两级式开关电源适配器方案研发之DC-DC极设计

合集下载

开关电源适配器设计方案

开关电源适配器设计方案

开关电源适配器设计方案开关电源适配器是一种将交流电转换成稳定的直流电的电子装置。

它广泛应用于各种电子设备中,如计算机、手机、电视等。

在设计开关电源适配器时,需要考虑其安全性、可靠性、效率和成本等因素。

下面是一个1200字以上的开关电源适配器设计方案。

设计需求:1.输入电压范围:85V-265VAC2.输出电压:12VDC3.输出电流:最大2A4.效率要求:高于85%5.安全标准:符合国际安全标准设计方案:一、输入部分设计:1.输入滤波电路:使用电源滤波电容器和电源滤波电感进行输入电压的滤波,以降低输入电源的噪声和干扰。

2.输入过压保护:使用过压保护电路,当输入电压超过设定范围时,断开输入电路,以保护电路安全。

3.输入过流保护:使用过流保护电路,当输入电流超过设定范围时,自动切断输入电路,以防止过载。

二、开关电源部分设计:1.双向开关电路:采用双向开关电路,可以实现输入和输出的电流、电压的正反向控制,以充分利用电能。

2.开关频率:选择合适的开关频率,以保证转换效率高、电磁干扰小。

3.开关控制IC:选择高性能的开关控制IC,具有过流、过压、短路等保护功能,并具有较高的工作效率和可靠性。

三、输出部分设计:1.输出稳压电路:使用稳压电路,保证输出电压稳定在12VDC,以满足设备对电压的要求。

2.输出过载保护:使用过载保护电路,当输出电流超过设定范围时,自动切断输出电路,保护设备安全。

3.输出短路保护:使用短路保护电路,当输出端短路时,自动切断输出电路,以防止设备损坏。

四、辅助电路和保护电路设计:1.温度保护:加装温度传感器,在温度超过设定范围时,自动切断电源,以确保电路安全。

2.过流保护:在输出端加装过流保护电路,当输出电流超过最大额定值时,自动切断输出电路,以保护电路和设备安全。

3.过压保护:在输出端加装过压保护电路,当输出电压超过设定范围时,自动切断输出电路,以防止设备损坏。

4.短路保护:在输出端加装短路保护电路,当输出端短路时,自动切断输出电路,以保护电路和设备安全。

dcdc电路设计

dcdc电路设计

dcdc电路设计DC/DC电路设计是现代电子技术中一个重要的研究和设计领域,是将低电压转换为高电压或相反的转换。

它们由各种特殊的半导体器件和其他电子元件组成,以及各种电子电路技术,如放大器、滤波器、比较器和放大器等技术,其主要应用于电源转换、电池驱动、模拟和数字电路,以及机器人、工业自动化等领域。

DC/DC电路设计的关键步骤是确定目标电压、电源类型、环境要求和电气特性等。

确定了以上参数之后,可以确定电路的电压放大器、滤波器、比较器和放大器等器件的具体型号,及其具体连接方式。

根据电路应用需要,我们可以采用多种不同类型的DC/DC电路设计。

其中包括单板式DC/DC转换器、双模式DC/DC转换器、多相式DC/DC转换器、DC/DC模块转换器、内置DC/DC转换器、内置式包括式电源及其他类型的DC/DC电路设计方案。

DC/DC转换器的设计主要包括器件规格选择、电压放大器、滤波器、比较器、放大器、模拟器等技术,电路完成和测试等方面。

器件规格选择是DC/DC转换器设计的关键,对于器件材料、尺寸、电气特性,以及器件选择设计,都要结合输入电压、输出电压、功率、工作频率等参数进行选择和设计。

DC/DC电路设计也包括电路的完成和测试,包括设计电路的封装实施,以及针对不同设备的机械配置和热效应的计算和分析,及对电路的实验和测试。

一般来说,在电路设计之前,应先将所有元件连接起来,并进行调整和测试,以确保电路可以正常工作。

在电路设计完成后,还需要进行电路性能测试,确定电路在不同负载、不同电压、不同频率和不同工作状态下的性能参数等。

DC/DC电路设计由若干种特殊技术组成,可以通过这些技术设计出效率高、可靠性强、电路成本低的DC/DC转换器。

然而,在进行DC/DC电路设计之前,需要了解输入电压、输出电压、功率、工作频率等参数,以便更好地满足设计要求。

此外,DC/DC电路设计还需要对各种技术参数和元件规格进行选择和调整,使电路具备良好的性能和可靠性。

AC-DC-DC电源技术方案

AC-DC-DC电源技术方案

A C-D C-D C电源技术方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN直流电源设计方案目录1.概述................................... 错误!未定义书签。

2 系统的整体结构设计..................... 错误!未定义书签。

3.三相六开关APFC电路设计............................... 错误!未定义书签。

4. 移相全桥ZVS PWM变换器分析与设计 ............. 错误!未定义书签。

5.高压直流二次电源DC/DC变换器设计 .......... 错误!未定义书签。

6. 器材选取 .............................................................. 错误!未定义书签。

7. 电源系统散热分析 .............................................. 错误!未定义书签。

8. 参数设计仿真结果 .............................................. 错误!未定义书签。

1.概述目的和意义目前,越来越多的电力电子设备投入到电网中,由于不可控整流器在大功率电源设备中的广泛应用,其对电网造成的谐波污染日益严重,使得电能生产、传输和利用的效率降低,并影响电网的安全运行。

为了保证电网的正常运行,现在采取的办法往往是限制接入电网的整流设备的容量,这就限制了一些大功率直流电源的使用。

电力电子装置,尤其是各种直流变换装置向高频化、高功率密度化发展,其关键技术是软开关技术。

因此,大功率开关电源的功率因数校正技术及 DC/DC变换器软开关技术是当前研究的热点。

开关电源技术发展现状开关电源是采用功率半导体器件作为开关元件,通过控制开关元件的占空比进而调整输出电压的电源变换装置,开关电源的前置级将电网工频电压经整流滤波为直流电压,再经直流变换电路即开关电源后即处理后输出、整流、滤波。

常用DCDC电源电路方案设计

常用DCDC电源电路方案设计

常用DC/DC电源电路设计方案分析1、DC/DC电源电路简介DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。

一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。

常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。

不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V15V,数字电路常用3.3V等。

结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。

2、DC/DC转换电路分类DC/DC转换电路主要分为以下三大类:(1)稳压管稳压电路。

(2)线性(模拟)稳压电路。

(3)开关型稳压电路3、稳压管稳压电路设计方案稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。

比较常用的是并联型稳压电路,其电路简图如图(1)所示,选择稳压管时一般可按下述式子估算:(1)Uz=Vout;(2)Izmax=(1.5-3)L Imax(3)Vin=(2-3)Vout这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。

有些芯片对供电电压要求比较高,例如ADDA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403,REF02,TL431等。

这里主要介绍TL431、REF02的应用方案。

3.1TL431常用电路设计方案TL431是一个有良好的热稳定性能的三端可调分流基准电压源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。

该器件的典型动态阻抗为0.2Ω,参考电压源误差1%,输出电流为1.0-100mA。

开关电源管理芯片可分为AC-DC和DC-DC两大类

开关电源管理芯片可分为AC-DC和DC-DC两大类

开关电源管理芯片可分为AC/DC和DC/DC两大类
 开关电源管理芯片可分为AC/DC和DC/DC两大类
 人们在开关电源芯片技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。

 开关电源芯片就是利用电子开关器件如晶体管、场效应管、可控硅闸流管等,通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器
件对输入电压进行脉冲调制,维持稳定输出电压的一种电源芯片,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压
 开关电源芯片的控制技术脉冲宽度调制(PWM) ,PWM是目前应用在开关电源中最为广泛的一种控制方式,它的特点是噪音低、满负载时效率高且能工作在连续导电模式,现在市场上有多款性能好、价格低的PWM集成芯片
 M6362A 是一款高度集成的电流模式PWM 控制芯片,主要用于高性能、低待机功耗和低成本的离线反激式电源适配器中。

在满载时,IC 在固定频率。

AC-DC-DC电源技术方案设计

AC-DC-DC电源技术方案设计

直流电源设计方案目录1.概述 (1)2 系统的整体结构设计 (3)3.三相六开关APFC电路设计 (23)4. 移相全桥ZVS PWM变换器分析与设计 (28)5.高压直流二次电源DC/DC变换器设计 (34)6. 器材选取 (40)7. 电源系统散热分析 (55)8. 参数设计仿真结果 (58)1.概述1.1 目的和意义目前,越来越多的电力电子设备投入到电网中,由于不可控整流器在大功率电源设备中的广泛应用,其对电网造成的谐波污染日益严重,使得电能生产、传输和利用的效率降低,并影响电网的安全运行。

为了保证电网的正常运行,现在采取的办法往往是限制接入电网的整流设备的容量,这就限制了一些大功率直流电源的使用。

电力电子装置,尤其是各种直流变换装置向高频化、高功率密度化发展,其关键技术是软开关技术。

因此,大功率开关电源的功率因数校正技术及DC/DC变换器软开关技术是当前研究的热点。

1.2 开关电源技术发展现状开关电源是采用功率半导体器件作为开关元件,通过控制开关元件的占空比进而调整输出电压的电源变换装置,开关电源的前置级将电网工频电压经整流滤波为直流电压,再经直流变换电路即开关电源后即处理后输出、整流、滤波。

为了稳定输出电压,设计电压反馈电路对输出的电压进行采样,并把所采样的电压信号送到控制电路中,进行比较处理,调节输出的控制脉冲的占空比,最终使输出电压的纹波及电源的稳定满足设计指标。

开关电源通常包括EMI滤波模块、AC/DC变换模块、DC/DC变换模块、控制、驱动及保护模块、辅助电源模块等。

传统的开关电源输入电流中谐波含量高,功率因数低,开关损耗大、电磁干扰严重等一系列问题阻碍了电源技术向着高效率、绿色化、实用化的方向发展。

自20世纪80年代以来,随着有源功率因数校正技术和软开关技术的发展,上述问题得到了较好的解决,开关电源技术也步入了一个新的迅速发展的阶段。

1.3 本次设计的主要容本次设计一款符合《航天地面直流电源通用规》要求的直流电源系统。

DCDC电源设计方案

DCDC电源设计方案

DCDC电源设计方案DC-DC电源设计是一种将直流电源转换为不同电压或电流输出的电源设计方案。

DC-DC电源的设计目标是提供高效率、稳定可靠的电源输出,确保电路正常工作和设备正常运行。

本文将介绍DC-DC电源设计的基本原理、设计步骤和一些具体的设计方案。

一、DC-DC电源设计的原理和基本概念DC-DC电源设计基于开关电源的原理,使用开关元件(如MOS管)周期性地开启和关闭来控制电源输出电压和电流的变化。

通过调整开关元件的开关频率、占空比和电压波形等参数,可以实现不同输出电压和电流的调节。

DC-DC电源设计中,常用的基本概念有:1.输入电压:直流电源输入的电压值,例如12V、24V等。

2.输出电压:DC-DC电源输出的电压值,例如5V、3.3V等。

3.输出电流:DC-DC电源输出的电流值,例如1A、2A等。

4.效率:DC-DC电源输出功率与输入功率之比,用来衡量电源转换的效率。

5.稳定性:DC-DC电源输出电压或电流的稳定性,要求在负载变化、输入电压波动等情况下仍能保持稳定。

二、DC-DC电源设计的步骤DC-DC电源设计一般包括以下几个步骤:1.确定设计需求和参数:根据目标设备的需求和规格,确定DC-DC电源的输入电压、输出电压和输出电流等参数。

2. 选择拓扑结构:根据需求参数和应用场景选择合适的DC-DC拓扑结构,常见的有反激式、降压Buck型、升压Boost型、降压升压Buck-Boost型等。

3.选择元器件和设计电路:根据拓扑结构选择合适的开关元件、滤波电感、滤波电容和控制电路等元器件,并设计合理的电路连接方式和参数。

4.进行电路仿真和优化:使用仿真软件对电路进行仿真分析,评估电路的性能指标,并根据仿真结果对电路进行优化调整。

5.PCB设计和布局:根据电路设计结果进行PCB设计和布局,确保电路的稳定性和可靠性。

6.电路调试和测试:对设计好的PCB电路进行调试和测试,验证电路的稳定性、效率和输出性能是否符合设计要求。

AC-DC-DC电源技术方案

AC-DC-DC电源技术方案

直流电源设计方案目录1.概述 (1)2 系统的整体结构设计 (3)3.三相六开关APFC电路设计 (23)4. 移相全桥ZVS PWM变换器分析与设计 (28)5.高压直流二次电源DC/DC变换器设计 (34)6. 器材选取 (40)7. 电源系统散热分析 (55)8. 参数设计仿真结果 (58)1.概述1.1 目的和意义目前,越来越多的电力电子设备投入到电网中,由于不可控整流器在大功率电源设备中的广泛应用,其对电网造成的谐波污染日益严重,使得电能生产、传输和利用的效率降低,并影响电网的安全运行。

为了保证电网的正常运行,现在采取的办法往往是限制接入电网的整流设备的容量,这就限制了一些大功率直流电源的使用。

电力电子装置,尤其是各种直流变换装置向高频化、高功率密度化发展,其关键技术是软开关技术。

因此,大功率开关电源的功率因数校正技术及DC/DC变换器软开关技术是当前研究的热点。

1.2 开关电源技术发展现状开关电源是采用功率半导体器件作为开关元件,通过控制开关元件的占空比进而调整输出电压的电源变换装置,开关电源的前置级将电网工频电压经整流滤波为直流电压,再经直流变换电路即开关电源后即处理后输出、整流、滤波。

为了稳定输出电压,设计电压反馈电路对输出的电压进行采样,并把所采样的电压信号送到控制电路中,进行比较处理,调节输出的控制脉冲的占空比,最终使输出电压的纹波及电源的稳定满足设计指标。

开关电源通常包括EMI滤波模块、AC/DC变换模块、DC/DC变换模块、控制、驱动及保护模块、辅助电源模块等。

传统的开关电源输入电流中谐波含量高,功率因数低,开关损耗大、电磁干扰严重等一系列问题阻碍了电源技术向着高效率、绿色化、实用化的方向发展。

自20世纪80年代以来,随着有源功率因数校正技术和软开关技术的发展,上述问题得到了较好的解决,开关电源技术也步入了一个新的迅速发展的阶段。

1.3 本次设计的主要内容本次设计一款符合《航天地面直流电源通用规范》要求的直流电源系统。

反激小功率DC-DC二次电源的优化设计

反激小功率DC-DC二次电源的优化设计

反激小功率DC-DC二次电源的优化设计反激式开关电源由于电路简单、原副边电气隔离和可实现升降压等优点,在计算机、信息通信等小功率电源领域具有广泛应用。

电源是电子设备正常工作的保障,随着电子设备性能的不断提高,对电源工作的稳定性和可靠性提出了新的要求。

本文以铁路应用电源为背景,为提高其电源的稳定性和可靠性,对反激小功率DC-DC二次电源进行优化设计。

首先在深入分析反激开关电源工作原理及控制方式基础上,对降低功率开关管可靠性的电流尖峰进行电路建模和仿真;其次分析变压器的设计方法,并研究磁芯形状和材质等因素的影响;再次设计功率电路部分,包括功率开关管和整流二极管、RCD箝位电路、UC3843芯片外围电路、输出滤波电路等;另外对电源的控制环路进行分析与设计,并设计整个系统的电路图,制成电源样机;最后对样机的纹波和动态响应等性能进行了测试及分析。

通过电路建模和仿真,系统分析了几个关键因素对电流尖峰的影响,给出了相应解决措施,为反激开关电源器件的选择提供了参考依据;通过高频变压器的研究与设计,得出选择磁芯参数的依据,对变压器的工程设计具有参考价值;通过控制环路的分析和计算,提高了电源的稳定性。

实验结果表明:电源输出电压纹波小于1%,环路动态性能良好,电路的稳定性和可靠性较高。

本文对反激DC-DC二次电源的设计有实际应用价值。

多路输出DC_DC模块电源的设计与实现

多路输出DC_DC模块电源的设计与实现

多路输出DC/DC模块电源的设计与实现发布时间:2022-03-05T07:08:34.136Z 来源:《探索科学》2021年11月上21期作者:黄涛[导读] 随着近些年电源技术在各领域的不断发展与应用,电源的控制芯片上也被集成了许多模块功能,这不仅使芯片外围电路更加简单的同时也提高了电源的工作效率和可靠性,促进了多路输出开关电源的研究,也使其进入了快速发展的阶段。

本文主要从DC/DC模块电源的选择及应用角度出发,希望能够提供相关借鉴。

中航飞机股份有限公司汉中飞机分公司黄涛陕西汉中 723213摘要:随着近些年电源技术在各领域的不断发展与应用,电源的控制芯片上也被集成了许多模块功能,这不仅使芯片外围电路更加简单的同时也提高了电源的工作效率和可靠性,促进了多路输出开关电源的研究,也使其进入了快速发展的阶段。

本文主要从DC/DC模块电源的选择及应用角度出发,希望能够提供相关借鉴。

关键词:多路输出;DC/DC模块;电源设计;实现引言国内模块电源目前已经形成系列化、标准化和市场化。

产品一般采用厚膜或薄膜混合集成工艺,技术水平已达国际先进水平。

凭借其工作温度范围宽、体积小、重量轻、可靠性高、使用方便等特点,在国防工业高可靠电子系统及民用工业设备自动控制系统中得到广泛的应用。

做好前期的优选工作,在电源设计、系统调试方面可起到事半功倍的效果。

不仅可以提高电子整机系统的设计水平和使用可靠性,而且可以极大地缩短产品的研发周期。

本文着重从模块电源选择、应用的角度,结合近年来军用模块电源使用过程中得到的反馈信息,探讨一下这方面的问题。

1.多路输出开关电源研究现状实现高频转换控制电路的开端,始于美国GH.Roger,他在1955年发明了自激振荡直流变换器,这种变换器有推挽结构和单个变压器;之后美国科学家提出的了关于电源系统的一种重要设想——取消工频变压器串联开关电源,这个设想从根本上解决了电源系统体积大和重量重的问题。

基于反激电路的DC-DC降压开关电源设计

基于反激电路的DC-DC降压开关电源设计

北京工业大学毕业设计(论文)摘要针对晶体管串联提供稳压电源的具有体积很大而且笨重的工频变压器,体积和重量都很大的滤波器,占用较大空间,质量较大,效率较低不适用现在电子技术的发展的的缺点,提出了发展新型电源的意见。

为了能够适用电力电子越小型化、轻型化的要求,开关电源随之出现。

开关电源采用功率半导体作为开关元件,通过周期性通断开关,控制开关元件的占空来调整输出电压,因为开关电源是直接对电网电压进行整流、滤波、调整,不需要电源变压器,工作频率高,滤波电容小、电感小,所以体积相对较小,而且开关电源的功耗较低,对电网的适用能力强,所以开关电源的应用逐渐取代了传统的电源。

开关电源的发展促使了电力电子器件朝着轻薄化的发展,开关电源有多种拓扑结构,选择合适的拓扑结构,合适的器件,是设计开关电源的重中之重。

反激式开关电源因其结构和成本方面的优势在小功率电源领域有着不可替代的作用,是小功率供电电源的首选。

关键字:开关电源;拓扑结构;变压器; 稳压管IABSTRACTSeries to provide power supply for the transistor with large and bulky size-frequency transformers, size and weight are great filters, occupy a larger space, the quality of larger, less efficient not apply to the development of electronic technology is now the paper proposed the development of new power views.In order to apply more power electronics miniaturization and light requirements, switching power supply soon.Switching power supply using power semiconductor devices as switches, through periodic on-off switch, control switch to adjust the air component of the total output voltage, because switching power supply is directly rectified mains voltage, filter, adjustment, no power transformer, high frequency, filter capacitance, inductance is small, so relatively small size, low power consumption and switching power supply on the application of strong power, so switch power gradually replaced the traditional power.Switching power supply prompted the development of power electronic devices toward the light of the development of a variety of switching power supply topology, select the appropriate topology, the appropriate device, is the top priority of switching power supply design. Fly back type switch power supply plays a role that cannot be replaced because of its structure and low cost, it can be the best choice for low power source.Keywords:switch power supply;Topology Structure;Transformer; stabilivolt目录摘要 (I)ABSTRACT ........................................................... I I 第一章绪论.................................................... - 4 -1.1 课题的背景以及选题意义................................. - 4 -1.2 本课题的主要研究内容................................... - 5 - 第二章主电路的选择以及原理.................................... - 6 -2.1 开关电源的几种基本的拓扑结构........................... - 6 -2.1.1 Buck电路......................................... - 6 -2.1.2 Boost电路........................................ - 7 -2.1.3 Buck-boost电路................................... - 8 -2.2 主电路拓扑结构的选择................................... - 9 -2.2.1 电路拓扑结构选择要注意的问题..................... - 9 -2.2.2 基本拓扑结构的对比............................... - 9 -2.2.3 主电路拓扑结构的选择............................ - 10 -2.3 单端反激电路.......................................... - 11 -2.3.1 单端反激电路的基本原理.......................... - 11 -2.3.2 单端反激电路的工作波形图........................ - 12 -2.4 本章小结.............................................. - 12 - 第三章控制电路的选择及原理................................... - 13 -3.1 控制电路.............................................. - 13 -3.1.1 电压型集成控制电路.............................. - 13 -3.1.1 电流型集成控制电路.............................. - 14 -3.2 UC3843的原理及参数 ................................... - 15 -3.3 UC3843工作描述 ....................................... - 17 -3.4 本章小结.............................................. - 19 - 第四章 DC-DC开关电源整体设计................................. - 20 -4.1 DC-DC开关电源的框图设计 .............................. - 20 -4.2 DC-DC开关电源中主要元器件 ............................ - 21 -4.2.1 功率开关晶体管.................................. - 21 -4.2.2 光电耦合器...................................... - 23 -4.2.3 TL431 ........................................... - 25 -4.2.4 变压器.......................................... - 25 -4.3 本章小结.............................................. - 26 - 第五章 Protel电路仿真....................................... - 27 -5.1 Protel软件 ........................................... - 27 -5.2 电路原理图............................................ - 27 -5.3 PCB版图 .............................................. - 28 -5.4 本章小结.............................................. - 28 - 第六章电路板的调节........................................... - 29 -6.1 工作状态波形图........................................ - 29 -6.2 本章小结.............................................. - 32 - 第七章电路板的焊接........................................... - 33 -6.1 电路板焊接方法........................................ - 33 -6.2 电路板焊接注意事项................................... - 33 -6.3 本章小节............................................. - 34 - 第八章总结................................................... - 35 -参考文献....................................................... - 36 - 致谢........................................................... - 37 - 附录电路图.................................................... - 38 -第一章绪论1.1 课题的背景以及选题意义开关电源的前身是线性稳压电源。

DC-DC开关电源设计(DOC)

DC-DC开关电源设计(DOC)

DC-DC开关电源设计摘要开关稳压电源因为其具有功耗小、效率高、体积小、重量轻、稳压范围宽等优点日益得到广泛的应用。

目前,国内外开关稳压电源的发展的趋势是不断提高输出效率和输出功率。

要提高输出的效率,必须提高电源的开关频率。

这就对电路中其它器件的频率特性提出了更高的要求。

并且现在的开关调节模块大多都已经集成化,使用方便,有很高的线性和负载调节特性,转换效率高负载调整率低而且输出纹波小,这里我用lm2596开关调节器实现降压,用STC89S52为核心电路控制ADC0809模数转换对输出电压电流的监测,将监测到的数据显示在液晶LCD1602上,有过流保护功能,监测电路使用的电源由降压后转换提供。

关键字开关稳压电源开关调节器ADC0809 STC89S52 LCD1602一、设计要求和指标要求1.基本部分:1.输出可调电压5—15V,输出电流不小于1.5A,接入负载能长时间稳定工作;(15)2.DC/DC 转换效率不低于70%;(5)3.能够显示输出电压,电流,误差小于2%;(10)4. U=12V、Io 在0.1~1A 范围内变化,负载调整率SI≤2%;(10)5.输入电压24V,输出电压稳定12V,输出电流为1.5A 时输出纹波小于200mv;(10)2.发挥部分:1.输出可调电压为3—18V,输出电流达到2.5A 以上,接入负载能长时间稳定工作,进一步扩展电源输出功率;(5)2.能够显示输出电压,电流,误差小于0.5%;(10)3.Uo=12V 、Io 在0.1~2.5A 范围内变化,负载调整SI ≤0.5%;(5)4.输出电压稳定为12V,输出电流为2.5A 时,输出纹波小于50(10)5.输出电流为2.5A 进一步提升DC/DC 转换效率,使不低于85(10)6.具有输出过流保护功能,Io≥3.5A 时动作;且故障排除后够恢;(5)7.其他;(5)3、说明(1)输入电压由直流稳压电源提供,逆变电源全部电路均由UI供电,不得再使用其他电源;(2)负载调整率计算方法:Io=0.1A时输出电压为Uo1,Io=1A时输出电压Uo2,则负载调整率:(3)注意作品制作工艺,留出电流、电压测试端口。

双向DCDC变换器的控制方法研究与设计

双向DCDC变换器的控制方法研究与设计

大学送交有关部门进行保存、汇编等。 作者(签字): 日期: 年 月 日 导师(签字): 年 月 日
万方数据
双向 DC/DC 变换器的控制方法研究与设计

Hale Waihona Puke 要随着人类文明的发展和科学技术水平的进步,现代社会对电能的需求比以往任何时 候都更加迫切。在一些应用场合,要求 DC/DC 变换器具有双向电能流动的能力。双向 变换器在电力驱动、分布式能源、智能充放电、可再生能源、交通、航空航天、工业控 制等领域得到了广泛的应用 。在输入输出电压极性不变的情况下,双向 DC/DC 变换器 可以使电流的方向发生改变。目的在于要使电能从输入端输送到输出端,也能使电能从 输出端输送到输入端。在电路结构上,只要有能量的反向流通回路,就可以实现电能的 双向流动。 本文在进行大量阅读比较,理论研究的基础上,通过对比分析研究典型的双向 DC/DC 变换器的拓扑结构,选用双向全桥直流变换器作为研究对象,分析了该变换器 原理及实现软开关的条件,根据课题性能指标的要求,设计了电路的主要参数,包括开 关管选取、变压器、电容、电感等参数设计。经过对比研究全桥变换器典型控制策略, 选用滑模变结构控制作为该变换器的控制方法,对滑模面的设计、滑模参数的选取等问 题进行了研究。基于 Saber 仿真软件,建立了双向 DC/DC 变换器的滑模变结构控制仿 真模型,验证了当参数波动时滑模控制对外界参数变化的不敏感性,分别验证当输入电 压波动和负载波动时系统的抗干扰性。分别采用移相控制策略和重复导通控制策略建立 了主电路充放电模式等效电路模型。 最后,为了验证理论分析的正确性,控制方案及参数设计的正确合理性,以 IGBT 为开关器件,FPGA 作为控制芯片,搭建了一个功率等级为 1000W 实验平台,并在此基 础上进行实验分析研究。 关键词:双向 DC/DC 变换器;滑模控制;Saber 仿真;软开关

DC-DC电路设计技巧及器件选型原则

DC-DC电路设计技巧及器件选型原则

1.概念:DC-DC指直流转直流电源(Direct Current)。

是一种在直流电路中将一个电压值的电能变为另一个电压值得电能的装置。

如,通过一个转换器能将一个直流电压(5.0V)转换成其他的直流电压(1.5V或12.0V),我们称这个转换器为DC-DC转换器,或称之为开关电源或开关调整器。

DC-DC转换器一般由控制芯片,电感线圈,二极管,三极管,电容器构成。

在讨论DC-DC转换器的性能时,如果单针对控制芯片,是不能判断其优劣的。

其外围电路的元器件特性,和基板的布线方式等,能改变电源电路的性能,因此,应进行综合判断。

DC-DC转换器的使用有利于简化电源电路设计,缩短研制周期,实现最佳指标等,被广泛用于电力电子、军工、科研、工控设备、通讯设备、仪器仪表、交换设备、接入设备、移动通讯、路由器等通信领域和工业控制、汽车电子、航空航天等领域。

具有可靠性高、系统升级容易等特点,电源模块的应用越来越广泛。

此外,DC-DC转换器还广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。

在电路类型分类上属于斩波电路。

2.特点:其主要特点是效率高:与线性稳压器的LDO相比较,效率高是DCDC的显著优势。

通常效率在70%以上,重载下高的可达到95%以上。

其次是适应电压范围宽。

A: 调制方式1: PFM(脉冲频率调制方式)开关脉冲宽度一定,通过改变脉冲输出的频率,使输出电压达到稳定。

PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。

2: PWM(脉冲宽度调制方式)开关脉冲的频率一定,通过改变脉冲输出宽度,使输出电压达到稳定。

PWM控制型效率高并具有良好的输出电压纹波和噪声。

B: 通常情况下,采用PFM和PWM这两种不同调制方式的DC-DC转换器的性能不同点如下。

PWM的频率,PFM的占空比的选择方法。

PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。

02.架构分类1)常见的三种原理架构:A、 Buck(降压型DC/DC转换器)图1 B、Boost(升压型DC/DC转换器)图2 C、Buck-Boost(升降压型DC/DC转换器)图3 2)Buck电路工作原理详解图4伏秒平衡原则:处于稳定状态的电感,电感两端的正伏秒积等于负伏秒积,即:电感两端的伏秒积在一个开关周期内必须平衡。

DC-DC直流变换器的设计

DC-DC直流变换器的设计

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。

其主要特性如下:(1)主要特征集成了全部的脉宽调制电路。

片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

内置误差放大器。

内止5V参考基准电压源。

可调整死区时间。

内置功率晶体管可提供500mA的驱动能力。

推或拉两种输出方式。

(2)TL494外观图和引脚图DC/DC变换器的控制电路控制电路中的元器件列表如下:器件数量备注Tip32A 1tip32c也行,封装同7805 TL494 1dip-16封装双列直插式MR850 1频率响应达40KHz,额定电流2A的二极管即可电解电容50uF,50V1电解电容500uF,10V1电解电容50uF,10V1电感1。

0mH,2A1频率响应40KHz,实在没有用普通电感47Ω1功率1W150Ω2功率1W5。

1KΩ3150Ω147KΩ10。

1Ω11。

0MΩ1普通电容0。

001uF1普通电容0。

1uF116脚底座1小散热片1最小的即可,配相应的螺丝母固定细导线60cm。

通用实验板12cm*8cmTL494内部结构图TL494的极限参数名称代号极限值单位工作电压Vcc 42 V集电极输出电压V c1,V c242 V集电极输出电流I c1,I c2500 mA放大器输入电压范围V IR-0。

V3V—+42功耗P D1000 mW 热阻RθJA80 ℃/W 工作结温T J125 ℃工作环境温度TL494BTL494C TL494INCV494B T A-40—+1250—+70-40—+85-40—+125℃额定环境温度T A40 ℃工作原理TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。

基于Buck-Booost电路的双向DC-DC变换电路毕业设计

基于Buck-Booost电路的双向DC-DC变换电路毕业设计

全国大学生电子设计竞赛双向DC-DC变换器(A题)【本科组】毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

一种新颖的软开关双向DCDC变换器

一种新颖的软开关双向DCDC变换器

一种新颖的软开关双向DCDC变换器一、背景技术DCDC变换器是一种将直流电压转换为另一个直流电压的电力电子装置。

传统的DCDC变换器采用硬开关技术,即开关在导通和关断时都会产生较大的损耗和噪声。

这不仅降低了变换器的效率,还会产生电磁干扰,影响周边设备的正常运行。

为了解决这些问题,软开关技术被引入到DCDC变换器中。

软开关技术通过控制开关的导通和关断时间,降低开关损耗和噪声,从而提高变换器的效率并减少对周边设备的影响。

本文所介绍的软开关双向DCDC变换器正是基于这一技术发展而来的。

二、新型软开关双向变换器介绍该双向DCDC变换器的基本工作原理,包括其如何实现能量在两个方向上的转换。

详细描述其独特的软开关技术,以及这种技术如何减少开关损耗,提高效率。

描述该新型变换器的电路拓扑结构,包括主要的电力元件如开关器件、电感、电容等的连接方式。

解释电路设计如何实现软开关操作,以及电路的灵活性和可扩展性。

阐述该双向变换器的控制策略,包括如何精确控制开关动作以实现软开关条件,以及如何管理能量流向,确保能量转换的高效和稳定。

对比传统硬开关变换器和新型软开关双向变换器的性能,包括效率、功率密度、热管理等方面的优势。

强调新型变换器在特定应用场景下的性能提升。

如果可能,提供实验数据或仿真结果来验证新型软开关双向变换器的性能。

展示其在实际应用中的潜力和效果,以及与传统技术的对比。

探讨该新型变换器在不同领域的应用前景,如电动汽车、可再生能源系统、电力电子设备等。

讨论其如何满足未来能源管理和存储的需求。

三、性能优势与传统的硬开关DCDC变换器相比,这种新颖的软开关双向DCDC 变换器具有多项性能优势:高效率:由于采用了软开关技术,开关损耗大幅降低,整个变换器的效率得到了显著提高。

低噪声:由于辅助开关实现了软开关功能,开关过程中产生的噪声大幅减少,从而降低了对周边设备的影响。

稳定性好:由于采用了双向输电技术,该变换器可以在不同的输入和输出条件下保持稳定的输出,使其在许多电力电子设备中具有广泛的应用前景。

AC-DC-DC电源设计(电力电子课设)

AC-DC-DC电源设计(电力电子课设)

_______________________________________________________________________________目录1 开关电源 (2)1.1开关电源的概念 (2)1.1.1 PWM技术简介 (2)1.1.2 降压型DC-DC开关电源原理简介 (3)1.2 开关电源的发展简介 (5)1.3 开关电源的发展展望 (6)2 主电路图设计 (7)2.1 三相整流部分 (8)2.2 直流斩波电路部分 (9)2.2.1 参数计算 (10)2.2.2 斩波仿真电路 (10)2.3 主电路仿真 (11)3 控制电路部分 (12)3.1 设计思想 (12)3.2 设计电路图 (13)4 最终设计方案 (15)总结 (17)参考文献 (18)附录 (19)_______________________________________________________________________________ AC-DC-DC电源(120V,500W)设计1 开关电源1.1开关电源的概念开关电源(Switch Mode Power Supply,SMPS)是以功率半导体器件为开关元件,利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。

线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。

另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。

一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。

开关电源电路主要由整流滤波电路、DC-DC控制器(内含变压器)、开关占空比控制器以及取样比较电路等模块组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两级式开关电源适配器方案研发之DC-DC极设计
在上一篇文章中,我们分享了一种两级式开关电源适配器的PFC 极设计方案,并对其设计原理进行了详细介绍。

接下来,我们将会继续就这一笔记本电脑适用的开关电源适配器设计进行简析,并针对其DC-DC 极的设计原理和设计思路展开详细介绍,下面就让我们一起来看看吧。

在了解了这一开关电源适配器的PFC 级工作原理和电路设计情况之后,接下来我们需要完成的是DC-DC 级的设计工作。

本方案所设计的双极式电源适配器采用反激式DC-DC 变换器,其变压器的损耗较大、温升高,而体积也比较大。

为了达到最佳优化目标,我们选择采用两路反激变换器交错并联的方案,这样每个变压器只传输60W 的功率,输入电流的有效值小,可有效解决上述问题。

为保障效率,我们采用电流断续工作模式,消除输出整流管反向恢复引起的电压尖峰。

下图中,图1 是交错并联反激变换器的主要波形,输入电流与输出电流均倍频,纹波大大减小,输出的滤波电容可大大减小。

图1 反激变换器交错并联变换器主要波形
在这一笔记本电脑开关电源适配器的方案设计中,为了进一步提高电源适配器的转化效率,减少能耗损失,我们所设计的这一DC-DC 级的反激变换器采用具有能量恢复的电流型同步整流技术。

图2 电流型自驱动同步整流与主要波形
上图中,图2 给出了的是具有能量恢复的电流型自驱动同步整流电路的原理图及其主要波形图。

从图2 所给出的电流型自驱动同步整流电路图中我们可以看到,当同步整流管SR 有电流流过时,电流从绕组n1 的同名端流进,从绕组。

相关文档
最新文档