数字信号处理 实验一 FFT变换及其应用

合集下载

FFT的算法原理应用

FFT的算法原理应用

FFT的算法原理应用FFT(快速傅里叶变换)是一种用于计算傅里叶变换的算法,它通过分治法和迭代的方式,将O(n^2)时间复杂度的离散傅里叶变换(DFT)算法优化到O(nlogn)的时间复杂度。

FFT算法在信号处理、图像处理、通信系统等领域应用广泛。

1.算法原理:FFT算法的核心思想是将一个长度为n的序列分解为两个长度为n/2的子序列,然后通过递归的方式对子序列进行FFT计算。

在将子序列的FFT结果合并时,利用了傅里叶变换的对称性质,即可以通过递归的方式高效地计算出整个序列的FFT结果。

具体来说,FFT算法可以分为升序计算和降序计算两个过程。

升序计算是将原始序列转换为频域序列的过程,而降序计算则是将频域序列转换回原始序列的过程。

在升序计算中,序列的奇数项和偶数项被分开计算,而在降序计算中,FFT结果被奇数项和偶数项的和和差重新组合成原始序列。

2.算法应用:2.1信号处理:FFT算法在数字信号处理中广泛应用,可以将信号从时域转换为频域,从而实现滤波、降噪、频谱分析等操作。

例如,在音频处理中,可以利用FFT算法对音频信号进行频谱分析,从而实现声音的等化处理或实时频谱显示。

2.2图像处理:FFT算法在图像处理中也有重要的应用。

图像的二维傅里叶变换可以将图像从空间域转换为频域,从而实现图像的频域滤波、频域增强等操作。

例如,可以通过对图像进行傅里叶变换,找到图像中的频域特征,进而实现图像的降噪、边缘检测等功能。

2.3通信系统:FFT算法在通信系统中也有广泛应用,特别是在OFDM (正交频分复用)系统中。

OFDM系统可以将高速数据流分成多个低速子流,然后利用FFT对每一个子流进行频域调制,再通过并行传输的方式将它们叠加在一起。

这样可以提高信号的传输效率和容量,降低频率的干扰。

2.4数据压缩:FFT算法在数据压缩领域也得到了广泛应用。

例如,在JPEG图像压缩算法中,就使用了离散余弦变换(DCT),它可看做是FFT的一种变种。

数字信号处理实验 快速傅里叶变换及其应用汇总

数字信号处理实验  快速傅里叶变换及其应用汇总

数字信号处理实验报告第一次实验:快速傅立叶变换(FFT)及其应用王宇阳04011345 一.实验目的:(1)在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。

(2)应用FFT对典型信号进行频谱分析。

(3)了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

(4)应用FFT实现序列的线性卷积和相关。

二.实验原理:(1)混叠:采样序列的频谱是被采样信号频谱的周期延拓,当采样频率不满足奈奎斯特采样定理的时候,就会发生混叠,使得刺痒后的序列信号的频谱不能真实的反映原采样信号的频谱。

(2)泄露:根据理论分析,一个时间的信号其频带宽度为无限,一个时间无限的信号其频带宽度则为有限。

因此对一个时间有限的信号,应用DFT进行分析,频谱混叠难以避免。

对一个时间无限的信号虽然频带有限,但在实际运算中,时间总是取有限值,在将信号截断的过程中,出现了分散的扩展谱线的现象,称之为频谱泄露或功率泄露。

(3)栅栏效应:DFT是对单位圆上Z变换的均匀采样,所以它不可能将频谱视为一个连续函数,就在一定意义上看,用DFT来观察频谱就好象通过一个栅栏来观看一个景象一样,只能在离散点上看到真实的频谱,这样就有可能发生一些频谱的峰点和谷点被“尖桩的栅栏”所挡住,不能被我们观察到。

(4)圆周卷积:把序列X(N)分布在N等份的圆周上,而序列Y(N)经反摺后也分布在另一个具有N等份的同心圆的圆周上。

两圆上对应的数两量两相乘求和,就得到全部卷积序列。

这个卷积过程称做圆周卷积。

(5)互相关函数反映了两个序列X(N)和Y(N)的相似程度,用FFT可以很快的计算互相关函数。

三.实验内容:实验中用到的函数序列:(a)Gaussian序列Xa(n)=exp(-(n-p).^2)/q),0=<n=<15=0,其他(b)衰减正弦序列X(b)=exp(-an)*sin(2pi*fn),0=<n=<15=0,其他(c)三角波序列Xb(n)=n,0=<n=<3=8-n,4=<n=<7=0,其他(d)反三角波序列Xc(n)=4-n,0=<n=<3=n-4,4=<n=<7=0,其他上机实验内容:1.观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察他们的时域和幅频特性,了解当q取不同值时,对信号序列的时域和幅频特性影响;改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域和幅频特性影响,注意p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

数字信号处理FFT

数字信号处理FFT

数字信号处理FFT数字信号处理中的FFT算法数字信号处理(Digital Signal Processing, DSP)是一门研究如何以数字方式对信号进行处理和分析的学科。

其中,FFT(Fast Fourier Transform)算法是数字信号处理中最为重要和常用的算法之一。

本文将介绍FFT算法的原理、应用以及一些常见的优化方法。

一、FFT算法原理FFT算法是一种高效地计算离散傅里叶变换(Discrete Fourier Transform, DFT)的方法。

DFT是将一个离散信号从时域(time domain)变换到频域(frequency domain)的过程。

在频域中,我们可以分析信号的频率成分和振幅,从而得到信号的频谱图。

FFT算法的原理是利用对称性和重复计算的方式,将一个需要O(N^2)次乘法运算的DFT计算降低到O(N*logN)的时间复杂度。

通过将N个点的DFT分解成多个规模较小的DFT计算,最终得到原始信号的频域表示。

二、FFT算法应用FFT算法在信号处理领域有着广泛的应用,其中包括但不限于以下几个方面:1. 信号的频谱分析:通过FFT算法,可以将时域信号转化为频域信号,进而分析信号的频率成分和振幅,为后续的信号处理提供依据。

例如,在音频处理中,我们可以通过FFT算法分析音频信号的频谱,用于音乐合成、音频降噪等应用。

2. 图像处理:图像信号也可以看作是一种二维信号,通过对图像的行、列分别进行FFT变换,可以得到图像的频域表示。

在图像处理中,FFT算法被广泛应用于图像增强、滤波、压缩等方面。

3. 通信系统:FFT算法在OFDM(正交频分复用)等通信系统中被广泛应用。

在OFDM系统中,多个子载波信号通过FFT变换合并在一起,实现信号的同时传输和接收。

4. 音频、视频压缩:在音频、视频等信号的压缩算法中,FFT算法也扮演着重要的角色。

通过对音频、视频信号进行频域分析,可以找到信号中能量较小的部分,并将其抛弃从而达到压缩的效果。

数字信号处理实验:基于FFT谱分析中的误差分析及处理

数字信号处理实验:基于FFT谱分析中的误差分析及处理

学生实验报告2020 —— 2021 学年第 1学期实验课程数字信号处理实验地点主教414学院电子信息工程学院专业通信工程学号姓名实验项目基于FFT谱分析中的误差分析及处理实验时间10.20 实验台号预习成绩报告成绩一、实验目的1.在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT算法及其程序的编写2.熟悉应用FFT对典型信号进行频谱分析的方法。

3.了解应用FFT对非周期信号进行频谱分析所面临的问题并掌握其解决方法。

二、实验原理对非周期序列进行频谱分析应注意的问题1、混叠三、预习内容1.混叠,泄漏,栅栏效应的概念2.应用FFT对典型信号进行频谱分析的方法3.应用FFT对非周期信号进行频谱分析所面临的问题并掌握其解决方法4.傅里叶变换的相关性质四、实验内容(一)完成如下实验内容的学习和调试1. 对有限长序列进行谱分析(2)将上述有限长序列x(n)[1,2,3,2,1]末尾补零到N=1000点,使用FFT计算其频谱。

2. 对无限长序列进行谱分析用FFT进行无限长序列的频谱分析,首先要将无限长序列截断成一个有限长序列。

序列长度的取值对频谱有较大的影响,带来的问题是引起频谱的泄漏和波动。

已知一个无限长序列为, x(n)=0(n<0),采样频率Fs=20Hz,要求用FFT求其频谱。

3. 对模拟信号进行谱分析(一)用FFT计算下列连续时间信号的频谱,并观察选择不同的Ts和N值对频谱特性的影响。

(二)记录实验图形结果并结合基本原理,理解每一条语句的含义;(三)讨论有限长序列谱分析时增加分辨率的措施和方法;(四)谈论连续信号谱分析时不同时域采样频率及点数N不同时对频谱分析的影响;(五)对模拟信号进行谱分析,选择采样频率Fs=64Hz,变换区间长度N分别取8、32和64,用FFT分析其频谱。

记录结果并对比、分析和讨论。

五、实验步骤Fs=10;xn=[1,2,3,2,1];N=length(xn);D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(1,2,1);plot(k*D,abs(X),'o:');title('幅度频谱');xlabel('rad/s');subplot(1,2,2);plot(k*D,angle(X),'o:');title('相位频谱');xlabel('rad/s');Fs=10;N=1000;xn=[1,2,3,2,1];Nx=length(xn);xn=[1,2,3,2,1,zeros(1,N-Nx-1)];D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(1,2,1);plot(k*D,abs(X)); title('幅度频谱');xlabel('rad/s'); subplot(1,2,2);plot(k*D,angle(X)); title('相位频谱');xlabel('rad/s');Fs=20;C=[8,16,128];for r=0:2;N=C(r+1);n=0:N-1;xn=exp(-0.5*n);D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(3,2,2*r+1); plot(k*D,abs(X));axis([-80,80,0,3]);subplot(3,2,2*r+2);stairs(k*D,angle(X));axis([-80,80,-1,1]);endT0=[0.5,0.25,0.125,0.125];N0=[256,256,2048,2048];for r=1:4;Ts=T0(r);N=N0(r);n=0:N-1;xn=exp(-0.5*n);D=2*pi/(N*Ts);xa=exp(-0.01*n*Ts).*(sin(2*n*Ts)+sin(2.1*n*Ts)+sin(2.2*n*Ts)); k=floor(-(N-1)/2:(N-1)/2);Xa=Ts*fftshift(fft(xa,N));[r,Xa(1)]subplot(2,2,r);plot(k*D,abs(Xa));axis([1,3,1.1*min(abs(Xa)),1.1*max(abs(Xa))]);end六、总结分析1.离散时间信号的FFT变换,其频谱是以抽样点数N为周期的周期延拓2.当N2为N1的整数倍时,以为抽样点数的抽样的图形就是在以为抽样点数的抽样图形的每两个点之间插入N2/N1个点的谱图形。

FFT算法分析实验实验报告

FFT算法分析实验实验报告

FFT算法分析实验实验报告一、实验目的快速傅里叶变换(Fast Fourier Transform,FFT)是数字信号处理中一种非常重要的算法。

本次实验的目的在于深入理解 FFT 算法的基本原理、性能特点,并通过实际编程实现和实验数据分析,掌握 FFT 算法在频谱分析中的应用。

二、实验原理FFT 算法是离散傅里叶变换(Discrete Fourier Transform,DFT)的快速计算方法。

DFT 的定义为:对于长度为 N 的序列 x(n),其 DFT 为X(k) =∑n=0 到 N-1 x(n) e^(j 2π k n / N) ,其中 j 为虚数单位。

FFT 算法基于分治法的思想,将 N 点 DFT 分解为多个较小规模的DFT,从而大大减少了计算量。

常见的 FFT 算法有基 2 算法、基 4 算法等。

三、实验环境本次实验使用的编程语言为 Python,主要依赖 numpy 库来实现 FFT 计算和相关的数据处理。

四、实验步骤1、生成测试信号首先,生成一个包含不同频率成分的正弦波叠加信号,例如100Hz、200Hz 和 300Hz 的正弦波。

设定采样频率为 1000Hz,采样时间为 1 秒,以获取足够的采样点进行分析。

2、进行 FFT 计算使用 numpy 库中的 fft 函数对生成的测试信号进行 FFT 变换。

3、频谱分析计算 FFT 结果的幅度谱和相位谱。

通过幅度谱确定信号中各个频率成分的强度。

4、误差分析与理论上的频率成分进行对比,计算误差。

五、实验结果与分析1、幅度谱分析观察到在 100Hz、200Hz 和 300Hz 附近出现明显的峰值,对应于生成信号中的频率成分。

峰值的大小反映了相应频率成分的强度。

2、相位谱分析相位谱显示了各个频率成分的相位信息。

3、误差分析计算得到的频率与理论值相比,存在一定的误差,但在可接受范围内。

误差主要来源于采样过程中的量化误差以及 FFT 算法本身的近似处理。

快速 Fourier 变换(FFT)及其应用

快速 Fourier 变换(FFT)及其应用
Columns 37 through 45
0.0395 0.0538 0.0098 0.0245 -0.0054 -0.0737 -0.0881 -0.1385 -0.1163
Columns 46 through 54
-0.0813 -0.0359 -0.0453 -0.0418 -0.0116 -0.0676 -0.0672 -0.0403 -0.0966
x=ifft(X,64);
n=k;
stem(n,abs(x))
grid
运行结果:
3、对实验现象、数据及观察结果的分析与讨论:
图一的理论分析:
图二的理论分析:
比较用IFFT函数时,得其结果是复数求其模值与理论值进行比较得:
程序代码:
x1=1/(1-0.8^N)*0.8.^n;
delta=x1-abs(x)
Columns 19 through 27
-0.0035 0 0.0035 -0.0208 -0.0694 -0.0685 -0.0572 -0.0048 0.0529
Columns 28 through 36
0.0659 0.0969 0.1177 0.1598 0.1266 0.1231 0.0762 0.1276 0.0911
5、实验总结
⑴本次实验成败之处及其原因分析:
⑵本实验的关键环节及改进措施:
①做好本实验需要把握的关键环节:
对matlab语言要极其的熟悉,其次对于课程理论学习的知识要很好的掌握。
②若重做本实验,为实现预期效果,仪器操作和实验步骤应如何改善:
实践前做好充足的准备,熟练掌握matlaB软件,多加练习相关类似的习题一增加理解。
运行结果:
delta =

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验指导吴镇扬

数字信号处理实验指导吴镇扬

实验一快速Fourier变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉FFT子程序。

2.熟悉应用FFT对典型信号进行频谱分析的方法。

3. 了解应用FFT进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT。

4.熟悉应用FFT实现两个序列的线性卷积的方法。

5.初步了解用周期图法作随机信号谱分析的方法。

返回页首二、实验原理与方法在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier 变换的等距采样,因此可以用于序列的谱分析。

FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT是以2为基数的,其长度。

它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

(一)、在运用DFT进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3、了解MA TLAB 有关双线性变换法的子函数。

二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。

调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。

当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。

),(n x fft y =;采用n 点FFT 。

当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。

当x 为矩阵时,fft 函数按类似的方式处理列长度。

(2)ifft功能:一维快速傅里叶逆变换(IFFT)。

调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。

当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。

),(n x ifft y =;采用n 点IFFT 。

当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。

(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。

调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。

FFT实验

FFT实验

FFT实验傅里叶变换(Fast Fourier Transform,FFT)是一种将时间域信号转换为频域信号的算法。

它在信号处理、图像处理、通信等领域得到广泛应用。

本实验将介绍FFT的原理,并提供一个简单的FFT实现程序。

一、傅里叶变换原理傅里叶变换是一种将连续时间域信号转换为连续频域信号的变换。

对于一个具有周期T的连续信号f(t),它的傅里叶变换F(w)可以表示为:F(w) = ∫[0,T] f(t) * exp(-j*w*t) dt其中,j是虚数单位,w是频率。

傅里叶变换的结果是一个复数函数,包含信号的幅度和相位信息。

在数字信号处理中,我们使用离散傅里叶变换(Discrete Fourier Transform,DFT)代替连续傅里叶变换。

离散傅里叶变换可以将离散时间域信号转换为离散频域信号。

对于一个N点采样的离散信号x(n),它的离散傅里叶变换X(k)可以表示为:X(k) = ∑[0,N-1] x(n) * exp(-j*2π*k*n/N)傅里叶变换的计算复杂度为O(n^2),而FFT是一种改进的傅里叶变换算法,可以将计算复杂度降低到O(n*logn)。

FFT通过将N点DFT分解为多个较小规模的DFT计算来实现。

以下提供一个使用C语言实现的简单FFT程序:#include <stdio.h>#include <math.h>int reverseBits(int num, int bits)int reversed = 0;for (int i = 0; i < bits; i++)reversed = (reversed << 1) , (num & 1); num >>= 1;}return reversed;void fft(double x[], double y[], int n) int bits = log2(n);for (int i = 0; i < n; i++)int j = reverseBits(i, bits);if (j < i)double temp = x[i];x[i]=x[j];x[j] = temp;temp = y[i];y[i]=y[j];y[j] = temp;}}for (int k = 2; k <= n; k <<= 1)int half = k >> 1;double wn_r = cos(2 * PI / k);double wn_i = sin(2 * PI / k);for (int i = 0; i < n; i += k)double w_r = 1.0;double w_i = 0.0;for (int j = 0; j < half; j++)double u_r = x[i + j];double u_i = y[i + j];double v_r = x[i + j + half] * w_r - y[i + j + half] * w_i; double v_i = x[i + j + half] * w_i + y[i + j + half] * w_r; x[i+j]=u_r+v_r;y[i+j]=u_i+v_i;x[i + j + half] = u_r - v_r;y[i + j + half] = u_i - v_i;double next_w_r = w_r * wn_r - w_i * wn_i;double next_w_i = w_i * wn_r + w_r * wn_i;w_r = next_w_r;w_i = next_w_i;}}}int maiint n = 8;double x[] = {0, 1, 2, 3, 4, 5, 6, 7};double y[] = {0, 0, 0, 0, 0, 0, 0, 0};fft(x, y, n);for (int i = 0; i < n; i++)printf("(%f, %f)\n", x[i], y[i]);}return 0;以上程序实现了一个8点FFT算法,可以将输入信号{x[0],x[1], ..., x[7]}转换为频域信号{X[0], X[1], ..., X[7]}。

数字信号处理之离散傅里叶变换

数字信号处理之离散傅里叶变换

共轭对称性
对于实数输入信号,DFT 的结果X[k]满足共轭对称 性,即X[-k] = X[k]*。
离散傅里叶变换的矩阵表示
DFT可以表示为一个矩阵运算, 即X = W * x,其中X是DFT的输 出,x是输入信号,W是DFT的
权重矩阵。
权重矩阵W是一个复数矩阵,具 有特殊的结构,可以通过快速傅 里叶变换(FFT)算法进行高效
03
其他信号处理方法还包括短时 傅里叶变换、Wigner-Ville分 布等,可根据具体应用场景选 择合适的信号处理方法。
ቤተ መጻሕፍቲ ባይዱ 06
结论
离散傅里叶变换的重要性和应用价值
离散傅里叶变换(DFT)是数字信号处理领域 中的重要工具,它能够将信号从时域转换到频 域,从而揭示信号的频率成分和特征。
DFT在通信、雷达、声呐、图像处理、语音识 别等领域有着广泛的应用,是实现信号分析和 处理的关键技术之一。
图像压缩
通过对图像进行DFT变换,将图像从空间域变换到频域,可以提取出图像的主要频率成分 ,从而实现图像压缩。常见的图像压缩算法有JPEG和JPEG2000等。
05
离散傅里叶变换的局限性和改进方法
离散傅里叶变换的局限性
计算量大
离散傅里叶变换需要进行大量复杂的复数运算,对于大数据量信 号处理效率较低。
方式。
离散傅里叶变换的编程实现
01
编程语言如Python、C等提供了离散傅里叶变换的库函数,可 以直接调用进行计算。
02
编程实现时需要注意数据的输入输出、内存管理、异常处理等
问题,以保证程序的正确性和稳定性。
编程实现离散傅里叶变换时,可以根据实际需求选择不同的库
03
函数和算法,以达到最优的计算效果。

数字信号处理_快速傅里叶变换FFT实验报告

数字信号处理_快速傅里叶变换FFT实验报告

数字信号处理_快速傅里叶变换FFT实验报告快速傅里叶变换(FFT)实验报告1. 引言数字信号处理是一门研究如何对数字信号进行处理、分析和提取信息的学科。

傅里叶变换是数字信号处理中常用的一种方法,可以将信号从时域转换到频域。

而快速傅里叶变换(FFT)是一种高效的计算傅里叶变换的算法,广泛应用于信号处理、图象处理、通信等领域。

2. 实验目的本实验旨在通过编写程序实现快速傅里叶变换算法,并对不同信号进行频谱分析。

3. 实验原理快速傅里叶变换是一种基于分治策略的算法,通过将一个N点离散傅里叶变换(DFT)分解为多个较小规模的DFT,从而实现高效的计算。

具体步骤如下: - 如果N=1,直接计算DFT;- 如果N>1,将输入序列分为偶数和奇数两部份,分别计算两部份的DFT;- 将两部份的DFT合并为整体的DFT。

4. 实验步骤此处以C语言为例,给出实验的具体步骤:(1) 定义输入信号数组和输出频谱数组;(2) 实现快速傅里叶变换算法的函数,输入参数为输入信号数组和输出频谱数组;(3) 在主函数中调用快速傅里叶变换函数,得到输出频谱数组;(4) 对输出频谱数组进行可视化处理,如绘制频谱图。

5. 实验结果与分析为了验证快速傅里叶变换算法的正确性和有效性,我们设计了以下实验:(1) 生成一个正弦信号,频率为100Hz,采样频率为1000Hz,时长为1秒;(2) 对生成的正弦信号进行快速傅里叶变换,并绘制频谱图;(3) 生成一个方波信号,频率为200Hz,采样频率为1000Hz,时长为1秒;(4) 对生成的方波信号进行快速傅里叶变换,并绘制频谱图。

实验结果显示,对于正弦信号,频谱图中存在一个峰值,位于100Hz处,且幅度较大;对于方波信号,频谱图中存在多个峰值,分别位于200Hz的奇数倍处,且幅度较小。

这与我们的预期相符,说明快速傅里叶变换算法能够正确地提取信号的频谱信息。

6. 实验总结通过本次实验,我们成功实现了快速傅里叶变换算法,并对不同信号进行了频谱分析。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》实验报告年级:2011级班级:信通4班姓名:朱明贵学号:111100443老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。

2.熟悉应用FFT对典型信号进行频谱分析的方法。

3.了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

4.熟悉应用FFT实现两个序列的线性卷积和相关的方法。

二、实验类型演示型三、实验仪器装有MATLAB语言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。

FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT 是以2为基数的,其长度。

它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1.混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

数字信号处理实验一报告

数字信号处理实验一报告

实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理上机实验

数字信号处理上机实验

数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。

可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。

女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。

人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。

出色的女高音的泛音最高的可达2700hz。

童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。

FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。

四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。

3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理 实验报告实验一 序列的傅立叶变换一、实验目的1.进一步加深理解DFS,DFT 算法的原理;2.研究补零问题;3.快速傅立叶变换(FFT )的应用。

二、 实验步骤1.复习DFS 和DFT 的定义,性质和应用;2熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;3利用提供的程序例子编写实验用程序;4.按实验内容上机实验,并进行实验结果分析;5.写出完整的实验报告,并将程序附在后面。

三、 实验内容1.周期方波序列的频谱试画出下面四种情况下的的幅度频谱, 并分析补零后,对信号频谱的影响。

2.有限长序列x(n)的DFT (1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利用FFT 进行谱分析3.已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

四、 实验数据分析)8cos(5)4sin(2)(t t t x ππ+=)52.0cos()48.0cos()(n n n x ππ+=1.周期方波序列的频谱分析首先定义一个功能函数dfsfunction[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;(1)L=5,N=20;%题1.(1)L=5;N=20;%对于(2),(3),(4)问,只要修改L,N的数值就好。

n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)');title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5,N=40;(3).L=5,N=60(4)L=7,N=60;结果分析:虽然周期序列不存在FT,但是一个周期序列可以利用其DFS系数X(k)表示它的频谱分布规律,从以上各频谱图可以看出,随着补零点数的增加,周期序列的谐波次数越来越多,其频谱的包络线越来越平滑连续,更能反映幅度值随时间的变化。

快速傅里叶变换原理及其应用

快速傅里叶变换原理及其应用

快速傅里叶变换的原理及其应用摘要快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。

傅里叶变换的理论与方法在“数理方程”、“线性系统分析”、“信号处理、仿真”等很多学科领域都有着广泛应用,由于计算机只能处理有限长度的离散的序列,所以真正在计算机上运算的是一种离散傅里叶变换. 虽然傅里叶运算在各方面计算中有着重要的作用,但是它的计算过于复杂,大量的计算对于系统的运算负担过于庞大,使得一些对于耗电量少,运算速度慢的系统对其敬而远之,然而,快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。

关键词快速傅氏变换;快速算法;简化;广泛应用AbstractFast Fourier Transform (FFT), is a discrete fast Fourier transform algorithm, which is based on the Discrete Fourier Transform of odd and even, false, false, and other characteristics of the Discrete Fourier Transform algorithms improvements obtained. Its Fourier transform theory has not found a new, but in the computer system or the application of digital systems Discrete Fourier Transform can be said to be a big step into. Fourier transform theory and methods in the "mathematical equation" and "linear systems analysis" and "signal processing, simulation," and many other areas have a wide range of applications, as the computer can only handle a limited length of the sequence of discrete, so true On the computer's operation is a discrete Fourier transform. Fourier Although all aspects of computing in the calculation has an important role, but its calculation was too complicated, a lot of computing system for calculating the burden is too large for some Less power consumption, the slow speed of operation of its system at arm's length, however, have the fast Fourier transform, Fourier transform greatly simplifying the making, not in power at the expense of the conditions to increase the speed of computing systems, and enhance the system The comprehensive ability to improve the speed of operation, the Fast Fourier Transform in the production and life have a very important role in learning to master all have great significance.Key words Fast Fourier Transform; fast algorithm; simplified; widely used目录摘要………………………………………………………………………………1ABSTRACT………………………………………………………………………2绪论………………………………………………………………………………4快速傅里叶变换原理……………………………………………………………5快速傅里叶的实际应用…………………………………………………………71快速傅里叶变换在喇曼光谱信号噪声平滑中的应用…………………7引言………………………………………………………………………7实验原理及结果…………………………………………………………8结论………………………………………………………………………92采用异步实现的快速傅里叶变换处理器………………………………9引言……………………………………………………………………9实验原理及结果………………………………………………………10结论……………………………………………………………………103快速傅里叶算法在哈特曼夏克传感器波前重构算法中的应用………11引言……………………………………………………………………11实验原理及结果………………………………………………………11结论……………………………………………………………………12参考文献…………………………………………………………………………13绪论傅立叶变换在生产生活中的重要性非常突出,它将原来难以处理的时域信号相对比较容易地转换成了易于分析的频域信号,可以利用一些工具对这些频域信号进行处理、加工,把信号转化为可以对其进行各种数学变化的数学公式,对其进行处理。

数字信号处理实验快速傅里叶变换

数字信号处理实验快速傅里叶变换

数字信号处理实验——快速傅里叶变换一、概述数字信号处理是一门涉及数字信号采集、处理和分析的学科。

在数字信号处理中,傅里叶变换是一个非常重要的工具,可以将时域信号转换为频域信号,帮助我们理解信号的频谱特性。

而快速傅里叶变换(FFT)是一种高效的计算傅里叶变换的算法,广泛应用于信号处理领域。

本文将介绍数字信号处理实验中快速傅里叶变换的基本原理、算法实现和实验过程。

二、快速傅里叶变换的原理快速傅里叶变换是一种通过递归分治策略减少计算量的傅里叶变换算法。

对于长度为N的离散信号序列,其快速傅里叶变换可以分解为若干个长度为N/2的子序列的快速傅里叶变换的线性组合。

通过这种分治的方法,可以将原始的傅里叶变换计算复杂度从O(N^2)降低到O(NlogN)。

三、快速傅里叶变换的算法实现快速傅里叶变换的算法实现主要分为递归方法和迭代方法两种。

递归方法是一种自顶向下的计算方法,通过将长度为N的信号序列分解为两个长度为N/2的子序列,并利用子序列的快速傅里叶变换计算原始序列的傅里叶变换。

迭代方法则是一种自底向上的计算方法,通过不断合并较短序列的傅里叶变换结果来计算较长序列的傅里叶变换。

在实际应用中,迭代方法通常比递归方法更加高效,特别是对于长度为2的幂次方的信号序列。

四、数字信号处理实验在数字信号处理实验中,快速傅里叶变换通常作为一种重要的信号处理工具使用。

实验过程中,我们首先需要准备一段离散的时域信号序列,然后利用快速傅里叶变换算法将其转换为频域信号序列。

通过对频域信号序列的分析,我们可以获取信号的频谱特性,包括频率成分、谐波分量等信息。

五、实验流程1. 准备一段离散的时域信号序列,可以是从传感器获取的实际物理信号,也可以是由数学函数生成的合成信号。

2. 对时域信号序列进行快速傅里叶变换,得到频域信号序列。

3. 分析频域信号序列,获取信号的频谱特性,如主要频率成分、谐波分量等。

4. 对频域信号序列进行反变换,将其恢复为时域信号序列进行进一步分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 FFT变换及其应用一、实验目的和要求1.在理论课学习的基础上,通过本次实验,加深对DFT原理的理解,懂得频域DFT与时域卷积的关系,进一步加深对DFT基本性质的理解;2.研究FFT算法的主要途径和编程思路,掌握FFT算法及其程序的编写过程,掌握最基本的时域基-2FFT算法原理及程序框图;3.熟悉应用FFT实现两个序列的线性卷积的方法,利用FFT进行卷积,通过实验比较出快速卷积优越性,掌握循环卷积和线性卷积两者之间的关系;4.熟悉应用FFT对典型信号进行频谱分析的方法,初步了解用周期图法作随机信号谱分析的方法,了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT;5.掌握使用MATLAB等基本开发工具实现对FFT编程。

二、实验设备和分组1.每人一台PC机;2.Windows 2000/XP以上版本的操作环境;3.MatLab 6.5及以上版本的开发软件。

三、实验内容(一)实验准备1.用FFT进行谱分析涉及的基础知识如下:信号的谱分析就是计算信号的傅里叶变换。

若信号是模拟信号,用FFT进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后用FFT来对连续信号进行谱分析。

若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT运算求得X(k),X(k)就代表了序列在[0,2]之间的频谱值。

幅度谱:相位谱:为避免产生混叠现象,采样频率fs 应大于2倍信号的最高频率fc ,为了满足采样定理,一般在采样之前要设置一个抗混叠低通滤波器。

用FFT 对模拟信号进行谱分析的方框图如下所示。

图1.1 FFT 对模拟信号进行谱分析的方框图2. 应用FFT 实现快速卷积涉及的基础知识如下: 一个信号序列x(n)与系统的卷积可表示为下式:Y(n)=x(n)*h(n)=∑+∞-∞=-m m n h m x )()(当是一个有限长序列,且0≤n ≤N-1时,有:Y(n)=∑-=-1)()(N n m n x m h此时就可以应用FFT 来快速计算有限长度序列的线性卷积。

也就是先将输入信号x (n )通过FFT 变换为它的频谱采样值X(k),然后再和滤波器的频响采样值H(k)相乘,最后再将乘积通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出。

如下图所示。

图1.2 FFT 实现卷积的过程示意图2.1.当序列x(n)和h(n)的长度差不多时设x(n)的长度为N1,h(n)的长度为N2,则用FFT 完成卷积的具体步骤如下: ①为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度N ≥N1+N2-1②用补零方法使x(n)和h(n)变成列长为N 的序列。

③用FFT 计算x(n)和h(n)的N 点离散傅里叶变换 ④完成X(k)和H(k)的乘积Y(k)。

⑤用FFT计算的离散傅里叶反变换得 y(n)2.2 当x(n)长度很长时可采用分段卷积的方法即重叠相加法和重叠保留法。

(二)实验项目(1)用FFT进行频谱分析1)对高斯序列进行频谱分析代码如下:n=0:15;p=8;q=2;x =exp(-1*(n-p).^2/q);close all;subplot(3,1,1);stem(fft(x)) ; %利用fft 函数实现傅里叶变换subplot(3,1,2);stem(abs(fft(x))); %绘制幅度谱subplot(3,1,3);stem(angle(fft(x))) %绘制相位谱代码是为了得出此高斯序列的快速傅里叶变换,得到DFT的频谱特征图、幅频特征图和相频特征图。

a)固定信号参数P=8,改变q的值依次为2、4、8,结果如下图:P=8,q=2图2-1P=8,q=4图2-2P=8,q=8图2-3结果分析:从图中可以看出,当固定p的值,改变q,可观察到:随着q的增加,幅频图中趋近与0和等于0的个数增多。

可见q的增大使DFT幅频图中幅度平均值减小,且p是序列的对称轴,时域轴都关于n=8对称。

当q=2、4、8时,频域变化越来越快,中间水平部分越来越大,混叠减弱。

b)固定信号参数q=8,改变p的值依次为8、13、14,结果如下图:q=8,P=8图2-4 q=8,p=13图2-5 p=14,q=8图2-6结果分析:当固定q的值,改变p,可观察到:随着p的增大,图形越来越偏离真实值,当p=14时泄漏现象较明显,频域波形随p的增大频率分量会增多,易产生混叠。

2)对正弦序列进行频谱分析代码如下:n=0:15; %定义序列长度a=0.1;f=0.0625;x=exp(-a*n).*sin(2*pi*f*n);close all;subplot(2,1,1);stem(x);title('衰减正弦序列');subplot(2,1,2);stem(abs(fft(x))); %绘制幅度谱title('x 信号的频谱')a)固定参数a=0.1,改变f,分别为0.5625、0.4375、0.0625,结果如下图:f=0.5625图2-7f=0.4375图2-8f=0.0625图2-9结果分析:观察可知,当f=0.4375,0.5625时,时域图像关于Y轴对称,频域完全相同。

随着f值增大,时域序列周期变小。

频域序列的高频分量逐渐增多,低频分量逐渐减少,因为所取的频率不符合采样定理,以致发生严重的频谱混叠和泄漏。

3)对三角序列进行频谱分析代码如下:for i=1:4x(i)=i;endfor i=5:8x(i)=9-i;endfor i=9:16x(i)=0;endclose allsubplot(2,1,1);stem(x);subplot(2,1,2);stem(abs(fft(x))) %绘制幅度谱其频谱图如下所示:图2-10结果分析:此编程实现三角序列,中间两个值是相等的,然后我们根据fft函数快速求出x在各个n值上所对应的傅里叶变换值,得到结果如下:Y=[18.4640 3.1605 -16.3681i -5.3021 - 2.2394i -0.3336 + 0.3570i0.1333 + 0.0145i 0.7981 - 0.5599i -0.0955 - 0.4109i 0.3750 –0.0802i 0.0646 0.3750 + 0.0802i -0.0955 + 0.4109i 0.7981 +0.5599i 0.1333 - 0.0145i -0.3336 - 0.3570i -5.3021 + 2.2394i3.1605 +16.3681i ]然后分别求出各点处的大小(实部的平方加虚部的平方开根号),得出来的大小和图像近似相等。

此三角序列的时域表达式为:当1≤n≤4时x(n)=n;当5≤n≤8时x(n)=9-n。

a)反三角序列:代码如下:For i=1:4x(i)=5-i;endFor i=5:8x(i)=i-4;endclose allsubplot(2,1,1);stem(x);subplot(2,1,2);stem(abs(fft(x,16)))图2-11b)半三角序列(直角三角形序列):代码1如下:for i=1 :8x(i)=i-1;endclose allsubplot(2,1,1);stem(x);subplot(2,1,2);stem(abs(fft(x)))图2-2代码2如下:for i=1 :8x(i)=8-i;endclose allsubplot(2,1,1);stem(x);subplot(2,1,2);stem(abs(fft(x)))图2-13 c)只有一个峰值:代码如下:for i=1:4x(i)=i;endfor i=5:8x(i)=8-i;endclose allsubplot(2,1,1);stem(x);subplot(2,1,2);stem(abs(fft(x,16)))图2-14(2)使用FFT实现卷积运算已知:x1(n)=RN(n), 1≤N≤10; x2(n)=8sin(0.5*pi*n+4) 1≤N≤10; x3(n)=0.8*exp(3*n)1≤N≤10;使用FFT实现以上3种卷积。

代码如下:n=[1:1:10];N1=length(n);xn1=ones(1,N1);xn2=8*sin(0.5*pi*n+4);xn3=0.8*exp(3*n);N=N1+N1-1;X1k=fft(xn1,N);X2k=fft(xn2,N);X3k=fft(xn3,N);Yk1=X1k.*X2k;Yk2=X1k.*X3k;Yk3=X2k.*X3k;yn1=ifft(Yk1,N);yn2=ifft(Yk2,N);yn3=ifft(Yk3,N);x=0:N-1;subplot(3,1,1);stem(x,yn1,'.')subplot(3,1,2);stem(x,yn2,'.')subplot(3,1,3);stem(x,yn3,'.')用FFT计算卷积,实验结果如下图:图2-15结果分析:X1n=[1 1 1 1 1 1 1 1 1 ]; x2n=[8 0 -8 0 8 0 -8 0 8 0];X1n*x2n=[08 8 0 0 8 8 0 0 8 0 0 8 8 0 0 8 8 0],其IFFT变换为8*(exp(j*2*w)+exp(j*3*w)+exp(j*6*w)+exp(j*7*w)+exp(j*10*w)+exp(j*13*w)+exp(j*14*w)+exp(j*17*w)+exp(j*18*w))=8*(1+exp(j*w))*(exp(j*2*w)+exp(j*6*w)+exp(j*13*w)+exp(j*17*w))+8*exp(j*10*w),Matlab运行的结果与手工计算的结果完全一致,由此可知此代码是正确的。

(3)一个综合性实例1)创建简易界面使用MATLAB中的图形用户接口功能,设计简单的操作界面,如图1.6所示。

界面中包含列表框,滑动块,按钮和静态文本。

其中列表中,包含正弦波、方波和锯齿波;移动滑动块可以改变图形的周期,且周期数在静态文本中显示;点击“退出”按钮则退出程序。

界面如下图:图2-16a)当列表框中选择‘正弦波’,周期数为4时,产生的时域波形和频谱图如下:图2-17c)当列表框中选择‘三角波’,周期数为4时,产生的时域波形和频谱图如下:图2-19图2-20四、实验小结本次实验按照实验指导书,基本是按照原有的代码和步骤基础上来做的,实验中也遇到了一系列的问题:一,前后参数不一致,即在改变参数的时候,由于粗心使得前后参数形式不一致,而导致运行出错;二,在matlab中新建文件,若以中文命名,然后保存后运行,则系统会因为识别不了所命名的中文而导致运行会出错;三,只会用data cursor来将坐标点贴标签,仍然不会用编写代码的方式将各坐标点的数值贴标签。

相关文档
最新文档