核磁共振氢谱解析方法

合集下载

核磁共振氢谱的分析

核磁共振氢谱的分析
如果样品中含有活泼氢,在作完图谱后, 往样品管里滴加几滴重水,震荡,然后重 新作图,则相应的谱峰由于其活泼氢已被 氘交换而消失。由此可以完全确定活泼氢 的存在。
5.3 帮助分析图谱的一些辅助手段
• 5.3.2 重氢氧化钠交换
• 重氢氧化钠交换可以把羰基的α-氢交换 掉。这个方法对于测定化学结构有很大帮 助。
5.2 分析图谱时,经常碰到的一些问题
• 5.2.1.5 图谱的记录 • 核磁共振图谱给出化学位移δ值,也有以
频率表示的。
5.2 分析图谱时,经常碰到的一些问题
• 5.2.3 杂质峰与溶剂峰 • 在核磁共振氢谱中,经常会碰到杂质峰。杂质
峰一般可以通过其峰面积进行鉴别:如果某峰的 积分面积与其它峰相比不成比例,则可断定其为 杂质峰。 • 核磁共振氢谱中的溶剂峰包括样品本身残留的 溶剂(如结晶溶剂、合成或提取时所用溶剂等) 和做测定时所用溶剂的溶剂峰。样品本身残留的 溶剂的谱峰要根据样品的具体情况做具体分析。 做1HNMR测试时所用溶剂的溶剂峰比较容易识别。
5.3 帮助分析图谱的一些辅助手段
• 如果羟基为酚羟基,则加三氟醋酸酐后, 羟基的邻、对位氢的峰也发生左移。
• 例:下面两个化合物的区别(应用三氟醋 酸酐确定羟基的位置):
OH O
7
OCH2CH3
2
CH3CH2O O OH
7
2
CH3CH2O
5
4
CH3 CH3CH2O
5
4
CH3
O
O
1
2
5.3 帮助分析图谱的一些辅助手段
O
O
• 当用CDCl3做溶剂时,异丙基的两个甲基以 及另一个甲基的峰重叠非常严重,不能区
分。如改用C6D6作溶剂,则三个甲基可以 获得较好的分离。

核磁共振波谱法之氢谱解析

核磁共振波谱法之氢谱解析

1 .6 a峰为 3H 0.6 1 .0 b峰为 2H 0 .6 10 .5 c峰为 1H 0 .6
二、核磁共振氢谱前的要求: 1、样品纯度应>98%。 2、选用良溶剂; 3、样品用量:CW仪器一般样品需10mg左右,否则信号弱, 不易获得正常图谱。FT-NMR仪器,样品量由累加次数确 定(一般只需要几个毫克即可); 4、推测未知物是否含有酚羟基、烯醇基、羧基及醛基等, 以确定图谱是否需扫描至δ10以上;
②氢分布:
③ a 2.42 单峰 3H CH 3 CO 而不是与氧相连(CH3-O-的δ 为3.5~3.8)
d 7.35 单峰 5H 单取代苯,与烃基直接 相连
④由分子式中扣除CH3-CO-及C6H5-,余C2H2Br2而c、d皆 为二重峰,而化学位移δb4.91、 δc5.33,说明存在着-CHBrCHBr-基团。 ⑤结构式: 综上所述,未知物结构式为:
2
氢分布:a:b=2.1cm:1.4cm=3:2,因为分子式中氢总 数为10,因此a含6个氢,b为4个氢。
3.38 1.13 60 19.1 10, 一级偶合系统。 J 7.1
a 1.13 三重峰 3H CH 2 CH 3
b 3.38 (化学位移移向低场) 四重峰 2H OCH 2 CH 3
第五节
核磁共振氢谱的解析
要求:
1、掌握核磁共振氢谱中峰面积与氢核数目的 关系; 2、掌握核磁共振氢谱的解析步骤; 3、熟悉并会解析一些简单的核磁共振氢谱。
一、谱图中化合物的结构信息 1、核磁共振氢谱提供的信息:由化学位移、偶合常数 及峰面积积分曲线分别提供含氢官能团、核间关系及氢 分布等三方面的信息。具体如下: (1)峰的数目:标志分子中磁不等价质子的种类,多少种;

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱剖析图谱的步调之阳早格格创做核磁共振氢谱核磁共振技能死少较早,20世纪70年代往日,主假如核磁共振氢谱的钻研战应用.70年代以去,随着傅里叶变更波谱仪的诞死,13C—NMR的钻研赶快启展.由于1H—NMR的敏捷度下,而且聚集的钻研资料歉富,果此正在结构剖析圆里1H—NMR的要害性仍强于13C—NMR.剖析图谱的步调 1.先瞅察图谱是可切合央供;①四甲基硅烷的旗号是可仄常;②杂音大不大;③基线是可仄;④积分直线中不吸支旗号的场合是可仄坦.如果有问题,剖析时要引起注意,最佳沉新尝试图谱. 2.区别杂量峰、溶剂峰、转动边峰(spinning side bands)、13C卫星峰(13C satellite peaks)(1)杂量峰:杂量含量相对付样品比率很小,果此杂量峰的峰里积很小,且杂量峰与样品峰之间不简朴整数比的闭系,简单辨别.(2)溶剂峰:氘代试剂不可能达到100%的共位素杂度(大部分试剂的氘代率为99-99.8%),果此谱图中往往浮现相映的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处.(3)转动边峰:正在尝试样品时,样品管正在1H-NMR仪中赶快转动,当仪器安排已达到良佳处事状态时,会出现转动边戴,即以强谱线为核心,浮现出一对付对付称的强峰,称为转动边峰.(4)13C卫星峰:13C具备磁距,不妨与1H奇合爆收裂分,称之为13C卫星峰,但是由13C的天然歉度只为1.1%,惟有氢的强峰才搞瞅察到,普遍不会对付氢的谱图制成搞扰. 3.根据积分直线,瞅察各旗号的相对付下度,估计样品化合物分子式中的氢本子数目.可利用稳当的甲基旗号或者孤坐的次甲基旗号为尺度估计各旗号峰的量子数目. 4.先剖析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤坐的甲基量子旗号,而后再剖析奇合的甲基量子旗号. 5.剖析羧基、醛基、分子内氢键等矮磁场的量子旗号. 6.剖析芳香核上的量子旗号.7.比较滴加沉火前后测定的图谱,瞅察有无旗号峰消得的局里,相识分子结构中所连活泼氢官能团.8.根据图谱提供旗号峰数目、化教位移战奇合常数,剖析一级典型图谱.9.剖析下档典型图谱峰旗号,如黄酮类化合物B环仅4,-位与代时,浮现AA,BB,系统峰旗号,二氢黄酮则浮现ABX系统峰旗号.10. 如果一维1H-NMR易以剖析分子结构,可思量尝试二维核磁共振谱协共剖析结构.11. 拉拢大概的结构式,根据图谱的剖析,拉拢几种大概的结构式.12. 对付推出的结构举止指认,即每个官能团上的氢正在图谱中皆应有相映的归属旗号.四. 核磁共振碳谱(13C—(1)溶剂峰:虽然碳谱不受溶剂中氢的搞扰,但是为兼瞅氢谱的测定及磁场需要,仍常采与氘代试剂动做溶剂,氘代试剂中的碳本子均有相映的峰.(2)杂量峰:杂量含量相对付于样品少得多,其峰里主动小,与样品化合物中的碳浮现的峰不可比率.(3)尝试条件的做用:尝试条件会对付所测谱图有较大做用.如脉冲倾斜角较大而脉冲隔断不敷万古,往往引导季碳不出峰;扫描宽度不敷大时,扫描宽度以中的谱线会合叠到图谱中去;等等,均制成剖析图谱的艰易.根据分子式估计的不鼓战度,推测图谱烯碳的情况.若谱线数目等于分子式中碳本子数目,证明分子结构无对付称性;若谱线数目小于分子式中碳本子数目,证明分子结构有一定的对付称性.别的,化合物中碳本子数目较多时,有些核的化教环境相似,大概δ值爆收沉叠局里,应给予注意.δ值的分区碳本子大概可分为三个区(1)下δ值区δ>165ppm,属于羰基战叠烯区:①分子结构中,如存留叠峰,除叠烯中有下δ值旗号峰中,叠烯二端碳正在单键天区还应有旗号峰,二种峰共时存留才证明叠烯存留;②δ>200 ppm的旗号,只可属于醛、酮类化合物;③160-180ppm的旗号峰,则归属于酸、酯、酸酐等类化合物的羰基.(2)中δ值区δ90-160ppm(普遍情况δ为100-150ppm)烯、芳环、除叠烯中央碳本子中的其余SP2杂化碳本子、碳氮三键碳本子皆正在那个天区出峰.(3)矮δ值区δ<100ppm,主要脂肪链碳本子区:①不与氧、氮、氟等杂本子贯串的鼓战的δ值小于55ppm;②炔碳本子δ值正在 70-100ppm,那是不鼓战碳本子的惯例.由矮核磁共振或者APT(attached proton test)、DEPT(distortionless enhancement by polarization transfer)等技能可决定碳本子的级数,由此可估计化合物中与碳本子贯串的氢本子数.若此数目小于分子式中的氢本子数,二者之好值为化合物中活泼氢的本子数.先推导出结构单元,并进一步拉拢成若搞大概的结构式.将核磁共振碳谱中各旗号峰正在推出的大概结构式上举止指认,找出各碳谱旗号相映的归属,进而正在被推导的大概结构式中找出最合理的结构式,即精确的结构式.。

核磁共振NMR一级氢谱解析方法

核磁共振NMR一级氢谱解析方法
解根据分子式C6H14O2计算该未知物不饱和度为0,即它是一个饱和化合物。
7根8据fp场p峰m组的4 间峰.2的是1等水p间峰p距m。,处可盼以找多到重相邻峰的(基团对。应一个 氘氢代原试剂子不)可能显10然0%是地氘由代相,它邻的基不完团全耦氘代合(裂也就分是氘代试剂仍然残留氢原子)会产生溶剂峰。 6四产p、p生m确的定。峰待组测对所应含两的个官氢能原团子,因此是一个亚甲基。 所谓约指1认. 就6 是p对pm于推的导峰的化组合对物结应构两的每个个氢基团原都子标注,出化学位移数值,分析化学位移数值是否合理,更重要的是分析每个基团的耦 合磁因裂性此分 核的之是峰间一型才是会个否有亚合耦理合甲。作基用。。其中左面的四重 八峰、看对推得导比出的较结清构进楚行,核 右边的峰组粗看是 由因两于为重样 分品子峰可式,能仅含含看有氧得水原分子不,,清因所此以楚在两,核个磁活它共泼们振氢氢只实谱能际中是存羟上在基是相。应的水峰。 根d×据每d个的峰峰组的组化,学位只移不数值过和其所对中应一的氢个原耦子数合,常可以确定它们是什么官能团。 任对数何于比使 结氢构较谱不小的复峰杂,往的因右未移知而动物裂(,化有分学可不位能移不显数需著值要减分。小子从)式的也左作能往用确称定为它屏的蔽结效构应。; 6右5 p第pm的1-单第峰3(的对跨应两距个等氢原于子第)加2重~水第交换4后的消跨失,因此可知它对应的是活泼氢。 氢由距谱于,峰 杂组质也有的等比含较量于好比右的样定品边量本峰关身系要组。低的很多较,大因此的杂裂质峰分易间于从样品峰组中区分出来。 代距表。原子这核是之间大的的键合耦关合系、常化数学键,之应间的该夹是角二2。面角。 核进磁一共振步氢的谱的二横裂坐标分是,化学是位旁移,边化的学位CH移裂是电分子所对核自旋的屏蔽作用,代表原子核在分子中的位置。 致。

氢谱解析知识点总结

氢谱解析知识点总结

氢谱解析知识点总结一、氢谱解析的原理氢谱解析是利用核磁共振(NMR)技术对物质中氢原子进行分析的一种方法。

其原理基于氢原子核在外加磁场下发生的磁共振现象,通过测量氢原子核的共振频率和强度,可以得到有关样品组成和结构的信息。

在氢谱解析中,采用的主要是质子核磁共振(1H-NMR)技术,即利用氢原子核的磁共振进行分析。

1.1 原子核的磁矩氢原子核由一个质子组成,其核自旋为1/2,因此具有磁矩。

在外加磁场下,氢原子核会产生磁偶极矩,这导致核在磁场中存在能级分裂现象,从而引起共振现象。

1.2 核磁共振现象当氢原子核处于外部磁场中时,其核磁矩会与外部磁场发生相互作用,导致核的能量发生分裂,分裂的能级差与外部磁场的强度成正比。

当外部磁场的强度等于核的共振频率时,会发生共振吸收,此时氢原子核会发生能级跃迁,产生共振信号。

通过测量共振频率,可以得到氢原子核的化学环境和结构信息。

1.3 化学位移在氢谱解析中,样品中的不同氢原子会由于其化学环境不同而呈现出不同的共振频率。

这是因为,氢原子的共振频率与其周围的化学环境有关,如化学键的种类和数目、邻近的官能团等。

这种现象称为化学位移,通过化学位移可以对不同氢原子进行识别和定量分析。

1.4 耦合效应在一些情况下,样品中的氢原子之间会发生相互耦合,使得它们的共振频率发生变化。

这种现象称为耦合效应,通过耦合效应可以得到关于氢原子之间的相互作用和化学键的信息,进一步帮助解析样品的结构和成分。

以上是氢谱解析的基本原理,了解这些知识点有助于加深对氢谱解析技术的理解,为后续的仪器分析和谱图解析打下基础。

二、氢谱解析的仪器分析氢谱解析的仪器主要是核磁共振谱仪,利用核磁共振谱仪可以对样品进行快速准确的分析。

核磁共振谱仪通常由磁体、射频系统、梯度磁场和检测器等部分组成,其工作原理是利用外部静态磁场和射频辐射来引起样品中核的共振现象。

2.1 磁体核磁共振谱仪中的磁体是用来产生外部静态磁场的装置,常见的磁体有永磁体和超导磁体。

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱解析图谱的步骤【2 】核磁共振氢谱核磁共振技巧成长较早,20世纪70年月以前,主如果核磁共振氢谱的研讨和运用.70年月今后,跟着傅里叶变换波谱仪的诞生,13C—NMR的研讨敏捷开展.因为1H—NMR的敏锐度高,并且积聚的研讨材料丰硕,是以在构造解析方面1H—NMR的重要性仍强于13C—NMR.解析图谱的步骤 1.先不雅察图谱是否相符请求;①四甲基硅烷的旌旗灯号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有接收旌旗灯号的地方是否平整.假如有问题,解析时要引起留意,最好从新测试图谱. 2.区分杂质峰.溶剂峰.扭转边峰(spinning side bands).13C卫星峰(13C satellite peaks)(1)杂质峰:杂质含量相对样品比例很小,是以杂质峰的峰面积很小,且杂质峰与样品峰之间没有简略整数比的关系,轻易差别.(2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),是以谱图中往往呈现响应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处.(3)扭转边峰:在测试样品时,样品管在1H-NMR仪中快速扭转,当仪器调节未达到优越工作状况时,会消失扭转边带,即以强谱线为中间,呈现出一对对称的弱峰,称为扭转边峰.(4)13C卫星峰:13C具有磁距,可以与1H巧合产生裂分,称之为13C卫星峰,但由13C的自然品貌只为1.1%,只有氢的强峰才能不雅察到,一般不会对氢的谱图造成干扰. 3.依据积分曲线,不雅察各旌旗灯号的相对高度,盘算样品化合物分子式中的氢原子数量.可运用靠得住的甲基旌旗灯号或孤立的次甲基旌旗灯号为标准盘算各旌旗灯号峰的质子数量. 4.先解析图中CH3O.CH3N. .CH3C=O.CH3C=C.CH3-C等孤立的甲基质子旌旗灯号,然后再解析巧合的甲基质子旌旗灯号. 5.解析羧基.醛基.分子内氢键等低磁场的质子旌旗灯号. 6.解析芬芳核上的质子旌旗灯号.7.比较滴加重水前后测定的图谱,不雅察有无旌旗灯号峰消掉的现象,懂得分子构造中所连生动氢官能团.8.依据图谱供给旌旗灯号峰数量.化学位移和巧合常数,解析一级类型图谱.9.解析高等类型图谱峰旌旗灯号,如黄酮类化合物B环仅4,-位代替时,呈现AA,BB,体系峰旌旗灯号,二氢黄酮则呈现ABX体系峰旌旗灯号.10. 假如一维1H-NMR难以解析分子构造,可斟酌测试二维核磁共振谱合营解析构造.11. 组合可能的构造式,依据图谱的解析,组合几种可能的构造式.12. 对推出的构造进行指认,即每个官能团上的氢在图谱中都应有响应的归属旌旗灯号.四. 核磁共振碳谱(13C—NMR)解析图谱的步骤 1.辨别谱图中的非真实旌旗灯号峰(1)溶剂峰:固然碳谱不受溶剂中氢的干扰,但为统筹氢谱的测定及磁场须要,仍常采用氘代试剂作为溶剂,氘代试剂中的碳原子均有响应的峰.(2)杂质峰:杂质含量相对于样品少得多,其峰面积微小,与样品化合物中的碳呈现的峰不成比例.(3)测试前提的影响:测试前提会对所测谱图有较大影响.如脉冲竖直角较大而脉冲距离不够长时,往往导致季碳不出峰;扫描宽度不够大时,扫描宽度以外的谱线会折叠到图谱中来;等等,均造成解析图谱的艰苦. 2.不饱和度的盘算依据分子式盘算的不饱和度,推想图谱烯碳的情形.3.分子对称性的剖析若谱线数量等于分子式中碳原子数量,解释分子构造无对称性;若谱线数量小于分子式中碳原子数量,解释分子构造有必定的对称性.此外,化合物中碳原子数量较多时,有些核的化学情形类似,可能δ值产生重叠现象,应予以留意.4.碳原子δ值的分区碳原子大致可分为三个区(1)高δ值区δ>165ppm,属于羰基和叠烯区:①分子构造中,如消失叠峰,除叠烯中有高δ值旌旗灯号峰外,叠烯两头碳在双键区域还应有旌旗灯号峰,两种峰同时消失才解释叠烯消失;②δ>200 ppm的旌旗灯号,只能属于醛.酮类化合物;③160-180ppm的旌旗灯号峰,则归属于酸.酯.酸酐等类化合物的羰基.(2)中δ值区δ90-160ppm(一般情形δ为100-150ppm)烯.芳环.除叠烯中心碳原子外的其他SP2杂化碳原子.碳氮三键碳原子都在这个区域出峰.(3)低δ值区δ<100ppm,重要脂肪链碳原子区:①不与氧.氮.氟等杂原子相连的饱和的δ值小于55ppm;②炔碳原子δ值在70-100ppm,这是不饱和碳原子的特例. 5.碳原子级数的肯定由低核磁共振或APT(attached proton test).DEPT(distortionless enhancement by polarization transfer)等技巧可肯定碳原子的级数,由此可盘算化合物中与碳原子相连的氢原子数.若此数量小于分子式中的氢原子数,二者之差值为化合物中生动氢的原子数. 6.推导可能的构造式先推导出构造单元,并进一步组合成若干可能的构造式.7.对碳谱的指认将核磁共振碳谱中各旌旗灯号峰在推出的可能构造式长进行指认,找出各碳谱旌旗灯号响应的归属,从而在被推导的可能构造式中找出最合理的构造式,即准确的构造式.。

《核磁共振氢谱解析》PPT课件

《核磁共振氢谱解析》PPT课件

在解析糖类的氢谱时,需要注意 区分不同糖环类型的影响,以便 准确推断出糖类分子的结构特征 。
由于糖类分子结构的复杂性,其 氢谱信号可能会出现重叠现象, 需要仔细解析以获得准确的结论 。
05
氢谱解析的挑战与展望
复杂样品与混合物的解析
挑战
复杂样品和混合物中的多种成分可能 导致谱线重叠和干扰,增加了氢谱解 析的难度。
峰面积
表示某一峰的强度或高 度,通常与产生该峰的
质子数成正比。
积分线
对谱线进行积分,得到 积分线,可以用于定量
分析。
校正因子
由于不同化学环境对质 子自旋耦合的影响,需 要引入校正因子来准确
计算质子数。
03
氢谱解析实践
简单分子的氢谱解析
总结词
掌握基础解析方法
01
总结词
熟悉常见峰型
03
总结词
注意杂质的干扰
解决方案
采用先进的谱图解析技术和化学位移 差异法,结合分子结构和物理状态信 息,对重叠的谱线进行分离和鉴别。
高磁场下的氢谱解析
挑战
高磁场条件下,氢谱的分辨率和灵敏度得到提高,但同时也带来了谱线复杂化 和解析难度增加的问题。
解决方案
利用高磁场下的多量子跃迁和异核耦合等效应,结合计算机模拟和量子化学计 算,对高磁场下的氢谱进行解析。
氢谱解析技巧与注意事项
总结词
重视峰的归属与确认
总结词
在复杂氢谱中,应注意分辨和区分重 叠的峰,运用适当的技巧和方法进行 解析。
详细描述
在解析氢谱时,应重视每个峰的归属 与确认,确保解析结果的准确性。
详细描述
注意峰的重叠与分辨
04
氢谱解析案例分析
案例一:醇类的氢谱解析

第一章核磁共振氢谱解析

第一章核磁共振氢谱解析

1. 2. 2 分类讨论耦合常数
谱线裂分产生的裂距,反映两个核之间的作用力强弱,单位 Hz。与两核之间相隔的化学键数目关系很大:
nJ n化学键的个数。 2J 同碳上的氢,无耦合。不同种磁性核时,有耦合。 3J 相邻碳上的氢。如HA-CH2-CH2-HB, HA与HB的耦合。 4J 相隔4个化学键,耦合作用很弱。
也就是说在测定核磁共振氢谱时当使用非手性溶剂时这两个相同基团才会具有相同的化学位移数值当使用手性溶剂时这两个相同基团可能具有不同的化学位移数如果该分子存在分子内运动则对于每一种构象来说都应该存在平分xcx角的对称面这两个相同基团才是对映异位的在用非手性溶剂测定核磁共振谱时才会具有相同的化学位移数值
第一章 核磁共振氢谱的解析
耦合作用
每类氢核不总表现为单峰, 有时多重峰。
原因:相邻两个氢核之间的 自旋耦合(自旋干扰);
n+1 规律的内容是:如果所讨论基团的相邻基团含有n 个 氢原子, 所讨论的基团将被这个相邻的基团裂分为n+1 重峰. 一定要注意:n + 1 规律中的n是产生耦合裂分的磁性核的数 目,而不是所讨论的基团(在氢谱中就是所讨论的含氢的官能 团)的氢原子数目.
氢谱中很重要的一点是, 如果两个氢原子具有相同的化学 位移数值,在氢谱中它们之间的耦合裂分就不会反映出来; 反之,如果它们具有不同的化学位移数值,在氢谱中它们之 间的耦合裂分就会反映出来,而且由于它们仅相距两根化学 键,耦合常数为2J.
总之,无论是连接在同一个碳原子上的两个氢原子,还 是连接在同一个碳原子上的两个相同基团. 它们的化学位移 数值是否相等是不能简单地判定的.
核磁共振氢谱的主要参数有3个:化学位移、峰的裂分和偶合 常数J、峰面积. 核磁共振氢谱的横坐标是化学位移,也就是说化学位移是官能 团出峰位置的表征;核磁共振氢谱的纵坐标是谱峰的强度, 由于氢谱中的谱峰都有一定的宽度,因此以谱峰的面职的积分 数值来量度峰的大小. 从各峰组的积分数值比可以找到各峰组所对应的氢原子数目比. 如果测试的样品是混合物,用这种定量关系则可确定各组分的 定量比.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • • 原子核的磁矩 自旋核在磁场中的取向和能级 核的回旋和核磁共振 核的自旋弛豫
原子核的自旋、磁矩
• 质量数与电荷数均为双数,如C12,O16,没有 自旋现象。I=0 • 质量数为单数,如H1,C13,N15,F19,P31。I 为半整数,1/2,3/2,5/2…… • 质量数为双数,但电荷数为单数,如 H2 , N14 , I为整数,1,2…… • I为自旋量子数
原子核的进动
在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子 数m表示。
磁旋比:1H=26753, 2H=410 7,13C= 6726弧度/秒 高斯
N
2 H0 H0

自旋角速度ω,外磁场H0,进动频率ν
共振条件
原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场, 如频率为v射,当v射等于进动频率ν ,发生共振。低能态原子核吸收 交变电场的能量,跃迁到高能态,称核磁共振。
按磁场源分:永久磁铁、电磁铁、超导磁 按交变频率分:40兆,60兆,90兆,100兆,220兆,250兆,300兆 赫兹…… 频率越高,分辨率越高
2. 核磁共振仪与实验方 法
交变频率与分辨率的关系
Nuclei
(ppm)
A B C
1.89 2.00 2.08
Interaction J (Hz)
NMR发展
近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断 化合物的空间结构起重大作用。 • 英国R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel奖。 • 瑞士科学家库尔特· 维特里希因“发明了利用核磁共振技术测定溶 液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。
Boltzmann分布
• 在质子群中处于高低能态的核各有多少?
• 在绝对温度0度时,全部核处于低能态 • 在无磁场时,二种自旋取向的几率几乎相等 • 在磁场作用下,原子核自旋取向倾向取低能态,但室温时热能比 原子核自旋取向能级差高几个数量级,热运动使这种倾向受破坏, 当达到热平衡时,处于高低能态的核数的分布服从Boltzmann分 布:
自旋角动量(PN),自旋量子数(I) I=0,1/2,1,3/2…… 磁矩(μN*),核磁矩单位(βN),核磁子;磁旋比(γN)
N g N I ( I 1) N
N
N PN
自旋核在磁场中的取向和能级
具有磁矩的核在外磁场中的自旋取向是量子化的, 可用磁量子数m来表示核自旋不同的空间取向, 其数值可取:m =I,I-1,I-2, ……,-I ,共有2I +1个取向。
化学等价质子与化学不等价质子的判断
• --- 可通过对称操作或快速机制(如构象转换) 互换的质子是化学等价的。 • --- 不可通过对称操作或快速机制(构象转换) 互换的质子是化学不等价的。 • --- 与手性碳原子相连的 CH2 上的两个质子是 化学不等价的。
对称轴旋转 对称操作 其他对称操作 (如对称面) 对映异位质子 等位质子 化学等价质子 非手性环境为化学等价 手性环境为化学不等价
N,N-Dimethylformamide (DMF)
Dimethyl Sulfoxide (DMSO) Ethanol Methanol
(CD3)2NCDO
CD3SOCD3 CD3CD2OD CD3OD
Tetrehydrofuran (THF)
Toluene
C4D8O
C6D5CD3
Pyridine
NMR Lock Solvents Acetone Chloroform Dichloro Methane Methylnitrile Benzene Water Diethylether (DEE) Dimethylether (DME) CD3COCD3 CDCl3 CD2Cl2 CD3CN C6D6 D2O (CD3CD2)2O (CD3)2O
能级分裂
两种取向代表两个能级,m=-1/2能级高于m=1/2能级。
E
N
I
H 0 2 N H 0
核的回旋和核磁共振
当一个原子核的核磁矩处于磁场BO中,由于核自身的旋 转,而外磁场又力求它取向于磁场方向,在这两种力的 作用下,核会在自旋的同时绕外磁场的方向进行回旋, 这种运动称为Larmor进动。
AB BC
4 8
核磁共振波谱的测定
• • 样品:纯度高,固体样品和粘度大液体样品必须溶解。 溶剂:氘代试剂(CDCl3, C6D6 ,CD3OD, CD3COCD3, C5D5N ) • 标准:四甲基硅烷 (CH3)4Si ,缩写:TMS 优点:信号简单,且在高场,其他信号在低场, 值为正值;沸点低(26。5 C),利于回收样品; 易溶于有机溶剂;化学惰性 实验方法:内标法、外标法 此外还有:六甲基二硅醚(HMDC, 值为0.07ppm), 4,4-二甲基-4-硅代戊磺酸钠(DSS, 水溶性,作为极性化合物的内标, 但三个CH2的 值为0.5~3.0ppm,对样品信号有影响)
1H
13C
19F 31P
60.000 MHZ 15.086 MHZ 56.444 MHZ 24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHZ 60 100 200 300 500 磁场强度 0.9400 特斯拉 1.4092 2.3500 4.7000 7.1000 11.7500
核磁共振的条件: Δ E = h v迴= h v射= h BO /2π 或 v射= v迴= BO /2π
射频频率与磁场强度Bo是成正比的,在进行核磁共振 实验时,所用的磁强强度越高,发生核磁共振所需的 射频频率也越高。
要满足核磁共振条件,可通过二种方法来实现

频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
•1H-NMR o how many types of hydrogen ? o how many of each type ? o what types of hydrogen ? o how are they connected ?
NMR谱的结构信息
化学位移 偶合常数 积分高度
1. 核磁共振的基本原理
I=n/2 n = 0 , 1 , 2 , 3 ---(取整数)
一些原子核有自旋现象,因而具有角动量,原子核是带电的粒 子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是 平行的。 哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量 数A和原子序数Z: A Z I 自旋形状 NMR信号 原子核 12C,16O, 偶数 偶数 0 无自旋现象 无 32S, 28Si, 30Si 1H, 13C, 奇数 奇数或偶数 1/ 2 自旋球体 有 15N, 19F, 31P 奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体 有 11B,17O,33S,35Cl,79Br,127I 2H, 10B, 偶数 奇数 1, 2, 3, --- 自旋惰球体 有 14N
化学等价
处于相同化学环境的原子 — 化学等价原子
化学等价的质子其化学位移相同,仅出现一组 NMR 信号。
化学不等价的质子在 NMR 谱中出现不同的信号 组。
例1:CH3-O-CH3 例2:CH3-CH2-Br 例3:(CH3)2CHCH(CH3)2 例4:CH3-CH2COO-CH3 一组NMR 信号 二组NMR信号 二组NMR 信号 三组NMR 信号

核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800 MHZ(兆赫兹),频率越高,分辨率越高
按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR)
脉冲傅立叶变换NMR谱仪(FT-NMR) NMR仪器的主要组成部件:
化学等价质子与化学不等价质子的判断
Cl C Cl A Ha Br E Hb Br C Hb Cl B O Br C Cl F a CH 3 b H3C C OCH 3 CH 3 J Ha Hb Hc K Hb Ha Ha Cl C Hb Ha H3C a C Ha Hb CH 3 CH 3 G NO 2 Ha Hb Cl C Hc I C Hb Ha Cl Ha H3C CH C CH 3 Hb L Cl Hb H H3C H3C O CH 3 b Cl Hb D Ha Ha Cl CH 3
• 驰豫过程可分为两种类型:自旋-晶格驰 豫和自旋-自旋驰豫。
驰豫过程:由激发态恢复到平衡态的过程
• 自旋晶格驰豫:核与环境进行能量交换。体系能 量降低而逐渐趋于平衡。又称纵向驰豫。速率 1/T1,T1为自旋晶格驰豫时间。 • 自旋自旋驰豫:自旋体系内部、核与核之间能量 平均及消散。又称横向驰豫。体系的做能量不变, 速率1/T2,T2为自旋自旋时间。 • 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。 • 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
磁体:提供强而均匀的磁场
样品管:直径4mm, 长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样品
扫描发生器:安装在磁极上的Helmholtz线圈,提供一个附加可
变磁场,用于扫描测定 射频接受器 :用于探测NMR信号,此线圈与射频发生器、扫描
部东 部西 部北 度季四第 度季三第 度季二第 度季一第 09 08 07 06 05 04 03 02 01 0
n+/n- 1+ ΔE / kT 式中:n+ ---- 低能态的核数 n- ---- 高能态的核数
相关文档
最新文档