逐次逼近式AD转换原理
A_D转换器
A/D转换器是用来通过一定的电路将模拟量转变为数字量。
模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。
但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。
A/D转换器的工作原理:(1)逐次逼近法(2)双积分法(3)电压频率转化法逐次逼近法逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。
采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控制逻辑电路组成,如图所示。
逐次逼近式AD转换器原理图基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。
逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为 Vo,与送入比较器的待转换的模拟量Vi进行比较,若Vo<Vi,该位1被保留,否则被清除。
然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的 Vo再与Vi比较,若Vo<Vi,该位1被保留,否则被清除。
重复此过程,直至逼近寄存器最低位。
转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。
逐次逼近的操作过程是在一个控制电路的控制下进行的。
双积分法采用双积分法的A/D转换器由电子开关、积分器、比较器和控制逻辑等部件组成。
如下图所示。
基本原理是将输入电压变换成与其平均值成正比的时间间隔,再把此时双积分式AD转换器原理图[1]间间隔转换成数字量,属于间接转换。
双积分法A/D转换的过程是:先将开关接通待转换的模拟量Vi,Vi采样输入到积分器,积分器从零开始进行固定时间T的正向积分,时间T到后,开关再接通与Vi 极性相反的基准电压VREF,将VREF输入到积分器,进行反向积分,直到输出为0V时停止积分。
Vi越大,积分器输出电压越大,反向积分时间也越长。
逐位逼近式AD转换原理图一个n位AD转换器的模数转换表达式
2、采样定理
采样频率越高,采样信号 y*(t)越接近原信号 y(t),但若采样频率过高,在实时控制系统中将会 占用大量时间在采样上,从而失去了实时控制的机 会。为了使采样信号y*(t)既不失真,又不会因频率 太高而浪费时间,我们可依据香浓采样定理。 香浓定理指出:为了使采样信号y*(t)能完全 复现原信号y(t),采样频率f 至少要为原信号最高 有效频率fmax的2倍,即f 2fmax。实际应用中,常 取f (5-10)fmax。
A/D转换器的转换精度可以用绝对误差和 相对误差来表示。
所谓绝对误差,是指对应于一个给定数字量 A/D转换器的误差,其误差的大小由实际模拟量输 入值和理论值之差来度量。绝对误差包括增益误 差,零点误差和非线性误差等。 相对误差是指绝对误差与满刻度值之比, 一般用百分数来表示,对A/D转换器常用最低有效 值的位数LSB来表示,1LSB = 1/2n 。
①传感器 — 将非电量转换为电信号。
②多路开关(MUX) — 分时切换各路 模拟量与采样/保持器的通路。
系统 ③放大器(IA)— 多为程控放大器, 对模拟信号进行放大。 配置
④采样/保持器(S/H)—保持模拟信号 电压。 ⑤A/D转换器— 将模拟信号转换为数字 信号。 ⑥接口电路 — 将数字信号进行整形电 平调整。
图7-2-2 同时采集
2、分时采集式
每采样一次便进行一次A/D转换并送 入内存后方才对下一采样点采样。具有 通用性、传感器与仪表放大器匹配灵活, 但对MUX的精度要求很高,因为输入的模 拟量往往是μV级的。如图7-2-3所示为 分时采集框图。
图7-2-3 分时采集
3、高速采集式
对多个模拟信号的同时实时测量很 有必要。在各个输入信号以一个公共点 为参考点时,公共点可能与IA和ADC的参 考点处于不同电位而引入干扰电压UN, 从而造成测量误差。如图7-2-4所法为高 速采框图。
逐次渐近型ad转换器工作原理
逐次渐近型ad转换器工作原理
逐次渐近型AD转换器是一种常见的模数转换器,能够将模拟信号转换成数字信号。
这篇文章将详细介绍逐次渐近型AD转换器的工作原理。
第一节:引言
1.1 什么是AD转换器?
1.2 逐次渐近型AD转换器的作用和应用领域
1.3 本文结构和内容概述
第二节:逐次逼近型AD转换器的基本原理
2.1 模拟信号与数字信号之间的转换
2.2 AD转换器的基本结构和组成部分
2.3 逐次逼近型AD转换器的工作原理简介
第三节:逐次逼近型AD转换器的详细工作原理
3.1 采样和保持
3.2 量化
3.3 编码和输入多路复用器
3.4 逐次逼近调整
3.5 数字输出
第四节:逐次逼近型AD转换器的性能指标与应用注意事项
4.1 分辨率和精度
4.2 采样率和带宽
4.3 噪声和动态性能
4.4 使用时需要注意的事项
第五节:现有技术和发展趋势
5.1 逐次逼近型AD转换器的发展历史
5.2 现有的逐次逼近型AD转换器技术
5.3 逐次逼近型AD转换器的未来发展趋势
第六节:结论
6.1 逐次渐近型AD转换器的工作原理总结
6.2 逐次渐近型AD转换器的应用前景展望
以上是一个大纲,可以帮助你写出3000-6000字的文章。
你需要根据这个大纲来展开每一节的内容,并给出具体的解释和示例来支持你的观点。
同时,可以参考相关的文献和资料,以增加你的文章的可信度。
结果表示逐次逼近型AD转换器原理框图
比较判断
8g<13g 12g<13g
砝码去留
留 留
结果表示
1 1
3
4
8g+4g+2g
8g+4g+1g
14g>13g
13g=13g
去
留
0
1
上页
下页
返回
第 7章
逐次逼近型A/D转换器原理框图
输出数字量
输 出 寄存器 节 拍 脉 冲 发 生 器 模拟信号输入 电 压 比 较 器
CP
逐次逼 近寄存器
D/A
拍 时钟 脉 脉冲 冲 发 生 器
C
C0 C1 C2 C3
0 • C3 • C 0
GND D9 D8 D7 D6 D5
4
5 6 7 8
RF UREF UDD D0 D1 D2 D3 D4
引脚功能 Iout1、Iout2:电流输出端 GND:接地端 D9~D0:数字信号输入端 UDD:电源输入端,5 ~ 10V
UREF:基准电源,–10V ~ +10V
RF:反馈信号输入端
CC7520 外部引脚图
上页
下页
返回
第 7章
CC7520 D/A转换器应用电路
UREF
15
UDD
14 16
D0 D1 D9 ……
13 12
CC7520
4 3
1
2
_ +
+
U0
UREF UO= – 210
(D9 29+D8 28+…+D121+D020)
上页 下页 返回
第 7章
程控三角波/方波发生器
AD转换
模拟电压输入 1LSB
模拟电压输入 1/2LSB
5
3、偏移误差
偏移误差是指输入信号为零时,输出信号不为零的 值,所以有时又称为零值误差。假定ADC没有非线 性误差,则其转换特性曲线各阶梯中点的连线必定 是直线,这条直线与横轴相交点所对应的输入电压 值就是偏移误差。
积分器输出
VIN
时钟
T1 T T2
t
3
三、A/D转换器的主要技术指标 1、分辨率 ADC的分辨率是指使输出数字量变化一个 相邻数码所需输入模拟电压的变化量。常用 二进制的位数表示。例如12位ADC的分辨率 就是12位,或者说分辨率为满刻度FS的 1/2 1 2 。一个10V满刻度的12位ADC能分辨输 入电压变化最小值是10V×1/ 2 1 2 =2.4mV。
ADC_CONTR寄存器
ADC_RES、 ADC_RESL寄存器
ADC中断控制寄存器
ADC典型应用电路
电压基准源
ADC实现按键输入功能
10VIN 20VIN AG
CE STS
-5V~+5V -10V~+10V
23
采用双极性输入方式,可对±5V或±10V的模拟信号
进行转换。当AD574A与80C31单片机配置时,由于 AD574A输出12位数据,所以当单片机读取转换结果 时,应分两次进行:当A0=0时,读取高8位;当A 0=1时,读取低4位。
需三组电源:+5V、VCC(+12V~+15V)、
VEE(-12V~-15V)。由于转换精度高,所 提供电源必须有良好的稳定性,并进行充分滤波, 以防止高频噪声的干扰。 低功耗:典型功耗为390mW。
AD转换及其原理
➢ 电路的结构相对比较简单。 ➢ 双积分型A/D转换器属于低速型AD转换器,一
次转换时间在1~2ms,而逐次比较型A/D转换器 可达到1s。毫秒级的时间对于工业控制是足足 有余的,因此在工业控制中发挥优势。
四.集成A/D转换器及应用
• 实现模数转换的电路称模数转换器。通常 的模数转换器是将一个输入电压信号转换 为一个输出的数字信号。即A/D转换器,或 简称ADC。(Analog - Digital - Converter )
二.ADC的主要技术参数
1. 分辨率
• 对于ADC来说,分辨率表示输出数字量变化一个相邻数 码所需要输入模拟电压的变化量。通常定义为满刻度电压 与2n的比值,其中n为ADC的位数。例如具有12位分辨率 的ADC能够分辨出满刻度的1/212(0.0244%)。
逐次逼近式A/D转换器工作原理
• 称重过程如下: ① 先在砝码盘上加128g砝码,经天平比较结果,重物195g
>128g,此砝码保留,即相当于最高位数码D7记为1。 ② 再加64g砝码,经天平比较,重物195g >(128+64)g,
则继续留下64g砝码,即相当于数码D6记为1。 • 接着不断用上述方法,由大到小砝码逐一添加比较,凡砝
需要的模拟输入值与理论上要求的模拟输入值之差。 4. 相对精度 • 它与绝对精度相似,所不同的是把这个偏差表示为满刻度
模拟电压的百分数。 5. 转换时间 • 转换时间是ADC完成一次转换所需要的时间,即从启动
信号开始到转换结束并得到稳定的数字输出量所需要的时 间,通常为微秒级。 6.量程 • 量程是指能转换的输入电压范围。
量化
数字量最小单位所对应的最小量值叫做量化单位△。 将采样-保持电路的输出电压归化为量化单位△的整 数倍的过程叫做量化。
电气检测技术(新9)AD转换原理
25
1) ai为输入数字量,接CPU的DBUS。可选用 不同的代码,常用的DAC采用二进制码。
2)触发器构成的缓冲寄存器(锁存器),锁存 CPU送来的数据。得到和暂存对应的输出电压。
压分辨率为5V/255≈20mV;10位DAC的分辨率为 5V/1023≈5mV。 位数越多,分辩率越高,转换的精度也越高。
2
测量系统用ADC的主要类型:
1、适用于数字仪器、仪表的ADC; 这类产品多半设计成BCD码输出,转换速度 一般较低(每秒转换十几次)。
2、适用测量系统作模/数接口部件的ADC。 这类产品的转换速度较高,多半以二进制代码 (含双极性代码)输出,常设计成带有三态 输出锁存器,能方便实现与微处理器直接接口。
18
3、应用
产品种类多,转换能力有很大的差异; 有8Bit、10Bit、12Bit、14Bit、16Bit等。 在这些不同转换能力的ADC中,又包括有并行输 出的ADC,以及输出为串行的ADC。 常见的8Bit的有NS公司的ADC0801、DC0802、 ADC0803、ADC0804系列及ADC0808、 ADC0809系列 10Bit有AD公司的AD574,MAXIM公司 MAX1425、MAX1426 12Bit有AD公司的AD7888,MAXIM公司 MAX170、MAX172
有些DAC芯片内无缓冲寄存器,此时须外接, 如74LS273、373等锁存器。
26
3) 模拟开关按输入的数字量接通或断开解码 网相应支路的电流或电压;对它的要求比接通或 断开开关量的电子开关更高。希望动作快;接通 电阻很小,断开电阻很大,且稳定性好。在DAC 中有电压型开关和恒流型电流开关之分。
结果表示逐次逼近型AD转换器原理框图
上页
下页
返回
第 7章
*7.3 模拟开关和采样-保持电路
7.3.1 模拟开关 7.3.2 采样-保持(S/H)电路
上页
下页
返回
第 7章
7.3.1 模拟开关
模拟开关用于传输模拟信号,它主要由控制电 路和开关电路两部分组成。 构成方式:双极型晶体管电路 MOS场效应晶体管
主要介绍由CMOS传输门构成的模拟开关和集 成多路模拟开关。
拍 时钟 脉 脉冲 冲 发 生 器
C
C0 C1 C2 C3
0 • C3 • C 0
2
•
• •
• •
SD J
K RD
Q1 C
1 0
•
比较器
+ +
C1
0 •
•
SD J
C0 0
K RD
Q2 C
•
•
SD J
K RD
Q3 • C
四 1 0 位 D/A 1 0 转 换 1 器
U0
U+ 0 1
1
U+ 0 1
Ui=5.52V J K
+ A2 + UO2
UREF
D9 D8 D7 D0
15 4 5 6
+15V
14 16
DZ
_ +
C
R2 20k R1
CC7520
3
1
2
A1 +
UO1
பைடு நூலகம்……
13
U01
上页
下页
返回
第 7章
7.2 模/数(A/D)转换器
概述 7.2.1 逐次逼近型A/D转换器
*7.2.2 双积分型A/D转换器
逐次逼近式AD转换原理
逐次逼近式AD转换原理逐次逼近式AD转换原理是一种常见的模拟信号转换为数字信号的方法,被广泛应用于数字信号处理、通信、仪器仪表和控制系统等领域。
该方法通过将模拟信号与一系列逐步增加或递减的参考电压进行比较,最终输出与模拟信号相对应的数字码。
下面将详细介绍逐次逼近式AD转换原理。
首先,模拟信号经过输入电路进入比较器。
比较器将模拟信号与DAC 输出的数字信号进行比较,判断两者的大小关系。
如果模拟信号大于DAC 输出的数字信号,则比较器输出高电平,否则输出低电平。
接下来,将比较器输出的电平信号进入一组逻辑电路,该逻辑电路根据比较器输出的高低电平信号,控制DAC输出电压的大小。
此时,DAC的输出电压与参考电压比较接近,但还不完全相等。
然后,将DAC输出的数字信号转换为模拟信号,通过反馈回路与模拟信号进行比较。
如果DAC输出的数字信号过小,则逻辑电路增加DAC的输入。
反之,如果DAC输出的数字信号过大,则逻辑电路减小DAC的输入。
通过逐步调整,DAC的输出电压逐渐逼近模拟信号大小。
最后,当DAC输出的数字信号与模拟信号足够接近时,逻辑电路停止对DAC输入的调整,DAC的输出被强制锁定。
此时,输出寄存器将DAC输出的数字码存储,即完成了模拟信号到数字信号的转换。
逐次逼近式AD转换器的工作原理是通过多次逼近逼近模拟信号的大小,以获取更高的转换精度。
其中,逼近的过程是通过比较器和逻辑电路的协同工作来实现的。
比较器用于比较模拟信号与DAC输出的数字信号的大小,并反馈给逻辑电路。
逻辑电路则根据比较器输出的高低电平信号,调整DAC的输入以逼近模拟信号。
然而,逐次逼近式AD转换器也存在一些缺点。
首先,由于需要多次逼近,转换速率相对较慢。
其次,由于逼近过程依赖于模拟信号的性质,因此对于非线性或非稳定信号,该转换器的精度可能受到影响。
此外,逐次逼近式AD转换器的精度也受限于比较器和DAC的性能。
总结起来,逐次逼近式AD转换原理是一种将模拟信号转换为数字信号的常见方法,通过比较器和逻辑电路的协同工作,逐步逼近模拟信号的大小,以获取更高的转换精度。
stc单片机ad温度转换计算
STC单片机AD温度转换计算一、概述STC单片机是一种常用的嵌入式微控制器,广泛应用于各种电子设备中。
其中,采集温度传感器的数据是STC单片机的常见应用之一。
本文将介绍如何利用STC单片机的AD转换功能,实现温度数据的采集和计算。
二、AD转换原理1. STC单片机内部的AD转换器是一种10位逐次逼近式AD转换器,可以将模拟信号转换为数字信号。
2. 要进行温度转换,需要先连接温度传感器到STC单片机的AD输入引脚,并将相应的引脚配置为输入模式。
3. 通过编程,设置AD转换器的工作模式、参考电压和时钟频率等参数,以确保AD转换的准确性和稳定性。
三、温度传感器的接入1. 常用的温度传感器有NTC热敏电阻、DS18B20数字温度传感器等。
这些传感器可以通过一定的电路连接到STC单片机的AD输入引脚。
2. 在连接时,需要考虑传感器的电气特性,如输入电压范围、输出信号类型等,以确保传感器与单片机的兼容性。
3. 另外,还需要考虑传感器的精度、响应时间和稳定性等性能指标,以选择合适的传感器用于温度测量。
四、温度转换计算1. 获取AD转换后的数字数据后,需要利用一定的算法将其转换为实际的温度数值。
2. 对于NTC热敏电阻传感器,可以利用斯特林公式和双参数B25/85值来计算温度。
3. 而对于DS18B20数字温度传感器,可以直接从AD转换的数字值中得到温度数据。
4. 在计算过程中需要考虑温度传感器的特性曲线、环境温度补偿等因素,以提高温度测量的准确性和可靠性。
五、温度数据的处理与显示1. 获取到温度数据后,可以进行一定的数据处理和滤波,以消除测量中的噪声和干扰。
2. 可以通过串口通信或LCD显示屏等外设,将温度数据实时显示出来,以方便用户对温度进行监测和控制。
3. 另外,还可以将温度数据存储到EEPROM或外部存储器中,以便后续的数据分析和应用。
六、实验验证1. 为了验证温度转换计算的准确性,可以进行一定的实验验证。
逐次逼近ADC原理
模数转换器其本质就是一个编码的过程,由于传输到数模转换器的自然信号随着时间的变化而变化。
为了实现对模拟信号的处理和储存,我们必须对信号进行编码,为此,我们选择了最基本,也是最实用的编码——2进制编码。
首先,模拟信号通过滤波器,过滤掉高频信号,得到我们需要的信号。
然后经过采样和保持电路采集模拟信号当中某一段时间的信号值,这一段时间一方面决定了采样频率的大小,另外一方面也是后面的电路结构所消耗掉的总的时间。
这段时间内得到的采样值传输到比较器当中,比较器的另外一个输入信号由数模转换器和寄存器共同作用来给出。
比如我们这次的电源电压是2V,比较器的输入电压范围是0~2V,因此采样与保持电路的电压输入范围也是0~2V。
我们的比较精度是10位,也就是比较器要在一个采样周期内进行10次比较。
最开始的时候,寄存器将这10位的2进制数字信号都置0。
然后进行第一位,也就是最高位的比较,这时数模转换器将输入电压范围的中值,也就是1V,传输给比较器的一个输入端口,比较器的另外一个输入端口来自采样与保持电路。
当采样电压高于中值1V时,寄存器的最高位由0变为1,同时逻辑控制单元控制数模转换器的下一个输入到比较器端口的电压为1V到2V的中值处,也就是1.5V,将1.5V传入到比较器的输入端口,和采样信号进行比较,输出第二位的数字信号。
以此类推,可以得到10位的数字信号。
当采样电压低于中值电压1V时,寄存器的最高位仍然为0,同时逻辑控制单元控制数模转换器的下一个输入到比较器端口的电压为0~1V的中值处,也就是0.5V,将0.5V穿入到比较器的输入端口,和采样信号进行比较,输出第二位的数字信号。
以此类推,进行10次这样的比较便可以得到10位编译模拟信号的数字信号。
图4.21逐次逼近式AD转换器原理框图
A/D转换器A/D转换器是用来通过一定的电路将模拟量转变为数字量。
模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。
但在A/D转换前,输入到A/D 转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。
A/D转换后,输出数字信号可以有8位、10位、12位和16位等。
AD转换器的工作原理主要介绍3种:逐次逼近法双积分法电压频率转化法1 逐次逼近法:逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。
采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控制逻辑电路组成,如图4.21所示。
基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。
图4.21 逐次逼近式A/D转换器原理框图逐次逼近式A/D转换器原理框图逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为Vo,与送入比较器的待转换的模拟量Vi进行比较,若V,该位1被保留,否则被清除。
然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的Vo再与Vi比较,若VoVi,该位1被保留,否则被清除。
重复此过程,直至逼近寄存器最低位。
转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。
逐次逼近的操作过程是在一个控制电路的控制下进行的。
2双积分法:采用双积分法的A/D转换器由电子开关、积分器、比较器和控制逻辑等部件组成。
如图4.22所示。
基本原理是将输入电压变换成与其平均值成正比的时间间隔,再把此时间间隔转换成数字量,属于间接转换。
图4.22 双积分式A/D转换的原理框图双积分法A/D转换的过程是:先将开关接通待转换的模拟量Vi,Vi采样输入到积分器,积分器从零开始进行固定时间T的正向积分,时间T到后,开关再接通与Vi极性相反的基准电压VREF,将VREF输入到积分器,进行反向积分,直到输出为0V时停止积分。
逐次逼近式ad转换原理
一、逐次逼近式AD转换器与计数式A/D转换类似,只是数字量由“逐次逼近寄存器SAR”产生。
SAR使用“对分搜索法”产生数字量,以8位数字量为例,SAR首先产生8位数字量的一半,即10000000B,试探模拟量Vi的大小,若Vo>Vi,清除最高位,若Vo<Vi,保留最高位。
在最高位确定后,SAR又以对分搜索法确定次高位,即以低7位的一半y1000000B(y为已确定位) 试探模拟量Vi的大小。
在bit6确定后,SAR以对分搜索法确定bit5位,即以低6位的一半yy100000B(y为已确定位) 试探模拟量的大小。
重复这一过程,直到最低位bit0被确定,转换结束。
转换过程:(1)首先发出“启动信号”信号S。
当S由高变低时,“逐次逼近寄存器SAR”清0,DAC输出Vo=0,“比较器”输出1。
当S变为高电平时,“控制电路”使SAR开始工作。
(2)SAR首先产生8位数字量的一半,即10000000B,试探模拟量的Vi大小,若Vo>Vi,“控制电路”清除最高位,若Vo<Vi,保留最高位。
(3)在最高位确定后,SAR又以对分搜索法确定次高位,即以低7位的一半y1000000B(y 为已确定位) 试探模拟量Vi的大小。
在bit6确定后,SAR以对分搜索法确定bit5位,即以低6位的一半yy100000B(y为已确定位) 试探模拟量Vi的大小。
重复这一过程,直到最低位bit0被确定。
(4)在最低位bit0确定后,转换结束,“控制电路”发出“转换结束”信号EOC。
该信号的下降沿把SAR的输出锁存在“缓冲寄存器”里,从而得到数字量输出。
从转换过程可以看出:启动信号为负脉冲有效。
转换结束信号为低电平。
我觉得,这有点像数学中的二分法,如给一个数a,先用8'b1000000(设为b)与a相比较,如果a大于b,则保留最高位1,即原来的范围变成了0-7'b1111111(第8位已确认)。
ad转换器的基本原理
ad转换器的基本原理AD转换器的基本原理一、引言AD转换器(Analog-to-Digital Converter)是将模拟信号转换为数字信号的一种设备或电路。
在现代电子技术中,AD转换器被广泛应用于各种领域,如通信、测量、控制、图像处理等。
本文将详细介绍AD转换器的基本原理。
二、AD转换器的作用在很多应用中,我们需要将模拟信号转换为数字信号进行处理和分析。
模拟信号是连续变化的,可以有无限个取值;而数字信号是离散的,只能取有限个值。
AD转换器的作用就是将模拟信号的连续变化转换为离散的数字信号,从而方便存储、处理和传输。
三、AD转换器的基本原理AD转换器的基本原理是将模拟信号按照一定的规则进行采样、量化和编码。
1. 采样(Sampling)模拟信号是连续变化的,为了进行转换,首先需要对其进行采样。
采样就是在一定的时间间隔内,对模拟信号进行离散采样,取样值表示该时间段内的模拟信号的近似值。
2. 量化(Quantization)采样得到的模拟信号值是连续的,为了将其转换为离散的数字信号,需要对其进行量化。
量化是指将连续的模拟信号值映射为离散的数字信号值。
在量化过程中,需要确定离散信号值的范围和步长。
范围决定了数字信号值的最大和最小值,步长决定了数字信号值之间的间隔。
3. 编码(Encoding)量化后的模拟信号值仍然是连续的,为了将其转换为离散的数字信号,还需要对其进行编码。
编码是指将量化后的模拟信号值表示为二进制形式的数字信号值。
常用的编码方式有二进制编码、格雷码等。
四、AD转换器的类型AD转换器根据转换方式的不同可以分为逐次逼近型AD转换器、逐次逼近型型AD转换器和闪存型AD转换器等多种类型。
1. 逐次逼近型AD转换器逐次逼近型AD转换器是一种常见的AD转换器类型。
它通过逐次逼近的方式,根据比较结果决定下一次比较的范围,直到获得最终的数字信号值。
逐次逼近型AD转换器具有较高的精度和较低的功耗,广泛应用于各种领域。
AD转换
ADCDLY 符号
DELAY [15: 0] (1)在正常转换模式、分开的X/Y位置转换模式和 X/Y位置自动(顺序)转换模式的X/Y位置转换延时值。 (2)在等待中断模式:当在此模式按下触笔时,这个 寄存器在几ms时间间隔内产生用于进行X/Y方向自动转 换的中断信号(INT_TC)。 注意:不能使用零位值(0x0000)
双积分式A/D转换图
图5.2.2 (a)双积分式A/D转换器电路结构图
图5.2.2 (b)积分输出波形
3.逐次逼近式A/D转换器原理 逐次逼近式A/D转换器电路结构如图5.2.3所示,其工作过程可与天 平称重物类比,图中的电压比较器相当于天平,被测电压Ux相当于 重物,基准电压Ur相当于电压法码。该方案具有各种规格的按8421 编码的二进制电压法码Ur,根据Ux<Ur和Ux>Ur,比较器有不同的 输出以打开或关闭逐次逼近寄存器的各位。输出从大到小的基准电 压法码,与被测电压Ux比较,并逐渐减小其差值,使之逼近平衡。 当Ux=Ur时,比较器输出为零,相当于天平平衡,最后以数字显示 的平衡值即为被测电压值。 逐次逼近式A/D转换器转换速度快,转换精度较高,对N位A/D转换 只需N个时钟脉冲即可完成,可用于测量微秒级的过渡过程的变化, 是在计算机系统中采用最多的一种A/D转换方法。
2.双积分式A/D转换器原理 双积分式A/D转换器对输入模拟电压和参考电压进行两次积分, 将电压变换成与其成正比的时间间隔,利用时钟脉冲和计数器测 出其时间间隔,完成A/D转换。双积分式A/D转换器主要包括积分 器、比较器、计数器和标准电压源等部件,其电路结构图如图 5.2.2(a)所示。 双积分式A/D转换器的转换过程如下: 首先对输入待测的模拟电压Vi进行固定时间的积分; 然后转换到标准电压VR进行固定斜率的反向积分(定值积分 ), 如图5.2.2(b)所示。反向积分进行到一定时间,便返回起始值。 从图5.2.2(b)中可看出对标准电压VR进行反向积分的时间T2正 比于输入模拟电压,输入模拟电压越大,反向积分回到起始值的 时间T越长,有Vi=(T2/T1)VR。 用标准时钟脉冲测定反向积分时间(如计数器),就可以得到对 应于输入模拟电压的数字量,实现A/D转换。 双积分式A/D转换器具有很强的抗工频干扰能力,转换精度高, 但速度较慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、逐次逼近式AD转换器与计数式A/D转换类似,只是数字量由“逐次逼近寄存器SAR”
产生。
SAR使用“对分搜索法”产生数字量,以8位数字量为例,SAR首先产生8位数字量的一半,即10000000B,试探模拟量Vi的大小,若Vo>Vi,清除最高位,若Vo<Vi,保留最高位。
在最高位确定后,SAR又以对分搜索法确定次高位,即以低7位的一半y1000000B(y为已确定位) 试探模拟量Vi的大小。
在bit6确定后,SAR以对分搜索法确定bit5位,即以低6位的一半yy100000B(y为已确定位) 试探模拟量的大小。
重复这一过程,直到最低位bit0被确定,转换结束。
转换过程:
(1)首先发出“启动信号”信号S。
当S由高变低时,“逐次逼近寄存器SAR”清0,DAC输出Vo=0,“比较器”输出1。
当S变为高电平时,“控制电路”使SAR开始工作。
(2)SAR首先产生8位数字量的一半,即10000000B,试探模拟量的Vi大小,若Vo>Vi,“控制电路”清除最高位,若Vo<Vi,保留最高位。
(3)在最高位确定后,SAR又以对分搜索法确定次高位,即以低7位的一半y1000000B(y 为已确定位) 试探模拟量Vi的大小。
在bit6确定后,SAR以对分搜索法确定bit5位,即以低6位的一半yy100000B(y为已确定位) 试探模拟量Vi的大小。
重复这一过程,直到最低位bit0被确定。
(4)在最低位bit0确定后,转换结束,“控制电路”发出“转换结束”信号EOC。
该信号的下降沿把SAR的输出锁存在“缓冲寄存器”里,从而得到数字量输出。
从转换过程可以看出:启动信号为负脉冲有效。
转换结束信号为低电平。
我觉得,这有点像数学中的二分法,如给一个数a,先用8'b1000000(设为b)与a相比较,如果a大于b,则保留最高位1,即原来的范围变成了0-7'b1111111(第8位已确认)。
之后的过程都是这样,重复执行就可以了。
根据以上理论,举个例子,例如满量程应该是5V,所以,第一次DA输出2.5V,输入电压与2.5V比较,输入电压大,故而取2.5V-5V之间,即最高位保留1。
然后在新的范围内取中间电压,即3.75V,依此类推。