modified MAHs(MAH and SMAH, respectively) were characterized by X-ray diffraction, scanning electron micros-copy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric-derivative thermogravimetric analysis, specific surface area measurement and particle size analysis, respectively. The oil absorption and wettability of the particleswere investigated. The results show that the surface of the MAH is coated by5310P O−in the modification process. The hydrophobic property of the SMAH particles was strengthened, and the congeries dispersibility was improved. The composites (MAH/PP, SMAH/PP) were obtained by mixing MAH and SMAH into Polypropylene (PP), respectively. The flame retardancy and mechanical properties of the composites were analyzed. Compared to the MAH/PP sample, the mechanical properties of the SMAH/PP composite was in-creased, and the flame retardancy was enhanced.Key words: Mg–Al hydrotalcite; flame retardant; modification; sodium tripolyphosphate; polypropylene低烟无卤阻燃材料可以避免含卤阻燃材料燃烧时所带来的二次污染,是阻燃材料的发展趋势。

水滑石的合成 改性及其在功能复合材料中的应用

水滑石的合成 改性及其在功能复合材料中的应用

水滑石在功能复合材料中的应用
水滑石在功能复合材料中具有广泛的应用,如催化剂载体、电极材料、药物载 体和环保材料等。作为催化剂载体,水滑石可以提供高效的催化性能和良好的 热稳定性;作为电极材料,水滑石具有较高的电化学活性和良好的化学稳定性; 作为药物载体,水滑石能够实现药物的定向输送和可控释放;作为环保材料, 水滑石可用于重金属离子的吸附和回收。
在功能复合材料的制备过程中,需要综合考虑水滑石与基体材料的相容性、复 合材料的结构与性能以及应用环境等因素。通常采用溶胶-凝胶法、共沉淀法、 热压法等工艺来制备水滑石基功能复合材料。
溶胶-凝胶法可以实现水滑石在基体材料中的均匀分散,但由于制备过程中需 要高温烧结,因此可能影响水滑石的晶体结构和化学性质。共沉淀法可以有效 地控制水滑石的晶体结构和形貌,但其制备过程中可能引入杂质,影响复合材 料的性能。热压法可以制备具有优良结构性能的复合材料,但需要严格控制热 压条件和烧结温度,以避免水滑石晶体的分解和性能的损失。
结论
本次演示对水滑石的合成、改性及其在功能复合材料中的应用进行了详细探讨。 水滑石作为一种具有重要应用前景的功能材料,其合成方法、改性技术和在功 能复合材料中的应用领域均具有重要研究价值。
目前,对于水滑石的合成与改性已经取得了一定的研究成果,但在实际应用中 仍存在一定的挑战。例如,合成过程中金属离子配比的优化、合成条件的控制 以及改性方法的筛选等方面仍需进一步研究和改进。此外,水滑石在功能复合 材料中的应用也需要结合具体应用场景进行优化设计和制备,以更好地发挥其 独特性能和拓展其应用范围。
参考内容二
一、引言
镁铝型水滑石是一种重要的层状材料,因其具有优良的物理化学性能,如高稳 定性、高催化活性、高离子交换能力等,而被广泛应用于催化剂、离子交换剂、 药物载体等领域。水热合成法是一种在高温高压条件下,通过控制反应条件, 制备具有特定结构和性能的材料的方法。本次演示将探讨镁铝型水滑石的水热 合成方法及其应用。

锌掺杂镁铝水滑石在纸张阻燃中的应用

锌掺杂镁铝水滑石在纸张阻燃中的应用

S in ea dT c n lg , n d o2 6 4 , a d n , ia ce c n e h oo y Qig a 6 0 2 Sh n o g g A O L H n M - IC5L H 并将其作为填料应用于 M — I 3 D 和Z- g A O D , —c -
b te a g A1C03 e t rt n M — 一 h LDH. h x g n i de ft efa er t r a t a rp o u e s . % a e d s g t eo y e n x o h m e a d n pe r d c d i 8 l p 26 th o a e t
o Zn— g A1CO3 f M - - LDH f 0 , e c i h f c l- a ma l r d . o 2 % r a hngt edif utf m i l beg a e K e r : a er tr a tp pe; — gA 1CO3 ywo ds f m ea d n a r Zn M - - l LDH; a ead n r p ry l f mer tr a t o e t p
p re ty c y t li e tu t e Do n fZn c n r d e t e a ve s mp c fM g A1CO3L e f c l r s a lz d sr c ur . pi g o a e uc h d r e i a to — 一 DH n t o he p y i a r p ry o a e a da tp pe , n mp o e t e wh t n s f Mg— - h sc l o e t f f me r t r n a r a d i r v h i e s o p l e A1CO3LDH . e whi n s Th t es e

水滑石类功能材料的特性分析及其阻燃应用 

水滑石类功能材料的特性分析及其阻燃应用 

第39卷第12期2020年12月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.39㊀No.12December,2020水滑石类功能材料的特性分析及其阻燃应用邹㊀瑜(福建省建筑科学研究院有限责任公司,福建省绿色建筑技术重点实验室,福州㊀350000)摘要:水滑石类化合物(LDHs)是一类具有特殊结构与功能的新型层状材料㊂介绍了LDHs 的化学组成㊁结构和性质,对典型LDHs(Mg 6Al 2(OH)16CO 3㊃4H 2O)热分解行为和阻燃机理进行了分析㊂最后从主体层板调控㊁功能性客体插层㊁协同效应三个方面对LDHs 在阻燃领域的应用进行了综述㊂关键词:水滑石类化合物;化学组成;结构;性质;阻燃机理;阻燃应用中图分类号:TQ13;TQ314.24㊀㊀文献标识码:A ㊀㊀文章编号:1001-1625(2020)12-4034-09Characteristic Analysis of Layered Double Hydroxides Functional Materials and Its Flame Retardant ApplicationZOU Yu(Fujian Provincial Key Laboratory of Green Building Technology,Fujian Academy of Building Research Co.,Ltd.,Fuzhou 350000,China)Abstract :Hydrotalcite-like compounds,also known as layered double hydroxides (LDHs),are a new type of layered materials with special structure and function.Chemical composition,structure and properties of LDHs were introduced,and the thermal decomposition behavior and flame retardant mechanism of typical LDHs (Mg 6Al 2(OH)16CO 3㊃4H 2O)were analyzed.Finally,the application of LDHs in the field of flame retardant was reviewed from the three aspects of main layer regulation,functional guest intercalation,and synergistic effects.Key words :LDHs;chemical component;structure;property;flame retardant mechanism;flame retardant application作者简介:邹㊀瑜(1989 ),男,工程师㊂主要从事建筑防火与阻燃的研究㊂E-mail:maxmous@0㊀引㊀言水滑石类化合物是一类具有特殊结构与功能的新型层状材料[1],包括水滑石(Hydrotalcite,HT)和类水滑石(Hydrotalcite-Like Compound,HTLC),又称为层状双羟基复合金属氢氧化物(Layered Double Hydroxides,LDHs),LDHs 最突出的特点是具有主体层板结构和层间离子的可交换性,利用这一特性可实现层板金属离子调变和功能性客体插层引入层间空隙,从而形成一系列新型超分子复合功能材料㊂天然LDHs 最早于1842年在瑞典矿层被发现,由于产量极其稀少,人们开始对其人工合成方法进行研究㊂1942年,Feitknecht 等[2]首次通过共沉淀方法人工合成出了LDHs,并设想其为双层结构模型㊂1969年,Allmann 等[3]通过测定单晶结构,首次确定了LDHs 的层状结构㊂LDHs 独特的结构和性质使其在催化剂㊁离子吸附材料㊁阻燃材料等方面逐步得到应用和发展㊂相较于传统卤系阻燃剂,LDHs 作为一种新型无机无卤阻燃材料,稳定性好且绿色环保,使用过程中不释放有毒气体,同时兼具阻燃㊁抑烟㊁填充等功能,还可根据其独特的结构和性质从分子水平进行调控,因而极具开发潜力㊂本文就LDHs 的化学组成,结构和性质进行描述,对典型的LDHs(Mg 6Al 2(OH)16CO 3㊃4H 2O)进行热分解行为的分析,对其作为阻燃剂的阻燃机理进行阐述,并从主体层板调控㊁功能性客体插层和协同效应三个方面综述LDHs 在阻燃领域的应用进展㊂第12期邹㊀瑜:水滑石类功能材料的特性分析及其阻燃应用4035㊀1㊀LDHs 的化学组成㊁结构和性质1.1㊀LDHs 的化学组成LDHs 主体成分一般由两种金属氢氧化物组成,典型LDHs 的化学组成在1915年才被报道,即化合物Mg 6Al 2(OH)16CO 3㊃4H 2O㊂随着后续研究的深入,人们提出了其化学组成通式:[M 2+1-x M 3+x (OH)2]x +(A n -)x/n ㊃m H 2O,其中M 2+代表二价金属阳离子,M 3+代表三价金属阳离子,M 2+可部分被离子半径相近的M 3+同晶取代,从而使其层结构发生改变,主体层板带正电荷;A n -是层间阴离子,如CO 2-3㊁NO -3㊁Cl -杂多阴离子等,层间阴离子与主体层板正电荷相平衡,使LDHs 整体呈电中性;x 是M 3+与(M 2++M 3+)的摩尔比,通常在0.20~0.33之间[4-5],m 为层间水分子个数㊂研究表明,只要二价金属阳离子M 2+㊁三价金属阳离子M 3+的离子半径与Mg 2+(0.065nm)相差不大就能形成LDHs㊂能形成LDHs 的常见二价金属阳离子有Mg 2+㊁Zn 2+㊁Ni 2+㊁Cu 2+㊁Co 2+㊁Ca 2+等,三价阳离子有Al 3+㊁Cr 3+㊁Mn 3+㊁Fe 3+等㊂通常M 2+与M 3+的比例可以在一定范围内进行调控,从而得到不同组成的LDHs㊂Rives [6]详细研究了能形成LDHs 的部分M 2+和M 3+的有效组合㊂随着研究的深入,LDHs 制备技术突飞猛进,主体层板金属离子不再局限于2种,金属离子化合价也不再局限于二价和三价,三元甚至四元LDHs 也不断被合成出来[7-9]㊂Velu 等[10-11]报道的四价金属离子Sn 4+和Zr 4+能进入主体层板,可形成单相MgAlSn(Zr)-LDHs㊂LDHs 主体层板与层间客体阴离子的相互作用力主要有共价键㊁静电作用㊁氢键及范德华力等,这也是客体插层的主要驱动力㊂现有的研究表明[12-16],几乎任何类型阴离子都可通过相互作用力插层进入LDHs层间,比如简单的无机阴离子CO 2-3㊁NO -3㊁OH -㊁Cl -等,有机阴离子SO 2-4㊁PO 3-4㊁十二烷基硫酸根㊁C 6H 4(COO)2-2等,以及各种聚合物㊁配合物,甚至生物活性分子㊂阴离子的电荷密度㊁价态㊁数量及与主体层板相互作用力大小决定了其在LDHs 层间的空间排布,而不同排列方式最终影响LDHs 的结构和性质㊂1.2㊀LDHs的结构分析图1㊀LDHs 的结构示意图Fig.1㊀Schematic diagram of the structure of LDHs LDHs 属于层状化合物,由带正电荷的主体层板和层间阴离子通过有序组装而成㊂它的结构类似于水镁石Mg(OH)2,主体层板金属M(M 表示金属)离子位于正八面体中心,并与位于正八面体6个顶点上的OH -以配位键结合,由MO 6八面体共用棱边进而扩展形成单元层,层与层间通过氢键和静电作用力相缔合,水以结晶水形式存在层间[17]㊂LDHs 的结构示意图如图1所示㊂利用扫描电子显微镜(SEM)对LDHs 进行表面形貌结构分析,直接观察其形貌尺寸和分布情况㊂图2是典型的LDHs(Mg 6Al 2(OH)16CO 3㊃4H 2O)的SEM 照片㊂从图中可以看出LDHs 样品呈现非常明显的叶片层状形貌㊂运用X 射线衍射(XRD)分析可以更深入全面地获得LDHs 的结构信息,如晶相结构㊁晶胞参数㊁组织形态以及晶粒尺寸等[18]㊂笔者对不同镁铝摩尔比(Mg /Al =2㊁3㊁4)的LDHs 样品进行了XRD 表征,2θ=5ʎ~70ʎ,结果如图3所示㊂由图3可以看出,不同镁铝摩尔比的LDHs 样品均具有典型的水滑石特征衍射峰,即(003)㊁(006)㊁(009)㊁(015)㊁(018)㊁(110)和(113)晶面衍射峰位置和强度与标准镁铝水滑石(PDF 14-0191)XRD 特征峰吻合,由此可证明调变金属阳离子比例能够得到晶相结构完整㊁结晶度高的LDHs㊂同时通过调变金属阳离子种类仍可以得到较好的LDHs 样品㊂图4为不同二价金属阳离子系列水滑石的XRD 谱,可知除了CuAl-LDHs,其他ZnAl-LDHs㊁NiAl-LDHs㊁CoAl-LDHs㊁MgAl-LDHs 样品均具有非常明显的水滑石特征衍射峰,由于Cu 2+的d 轨道不对称,所构成的八面体具有姜-泰勒效应[19-20],易形成氧化铜,在合成CuAl-LDHs 过程中更易生成八面体复合盐,而不是水滑石层板结构㊂4036㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第39卷图2㊀典型的LDHs(Mg 6Al 2(OH)16CO 3㊃4H 2O)的SEM 照片Fig.2㊀SEM images of typical LDHs (Mg 6Al 2(OH)16CO 3㊃4H 2O)图3㊀不同Mg /Al 摩尔比水滑石XRD 谱Fig.3㊀XRD patterns of LDHs with different Mg /Al molarratios 图4㊀不同二价金属阳离子系列水滑石XRD 谱Fig.4㊀XRD patterns of LDHs with different divalent metal cation series1.3㊀LDHs 的性质LDHs 的化学组成和独特的层状结构赋予其多种性质,如碱性㊁层板和层间离子的可调控性㊁热稳定性㊁记忆效应和阻燃性能等㊂LDHs 的碱性强弱与主体层板中二价金属阳离子碱性强弱相一致㊂一般LDHs 的比表面积较小,其表观碱性相对较弱,但经一定温度的焙烧后则表现出较强的碱性[21-22]㊂比如MgAl-LDHs 经过500ħ焙烧后产物Mg(Al)O 碱性分布类似于MgO,含有O -2提供的强碱性位㊁Mg-O 离子对提供的中强碱性位和OH -提供的弱碱性位㊂LDHs 的化学组成和结构特点决定其具有独特的层板阳离子可调控性及层间阴离子可交换性㊂新的层板金属离子组合和层间阴离子的引入,能够得到不同性能的LDHs,从而实现新型功能材料的开发,具有巨大的应用价值㊂目前LDHs 在催化剂[23-24]㊁离子交换与水处理[25-26]㊁复合材料[27]㊁活性分子存储[28-29]㊁阻燃材料[30-32]㊁拓扑化学制备[33-34]等诸多方面得到了应用㊂LDHs 的热稳定性与其层状结构具有密切联系,在热处理下LDHs 将经历物理吸附水脱除㊁层间结晶水脱除㊁层间阴离子的热分解和层板羟基脱除等过程[35]㊂一般说来,在温度不超过600ħ时,LDHs 的有序层状结构并未完全被破坏,将生成双金属复合氧化物(LDO),而此时把LDO 加入到含有某种阴离子的溶液介质中,其结构可以部分恢复到具有有序层状结构的LDHs [36],此性质即为LDHs 的记忆效应㊂利用这一效应,可将LDHs 应用于离子交换㊁水处理和吸附等领域[37]㊂值得注意的是,当LDHs 热处理温度超过600ħ后,层状结构坍塌,待层板羟基完全脱除后将形成尖晶石相结构,此时LDHs 记忆效应消失,无法恢复成原来的层状结构㊂LDHs 具有阻燃性能㊂LDHs 分解温度范围(200~800ħ)较大,在受热时将吸收大量的热,能降低体系温度,同时其结构组成中含有的层间结晶水和层板羟基及层间阴离子将以水蒸气和CO 2等气体的形式脱第12期邹㊀瑜:水滑石类功能材料的特性分析及其阻燃应用4037㊀出,起到稀释燃烧气体浓度㊁稀释助燃物O 2浓度的作用㊂LDHs 的层间结晶水㊁层板羟基以及层间阴离子在不同的温度段内脱离层板,从而可在非常宽的范围内释放阻燃物质㊂同时LDHs 在阻燃过程中,由于吸热量大能降低燃烧中心温度,其分解后产物能够吸收酸性烟气,不流出有毒物质,因此可作为无卤高抑烟阻燃剂,广泛应用于橡胶㊁塑料㊁涂料等材料[38]㊂LDHs 在阻燃领域的应用将在后文详细阐述,此处不再赘述㊂2㊀LDHs 热分解和阻燃机理分析2.1㊀热分解分析图5㊀典型的LDHs(Mg 6Al 2(OH)16CO 3㊃4H 2O)的TG-DTA 曲线Fig.5㊀TG-DTA curves of typical LDHs (Mg 6Al 2(OH)16CO 3㊃4H 2O)为探究LDHs 的阻燃机理,使用热重差热法(TG-DTA)对LDHs 的热分解过程进行分析㊂大量实验表明[35,39-42],LDHs 的热分解主要包括两个过程:(1)在室温~250ħ阶段主要是样品晶粒物理吸附水和层间结晶水的脱除;(2)高于250ħ的阶段是层间阴离子的热分解和层板羟基脱除㊂图5是典型的LDHs(Mg 6Al 2(OH)16CO 3㊃4H 2O)的TG-DTA 曲线㊂由图可见,DTA 曲线上有两个明显的吸热峰,对应的TG 曲线显示有两个明显的失重台阶,表明该水滑石样品热分解过程中存在两个阶段㊂第一阶段:吸热峰在200~250ħ范围内,最大失重峰温为220ħ,这个阶段对应的是吸附水和层间结晶水的脱除,此时仍保持层状结构,样品质量损失约13%,发生如式(1)所示化学变化㊂Mg 6Al 2(OH)16CO 3㊃4H 2O ңMg 6Al 2(OH)16CO 3+4H 2Oʏ(1)㊀㊀第二阶段:吸热峰在400~450ħ范围内,最大失重峰温为416ħ,这个阶段对应的是层间阴离子的热分解和层板上OH -的脱除,标志着水滑石层状结构被破坏,此阶段质量损失约为32%㊂温度超过600ħ之后,DTA 曲线没有明显的吸热峰,TG 曲线表示仅有少量质量损失,此时层板上仅剩余OH -持续脱除,超过700ħ后,质量不再变化,此时层状结构完全破坏,形成固熔体[43]㊂这个阶段化学变化如式(2)所示㊂Mg 6Al 2(OH)16CO 3ң6MgO +Al 2O 3+CO 2ʏ+8H 2Oʏ(2)㊀㊀运用TG-DTA 可以对LDHs 的热分解机理函数进行分析,通常选用非等温法来进行[44]㊂由于LDHs 的热分解属于A (s)ңB (s)+C (g)类型的反应,线性升温条件下,常用的热分解动力学方程有微分式和积分式,分别如式(3)㊁式(4)所示㊂d αd T =A βexp -E RT ()f (α)(3)g (α)=ʏA βexp -E RT ()d T (4)式中:f (α)和g (α)是热分解动力学机理函数;α是温度T 时的热分解百分数;β是线性升温速率,ħ/min;A 为指前因子,s -1;T 为温度,K;E 为活化能,J /mol;R 为理想气体常数,J /(mol㊃K)㊂谢鲜梅等[45]利用TG-DTG 详细研究了镁铝摩尔比为3时LDHs 的热分解行为,并应用微分法(Achar 法)和积分法(Sativa-Sestak 法)分别求出其热分解机理函数㊂研究表明,镁铝类水滑石两个热分解过程中的最可几机理函数所对应的积分机理函数均为:g (α)=(1-α)-1-1(5)第一阶段热分解表观活化能E 1为46.99~48.66kJ /mol,ln A 1为12.73~13.60;第二阶段热分解表观活化能E 2为141.00~144.02kJ /mol,ln A 2为14.50~19.43㊂2.2㊀阻燃机理分析LDHs 因其独特的层板结构和组成离子的可调控性,在阻燃材料领域兼有传统氢氧化镁和氢氧化铝的4038㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第39卷优点,又能扬长避短克服它们各自的不足,同时具有阻燃㊁抑烟㊁填充多种功能[46]㊂阻燃剂主要是在材料燃烧过程中阻止或减缓燃烧的进行,不同阻燃剂其阻燃机理不一㊂大量研究证明[47-49],LDHs在材料燃烧过程中会通过一系列物理化学变化起到明显的阻燃效果,可分别从冷却㊁隔离㊁窒息和化学抑制四个方面来分析其阻燃机理㊂LDHs受热后,在其第一阶段热分解过程中会释放出大量的吸附水和层间结晶水,第二阶段热分解过程则伴随着持续的层板羟基和层间阴离子的脱除,这两个阶段都会吸收大量的热量,从而降低燃烧物周围温度,减缓其热分解速率,降低燃烧速度㊂受热产生的大量水蒸气和二氧化碳气体在吸收热量的同时,也能稀释燃烧区域可燃气体和氧气的浓度,从而减慢或阻止燃烧的进行㊂随着LDHs层板羟基和层间阴离子的脱除,层状结构遭到破坏,晶相结构发生变化,形成由层板阳离子金属组成的固熔体物质,牢牢吸附在燃烧物表面隔离空气中的氧气,阻止燃烧的进行㊂LDHs具有较大的比表面积,在受热分解过程中形成具有高分散强碱性的Mg(Al)O等活性位点,同时对材料燃烧过程中产生的酸性气体起到极强的吸附作用,从而起到抑烟的作用,并且对燃烧过程中自由基的吸附和阻断也能起到一定作用㊂3㊀LDHs在阻燃领域的应用人类的生活离不开各种有机材料,但大多数有机材料可燃,易燃,为减少其带来的火灾威胁,必须添加阻燃剂以提高材料的阻燃性能㊂目前使用最广的阻燃剂是卤系阻燃剂,但其弊端明显,作用时易产生大量烟雾及有毒有害气体,易造成 二次灾害 ,不符合现代安全环保理念㊂因此,开发高效㊁无毒㊁无卤㊁少烟的新型阻燃剂将是未来阻燃剂的发展方向㊂LDHs安全,无毒,不产生有毒有害气体,具有优良的阻燃和抑烟性能,是一种很有前景的阻燃剂㊂相较于传统的Mg(OH)2和Al(OH)3阻燃剂,LDHs更具优势㊂任庆利等[50]比较了MgAl-LDHs㊁Mg(OH)2和Al(OH)3分别作为阻燃剂填充PE/EVA聚合物(聚乙烯和乙烯-醋酸乙烯共聚物)体系的阻燃性能,结果表明MgAl-LDHs无论是低填充还是高填充,其阻燃性能均明显优于Mg(OH)2和Al(OH)3,且填充量越高,聚合物氧指数增加越明显㊂有报道[51-54]指出,纳米尺寸的LDHs可以显著改善材料的阻燃性能㊂Costa等[52]研究称添加少量纳米LDHs即可改善LDPE(低密度聚乙烯)的热稳定性,提高其热分解起始温度㊂Gu等[54]采用共沉淀法制备了纳米MgAl-LDHs,并用于胶合板的阻燃性能研究㊂与对照试样相比,7%(质量分数)的纳米MgAl-LDHs添加量即可使样品热释放速率减少6.8%,有效燃烧热减少7.48%,总热释放量减少9.97%,CO2生成量减少4.62%,CO生成量减少44%㊂同时采用纳米MgAl-LDHs作阻燃剂,并不影响胶合板其他物理和机械性能㊂3.1㊀主体层板的调控利用LDHs主体层板阳离子可调控性,可将部分高效阻燃元素(如Cu㊁Ni㊁Zn㊁Co㊁Fe㊁Mo等)引入LDHs 主体层板以提升效果其阻燃性能㊂Zhao等[55]制备了MgAl-LDHs㊁NiAl-LDHs和CuAl-LDHs,并作为EPDM(三元乙丙橡胶)的阻燃添加物,研究结果显示,CuAl-LDHs对EPDM的热稳定性能提升效果最佳,10%(质量分数)的添加量即可提高材料53%的垂直燃烧时间,磨损量减少45%,同时EPDM的抗拉强度没有明显改变㊂Shi等[56]采用成核/晶化隔离法制备了MgAl-CO3-LDHs和ZnMgAl-CO3-LDHs,并考察两种LDHs阻燃剂在EVA-28(乙烯-醋酸乙烯共聚物)中的阻燃和抑烟性能㊂研究发现,ZnMgAl-CO3-LDHs中Zn2+的引入,能够降低LDHs主体层板和插层客体间的作用力,在阻燃作用时能更早失去羟基和层间碳酸根离子,增强阻燃性能,同时形成的ZnO产物能抑制烟气产生㊂与纯EVA-28相比,MgAl-CO3-LDHs/EVA-28的LOI值(极限氧指数)从21.4%提升至34.1%,Dm值(最大烟密度)从185降至123,ZnMgAl-CO3-LDHs/EVA-28的LOI 值从21.4%提升至40.2%,Dm值从185降至75.6㊂Han等[57]将ZnAl-LDHs作为阻燃剂与PS(聚苯乙烯)形成纳米复合材料,研究表明,复合材料热释放速率和烟气生成速率均有降低㊂Jiao等[58]制备了MgAlFe-CO3-LDHs材料,并应用于EVA样品的阻燃,结果显示Fe3+的引入将极大地降低材料热释放速率,提升LOI值,EVA样品垂直燃烧可达到UL-94V-0级㊂同样,Qian等[59]的研究也得到了相同的结论㊂㊀第12期邹㊀瑜:水滑石类功能材料的特性分析及其阻燃应用4039过渡金属Co具有较高的熔点和沸点,其单质和化合物常用于耐火材料中,将Co2+引入LDHs主体层板结构中,可提高LDHs的阻燃性能㊂Wang等[60]制备了CoMgAl-LDHs,并用硬脂酸钠进行表面改性㊂研究了改性CoMgAl-LDHs对EVA样品阻燃和力学性能的影响,结果指出,Co2+的引入提高了复合材料的阻燃性和韧性㊂3.2㊀功能性客体插层LDHs具有层间阴离子可交换性,利用这一性质可将具有阻燃效果的功能性客体阴离子插层进入LDHs,从而得到不同阻燃效果的新型LDHs㊂BO3-3(硼酸根)在受热状态时能形成玻璃态B2O3,B2O3覆盖在燃烧物表面并促进材料炭化,从而隔绝氧气和热量,发挥其阻燃效果,因此将客体BO3-3插层进入LDHs,可得到阻燃性能更强的新型LDHs㊂李素峰等[61]采用成核/晶化隔离法制备了MgAl-CO3-LDHs和ZnMgAl-CO3-LDHs,并用离子交换法组装得到了具有完整晶体结构的BO3-3插层ZnMgAl-LDHs,研究了上述阻燃剂材料与EVA-28形成的复合材料的阻燃性能㊂结果显示,在相同添加量下,MgAl-CO3-LDHs比BO3-3插层ZnMgAl-LDHs表现出更好的阻燃性能,但BO3-3插层ZnMgAl-LDHs有更好的抑烟性能,LDHs中BO3-3含量远远低于纯硼酸锌中BO3-3的含量,而其对复合材料的阻燃抑烟效果相当于后者,足以说明BO3-3插层LDHs产物是一种优异的阻燃材料㊂Wang等[62]考察了BO3-3插层ZnAl-LDHs/PP(聚丙烯)纳米复合材料的阻燃性能,研究表明纳米复合材料中BO3-3插层ZnAl-LDHs添加量为15%(质量分数)时即显示出优异的阻燃隔热效果,材料热释放速率减少63.7%㊂含磷化合物是一类优质的阻燃剂,应用历史较早,具有低烟㊁无卤㊁无毒等优点,在阻燃作用时能生成强脱水性的聚偏磷酸,使燃烧物脱水炭化形成致密的炭化层,阻止材料的进一步燃烧,同时吸收大量的热,以及捕获燃烧产生的自由基,抑制火焰的产生㊂低添加量含磷化合物即可达到较好的阻燃效果,在LDHs中引入含磷阴离子客体,或可提升其阻燃效率㊂Xu等[63]先利用阴离子交换法将客体P3O5-10插层MgAl-LDHs,得到产物记作P-LDHs,随后用APTS(3-氨丙基三乙氧基硅烷)对P-LDHs进行表面改性,得到产物记作S-LDHs,最后考察了MgAl-LDHs㊁P-LDHs和S-LDHs三种材料对聚氨酯的阻燃性能㊂研究表明,相同添加量下P-LDHs和S-LDHs都对聚氨酯材料表现了极佳的阻燃和抑烟效果,两者热释放速率分别降低了58%和70%,10min烟密度值分别降低了36%和52%㊂同时阻燃和抑烟机理分析表明,LDHs材料能促进残炭层从晶体无序转换为晶体有序状态,形成交联和积累㊂对于S-LDHs来说,燃烧过程中会产生-P(=O)-O-C-和-P(=O)-O-Si-结构,两者能显著增强残炭层稳定性,从而隔绝氧气和热量的释放,达到阻燃和抑烟效果㊂Jin 等[64]将含磷的植酸插层进入LDHs,得到PA-LDHs,作为PLA(聚乳酸)材料的阻燃剂,结果显示,PA-LDHs 添加量为1%(质量分数)时即可使PLA的LOI值从19.4%提高至38.9%,UL-94阻燃测试从无等级至V-0级别,热释放速率峰值从812kW/m2降至301kW/m2㊂LDHs层间阴离子不仅仅局限于一种,也可扩展至两种或更多㊂Zhou等[65]在微波辅助下制备了纳米尺寸的MgAlZn-SnO2-3/CO2-3-LDHs,并考察了其对EVA材料的阻燃性能㊂结果显示,SnO2-3和CO2-3两者的协同作用能显著提高EVA材料的阻燃和抑烟性能,与纯EVA样品相比,MgAlZn-SnO2-3/CO2-3-LDHs/EVA复合材料的热释放速率减少了68.5%,总热释放量减少了22.2%,产烟速率降低了71.2%㊂说明MgAlZn-SnO2-3/CO2-3-LDHs的阻燃抑烟效果优良,是一款极具潜力的高效阻燃剂㊂3.3㊀协同效应LDHs作为阻燃剂,兼具无毒㊁无卤㊁阻燃和抑烟等优点,但也存在无机阻燃剂添加量大㊁阻燃效率低等缺点,为改善这一情况,除了调变LDHs主体层板金属离子和引入阻燃效率高的功能性客体插层外,还可与其他类型阻燃剂复配,发挥协同效应,提升阻燃效率㊂Yi等[66]将介孔二氧化硅和MgAl-LDHs协效复配应用于EVA材料的阻燃中㊂研究发现,与纯EVA相比,介孔SiO2/MgAl-LDHs的EVA材料LOI值明显提升,热释放速率和总热释放量明显降低,分析原因在于介孔二氧化硅的加入能够使残炭层更加交联致密,提升抑烟效果,同时介孔二氧化硅和MgAl-LDHs协同效应形成的凝聚相能够促进H2O和CO2的释放,减少有害气体的产生㊂Mo等[67]研究了MgAlCo-LDHs阻燃剂和DPCPB(一种由氯代磷酸二苯酯和三聚氰胺合成的膨胀型阻燃4040㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第39卷剂)阻燃剂协同作用于ABS树脂(丙烯腈-丁二烯-苯乙烯共聚物)的性能㊂ABS/DPCPB(质量比为100ʒ25)复合材料LOI值为23.9%,阻燃等级为UL-94V-2级;添加MgAlCo-LDHs后,ABS/DPCPB/MgAlCo-LDHs(质量比为100ʒ21ʒ4)复合材料的LOI值为24.7%,阻燃等级为UL-94V-1级㊂DPCPB与MgAlCo-LDHs具有较强的协同效应㊂Sen等[68]采用表面活性剂十二烷基硫酸钠对制备的NiAl-LDHs进行改性得到产物sN-LDHs,sN-LDHs 再与c-MWCNT(羧酸功能化的多壁碳纳米管)三维混合协同作用于PS(聚苯乙烯)材料阻燃中㊂结果表明, PS/0.3%(质量分数)c-MWCNT/3%(质量分数)sN-LDHs纳米复合材料具有最佳的热稳定性和阻燃性㊂c-MWCNT与LDHs材料混合具有优异的协同效应,阻燃效率大大提升㊂4㊀结㊀语利用LDHs独特的层状结构,层板和层间离子的可调控性可实现其分子组装的多样化,得到性能各异的新型功能材料㊂在阻燃领域,LDHs绿色环保,潜力巨大,一直是国内外竞相研发的热点材料㊂在LDHs阻燃剂拓展开发方式上,一方面是利用其结构特点引入高效的阻燃元素进入主体层板结构;另一方面是通过客体插层方式引入具有阻燃效果的基团;还可通过与其他类型材料复配来发挥协同阻燃作用,三种方式均可得到性能优异的LDHs类阻燃材料㊂但目前也存在阻燃机理研究不够深入,客体插层的构筑原则不明确,协同效应机理不清晰等问题有待解决,以期新型环保LDHs类阻燃材料得到更广泛的应用㊂参考文献[1]㊀Cavani F,TrifiròF,Vaccari A.Hydrotalcite-type anionic clays:preparation,properties and applications[J].Catalysis today,1991,11(2):173-301.[2]㊀Feitknecht W,Gerber M.Zur Kenntnis der Doppelhydroxyde und basischen Doppelsalze II.Über Mischfällungen aus Calcium-Aluminiumsalzlösungen[J].Helvetica Chimica Acta,1942,25(1):106-131.[3]㊀Allmann R,Jepsen H P.Die struktur des hydrotalkits[J].Neues Jahrbuch fur Mineralogie Monatshefte,1969,12:544-551.[4]㊀Kovanda F,JindováE,Lang K,et al.Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate)nanocomposites[J].Applied Clay Science,2010,48(1-2):260-270.[5]㊀Evans D G,Xue D A.Preparation of layered double hydroxides and their applications as additives in polymers,as precursors to magneticmaterials and in biology and medicine[J].Chemical Communications,2006,37(5):485-496.[6]㊀Rives yered double hydroxides:present and future[M].New York:Nova Science,2001.[7]㊀Dubey A,Rives V,Kannan S.Catalytic hydroxylation of phenol over ternary hydrotalcites containing Cu,Ni and Al[J].Journal of MolecularCatalysis A:Chemical,2002,181(1):151-160.[8]㊀Rives V,Prieto O,Dubey A,et al.Synergistic effect in the hydroxylation of phenol over CoNiAl ternary hydrotalcites[J].Journal of Catalysis,2003,220(1):161-171.[9]㊀Auer S M,Gredig S V,Koppel R A,et al.Synthesis of methylamines from CO2,H2and NH3over Cu-Mg-Al mixed oxides[J].Journal ofMolecular Catalysis A:Chemical,1999,141(1-3):193-203.[10]㊀Velu S,Ramaswamy V,Ramani A,et al.New hydrotalcite-like anionic clays containing Zr in the layers[J].Chem Inform,1998,29(7):2107-2108.[11]㊀Velu S,Suzuki K,Osaki T,et al.Synthesis of new Sn incorporated layered double hydroxides and their evolution to mixed oxides[J].MaterialsResearch Bulletin,1999,34(10):1707-1717.[12]㊀Carrado K A,Kostapapas A,Suib S yered double hydroxides(LDHs)[J].Solid State Ionics,1988,26(2):77-86.[13]㊀Leroux F,Besse J P.Polymer interleaved layered double hydroxide:a new emerging class of nanocomposites[J].Chemistry of Materials,2001,13(10):3507-3515.[14]㊀Roland S C,Besse J P,Leroux F.Polymerization of sulfopropyl methacrylate,a surface active monomer,within layered double hydroxide[J].Chemistry of Materials,2004,16(25):5512-5517.[15]㊀Choy J H,Kwak S Y,Park J S,et al.Cellular uptake behavior of[γ-32P]labeled ATP-LDH nanohybrids[J].Journal of Materials Chemistry,2001,11(6):1671-1674.[16]㊀Choy J H,Park J S,Kwak S Y,et yered double hydroxide as gene reservoir[J].Molecular Crystals&Liquid Crystals,2000,341:425-429.[17]㊀Evans D G,Slade R C T.Structural aspects of layered double hydroxides[M].Springer Berlin Heidelberg,2005.[18]㊀Gastuche M C.Mixed magnesium-aluminium hydroxides[J].Clay Minerals,1967,7(2):177-192.㊀第12期邹㊀瑜:水滑石类功能材料的特性分析及其阻燃应用4041 [19]㊀Wu J S,Xiao Y K,Wan J Y,et al.The growth mechanism of hydrotalcite crystal[J].Science China Technological Sciences,2012,55(4):872-878.[20]㊀Naghash A,Etsell T H,Lu B.Mechanisms involved in the formation and growth of Al-Cu-Ni hydrotalcite-like precipitates using the ureahydrolysis scheme[J].Journal of Materials Chemistry,2008,18(22):2562.[21]㊀Gomes J F P,Puna J F B,GonÇalves L M,et al.Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production[J].Energy,2011,36(12):6770-6778.[22]㊀Lei X D,Lu W,Peng Q,et al.Activated MgAl-layered double hydroxide as solid base catalysts for the conversion of fatty acid methyl esters tomonoethanolamides[J].Applied Catalysis A:General,2011,399(1-2):87-92.[23]㊀Huang Y Y,Chen X P,Deng Y F,et al.A novel nickel catalyst derived from layered double hydroxides(LDHs)supported on fluid catalyticcracking catalyst residue(FC3R)for rosin hydrogenation[J].Chemical Engineering Journal,2015,269:434-443.[24]㊀Ma W,Ma R,Wang C,et al.A Superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water[J].Acs Nano,2015,9(2):1977-1984.[25]㊀Zhao Y F,He S,Wei M,et al.Hierarchical films of layered double hydroxides by using a sol-gel process and their high adaptability in watertreatment[J].Chemical Communications,2010,46(17):3031-3033.[26]㊀Ardau C,Frau F,Lattanzi P.Antimony removal from aqueous solutions by the use of Zn-Al sulphate layered double hydroxide[J].Water,Air,&Soil Pollution,2016,227(9):1-15.[27]㊀Li T,Li G H,Li L H,et rge-scale self-assembly of3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexibleasymmetric supercapacitors[J].ACS Applied Materials&Interfaces,2016,8(4):2562-2572.[28]㊀Song Q L,Liu W,Bohn C D,et al.A high performance oxygen storage material for chemical looping processes with CO2capture[J].Energy&Environmental Science,2013,6(1):288-298.[29]㊀Li B,Wu P X,Ruan B,et al.Study on the adsorption of DNA on the layered double hydroxides(LDHs)[J].Spectrochimica Acta Part A:Molecular&Biomolecular Spectroscopy,2014,121:387-393.[30]㊀Liu Y,Gao Y,Wang Q,et al.The synergistic effect of layered double hydroxides with other flame retardant additives for polymernanocomposites:a critical review[J].Dalton Transactions,2018,47(42):14827-14840.[31]㊀Costa F R,Saphiannikova M,Wagenknecht U,et yered double hydroxide based polymer nanocomposites[M].Springer Berlin Heidelberg,2007.[32]㊀Bitinis N,Hernandez M,Verdejo R,et al.Recent advances in clay/polymer nanocomposites[J].Advanced Materials,2011,23(44):5229-5236.[33]㊀Liang J B,Ma R Z,Iyi N,et al.Topochemical synthesis,anion exchange,and exfoliation of Co-Ni layered double hydroxides:a route topositively charged Co-Ni hydroxide nanosheets with tunable composition[J].Chemistry of Materials,2010,22(2):371-378. [34]㊀Tarasov K A,Isupov V P,Chupakhina L E,et al.A time resolved,in-situ X-ray diffraction study of the de-intercalation of anions and lithiumcations from[LiAl2(OH)6]nX㊃qH2O(X=Cl-,Br-,NO-3,SO2-4)[J].Journal of Materials Chemistry,2004,14(9):1443-1447.[35]㊀Aramendía M A,Avilés Y,Borau V,et al.Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides:a spectroscopic study[J].Journal of Materials Chemistry,1999,9(7):1603-1607.[36]㊀Crepaldi E L,Valim J yered double hydroxides:structure,synthesis,properties and applications[J].Química Nova,1998,21(3):300-311.[37]㊀Das J,Patra B S,Baliarsingh N,et al.Adsorption of phosphate by layered double hydroxides in aqueous solutions[J].Applied Clay Science,2006,32(3):252-260.[38]㊀Zhang Z J,Lan B,Mei X J,et al.Study on fire retardant mechanism of nano-LDHs in intumescent system[J].Science in China Series B:Chemistry,2007,50(3):392-396.[39]㊀Valcheva-Traykova M L,Davidova N P,Weiss A H.Thermal decomposition of Mg,Al-hydrotalcite material[J].Journal of Materials Science,1993,28(8):2157-2162.[40]㊀Stanimirova T,Piperov N,Petrova N,et al.Thermal evolution of Mg-Al-CO3hydrotalcites[J].Clay Minerals,2004,39(2):177-191.[41]㊀Deng X,Fang Z,Zeng H,et al.Thermal decomposition mechanism and kinetics of Mg-Al hydrotalcite[J].Chemical Reaction Engineering&Technology,2010,26(4):309-314.[42]㊀Ren Q L,Luo Q.Preparation and thermal decomposition mechanism of Mg,Al-hydrotalcite nano-crystals with titania doping[J].Transactions ofNonferrous Metals Society of China,2006,16:s402-s405.[43]㊀Rives V.Characterisation of layered double hydroxides and their decomposition products[J].Materials Chemistry&Physics,2002,75(1):19-25.㊀[44]㊀Kissinger H E.Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29(11):1702-1706.[45]㊀谢鲜梅,胡秋霞,严㊀凯,等.镁铝水滑石热分解机理函数研究[J].太原理工大学学报,2008,39(4):347-350.[46]㊀Wang Z,Han E,Wei K.Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating[J].Progress in。

磷酸根插层水滑石阻燃剂的研制

磷酸根插层水滑石阻燃剂的研制
第 37卷 第 9期 2005年 9月无机盐工业INORGN IC CHEM ICALS
INDU STR Y
35
磷酸根插层水滑石阻燃剂的研制
林 宁 ,赵 谨 ,秦立娟
(天津化工研究设计院 ,天津 300131)
摘 要 :采用共沉淀法制备镁 - 铝水滑石 [M g4A l2 (OH ) 12 CO3 ·4H2 O ]前驱体 ,由离子交换法组装磷酸根插层 水滑石 。用化学分析 , XRD , DTA - TG等手段 ,对样品进行分析和表征 ,并测试其阻燃性能 。结果表明 ,磷酸根插层 水滑石用于高分子材料 ,具有阻燃 、消烟 、填充功能 ,是无卤的无机阻燃剂新品种 。 关键词 :镁 —铝水滑石 ;磷酸盐 ;磷酸根插层水滑石 ;阻燃剂 中图分类号 : TQ132. 2 文献标识码 : A 文章编号 : 1006 - 4990 (2005) 09 - 0035 - 03
36
无机盐工业 第 37卷第 9期
物相分析用日本理学 D /max - 3A 型 X射线衍射仪 (CuKα射线 ) 、PHS - 3 型 pH 计 (上海第二分析仪 器厂 ) 、日本岛津 TA - 50 I热重分析仪 。
M g - A l HT前驱体层状结构 。表 1 为 M g - A l HT 前驱体及磷酸根插层 HT的化学组成和 XRD 数据 。
作为高分子材料阻燃 剂 , 水 滑石 阻燃 剂兼 有 A l (OH ) 3和 M g (OH ) 2阻燃剂的优点 ,又克服了它们 各自的不足 ,同时具有阻燃 、消烟 、填充 3种功能 ,是 一种很有前途的高效 、无卤 、低烟 、无毒的无机阻燃 剂新品种 [ 1 - 2 ] 。近年来 ,随着交叉学科研究领域的 拓展 ,水滑石类材料作为新型无机功能材料的研究 引起广泛关注 ,由于单一层间阴离子水滑石受组成 的限制 ,考虑到水滑石具有可插层性 ,将某些无机或 有机阴离子插入其层间可制备多种插层结构功能材 料 。离子交换是合成插层结构 HT的方法 , M g - A l HT合成比较简单 ,目前已工业化 [ 3 - 4 ] 。本文通过制 备 M g - A l HT作为交换前驱体 ,然后嵌入磷酸根形 成 M g - A l - PO4 HT,使其对高分子材料具有阻燃作 用。

镁-铝-镧三元类水滑石的制备及其在PVC中的应用

镁-铝-镧三元类水滑石的制备及其在PVC中的应用

镁-铝-镧三元类水滑石的制备及其在PVC中的应用羌惜晨;肖尖;王凯;俞强;陈强【摘要】采用共沉淀-离心-水热法制备了结晶度高的镁-铝-镧三元类水滑石(MgAlLa-CO3-LDHs),采用SEM、XRD对产物结构进行表征.探索了共沉淀温度、共沉淀时间、水热温度、水热时间对产物结构的影响.研究发现:在n(M2+)∶n(M3+)=2∶1、n(La3+)∶n(Al3+)=1∶23、溶液pH≥10的情况下,70℃共沉淀反应2h,再在150℃下水热反应10h,制备出典型层状结构、高纯度、晶型完整且层板堆积有序性高的镁-铝-镧三元类水滑石.将其作为稳定剂用于聚氯乙烯(PVC)加工,通过静态热烘箱实验、刚果红实验,研究其对PVC热稳定性能的影响.结果表明:镁-铝-镧水滑石能够大幅度提高PVC的热稳定性能.【期刊名称】《无机盐工业》【年(卷),期】2018(050)011【总页数】5页(P76-80)【关键词】镁-铝-镧三元水滑石;热稳定剂;聚氯乙烯【作者】羌惜晨;肖尖;王凯;俞强;陈强【作者单位】常州大学材料科学与工程学院,江苏常州213164;常州南京大学高新技术研究院;常州南京大学高新技术研究院;常州大学材料科学与工程学院,江苏常州213164;常州南京大学高新技术研究院【正文语种】中文【中图分类】TQ132.2水滑石类化合物(LDHs)是一类无毒、环保、层板可控的无机材料[1]。

由于其在阻燃、吸附、催化、离子交换等领域具有良好的前景而得到国内外学者广泛的关注和研究[2-3]。

水滑石层板上的金属离子可被半径及电荷类似的金属离子所替代[4]。

水滑石的层间碳酸根和层板均可与聚氯乙烯(PVC)降解产生的氯化氢发生反应,进而提高PVC的长期热稳定性,因此被广泛用作PVC辅助热稳定剂[5-6]。

稀土元素La3+可以和水滑石其他金属离子组成MO6八面体筑成层板,且La3+较大的离子半径使它能通过静电引力和PVC活泼Cl-配位,显著抑制了HCl的脱附[7-9]。

镁铝水滑石制备阻燃纸的研究

镁铝水滑石制备阻燃纸的研究

李 超 ,在 读 硕 士 研 究
生 ; 究方 向为加工 纸 研 中图分类号 : 77 6 S6 T 2 :T 725 S 文献标志码: A
文章编号: 0 — 21 o0 2 0 9 4 1 7 9 12 1 o 0 0 3 0 (
与特 种功 能纸 。
1 1Vl o i l&aenur 3 a 21o 2 .C nP p P r d t 9 n 0 N2 h au 3 pI s y
o I ho LU Z o g HUI a — n T ni e a f u n a e n ier g i j L a, I hn , C nf gfi jnK y L bo P l a dPp r ,n ei ,T nz L e a p Eg n a n U iest f cec dTcn l y Tajn 0 4 7C ia nvri yo S i e n eh oo , ini 05, hn ) n a g 3
镁 铝水 滑石 制备 阻燃 纸 的研究
O 李超 刘忠 惠岚 峰 ( 灭沣 科 技 大学 天津 市制 浆造 纸 重 点实验 室 , 津 3 0 5 ) 天 0 4 7
摘 要 : 究 了 研 以镁铝 水 滑石为主的 阻燃体 系通 过 涂布工 艺
阻燃纸可 通过浆 内添加 、 浸渍 和涂布等加工 工艺将 阻燃剂 添加到纸 张 内部 或涂覆仔 纸张 表面 而 带得 … 涂 l 。 J 布法 制备 阻燃 纸 的优 点 足 阻燃 剂大部 分集 中在纸 的表
面 , 纸 的物 珲 性 能 影 响 较 小 , 只需 在 涂 料 中 加 入 阻 对 且
制备阻燃纸。 对所选用的阻燃剂( 镁铝水滑石、 红磷、 聚磷酸 铵、 硼酸锌 等) 进行 组合使用, 讨论了 它们之间的协效作用, 最 终确定了 优化的阻燃体 系。 结果表明: 镁铝水滑石与红磷 具 有良好的协效作用, 当镁铝水滑石用量9 份、 O 红磷用量1份 O

滑石粉在造纸行业中的应用和作用

滑石粉在造纸行业中的应用和作用

滑石粉在造纸行业中的应用和作用造纸是人们长期以来使用的一种重要工艺,它不仅能够满足我们日常生活中对纸张的需求,也承载着重要的文化传承和社会历史信息。

随着时代的发展和技术的进步,纸制品的品质和性能要求越来越高。

而作为造纸中的重要原材料之一,滑石粉也开始逐渐受到人们的重视。

滑石粉是以滑石为原料而制成的微粉末,其主要成分是三种碳酸镁矿物,分别是白云石、菱镁石和滑石。

它具有极好的化学稳定性、韧性和高温稳定性,在工业制造中有着广泛的应用。

特别是在造纸工业中,滑石粉可以发挥出许多独特的优点和功能。

首先,滑石粉可以改善纸张的光泽和颜色。

因为滑石粉是一种白色的末状物,它本身就具有很好的白度和反光性能。

因此在制造白卡纸、复合纸、光面高档罗卷纸等高质量纸张时,将适量的滑石粉加入到制造过程中,可以显著提高纸张表面的光泽度和白度,从而使纸张更加美观。

其次,滑石粉可以增强纸张的光滑度和坚韧性。

在造纸过程中,滑石粉可以与纤维形成固定的化学键,从而使得纤维形成更紧密的结构,提高纸张的强度和光滑度。

同时,由于滑石粉本身具有良好的韧性和延展性,它可以在制造过程中填充纸张内部的孔洞和隙缝,形成更加紧密的网络结构,从而提高纸张的耐久性。

第三,滑石粉可以增加纸张的吸水性和打印性能。

在现代社会中,我们几乎每天都要使用各种种类的纸张。

如何让纸张更加适合我们的需求是一个重要的问题。

而滑石粉可以对纸张的吸水性和打印性能产生直接的影响。

在制造印刷纸、书写纸、复印纸等高要求纸张时,加入适量的滑石粉可以使得纸张表面更加润滑,纸张的吸水性和打印性能也会有所提高。

总的来说,滑石粉在造纸行业中具有极为重要的作用。

它不仅可以提高纸张的美观程度和强度,还可以增加纸张的吸水性和打印性能。

随着纸张的应用范围和要求越来越高,滑石粉在造纸行业中的应用前景也越来越广阔。

镁铝水滑石cif文件

镁铝水滑石cif文件

镁铝水滑石cif文件
一种低成本的镁铝水滑石制备方法,其特征在于,包括以下步骤:
步骤一、以轻烧氧化镁粉为原料,加入到反应釜中与适量水混合后,通入二氧化硫气体,形成可溶性的亚硫酸氢镁溶液;
步骤二、在氢氧化钠溶液中加入氢氧化铝加热溶解,并加入碳酸钠,配置出偏铝酸钠及碳酸钠溶液;
步骤三、将步骤二配置的偏铝酸钠及碳酸钠溶液加入到步骤一制得的亚硫酸氢镁溶液中,升温加热并搅拌,得到的反应浆料为镁铝水滑石沉淀与亚硫酸钠溶液;
步骤四、将步骤三得到的反应浆料进行过滤和洗涤,得到镁铝水滑石滤饼、亚硫酸钠滤液以及洗涤液;
步骤五、将镁铝水滑石滤饼进行干燥,从而可得到镁铝水滑石产品;将亚硫酸钠滤液浓缩,从而可得到亚硫酸钠产品;
步骤六、将步骤四得到的洗涤液送入到步骤一的反应釜中以重复制备亚硫酸氢镁溶液。

所述的低成本的镁铝水滑石制备方法,其特征在于:所述轻烧氧化镁粉中的氧化镁含量为90%。

所述的低成本的镁铝水滑石制备方法,其特征在于:步骤一中反应釜内的反应温度为25-65℃,反应时间为6-12小时。

所述的低成本的镁铝水滑石制备方法,其特征在于:步骤一中制备得到的亚硫酸氢镁溶液的质量浓度为6-16%。

所述的低成本的镁铝水滑石制备方法,其特征在于:步骤二中氢氧化钠溶液的质量浓度为20-32%。

所述的低成本的镁铝水滑石制备方法,其特征在于:步骤三中的反应温度为85-105℃,反应时间为8-16小时。

所述的低成本的镁铝水滑石制备方法,其特征在于:所述氢氧化铝的白度≥90%,有效含量≥99%,粒度大于200目;所述二氧化硫气体中的二氧化硫体积含量>8%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镁铝类水滑石的合成及其在纸张阻燃中的应用王松林,陈夫山(青岛科技大学化工学院,青岛市,266042)摘要:随着现在阻燃技术的发展,无机阻燃剂的应用也得到了快速的发展。

镁铝类水滑石是兼具了传统氢氧化铝和氢氧化镁阻燃剂优点的新品种。

通过研究探讨共沉淀法合成的镁铝类水滑石方法,并通过纤维填充的方法应用到纸张阻燃中,讨论了镁铝类水滑石的晶体性质以及纸张阻燃性能。

结果表明,镁铝类水滑石胶体颗粒的体积平均粒径为112 nm;晶体结晶度较高,热稳定性好;颗粒带有较高的正电荷和高的比表面积,可与纤维通过电荷中和作用吸附在纤维上,起到加填、增白和阻燃作用的同时,还起到了微粒助留的作用。

水滑石用量在15%时,阻燃纸的氧指数为25%,纸张可以起到很好的阻燃效果。

关键词:镁铝类水滑石;阻燃纸;阻燃剂;共沉淀法阻燃剂的种类繁多,按是否参与高分子材料化学反应分类,有反应型阻燃剂和添加型阻燃剂。

其中添加型阻燃剂又有无机阻燃剂和有机阻燃剂两大类[1~4]。

无机阻燃剂主要类型有金属氢氧化物、金属氧化物和碱金属盐、氨盐、钼化物等。

有机阻燃剂主要有卤系阻燃剂、磷系阻燃剂和氮系阻燃剂等。

研究开发高效、无毒、低烟、高性能价格比、适于工业化生产的无机无卤阻燃剂,是当前该领域的前沿研究课题之一。

纸在人民生活和社会发展中起着十分重要的作用,其应用范围很广。

但是,纸及纸制品是极易燃烧的物质,不少火灾是纸及纸制品被引燃所造成的,对纸张的阻燃处理是十分必要的[5]。

美国、日本等国家在20 世纪60 年代就开始纸张阻燃技术的研究,迄今已取得了很多成果。

我国对纸张阻燃技术的研究起步较晚,但也已研制出绝缘性阻燃纸、阻燃塑料壁纸基材用难燃纸等纸种[6~9]。

阻燃纸主要有两大类:一类是以石棉、矿棉、玻璃纤维、海泡石纤维等无机矿物纤维为主要成分与天然纤维抄造的纸张,另一类是在纸浆中添加各种阻燃剂或浸渍涂布制成的具有阻燃效果的纸张。

镁铝类水滑石兼具了氢氧化铝和氢氧化镁阻燃剂的优点,又克服了它们各自的不足,具有阻燃、消烟、填充功能,是一种高效、无卤、无毒、低烟的新型阻燃剂[10~13]。

镁铝类水滑石阻燃剂的工业化生产和应用已引起国内外的关注。

本文通过共沉淀法合成的镁铝类水滑石,并通过纸浆纤维填充的方法应用到纸张阻燃中,研究了镁铝类水滑石的晶体性质以及纸张阻燃性能。

1实验1.1 实验原料浆料:取自山东某造纸厂,阔叶浆。

水分含量:79.95%;打浆度:33.8 ºSR。

试剂:聚丙烯酰胺(PAM),汽巴公司,分子量500万。

氨水、MgCl2·6H2O、AlCl3·6H2O,均为分析纯。

1.2 镁铝类水滑石的合成制备在20℃下,将适量AlCl3·6H2O与MgCl2·6H2O溶解在蒸馏水中,固定总离子浓度0.5 mol/L,倒入三口瓶中,在氮气保护下,在高速搅拌下缓慢加入适量氨水(氨水加入量与镁铝比例有关,并控制在2小时内加完)。

加完氨水后继续剧烈搅拌1小时,之后在缓慢搅拌下老化2小时,生成镁铝的混合金属氢氧化物沉淀。

把沉淀物在室温下静置48小时,然后用蒸馏水离心洗涤(约在1000 rpm 下)。

每次离心10分钟后去掉上层清液。

共洗涤两次,用蒸馏水150 mL。

之后在70~80℃下胶溶5小时,胶溶后的混合液经离心洗涤,获得水滑石胶体[14]。

胶体水滑石在真空干燥箱内30℃真空干燥,研钵研磨成粉末状,过80目铜网筛,备用。

1.3 阻燃纸的制备纸浆在纤维标准解离器中按1.5%的浓度疏解30000转,之后,加入0~20%的固体水滑石粉末,混合均匀后,稀释至0.5%的浓度,助留剂PAM用量0.002%。

在纸页成形器上抄片,纸页定量60 g/m2左右。

1.4 分析与检测1.4.1水滑石胶体各元素的含量分析和粒度分布的测定、胶体颗粒Zeta电位测定。

水滑石胶体各元素的含量通过化学滴定方法测定;粒度分布和比表面积通过英国马尔文激光粒度仪测定;Zeta电位通过美国Zetaplus电位测定仪测定。

1.4.2 水滑石X-射线衍射分析镁铝类水滑石胶体X-射线衍射试样制备[15~17]:固含量1%镁铝类水滑石胶体和同体积的无水乙醇混合于真空干燥箱中在60℃下干燥,24小时后取出,在研钵中磨细,密封备用。

测定采用D/MAX-RB型X射线转靶衍射仪,40 KV×80 mA,Cu靶辐射,波长为0.15406 nm,管电流20 mA,扫描速度1º/min。

1.4.3 镁铝类水滑石胶体透射电镜观察分析将合成的镁铝类水滑石胶体用去离子水稀释数倍,用Hitachi model H-800透射电子显微镜对样品进行观察以获得其形貌特征。

1.4.4 阻燃纸物理性能的检测纸张的灰分、白度和抗张强度等按相关国家标准进行检测。

1.4.5 阻燃纸氧指数的检测[18]纸张恒湿24 h后,切成120 mm×13 mm的纸条,然后再恒湿4 h,采用LFY2606 型氧指数仪。

燃烧所用气源为工业级气体,O2和N2含量浓度均≥99.5%,符合GB3863及GB3864标准要求。

2结果与讨论2.1 镁铝类水滑石胶体化学式和性质镁铝类水滑石胶体中各元素的含量通过化学滴定方法测定,表1是镁铝类水滑石胶体的化学结构式和微粒颗粒体积平均粒径。

表1 镁铝类水滑石的化学式化学结构式镁铝比例比表面积/ m2·g-1Zeta电位/ mv体积平均粒径/ μmMgAl0.334(OH)3.204Cl0.098•nH2O 3:1 52.093 35.689 0.112在镁铝类水滑石的结构层中,Al3+,Mg2+居于层中八面体结构中心,并在同一层内随机分布。

由Loweustein定律可知[19],共享边的Mg2+(OH)6八面体是不显电性的,而Al3+(OH)6八面体带有正电荷,当镁铝类水滑石的结构层中有两个Al3+(OH)6八面体相邻形成共享边时,由于电荷斥力而造成结构不稳定,为避免镁铝类水滑石中Al3+(OH)6八面体之间共享边,镁铝之间的最小摩尔比是2:1。

镁铝初始摩尔比为3:1的样品更接近于自然界中存在的水滑石的镁铝摩尔比例,结构稳定。

镁铝类水滑石胶体相对比较稳定,但随时间的延长其晶格结构会发生一定的变化,微粒粒度会有变大的趋势,主要是晶核的继续增长作用。

层间的阴离子不断的置换作用使Al3+在结晶结构中的含量降低,从而使得微粒的Zeta电位降低。

水滑石胶体的带电情况和胶体微粒的大小会直接影响其应用性能。

水滑石颗粒的体积平均粒径为112 nm,颗粒呈正态分布。

水滑石以填料的形式加入到阻燃纸的抄造中,颗粒所带的电位会对其在纸料的留着有很大的影响。

镁铝类水滑石带有较高的正电荷(35.689mv)和高的比表面积,在造纸湿部过程中可以与纤维和细小纤维通过电荷中和作用吸附在纤维上。

这种微絮聚体的产生不仅提高了水滑石在阻燃纸中的留着率,而且也提高了细小纤维的留着,这对于提高成纸的匀度和光学性能有重要的意义。

同时,水滑石和细小纤维形成的微絮聚体还能发挥微粒助留助滤体系的功能。

2.2 水滑石结晶性能和颗粒微观分析2.2.1 水滑石颗粒的透射电镜观察通过透射电镜观察镁铝类水滑石胶体的结构形态。

图2是镁铝类水滑石胶体的透射电镜照片(放大倍数70,000),图3是镁铝类水滑石晶体的电子衍射图。

图2 镁铝类水滑石胶体的透射电镜照片图3 镁铝类水滑石晶体的电子衍射图由镁铝类水滑石胶体的透射电镜(TEM)照片和水滑石晶体的电子衍射图可以看出,合成的镁铝类水滑石溶胶的胶粒呈片状结构,直径最大的也只有130 nm,平均粒径仅100 nm左右,而厚度只有几个纳米;颗粒由片状结构叠加而成,大部分的片状体呈六边形的八面体结构,结晶状态较好。

镁铝类水滑石胶体结晶性能较好,结晶度较高,晶体形状为较为规则的六角型。

有少量的晶体形状不太规则,可能由晶体缺陷引起。

2.2.2 水滑石X-射线衍射分析图4是镁铝类水滑石的XRD图谱。

镁铝类水滑石的X-射线衍射图谱的衍射峰分别出现在2θ为11.6º、23.6º、35.1º、37.1º、60.5º和63.2º的位置。

其中以001面的衍射峰最强,该峰出峰位置在2θ为11.6º处。

由图谱还可得知,样品结晶性很好,层结构规则,谱图基线平稳,杂峰少,结晶度较高,晶相比较单一,热稳定好。

图4 镁铝类水滑石的XRD图谱理想的镁铝类水滑石胶体应具有高的带电荷量、比较均匀的粒度分布和比较小的微粒平均粒径。

这受到实验条件切的影响,如,反应pH值、反应物原始镁铝摩尔比例、反应时间、胶溶的时间和温度等都会影响镁铝类水滑石胶体的结晶。

水滑石的颗粒和带电情况直接影响到其在纸中的留着问题,其晶体结构直接影响着水滑石的热稳定性,决定着其阻燃纸的阻燃效果。

分析了解水滑石颗粒的粒度分布、颗粒带电荷情况以及晶体形态,对于合理的利用水滑石作为阻燃材料加入到阻燃纸中是十分有益处的。

2.3 阻燃纸的物理性能阻燃纸中阻燃剂添加量理论上要小于纸品总质量的10%,若阻燃剂添加量大于10%,将会改变纸品本身的特性,如抗张强度降低、撕裂度下降、施胶度下降等,严重时可能会出现纸品发硬、掉粉、产生腐浆等现象[20]。

镁铝类水滑石的结晶水的热稳定性对其阻燃性能有重要的影响。

镁铝类水滑石的分解过程分2个阶段,第1阶段是失去镁铝类水滑石晶体中间层中的结晶水;第 2 阶段是失去镁铝类水滑石中的结构水[21,22]。

本实验在测定灰分时,在温度为(575±15)℃下,烘4 h,镁铝类水滑石即可全部分解为氧化镁和氧化铝。

可通过纸张中灰分含量,还原出纸浆纤维中镁铝类水滑石的加填量。

不同水滑石用量的阻燃纸的物理性能如表2。

表2 阻燃纸的物理性能试验编号水滑石用量/ %灰分/ %抗张指数/ N·m·g -1白度/ %1 0 0.3 13.2 78.22 5 2.1 13.0 78.43 10 5.2 12.4 81.34 15 7.4 11.0 81.95 20 10.4 10.0 82.4由表2可以看出,随着水滑石添加量的增加,成纸灰分逐渐增加,而成纸的强度指标逐渐下降,水滑石在10%的添加量时,其阻燃纸的强度指标下降了6%,主要原因就是水滑石的添加量超过了成纸的填料用量标准会影响细小纤维之间的结合力,对成纸的强度指标产生不利影响。

水滑石粉末的白度较高,其加填作用会带来成纸的白度的提高,这对于要求高白度指标的纸种来说是非常有利的一面。

阻燃纸的灰分随着水滑石的添加量的增加而增大,水滑石的总体留着率为70%左右。

总体留着率较高的主要原因是水滑石层状颗粒带有正电荷,可以与细小纤维发生电荷中和吸附作用形成微絮聚体而增加了留着率。

相关文档
最新文档