《分式及分式方程》单元测试卷
分式与分式方程单元测试题(带答案)知识讲解
只供学习与交流分式与分式方程单元测试题 (满分 150分 时间 120分钟)一、选择题(每小题3分,满分30分) 1.若分式x-32有意义,则x 的取值范围是………………………………………( )A .x ≠3B .x =3C .x <3D .x >32.当a 为任何实数时,下列分式中一定有意义的一个是………………………( )A .21aa +B .11+aC .112++a aD .112++a a 3.下列各分式中,最简分式是……………………………………………………( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值……………………( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍 5.分式方程313-=+-x mx x 有增根,则m 为……………………………………( )A .0B .1C .3D .66.若xy y x =+,则yx11+的值为…………………………………………………( )A .0B .1C .-1D .27.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是………( ) A .448020480=--xx B .204480480=+-x x只供学习与交流C .420480480=+-x xD .204804480=--xx8.下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有……………()A .1个B .2个C .3个D .4个9.下列各式的约分运算中,正确的是…………………………………………( )A .326x xx = B .b ac b c a =++ C .0=++b a b a D .1=++b a b a10.把分式2222-+-+-x x x x 化简的正确结果为……………………………………( )A .482--x xB .482+-x xC .482-x xD .48222-+x x二、填空题(每小题3分,满分24分) 1.当x = 3± 时,分式35-x 没有意义. 2.已知432z y x ==,则=+--+z y x z y x 232 43. 3.xyzx y xy 61,4,13-的最简公分母是 yz x 312 .4.分式392--x x 当x 3-= 时分式的值为零.5.若关于x 的分式方程3232-=--x m x x 有增根,则m 为 3± .6.已知2+x a 与2-x b 的和等于442-x x,则a = 2 ,b = 2 .只供学习与交流7.要使15-x 与24-x 的值相等,则x = 6 .8.化简=-+-a b bb a a 1 . 三、解答题:(每题8分,共48分)1.22221106532xy x y y x ÷⋅ 2.mn nn m m m n n m -+-+--23.(22+--x x x x )24-÷x x 4.2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-a b a b a b只供学习与交流5.231341651222+-++--+-x x x x x x6.xx x x x x +-÷-+-2221112四、解方程:(每题8分,共32分)1.141-22-=x x只供学习与交流2.13132=-+--xx x3.5221332-=-x xx4.71618151+++=+++x x x x五、应用题(每题8分,共16分)1.八年级(11)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.5倍,求慢车的速度.只供学习与交流2.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.只供学习与交流只供学习与交流分式与分式方程单元测试题参考答案一、选择题(每小题3分,满分30分) 1-5 ADCBC 6-10 BCBDA二、填空题(每小题3分,满分24分)1.3±; 2.43; 3.yz x 312; 4.3-=; 5.3±. 6.2,2 . 7.6 8.1三、解答题:(每题8分,共48分)1..67102165323222yx y x x y y x =⋅⋅=解:原式只供学习与交流2..22m n m m n n m n m m n n m n m m n n m -=-+--=-+----=解:原式 3..2142)2)(2(442)2)(2()2()2(+=-⋅-+=-⋅-+--+=x x x x x x x x x x x x x x 解:原式 4..4164642233ab b a a b a b =⋅⋅-=解:原式.)3)(1(1)3)(2)(1(2)3)(2)(1()3()2()1()2)(1(1)3)(1(1)3)(2(1--=----=----+---=--+-----=x x x x x x x x x x x x x x x x x x 解:原式5.6..1)1()1)(1()1(2x x x x x x x =-+⋅-+-=解:原式 四、解方程:(每题8分,共32分)1.解:方程两边同时乘以最简公分母12-x 得4)1(2=+x①解①得1=x经检验:1=x 为原分式方程的增根. 2.解:方程两边同乘以3-x 得312-=--x x①解①得2=x经检验:2=x 为原分式方程的解.3.解:原方程可化为整式方程只供学习与交流)13(2)52(32-=-x x x解之得215=x 经检验:215=x 为原分式方程的解. 4.解:原方程可化为51617181+-+=+-+x x x x 整理后得)5)(6()6(5)7)(8()8(7+++-+=+++-+x x x x x x x x 即)5)(6(1)7)(8(1++-=++-x x x x 即)5)(6()7)(8(++=++x x x x即3011561522++=++x x x x解之得213-=x 经检验:213-=x 为原分式方程的解. 五、应用题(每题8分,共16分)1.解:设慢车的速度为x km/h ,则快车的速度为x 5.1km/h.依题意可得分式方程此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流 x x 5.11201120=-解之得40=x经检验:40=x 为所列分式方程的解. 答:慢车的速度为40km/h 。
鲁教版(五四学制)八年级数学上册《第二章分式与分式方程》单元检测卷(附答案)
鲁教版(五四学制)八年级数学上册《第二章分式与分式方程》单元检测卷(附答案)1.写出一个x取任意实数时,一定有意义的分式:.2.若分式|x|−3x−3的值为零,则x=.3.若分式5x+3x2+1的值为负数,则x的取值范围.4.若使分式42m−1的值是整数,则所有符合条件的整数m的和为.5.计算:xx+y ÷x2x2−y2.6.计算:(−b2a )2⋅(3ab)3÷a24b=.7.计算:2a+ba−b +3bb−a的结果是.8.计算x2x−2−x−2=.9.化简(x2x−3+93−x)÷x+32x的结果是.10.若1a −1b=2,那么a+3ab−ba−b的值为.11.若x−3(x+1)(x−1)=Ax+1+Bx−1,那么A−B=.12.已知a1=x+1(x≠0,且x≠−1),a2=1−1a1,a3=1−1a2,⋯,a n=1−1a n−1,则(结果用含x的代数式表示):(1)a2=;(2)a2025=.13.若关于x的分式方程3xx−1=m+21−x+2有增根,则m的值是.14.若关于x的分式方程mx−1=2x−1+1的解为非负数,则m的取值范围是.15.已知关于x的分式方程x+ax−2−5x=1.(1)若分式方程的根是x=5,则a的值为;(2)若分式方程无解,则a的值为.16.某车间接到生产任务,要求生产240个零件.原计划每小时生产a个零件,实际每小时生产的零件个数比原计划每小时生产的零件个数多了10个,那么实际比原计划可以提前小时完成生产任务.17.某工厂为了提高生产效率,更新了工厂设备,现在每台机器平均每天比原来多生产25件产品,若该工厂的机器台数不变,现在每天总的生产能力由2000件提高到了3000件,求原来每台机器平均每天生产多少件产品?设原来每台机器每天生产x件产品,根据题意可列方程为.18.4月万物复苏,是徒步踏青的好时节.某校初三年级举行6千米的徒步踏青活动,在出发1小时后,学生行进速度提高为原来的1.5倍,正好比原计划提前20分钟到达目的地,则本次徒步行完全程共用小时.19.甲、乙两位采购员同去一家面粉公司购买两次面粉,两次面粉的单价不同,两位采购员的购货方式也不同,其中,甲每次购买800kg,乙每次用去600元,设两次购买的面粉单价分别为a元/kg和b元/kg(a,b 是正数,且a≠b),那么甲所购面粉的平均单价是元/kg,乙所购面粉的平均单价是元/kg;在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为元/kg.(结果用含a,b的代数式表示,需化为最简形式)20.对于两个不等的非零实数a,b,若分式(x−a)(x−b)x的值为0,则x=a或x=b.因为(x−a)(x−b)x =x2−(a+b)x+abx=x+abx−(a+b),所以关于x的方程x+abx=a+b的两个解分别为x1=a,x2=b.利用上面建构的模型,解决下列问题:(1)若方程x+px=q的两个解分别为x1=−1,x2=4.则p=(2)已知关于x的方程2x+n 2+n−22x+1=2n的两个解分别为x1,x2(x1<x2),则2x12x2−3的值为参考答案1.解:根据题意,可写分式1x2+1∵x2≥0∵x2+1>0恒成立∵无论x取任何实数,分式1x2+1一定有意义.故答案为:1x2+12.解:∵分式|x|−3x−3的值为0∵|x|−3=0,x−3≠0∵x=−3.故答案为:−3.3.解:∵x2+1>0要使分式5x+3x2+1的值为负数,则5x+3<0解得x<−35故答案为:x<−35.4.解:要使分式42m-1的值是整数,则2m−1是4的因数故2m−1=±1,±2,±4但2m−1是奇数,则2m−1=±1所以m=1或0 ;所以1+0=1;故答案为:1.5.解:xx+y ÷x2x2−y2=xx+y·x2−y2x2=xx+y·(x+y)(x−y)x2=x−yx故答案为:x−yx.6.解:(−b2a )2⋅(3ab)3÷a24b=b24a2⋅27a3b3⋅4ba2=27a故答案为:27a.7.解:2a+ba−b +3bb−a=2a+ba−b−3ba−b=2a+b−3ba−b=2(a−b)a−b=2故答案为:2.8.解:x2x−2−x−2=x2x−2−(x+2)(x−2)x−2=x2−x2+4x−2=4x−2故答案为:4x−2.9.解:(x2x−3+93−x)÷x+32x=x2−9x−3⋅2xx+3=(x+3)(x−3)x−3⋅2xx+3=2x故答案为:2x.10.解:∵1a −1b=bab−aab=b−aab=2∵b−a=2ab,即:a−b=−2aba+3ab−ba−b =a−b+3aba−b=−2ab+3ab−2ab=ab−2ab=−12故答案为:−12.11.解:x−3(x+1)(x−1)=Ax+1+Bx−1=A(x−1)+B(x+1)(x+1)(x−1)=(A+B)x+B−A(x+1)(x−1)∵{A+B=1B−A=−3解得{A=2B=−1∵A−B=2−(−1)=3故答案为3.12.解:(1)∵a1=x+1∵a2=1−1a1=1−1x+1=xx+1(2)同理可得:a 3=1−1a 2=1−1x x+1=1−x+1x =−1x a 4=1−1a 3=1+x a 5=1−1a 4=1−1x +1=x x +1…∵发现:每三个为一个循环∵2025÷3=675∵a 2025=a 3=−1x故答案为:(1)x x+1(2)−1x . 13.解:3x x−1=m+21−x +2去分母得:3x =−(m +2)+2(x −1)去括号得:3x =−m −2+2x −2移项、合并同类项得:x =−m −4∵分式方程3x x−1=m+21−x +2有增根∵−m −4=1,解得:m =−5故答案为:−5.14.解:m x−1=2x−1+1两边同时乘以x −1,得m =2+(x −1)∴x =m −1检验得,当x =1时,方程有增根∴m −1≠1解得m ≠2由于关于x 的分式方程m x−1=2x−1+1的解为非负数∴m −1≥0解得m ≥1故m 的取值范围是m ≥1且m ≠2故答案为:m ≥1且m ≠2.15.解:(1)∵分式方程的根是x =5∴5+a3−1=1解得a=1∴a的值为1;(2)①去分母得:ax−3x+10=0∴当a−3=0时,方程无解∴a=3②当分式方程有增根∴x=0或2当x=0时0−0+10≠0当x=2时2a−6+10=0∴a=−2∴a的值为−2;∴a=−2∴若分式方程无解,a的值为3或−2.16.解:根据题意:240a −240a+10=2400a(a+10)故答案为:2400a(a+10).17.解:设原来每台机器每天生产x件产品,则现在每台机器平均每天生产(x+25)件产品∵机器台数不变,现在每天总的生产能力由2000件提高到了3000件∵3000 25+x =2000x故答案为:300025+x =2000x18.解:设原来的速度为每小时x千米,则提速后的速度为每小时1.5x千米,则,由题意,得:6 x −1−6−x1.5x=2060解得:x=3经检验,x=3时原方程的解∵本次徒步行完全程共用63−2060=53小时;故答案为:53.19.解:由题意可得,甲购买面粉的平均单价是:800a +800b 800+800=a +b 2乙购买面粉的平均单价是:600+600600a +600b=2ab a +b 在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为:a +b 2−2ab a +b =(a +b )2−4ab 2(a +b)=(a −b )22(a +b )∵(a −b )22(a +b )≥0 ∴高的平均单价与低的平均单价的差值为:(a−b )22(a+b ).故答案为:a+b 2;2ab a+b ;(a−b )22(a+b ). 20.解:(1)由材料可知:x 1x 2=p ,x 1+x 2=q∵p =−1×4=−4;故答案为:−4.(2)∵2x +n 2+n−22x+1=2n ∵2x +1+n 2+n−22x+1=2n +1 ∵2x +1+(n+2)(n−1)2x+1=(n +2)+(n −1) ∵2x +1=n −1或2x +1=n +2∵x =n−22或x =n+12∵x 1<x 2∵x 1=n−22,x 2=n+12 ∵2x 12x 2−3=2×n−222×n+12−3=n−2n+1−3=n−2n−2=1 故答案为:1.。
最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案
最新八年级下册分式及分式方程各个章节测试试题(1)分式无意义:B=0。
(2)分式有意义:B ≠0时。
(3)分式的值为0:A=0,B ≠01、在x1、5ab 2、3y x y 7.0+﹣、mnm +、a5cb +-、π2x 3中,是分式的有 个。
2、如果分式1x 3-有意义,那么x 的取值范围是 。
3、下列分式中,不论a 取何值总有意义的是 。
A 、1a 1a 22+-B 、1a 1a 2+-C 、1a 1a 22-+D 、1a 1a 2-+4、若分式1x 1x 2+-的值是0,则x 的值是 。
5、某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵.实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了______小时完成任务(用含a 的代数式表示).6、若a 、b 都是实数,且04b 16b 2a 22=++-)-(,写3a -b= 。
分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.1、化简下列分式。
yx 20x y52=abb ab a 22++=22m m 39m --=22112m m m -+-=2、把分式x yy x +中的x 、y 都扩大2倍,那么分式的值 。
A 、扩大2倍B 、不变C 、缩小一半D 、扩大4倍 3、分式x22-可变形为 。
A 、x 22+ B 、x 22+﹣ C 、2x 2- D 、2x 2-﹣4、已知3y1x1=-,则代数式yx y 2x y 2x y 14x 2----= 。
5、对一任意非零实数a 、b ,定义运算“△”如下:a △b=abb a -,计算2△1+3△2+4△3+.......+2024△2023的值。
6、观察下面一列有规律的式子:1x 1x 1x 2+=--1x x 1x 1x 23++=--1x x x 1x 1x 234+++=--1x x x 1x 1x 2345++++=x --.......(1)计算1x 1x n --的结果是(2)根据规律计算:63623222.......2221++++++分式的乘除: 1、计算.(1)2224ab a a b+-÷a 4b a b+-;(2)22(14)41292341y y y y y -++•+-;(3)244x (16x y)()y -÷- (4)222x 6x 92x 69x x 3x-+-÷-+(5)xy x yy x x y x 2--÷+(6))-(-2222y x 4y2x y x y 4x 4÷++2、已知09b 4a =+--,计算22222ba aba b ab a --•+的值。
第十二章 分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)
第十二章分式和分式方程数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、分式方程-1=有增根,则m的值为()A.0和3B.1C.1和﹣2D.32、若分式有意义,则的取值范围是()A. B. C. D.3、下列计算中,正确的是()A.﹣2(a﹣b)=﹣2a﹣2bB.C.D.4、将分式约分后的结果是().A. B. C. D.5、计算的结果为()A.-B.C.D.-6、若把分式中的x和y都扩大3倍,那么分式的值()A.缩小6倍B.不变C.缩小3倍D.扩大3倍7、下列约分结果正确的是()A. B. C. D.8、如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大9倍B.扩大3倍C.不变D.缩小3倍9、分式有意义,则x的取值范围为()A. B. C. D.10、已知分式的值等于零,则x的值为()A.1B.±1C.-1D.11、一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x千米/时,则可列出的方程为()A. B. C. D.12、若非零实数m,n满足m(m﹣4n)=0,则分式的值为()A. B.1 C.2 D.13、若分式中的a、b的值同时扩大到原来的10倍,则分式的值()A.是原来的20倍B.是原来的10倍C.是原来的0.1倍D.不变14、小亮的妈妈到超市购买大米,第一次按原价购买,用了100元,几天后,遇上这种大米按原价降低了出售,她用120元又购买了一些,两次一共购买了.设这种大米的原价是每kgx元,则根据题意所列的方程是()A. B. C.D.15、计算÷的结果是()A.1B.x+1C.D.二、填空题(共10题,共计30分)16、化简;÷(﹣1)=________.17、约分=________18、计算:=________19、当x=________时,分式的值为零。
八年级上册数学单元测试卷-第十二章 分式和分式方程-冀教版(含答案)
八年级上册数学单元测试卷-第十二章分式和分式方程-冀教版(含答案)一、单选题(共15题,共计45分)1、下列各式从左到右变形正确的是()A. B. C. D.2、甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A. B. C. D.3、若分式的值为零,则x的值是()A.0B.1C.﹣1D.﹣24、化简﹣的结果是()A.x+1B.x﹣1C.1﹣xD.﹣x﹣15、 + 的运算结果正确的是()A. B. C. D.a+b6、计算的结果为()A. B. C.﹣1 D.27、计算的结果是()A.a﹣bB.b﹣aC.1D.-18、为祝福祖国70周年华诞,兴义市中等职业学校全体师生开展了以“我和我的祖国、牢记初心和使命”为主题的演讲比赛,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用了1500元,购买的钢笔数比毛笔少35支,钢笔、毛笔的单价分别是多少元?如果设毛笔的单价为x元/支,那么下面所列方程正确的是()A. B. C.D.9、要时分式有意义,则x应满足的条件为()A.x≠2B.x≠0C.x≠±2D.x≠﹣210、若关于x的分式方程=2﹣有增根,则m的值为()A.﹣3B.2C.3D.不存在11、要使得分式有意义,那么应满足()A. B. C. D.12、下列分式的运算正确的是( )A. B. C. D.13、要使分式有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-114、如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.15、甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A.17小时B.14小时C.12小时D.10小时二、填空题(共10题,共计30分)16、若﹣=2,则的值是________.17、若分式的值为零,则x的值为________.18、使代数式有意义的x的取值范围是________19、使分式有意义的的取值范围是________20、已知分式的值为负数,则的取值范围为________.21、当x________时,分式有意义.22、计算:+=________ .23、要使分式有意义,则x的取值范围是________.24、若分式的值为零 , 则________.25、计算:()2=________ .三、解答题(共5题,共计25分)26、先化简再从1,0,这三个数中选个合适的数作为的值代入求值.27、先化简,再求值:(﹣)•,其中x=4.28、列方程或方程组解应用题:九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度.29、先化简,再求值:(﹣)÷•,其中a= + ,b= ﹣.30、西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务.问原计划每天铺多少千米,计划多少天完成?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、D5、C6、C7、D9、D10、C11、B12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。
第五章分式与分式方程+单元测试+2022-2023学年八年级下册数学北师大版
第五章分式与分式方程(单元测试)一、单选题 1.分式方程113023162x x --=--的根是( ) A .310x = B .16x = C .3x = D .2x =2.要使分式31x -有意义,x 的取值应满足( ) A .1x > B .1x ≠ C .0x ≠ D .x 为任意实数3.若分式293x x -+无意义,则x 的取值为() A .0B .-3C .3D .3或-3 4.若分式方程2()8(1)5x a a x +=--的解为15x =-,则a 等于( ) A .56 B .5 C .56- D .-55.《九章算术》是中国古代数学名著,其中记载:每头牛比每只羊贵1两,20两买牛,15两买羊,买得牛羊的数量相等,则每头牛的价格为多少两?若设每头牛的价格为x 两,则可列方程为( )A .20151x x =+B .20151x x =-C .20151x x =+D .20151x x=- 6.若分式方程311x m x x -++=2无解,则m =( ) A .﹣3B .﹣2C .﹣1D .0 7.若分式3(1)(2)x x --有意义,则( ) A .x≠1 B .x≠2 C .x≠1且x≠2 D .x≠1或x≠28.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,列方程正确的是( )A .()233x x =-B .()233x x =-C .23x =D .23x x =-9.“杭州城市大脑”用大数据改善城市交通,实现了从治堵到治城的转变.数据表明,杭州上塘高架路上共22km 的路程,利用城市大脑后,车辆通过速度平均提升了15%,节省时间5分钟,设提速前车辆平均速度为xkm /h ,则下列方程正确的是( )A .()22225115-=+%x xB .()2222111512-=+%x x C .()22225115-=+%x x D .()2222111512-=+%x x二、填空题三、解答题21.山西省平遥县政府为进一步挖掘“双林寺、老醯水镇、平遥古城”的旅游价值,计划在2019年开工建设一条途完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若先让甲队施工且甲队参与该项工程施工的时间不超过36天,则乙队加入后至少要施工多少天才能完成该项工程?22.先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11822x x ->⎧⎨-≥⎩.23.按要求化简:(a ﹣1)÷22111a a a ab -+⋅+,并选择你喜欢的整数a ,b 代入求值. 小聪计算这一题的过程如下:解:原式=(a ﹣1)÷2(1)(1)a a ab +-…① =(a ﹣1)•2(1)(1)ab a a +-…① =21ab a +…① 当a =1,b =1时,原式=12…①以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;还有第_____步出错(填序号),原因:_____.请你写出此题的正确解答过程.24.由于新冠肺炎疫情暴发,某公司根据市场需求代理A 、B 两种型号的空气净化器,每台A 型净化器比每台B 型净化器进价多200元,用5万元购进A 型净化器与用4.5万元购进B 型净化器的数量相等.(1)求每台A 型、B 型净化器的进价各是多少元?(2)公司计划购进A 、B 两种型号的净化器共50台进行试销,其中A 型净化器为m 台,购买资金不超过9.8万元,试参考答案:。
《分式与分式方程》单元测试卷含答案精选全文完整版
可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
《分式与分式方程》单元提高训练题(培优卷)
《分式与分式方程》单元提高训练题(培优卷)一.选择题(共10小题)1.某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.67.若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.已知x2﹣5x+1=0,则的值是.15.已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=+ +,则++=三.解答题(共10小题)21.市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A 型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.已知非零实数a、b满足等式,求的值.28.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.。
分式及分式方程练习题(附答案)
第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式及分式方程 测试题
分式及分式方程 测试题(总分120分,时间100分钟)一、选择题(每小题3分,共36分)1、下列各式:15(1-x ),43x π-,222x y -,1x x +,25x x,其中分式共有( ) A .2个 B .3个 C .4个 D .5个2、下列算式结果是12-的是( ) A .-︱-2︱ B .(-2)0 C .-(-2) D .(-2)1-3、当x 为任意实数时,下列各式中,一定有意义的是( )A .2x xB .211x x -+C .211x x ++D .211x x +- 4、要使分式221x x x +-的值为0的所有x 的值是( ) A .x=0或x=1 B .x=0或x =±1 C .x=0 D .x=15、要把分式234x y x+的x 、y 同时扩大4倍,则分式的值( ) A .扩大4倍 B .缩小4倍 C .不变 D .缩小2倍6、下列约分正确的是( )A .2x y x xy ++=1xB .x y x y ++=0C .62x x =x 3D .2224xy x y =127、用科学计数法表示-0.0000064为( )A .-64×107-B .-6.4×106-C .-0.64×104-D .-640×108-8、化简2a a b --2b a b -的结果是( ) A .a+b B .a-b C .a 2-b 2 D .19、分式方程12x -=3x的解是( ) A .-3 B .2 C .3 D .-210、把分式方程12x --12x x--=1的两边同时乘以x -2,约去分母,得( ) A .1-(1-x )=1 B .1+(1-x)=1 C .1-(1-x )=x-2 D.1+(1-x)=x-211、货车行驶25千米与小轿车行驶35千米所用时间相同,已知小轿车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A .25x =3520x -B .25x =3520x +C .2520x - = 35xD .2520x +=35x 12、已知1x -1y =12,则xy x y -的值是( ) A .12 B .-12C .2D .-2 二、填空题:(每小题4分,共20分)13、分式12x ,212y ,-15xy的最简公分母为 ;约分2520ab a b = 。
(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)
①=②,故A正确;
B、当a取互为倒数的值时,即取m和 ,则 ,
当a取m时,① ,当a取 时,②
①=②,故B正确;
C、可举例判断,由 >1得,取a=2,3(2<3)
则 < ,
故C正确;
D、可举例判断,由 得,取a= , ( > )
,
故D错误;
故选:D.
【点睛】
本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.
【详解】
25.计算题:
(1)因式分解: ;
(2)计算: ;
(3)解分式方程: ;
(4)先化简 ,然后从 , ,1,2中选择一个合适的整数作为 的值代入求值.
26.列分式方程解应用题:
2020年玉林市倡导市民积极参与垃圾分类,某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元,求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?
9.B
解析:B
【分析】
最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;
【详解】
A、 ;
B、 的分子分母不能再进行约分,是最简分式;
C、 ;
D、 ;
故选:B.
【点睛】
本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.
A.1个B.2个C.3个D.4个
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(含答案解析)
一、选择题1.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( ) A .93010-⨯米 B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米2.使分式21xx -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数3.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变4.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .55.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣26.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=7.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯8.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a cN b+=,a bP c+=,则M ,N ,P 之间的大小关系是( ) A .M P N << B .M N P <<C .N P M <<D .P M N <<9.若ab ,则下列分式化简中,正确的是( )A .22a ab b +=+ B .22a ab b-=- C .33a a b b = D .22a a b b=10.不改变分式的值,下列各式变形正确的是( )A .11x x y y +=+B .1x yx y-+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭11.若数a 使关于x 的分式方程2311ax x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .812.若分式211a a +-的值等于0,则a 的值为( )A .±1B .0C .1-D .无解二、填空题13.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______.14.若分式11x -值为整数,则满足条件的整数x 的值为_____. 15.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.16.若113m n+=,则分式225m n mn m n +---的值为________ .17.计算:()1211xx x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.计算:22112a a a a a--÷+=____.19.如果2y =,那么y x =_______________________. 20.如果方程322x mx x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:2111224x x x -⎛⎫+÷⎪--⎝⎭,其中3x =.22.先化简,再求值:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭,其中2x =.23.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 24.清江山水华府小区物业,将对小区内部非活动区域进行绿化.甲工程队用m 天完成这项工程的三分之一,为加快工程进度,乙工程队参与绿化建设,两队合作用5天完成这一项工程.(1)若10m =,求乙工程队单独完成这项工程所需的时间; (2)求m 的取值范围. 25.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+.原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同. (1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可. 【详解】解:1纳米=0.000 000 001米=10-9米, 30纳米=30×10-9米=3×10-8米. 故选:B . 【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数.2.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.A解析:A 【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2, 解不等式②得:x≥2a -, ∵不等式组恰有三个整数解, ∴-1<2a -≤0, 解得12a ≤<,解分式方程132211y ay y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2. 故选择:A . 【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.5.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0, 解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.6.B解析:B 【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可. 【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x + ,∴由题意得6608400147660840010x x⨯=++,故选:B . 【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.7.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】0.0000025=62.510-⨯,故选:D . 【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8.A解析:A 【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答. 【详解】 解:∵a+b+c=1,∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c ,∴1110,0,c b b c bc a --=>< ∴111a c b <<, ∴M<P<N ,故选A . 【点睛】本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.B解析:B 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、11x x y y ++≠,不符合题意; B 、=1x yx y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意;故选:B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.11.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.12.D解析:D 【分析】根据分式的值为零的意义具体计算即可. 【详解】∵分式211a a +-的值等于0,∴21a +=0, ∵21a +≥1>0,∴21a+=0是不可能的,∴无解,故选D.【点睛】本题考查了分式的值为零的条件,熟记基本条件和实数的非负性是解题的关键.二、填空题13.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键解析:16 3【分析】将原分式化简得163n m mn-=,再两边同时除以mn即可得结果.【详解】由22227m mn nm n mn--=-+得24414m mn n m n mn--=-+所以163n m mn-=,则11163m n-=故答案为:16 3【点睛】本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键.14.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】解:因为分式11x-有意义,所以x-1≠0,即x≠1,当分式11x-值为整数时,有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.15.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a |<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13- 【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=, ∴=3m n mn +,即m+n=3mn , ∴225m n mn m n+--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn -=13-. 故答案为:13-.【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22112a a a a a--÷+()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】 本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键. 19.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.21x +,12. 【分析】 先把括号里的式子通分进行减法计算,再把除法转化成乘法进行计算,最后把x 的值代入计算即可.【详解】 解:原式()()()222212412221111x x x x x x x x x x --+--=⋅=⋅=---++-, 当3x =时,原式2112x ==+. 【点睛】 本题考查分式的化简求值,解题的关键是掌握运算法则进行计算.22.2x --;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】 解:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭ =222244(2)22x x x x x x--+++- =222(2)(2)22x x x x x x --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=, ∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.24.(1)乙工程队单独完成这项工程需要10天;(2) 2.5m >【分析】(1)甲工程队用10天完成这项工程的三分之一,则每天完成130的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程求解即可; (1)甲工程队用m 天完成这项工程的三分之一,则每天完成13m的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程,结合x 和m 都是正数,即可求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天. 由题意,得11151330x ⎛⎫++⨯= ⎪⎝⎭, 解得10x =.经检验10x =是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要10天;(2)由题意,得1115133m x ⎛⎫++⨯= ⎪⎝⎭, 解得1525m x m =-. 0x ,0m >,250m ∴->,2.5m ∴>.即m的取值范围是 2.5m>.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.25.(1);(2)3 2【分析】(1)变形已知条件得到x+1x2+2x=1,再利用降次和整体代入的方法把原式化为−x+1,然后把x的值代入计算即可;(2)变形已知条件,把2x=+x2−4x=−1或x2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x=,∴x+1,∴(x+1)2=2,即x2+2x+1=2,∴x2+2x=1,∴原式=2x(x2+2x)−3x+1=2x−3x+1=−x+1=−−1)+1=;(2)∵2x=+∴x−2,∴(x−2)2=3,即x2−4x+4=3,∴x2−4x=−1或x2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
分式及分式方程测试题
分式及分式方程 单元检测一、填空:1、当x 时,分式31-+x x 有意义;当x 时,分式32-x x 无意义。
2、分式392--x x :当x ______时分式的值为零。
3、xyzx y xy 61,4,13-的最简公分母是 _________ 。
4、=∙c b a a bc 222 ;=÷23342yx y x ; 5、=-b a a b 32 ;=--+yx y x 12 。
6、已知432z y x ==,则=+--+z y x z y x 232 。
7、一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲乙合作 小时完成。
8、若分式方程21=++ax x 的一个解是1=x ,则=a 。
9、当1984=x ,1916=y 时,计算=+-∙+--2222442yx x y y xy x y x 。
10、不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数:①23 x-32 y 56 x+y = ; ② 0.3a-2b -a+0.7b = 。
11、已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______。
12、若分式231-+x x 的值为负数,则x 的取值范围是_ _。
13、约分:①=b a ab 2205_______,②=+--96922x x x ______。
14、一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要______________小时。
15、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为___。
16、①())0(,10 53≠=a axy xy a ;②()1422=-+a a 。
17、如果b a =2,则2222b a b ab a ++-=____________。
18、已知a+b=5, ab=3,则=+ba 11_______。
19、某工厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用 天。
第5章 分式与分式方程 北师大版数学八年级下册单元检测(含答案)
2023年北师大版数学八年级下册《分式与分式方程》单元检测一、选择题(共12小题)1.下列式子是分式的是( )A.a-b2 B.5+yπ C.x+3x D.1+x2.下列是分式方程的是( )A.xx+1+x+43B.x4+x-52=0 C.34(x-2)=43x D.1x+2+1=03.若分式x+12-x有意义,则x满足的条件是( )A.x≠-1B.x≠-2C.x≠2D.x≠-1且x≠24.方程2x+1x-1=3的解是( )A.-45B.45C.-4D.45.下列计算错误的是( )A.0.2a+b0.7a+b=2a+b7a+bB.x3y2x2y3=xyC.a-bb-a=﹣1 D.1c+2c=3c6.下列等式成立的是( )A.(-3)-2=-9B.(-3)-2=19C.(a-12)2=a14D.(-a-1b-3)-2=-a2b67.化简:等于( ).A. B.xy4z2 C.xy4z4 D.y5z8.化简:-x-2y2xy+x+6y2xy=( )A.2xB.4xC.-2xD.-4x9.解分式方程2x-1+x+21-x=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)10.甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地顺流航行180 km时与从B地逆流航行的乙船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A.180x+6=120x-6B.180x-6=120x+6C.180x+6=120xD.180x=120x-611.若a+b=2,ab=﹣2,则ab +ba的值是( )A.2B.﹣2C.4D.﹣412.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y 的整式方程,那么这个整式方程是()A.y2+y﹣3=0B.y2﹣3y+1=0C.3y2﹣y+1=0D.3y2﹣y﹣1=0二、填空题(共6小题)13.若分式的值为0,则x= .14.若关于x的方程«Skip Record If...»的解为x=4,则m= .15.计算:(﹣2xy﹣1)﹣3=.16.已知1a-1b=12,则aba-b的值是________.17.已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是.18.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.三、解答题(共8小题)19.计算:(a 2+3a)÷a 2-9a -3;20.计算:«Skip Record If...».21.解分式方程:x x -1-1=2x 3x -3.22.解分式方程:2x +2x-x +2x -2=x 2-2x 2-2x.23.先化简,再求值:1﹣÷,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.24.在解分式方程2-xx -3=13-x-2时,小玉的解法如下:解:方程两边都乘以x-3,得2-x=-1-2.①移项,得-x=-1-2-2.②解得x=5.③(1)你认为小玉从哪一步开始出现了错误________(只填序号),错误的原因是________________;(2)请你写出这个方程的完整解题过程.25.贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.26.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?答案1.C2.D3.C.4.D5.A6.B7.B8.A9.D10.A.11.D.12.A13.答案为:2.14.答案为:3;15.答案为:﹣y3 8x3.16.答案为:-2;17.答案为:k>﹣12且k≠0.18.答案为:520+45x=1.19.解:原式=a.20.解:原式=«Skip Record If...».21.解:方程两边同乘以3(x-1),得3x-3(x-1)=2x,解得x=1.5.检验:当x=1.5时,3(x-1)=1.5≠0,所以原方程的解为x=1.5.22.解:原方程可化为2(x+1)x-x+2x-2=x2-2x(x-2),方程两边同时乘x(x-2),得2(x+1)(x-2)-x(x+2)=x2-2,整理得-4x=2.解得x=-1 2 .经检验,x=-12是原方程的解.23.解:原式=1﹣•=1﹣==﹣,∵|x﹣2|+(2x﹣y﹣3)2=0,∴,解得:x=2,y=1,当x=2,y=1时,原式=﹣1 3 .24.解:(1)① 去分母时漏乘常数项 (2)去分母,得2-x=-1-2(x-3).去括号,得2-x=-1-2x+6.移项,合并,得x=3.检验,将x=3代入x-3=0,所以原方程无解.25.解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.26.解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意得202x3+60×(12x3+1x)=1,解得x=180.经检验,x=180是原分式方程的根,且符合题意,∴2x3=120,则甲、乙两队单独完成这项工程分别需120天、180天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(1120+1180)=1,解得y=72,需要施工费用72×(8.6+5.4)=1008(万元),∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元。
鲁教版八年级数学上册 第2章 分式及分式方程单元测试题
八年级数学上册第二章 《分式与分式方程》 单元测试卷一、选择题:1.下列代数式中,属于分式的是( )A .﹣3B .1xC .﹣a ﹣bD .﹣14 2.若分式1x x+有意义,则x 的取值范围是( ) A .1x ≠B .1x ≠-C .1x ≥-D .1x >- 3.把分式方程2x x -+2=12x-化为整式方程,正确的是( ) A .x +2=﹣1B .x +2(x ﹣2)=1C .x +2(x ﹣2)=﹣1D .x +2=﹣1 4.计算211x x x ---的结果是( ) A .11x - B .1 C .﹣1 D .11x + 5.PM2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为( )A .B .C .2.5×10-5D .2.5×10-66.如果把分式232x x y -中的x ,y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .扩大2倍 7.下列各式中,是最简分式的是 ( )A .ab aB .4x 2yC .2x 1x 1--D .x 2x 2+- 8.若分式2254x x -+的值为负数,则x 的取值范围是( ) A .x 为任意数 B .52x < C .52x > D .52x <- 9.甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元.若设甲单位有x 人捐款,则所列方程是( ) A .48006000150x x =++ B .48006000150x x =+- C .48006000150x x =-+ D .48006000150x x =--10.若关于x 的不等式组2341x x x a -≤⎧⎨->⎩有三个整数解,且关于y 的分式方程2122y a y y=---有整数解,则满足条件的所有整数a 的和是( ) A .2B .3C .5D .6二、填空题 11. 式子-23a ,a a +b,x y 2,a +1π,x -1x 中,分式有________个. 12.化简111a a a ---的结果是______. 13.分式2213x y 、314xy z -的最简公分母是______.14.化简2222936a b a b ab =-________. 15.若分式11x x --的值为0,则x =______. 16.化简分式22231⎛⎫--÷ ⎪+--⎝⎭x y x y x y x y的结果为_____. 17.南昌至赣州的高铁全程约416km ,已知高铁的平均速度比普通列车的平均速度快100km/h ,人们的出行时间将缩短一半,求高铁的平均速度.设高铁的平均速度为x ,则可列方程:______.18.分式方程15102x m x x-=--无解,则m =_______. 三、解答题:19.先化简,再求值:22222111a a a a a a a -+⎛⎫-÷- ⎪+-⎝⎭,其中a 是方程2702x x --=的根.20.解方程:(1)251093x x +=-- (2)22510x x x x -=+-21.水源村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入此活动,并且该环保组织植树的速度是水源村植树速度的1.5倍,整个植树过程共用了13天,水源村每天植树多少亩?22.某水果经销商看准商机,第一次用8000元购进某种水果进行销售,销售良好,于是第二次用了24000元购进同种水果,但此次进价比第一次提高了20%,所购数量比第一次购进数量的2倍还多200千克.(1)求第一次所购该水果的进货价是每千克多少元?(2)在实际销售中,两次售价均相同,但第一次购进的水果在销售过程中,消费者挑选后,由于水果品相下降,最后50千克八折售出;第二次购进的水果由于同样的原因,最后100千克九折售出,若售完这两批水果的获利不低于9400元,则每千克售价至少为多少元?23.观察下列方程的特征及其解的特点.解答下列问题:12121221,2623123 4.x x x xx x x xx x x x +=-=-+=-=-+=-=-① =-3的解为 ② =-5的解为,③ 的解为, (1)请你写出一个符合上述特征的方程为_______,其解为14x =-,25x =-.(2)根据这类方程特征,写出第n 个方程为_________,其解为1x n =-,21x n =--; (3)请利用(2)的结论,求关于x 的方程()232233n n x n x +++=-++的解。
分式及分式方程测试
分式及分式方程单元测试1、2442222++-∙-+a a a a a a 2、a a ---1113、22424422x x xx x x x ⎛⎫---÷ ⎪-++-⎝⎭; 4、m n n n m m m n n m -+-+--2;5、22224421y xy x y x y x yx ++-÷+--.四、解方程:1、0)1(213=-+--x x x x 2、13132=-+--x x x3、2163524245--+=--x x x x 4、()22104611x x x x -=--五、先化简,再请你用喜爱的数代入求值:(x x x 222-+-4412+--x x x )÷2324xx x --.六、列分式方程解应用题”1、甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行速度和骑自行车的速度。
2.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。
问原来规定修好这条公路需多长时间?3、甲、乙两班学生植树,原计划6天完成任务,他们共同劳动了4天后,乙班另有任务调走,甲班又用6天才种完,求若甲、乙两班单独完成任务后各需多少天?4、一条船往返于甲乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆流水行驶,已知船在静水中的速度为8km/h,平时逆水航行与顺水航行所用的时间比为2:1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了9h.问甲乙两港相距多远?。
八年级数学下册第五单元《分式与分式方程》测试题
八年级数学下册第五单元《分式与分式方程》测试题一、填空题:(每小题2分,共20分)1、分式392--x x 当x __________时分式的值为零。
2、当x __________时分式x x 2121-+有意义。
当________________x 时,分式8x 32x +-无意义; 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
4、约分:①=ba ab 2205__________,②=+--96922x x x __________。
5、若分式231-+x x 的值为负数,则x 的取值范围是__________。
6、已知a+b=5, ab=3,则=+b a 11_______。
7、一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。
8、要使2415--x x 与的值相等,则x =__________。
9、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________。
10、若=++=+1,31242x x x x x 则__________。
二、选择题:(每小题2分,共20分)1、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2 B 、3 C 、4 D 、52、下列判断中,正确的是( )A 、分式的分子中一定含有字母B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式 3、下列各式正确的是( )A 、11++=++b a x b x aB 、22x y x y =C 、()0,≠=a ma na m nD 、am a n m n --= 4、下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++D 、()222y x y x +-5、关于x 的方程4332=-+x a ax 的解为x=1,则a=( ) A 、1 B 、3 C 、-1 D 、-36、小明通常上学时走上坡路,通常的速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时A 、2n m +B 、 n m mn +C 、 n m mn +2D 、mnn m + 7、若把分式xy y x 2+中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍8、若0≠-=y x xy ,则分式=-x y 11( ) A 、xy1 B 、x y - C 、1 D 、-1 9、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A 、9448448=-++x xB 、9448448=-++x xC 9448=+xD 9496496=-++x x 10、已知ba b a b a ab b a -+>>=+则且,0622的值为( ) A 、2 B 、2± C 、2 D 、2±二、计算题:(每小题5分,共20分)1、a+2-a -242、mm -+-3291223、1111-÷⎪⎭⎫ ⎝⎛--x x x 4、222)2222(x x x x x x x --+-+-三、解下列分式方程:(每小题6分,共12分)1、0)1(213=-+--x x x x2、13132=-+--xx x四、先化简,后求值:(共8分)3,32,1)()2(222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中五、(每题10分,共20分)列分式方程解应用题:甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的31,求步行和骑自行车的速度各是多少?2.一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于41,求这个分数.六、附加题:(每小题10分,共20分)1.若532z y x ==,且3x+2y -z=14,求x,y,z 的值。
【冀教版】八年级数学上册单元测试:第12章《分式和分式方程》单元测试(解析版)
第12章分式和分式方程单元测试一、单选题(共10题;共30分)1.化简分式bab+b2的结果为()A、1a+bB、1a+1bC、1a+b2D、1ab+b2.有理式①,②,③,④中,是分式的有()A、①②B、③④C、①③D、①②③④3.若x=3是分式方程的根,则a的值是().A、5B、﹣5C、3D、﹣34.给出下列式子:1a、3a2b3c4、56+x、x7+y8、9x+10y,其中,是分式的有()A.5个B.4个C.3个D.2个5.在式子y2、x、12π、2x-1中,属于分式的个数是()A.0B.1C.2D.36.如果1a+1b=1,则a-2ab+b3a+2ab+3b的值为()A.15B.-15C.-1D.-37.学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x根栏杆,根据题意列方程为()A.= +2B.= ﹣2C.= ﹣2D.= +28.下列分式中最简分式为()A. B. C. D.9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得()A.25x−30(1+80%)x=1060B.25x−30(1+80%)x=10C.30(1+80%)x−25x=1060D.30(1+80%)x−25x=1010.如果,那么的值是( )A、 B、 C、 D、二、填空题(共8题;共24分)11.计算÷ 的结果是________.12.分式方程= 的解是________.13.方程﹣=0的解是________.14.计算:-3xy24z•-8zy=________。
15.计算:3a22b·4b9a=________ .16.分式方程5x+3=1的解是________.17.关于x的方程mxx-3=3x-3无解,则m的值是________.18.若分式 x2−1x+2 有意义,则x的取值范围是________.三、解答题(共5题;共36分)19.解方程:3xx-1=1+11-x .20.先化简,再求值: (1+1x−1)÷xx2−1 ,其中:x=﹣2.21.某市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,问原计划每小时修路多少米?22.昆明在修建地铁3号线的过程中,要打通隧道3600米,为加快城市建设,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成了任务.问原计划每天打通隧道多少米?23.下面是我校初二(8)班一名学生课后交送作业中的一道题:计算: x3x −1−x2−x−1 .解:原式= x3x−1−(x2−x−1)=x3−(x−1)(x2+x+1)=x3−(x3−1)=1 .你同意她的做法吗?如果同意,请说明理由;如果不同意,请把你认为正确的做法写下来.四、综合题(共1题;共10分)24.解方程:(1)1x=5x+3;(2)xx−1−2=32x−2 .答案解析一、单选题1、【答案】A【考点】约分【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】原式=bb(a+b)=1a+b .故选:A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.2、【答案】C【考点】分式的定义初中数学精品资料【解析】【解答】①③中分母中含有字,所以为分式. ②④中不含有字母.【分析】本题考查分式的定义,区分关键是分母中是否含有字母.3、【答案】A【考点】分式方程的解【解析】【分析】首先根据题意,把x=3代入分式方程,然后根据一元一次方程的解法,求出a的值是多少即可.【解答】∵x=3是分式方程的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5.故选:A.4、【答案】C【考点】分式的定义【解析】【解答】解:3a2b3c4、x7+y8的分母中均不含有字母,因此它们是整式,而不是分式.1a、56+x、9x+10y,分母中含有字母,因此是分式.故选C.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.5、【答案】B【考点】分式的定义【解析】【解答】解:式子y2、x、12π、2x-1中,属于分式的有2x-1, 只有1个.故选B.【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式,可得答案.6、【答案】B【考点】分式的化简求值【解析】【解答】解:∵1a+1b=1,即a+bab=1,∴a+b=ab,则原式=a+b-2ab3a+b+2ab=ab-2ab3ab+2ab=-ab5ab=-15 .故选B.【分析】已知等式左边通分并利用同分母分式的加法法则计算整理得到a+b=ab,代入原式计算即可得到结果.7、【答案】D【考点】由实际问题抽象出分式方程【解析】【解答】解:设每天油x根栏杆,根据题意列方程:24000x= 24000x+400+2故选:D.【分析】如果设每天油x根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程.8、【答案】B【考点】最简分式【解析】【解答】解:A、 42x=2x 可以约分,错误; B、 2xx2+1 是最简分式,正确;C、 x−1x2−1=1x+1 可以约分,错误;D、 1−xx−1=1 可以约分,错误;故选:B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.9、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设走路线一时的平均速度为x千米/小时,25x ﹣30(1+80%)x = 1060 .故选:A.【分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.10、【答案】D【考点】分式的基本性质【解析】【解答】解:∵,,故选D.二、填空题11、【答案】【考点】分式的乘除法【解析】【解答】÷ = = .故答案为:.【分析】利用分式的乘除法求解即可.12、【答案】x=9【考点】解分式方程【解析】【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】方程的两边同乘x(x﹣3),得3x﹣9=2x ,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.13、【答案】x=6【考点】解分式方程【解析】【分析】先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根.【解答】去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.14、【答案】6xy【考点】分式的乘除法【解析】【解答】解:原式=24xy2z4yz=6xy.故答案为:6xy.【分析】原式利用分式相乘的方法计算,约分即可得到结果.15、【答案】23a【考点】约分,分式的乘除法【解析】【解答】解:原式=23a .故答案为23a【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.然后进行约分、化简即可.16、【答案】x=2【考点】分式方程的解【解析】【解答】解:方程的两边同乘(x+3),得5=x+3,解得x=2.检验:把x=2代入(x+3)=5≠0.所以原方程的解为:x=2.故答案为x=2.【分析】观察可得最简公分母是(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.17、【答案】1或0【考点】分式方程的解【解析】【解答】解:去分母得mx=3,∵x=3时,最简公分母x﹣3=0,此时整式方程的解是原方程的增根,∴当x=3时,原方程无解,此时3m=3,解得m=1,当m=0时,整式方程无解∴m的值为1或0时,方程无解.故答案为:1或0.【分析】先把分式方程化为整式方程得到mx=3,由于关于x的分式方程mxx-3=3x-3无解,当x=3时,最简公分母x﹣3=0,将x=3代入方程mx=3,解得m=1,当m=0时,方程也无解.18、【答案】x≠2【考点】分式有意义的条件【解析】【解答】解:由题意得:x+2≠0, 解得:x≠2,故答案为:x≠2.【分析】根据分式有意义的条件可得x+2≠0,再解即可.三、解答题19、【答案】解:去分母得:3x=x﹣1﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.20、【答案】解:, = ,= ,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1【考点】分式的化简求值【解析】【分析】本题需先对要求的式子进行整理,再把x的值代入即可求出答案.21、【答案】解:设原计划每小时修路x米, ,解得,x=50,经检验x=50时分式方程的解,即原计划每小时修路50米【考点】分式方程的应用【解析】【分析】根据题意可以列出相应的分式方程,然后解分式方程即可,本题得以解决.22、【答案】解:设原计划每天打通隧道x米,由题意得:﹣=20,解得:x=80,经检验:x=80是原分式方程的解,答:原计划每天打通隧道80米【考点】分式方程的应用【解析】【分析】首先设原计划每天打通隧道x米,则实际每天打通隧道1.8x 米,根据题意可得等量关系:原计划所用时间﹣实际所用时间=20天,根据等量关系列出方程,再解即可.23、【答案】解:原式= ﹣﹣﹣=【考点】分式的加减法【解析】【分析】根据分式的加减,可得答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式及分式方程》单元测试卷
时间:90分钟 总分:120分 班级: 姓名:
一、选择题。
(共40分)
1.若分式x +1
x -2有意义,则x 的取值范围是( )
A .x ≠2
B .x ≠-1
C .x =2
D .x =-1
2.若分式
2
1
x x -+的值为0,则x 的值为( ) A .-1 B .0 C .2 D .-1或2
3.下列式子中:1x ,12,x 2+12,3xy π,3x +y ,a +1
m ,其中分式的个数为( )
A.2
B.3
C.4
D.5 4.计算2x -1+3
1-x 的结果是( )
A.
1x -1 B.11-x C.5x -1 D.51-x
5.分式方程5x +2=1
x -2
的解为( )
A.x =1
B.x =2
C.x =3
D.x =5 6.如果a +b =2,那么代数式(a -b 2a )·a
a -
b 的值是( )
A .2
B .-2
C.1
2
D .-12
7、若
31-x 与4
x
互为相反数,则x 的值是( ) A.1 B.2 C.3 D.4
8.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,那么此人打长途电话的时间是( ) A.
8-a b 分钟 B.8a +b 分钟 C.8-a +b b 分钟 D.8-a -b
b
分钟 9.已知关于x 的分式方程1-m x -1-1=2
1-x 的解是正数,则m 的取值范围是( )
A.m <4且m ≠3
B.m <4
C.m ≤4且m ≠3
D.m >5且m ≠6
10.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果
比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )
A .﹣=20
B .﹣=20
C .
﹣
=0.5 D .
﹣
=0.5
二、填空题(共16分)
11.分式12x 2y 与1
3xy 2的最简公分母是 .
12、化简a 2-4a 2+6a +9÷a -2
2a +6的结果是 .
13、解关于x 的方程
x -6x -2=a
x -2
产生增根,则常数a 的值等于 . 14、某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时
植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了 小时完成任务.(用含m 的代数式表示) 三、解答题(共64分)
15.(6分)计算:(a +1a -1-a a +1)÷3a +1
a 2+a ;
16.(6分)解方程:x +3x -3-2
x +3=1.
17.(7分)先化简,再求值:(1x +y +1y -x )÷y 2
xy -y 2,其中x =-2,y =1.
18.(7分)已知A =2x +y
x 2-2xy +y 2
·(x -y).
(1)化简A ; (2)若x 2-6xy +9y 2=0,求A 的值.
19、(8分)某市经济技术开发区接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
20.(8分)先化简(2x 2+2x x 2-1-x 2-x x 2-2x +1)÷x
x +1,然后解答下列问题:
(1)当x =3时,求代数式的值;
(2)原代数式的值能等于-1吗?为什么?
21.(10分)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?
(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?
22.(12分)已知下面等式:1×12=1-12;12×13=12-13;13×14=13-14;14×15=14-1
5;…
(1)请你按这些等式左边的结构特征写出它的一般性等式; (2)验证一下你写出的等式是否成立;
(3)利用等式计算:1x (x +1)+1(x +1)(x +2)+1
(x +2)(x +3)。