电流互感器(二次三个)

合集下载

电流互感器

电流互感器

电流互感器(变电管理一所)摘要:电流互感器是一次系统和二次系统之间的联络元件,将一次侧的大电流变成二次侧标准的小电流(5A 或1A),用以分别向测量仪表、继电器的电压线圈和电流线圈供电,使二次电路正确反映一次系统的正常运行和故障情况。

关键词:电流互感器分类接线方式一、电流互感器的主要技术数据(-)电流互感器分类(1)电流互感器按用途可分为两类:一是测量电流、功率和电能用的测量用互感器;二是继电保护和自动控制用的保护控制用互感器。

(2)根据一次绕组匝数可分为单匝式和多匝式(3)根据安装地点可分为户内式和户外式(4)根据绝缘方式可分为干式、浇注式、油浸式等。

(5)根据电流互感器工作原理可分为电磁式、光电式、电子式等电流互感器。

(二)电流互感器的型号规定目前,国产电流互感器型号编排方法规定如下:产品型号均以汉语拼音字母表示,字母含义及排列顺序见表4-l所示(三)电流互感器的主要参数1.额定电流变比额定电流变比是指一次额定电流与二次额定电流之比,额定电流比一般用不约分的分数形式表示。

额定电流,就是在这个电流下,互感器可以长期运行而不会因发热损坏。

当负载电流超过额定电流时,叫作过负载。

2.准确度等级国产电流互感器的准确度等级有0.01、0.02、0.05、0.1、0.2、0.5、1.0、3.0、5.0、0.2S 级及0.5S级。

3.额定容量电流互感器的额定容量,就是额定二次电流I2e通过二次额定负载Z2e时所消耗的视在功率S2e。

4.额定电压是指一次绕组长期能够承受的最大电压(有效值),它只是说明电流互感器的绝缘强度,而和电流互感器额定容量没有任何关系。

5.极性标志(1)一次绕组首端标为L1,末端标为L2。

当一次绕组带有抽头时,首端标为L1,自第一个抽头起依次标为L2,L3……(2)二次绕组首端标为K1,末端标为K2。

当二次绕组带有中间抽头时,首端标为K1,自第一个抽头起以下依次标志为K2,K3……(3)对于具有多个二次绕组的电流互感器,应分别在各个二次绕组的出线端标志“K”前加注数字,如1K1,1K2,1K3……;2K1,2K2,2K3……(4)标志符号的排列应当使一次电流自L1端流向L2端时,二次电流自K1流出,经外部回路流回到K2。

电流互感器基础知识

电流互感器基础知识
17
RWL
LC
S
式中,γ为导线的导电率,铜线γ=53m/ (Ω·mm2),铝线γ=32m/(Ω·mm2);S为导 线截面(mm2);Lc为导线的计算长度(m)。 设互感器到仪表单向长度为l1,则:
Lc
l1 3l1
Hale Waihona Puke 2l1星形接线 两相V形接线 一相式接线
18
保护用互感器的准确度选10P级,其复合误差限 值为10%。为了正确反映一次侧短路电流的大小, 二次电流与一次电流成线性关系,也需要校验二次 负荷。
荷; (4)比较实际二次负荷与允许二次负荷。如实际二次负荷小于允许二次负荷,表示
电流互感器的误差不超过10%,如实际二次负荷大于允许二次负荷,则应采取下述措施, 使其满足10%误差:
① ①增大连接导线截面或缩短连接导线长度,以减小实际二次负荷; ②选择变比较大的电流互感器,减小一次电流倍数,增大允许二次负荷。
I1N >I30
S2N
一般: I1N =(1.2~1.5)I30
4). 电流互感器准确度选择及校验
准确度选择的原则:计量用的电流互感器的准确度选0.2~0.5级,测量用的电流互感 器的准确度选1.0~3.0级。为了保证准确度误差不超过规定值,互感器二次侧负荷S2 应不大于二次侧额定负荷S2N ,所选准确度才能得到保证。
(3) 变流比与二次额定负荷 电流互感器的一次额定电流有多种规格可供用户选择。 电流互感器的每个二次绕组都规定了额定负荷,二次绕组回路所带负荷不应超过额定负 荷值,否则会影响精确度。
14
电流互感器的选择与校验
1). 电流互感器型号的选择
根据安装地点和工作要求选择电流互感器的型号。 2).电流互感器额定电压的选择

电流互感器和电压互感器课件

电流互感器和电压互感器课件
ppt课件 14
• 电压互感器(以下简称PT)在正常运行时相当 一个空载运行的变压器,这是因为PT的二 次负荷主要是测量仪表和继电器的电压线 圈,其阻抗一般很大,使PT二次所通过的电流 很小,. 由于PT的容量通常很小,线圈的导线很 细,漏抗也很小,一旦二次出现短路,很大的短 路电流极易烧毁PT,所以为了保证PT的安全 动行不允许短路.为了对其进行保护一般在 要加装熔断器.
ppt课件 5
3 ,变压器的主磁通决定于一次侧所加的电压,主磁通又决定了二次电势,因此,主磁通不 变二次电势也基本不变。电流互感器则不 一样,当二次回路阻抗变化时,二次电势 也会变老。在一次电流作用下,二次阻抗、 励磁电流、二次电势和二次电流这几个量 是互为因果关系。
ppt课件 7
电流互感器的铭牌
• 第一个字母: L —— 电流互感器。• 第二个字母: D单匝贯穿式;F复匝贯穿式Q 绕组型M母线式R装入式A穿墙式C瓷箱式 第三个字母: C —— 瓷绝缘式;Z——浇注式。J加大容量W户外型G改进型D差动保护 用第四个字母: B ——保护;D—— 差动。例如: 电流互感器LMZBJ-10W1字母什么意 思L-- 电流互感器 M--母线型; Z--环氧浇注; B--保护级; J--加大容量;W--户外式; 10--额 定电压10KV。课件
ppt
8
电流互感器是怎样分类的?1.户内式:一般式干式电流互感器或环氧树脂浇注电流互感器。用在35kV及以下的配电装置中。
ppt课件 9
2,户外式: 35kV及以上电流互感器多制成户外式,多用瓷套为箱体,以节约材料,减 轻重量和缩小体积。3,套箱式:也叫装入式,这种电流互感器是 装在35kV及以上的多油断路器或变压器的 套管中的。断路器或变压器套管中的导电 杆就作为电流互感的一次线圈,互感器本 身的铁芯和二次线圈套在导电杆上,构成 整体。

电流互感器

电流互感器

3、电流互感器的极性
电流互感器的极性一般采用减极性原则标注,即:一、二次绕组中 的电流在铁芯中产生的磁通方向相反。如图所示,则L1与K1为一对同极 性端子。
电流互感器在电路中的符号如下图所示,用“TA”来表示,一次绕 组 一般用一根直线表示,一次绕组和二次绕组分别标记 “●”的两个端子 为 同名端或同极性端。极性端子关系到二次电流的方向,非常重要。
(3)按安装方式,可分为支持式、装入式和 按安装方式,可分为支持式、 按安装方式 穿墙式等。 穿墙式等。 支持式安装在平面和支柱上,装入式(套管 支持式安装在平面和支柱上,装入式 套管 式)可以节省套管绝缘子而套装在变压器导 可以节省套管绝缘子而套装在变压器导 体引出线穿出外壳处的油箱上; 体引出线穿出外壳处的油箱上;穿墙式主 要用于室外的墙体上, 要用于室外的墙体上,可兼作导体绝缘和 固定设施。 固定设施。
如图(a)所示。两相星形接线又称不完全星形接线,这种接线只 用两只电流互感器,统一装设在A、C相上。一般测量两相的电流,但通过 公共导线,也可测第三相的电流。主要适用于小接地电流的三相三线制系 统,在发电厂、变电所6~10kv馈线回路中,也常用来测量和监视三相系统 的运行状况。
3.三相星形接线
如图(c)所示。三相星形接线又称完全星形接线,它是由三只完 全相同的电流互感器构成。由于每相都有电流流过,当三相负载不平衡 时,公共线中就有电流流过,此时,公共线是不能断开的,否则就会产生 计量误差。该种接线方式适用于高压大接地电流系统、发电机和变压器二 次回路、低压三相四线制电路 .
五、电流互感器的选择
1、额定电压的选择 电流互感器的额定电压UN应略高于或等于其安装 处的工作电压UX UN ≥ UX 2、额定电流的选择 电流互感器的一次额定电流I1N应大于或等于长期 通过电流互感器的最大工作电流Im,力求使电流互感 器运行于额定电流附近,以保证测量的准确性。 3、准确度等级的选择 测量时应根据被测对象对测量准确度的要求合理选 择准确度等级。一、二类电能计量应选0.2级电流 互感器。 4、额定容量的选择 选择时互感器二次侧容量S应满足0.25SN≤ S≤ SN

互感器的分类(全)

互感器的分类(全)

互感器分为电压互感器和电流互感器两大类。

电压互感器可在高压和超高压的电力系统中用于电压和功率的测量等。

电流互感器可用在交换电流的测量、交换电度的测量和电力拖动线路中的保护。

一、电压互感器分类1. 按用途分测量用电压互感器(或电压互感器的测量绕组),在正常电压范围内,向测量、计量装置提供电网电压信息。

保护用电压互感器(或电压互感器的保护绕组),在电网故障状态下,向继电保护等装置提供电网故障电压信息。

2. 按绝缘介质分干式电压互感器。

由普通绝缘材料浸渍绝缘漆作为绝缘,多用在500V及以下低电压等级。

浇注绝缘电压互感器。

由环氧树脂或其他树脂混合材料浇注成型,多用在35KV及以下电压等级。

油浸式电压互感器。

由绝缘纸和绝缘油作为绝缘,是我国最常见的结构型式,常用在220KV及以下电压等级。

气体绝缘电压互感器。

由气体作主绝缘,多用在超高压、特高压。

3. 按相数分单相电压互感器,一般在35KV及以上电压等级采用。

三相电压互感器,一般在35KV及以下电压等级采用。

4. 按电压变换原理分电磁式电压互感器。

根据电磁感应原理变换电压,原理与基本结构和变压器完全相似,我国多在220KV及以下电压等级采用。

电容式电压互感器。

由电容分压器、补偿电抗器、中间变压器、阻尼器及载波装置防护间隙等组成,目前我国110KV-500KV电压等级均有应用,超高压只生产电容式电压互感器。

光电式电压互感器。

通过光电变换原理以实现电压变换,近年来才开始使用。

5. 按使用条件分户内型电压互感器。

安装在室内配电装置中,一般用在35KV及以下电压等级。

户外型电压互感器。

安装在户外配电装置中,多用在35KV及以上电压等级。

6. 按一次绕组对地运行状态分一次绕组接地的电压互感器。

单相电压互感器一次绕组的末端或三相电压互感器一次绕组的中性点直接接地,末端绝缘水平较低。

一次绕组不接地的电压互感器。

单相电压互感器一次绕组两端子对地都是绝缘的;三相电压互感器一次绕组的各部分,包括接线端子对地都是绝缘的,而且绝缘水平与额定绝缘水平一致。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。

电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA或30VA,特殊情况可选的更大一些。

电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(级足矣),测量用的可以更低点;3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流互感器相关知识汇总

电流互感器相关知识汇总

电流互感器的相关知识汇总2014年3月15日电流互感器主要由三部分组成:铁心、一次线圈和二次线圈。

由于铁心磁阻的存在,电流互感器在传变电流的过程中,必须消耗一小部分电流用于激磁,使铁心磁化,从而在二次线圈产生感应电势和二次电流,电流互感器的误差就是由于铁心所消耗的励磁电流引起的。

由于激磁电流和铁损的存在,电流互感器一次电流和二次电流的差值是一个向量,误差包括比值差和相角差。

影响误差的因素:1、电流互感器的内部参数是影响电流互感器误差的主要因素。

⑴二次线圈内阻R2和漏抗X2对误差的影响: 当R2增大时比差和角差都增大; X2增大时比差增大,但角差减小,因此要改善误差应尽量减小R2和适当的X2值。

由于二次线圈内阻R2和漏抗X2与二次负载Rfh和Xfh比较而言值很小,所以改变R2和X2对误差的影响不大,只有对小容量的电流互感器影响才较显著。

⑵铁芯截面对误差的影响:铁芯截面增大使铁芯的磁通密度减少,励磁电流减小,从而改善比差和角差。

没有补偿的电流互感器在额定条件下铁芯的磁通密度已经很小,所以减少磁通密度也相对减小了导磁系数,使励磁电流减小不多,而且磁通密度越小效果越差。

⑶线圈匝数对误差的影响: 增加线圈匝数就是增加安匝,增加匝数可以使磁通密度减小,其改善误差的效果比增加铁芯截面显著得多。

但是线圈匝数的增加会引起铜用量的增加,同时引起动稳定倍数的减少和饱和倍数的增加。

此外,对于单匝式的电流互感器(如穿心型或套管型电流互感器一次线圈只允许一匝)不能用增加匝数的办法改善误差。

⑷减少铁芯损耗和提高导磁率。

在铁芯磁通密度不变的条件下,减少铁芯励磁安匝和损耗安匝也将改善比差和角差,因此采用优质的磁性材料和采取适宜的退火工艺都能达到提高导磁率和减少损耗的目的。

铁芯磁性的优劣还影响饱和倍数,铁芯磁性差时饱和倍数较校。

2、运行中的电流互感器的误差当电流互感器已经定型,其内部参数就确定了,那么它的误差大小将受二次电流(或一次电流)、二次负载、功率因数以及频率的影响。

电流保护接线

电流保护接线



只切除一回路示意图
I b
K1
Ic
K2ห้องสมุดไป่ตู้

切除两回路示意图
K1
K2

保护拒动示意图
K1
K2

扩大停电范围示意图
K1
K2

结论:在两回路上不同地点、不同相别发生 两点接地短路时,若保护具有相同的动作 时间,采用两相式接线有2/3的机会只切除 一条回路,这是两相式接线的优点。
若在串联线路上发生两点接地短路,有1/3 机会误切除近电源的故障点,扩大了停电 范围,这是两相式接线的缺点。

(3)两相三继电器接线

特点:中性上的电流继电器测量到B相电流。



采用此接线的目的:为了提高Y,d变压器 后发生两相短路的灵敏度。 因为变压器后两相短路,电源侧三相短路 电流大小不相等,最大相是最小相的2倍。 若采用两相两继电器接线,有可能无法测 量到最大相的电流,保护的灵敏度将受到 影响。
电流保护接线



为了能反映各种类型的相间短路故障,应 合理选择保护的接线方式。 电流保护接线是指电流继电器线圈与电流 互感器二次绕组之间的连接方式。 作为相间短路电流保护有三种基本接线方 式。三相完全星形接线、两相不完全星形 接线、两相三继电器接线、两相电流差接 线。
(1)三相三继完全星形接线
特点:三相电流互感器二次绕组与三个电流继电器分别按 相连接,三个继电器触点并联
(2) 两相两继电器接线
特点:只有两相装设电流互感器,按相连接继电器。

应用范围:中性点不接地系统。 原因:中性点不接地系统,单相接地属于 不正常运行,允许继续运行一段时间。
作用:可提高供电可靠性。 要求:所有线路的电流互感器必须安装在 同名相上。

论文浅析电流互感器(TA)二次开路故障的问题(论文)

论文浅析电流互感器(TA)二次开路故障的问题(论文)

吉林交通职业技术学院论文论文题目:浅析电流互感器(TA)二次开路故障的问题系别专业: XXXX分院 XXXXXX专业班级: XXXXX班姓名: XXX(XX号)指导教师: XXXS 完成时间: XXXX年XX月摘要按规定,电流互感器在运行中严禁二次侧开路。

这是因为电流互感器在正常运行时,二次侧电流产生的磁通对一次侧电流产生的磁通起去磁作用,励磁电流甚小,铁心中的总磁通很小,二次侧绕组的感应电动势不超过几十伏。

如果二次侧开路,二次侧电流的去磁作用消失,一次侧电流完全变为励磁电流,引起铁心内磁通剧增,铁心处于高度饱和状态,电流互感器的作用是将一次侧大电流变换成二次侧的标准小电流,与仪表配合可进行电流、电能测量;与继电器配合可对系统进行过流、过负荷及短路保护,它可使仪表、继电器保护装置与线路高压隔离,保护人员和设备的安全。

但在日常工作中有时会遇到电流互感器二次回路开路产生高电压损坏设备或伤人的事故。

关键词:电流互感器二次开路电流互感器二次开路预防危害电器保护装置电流变换电能测量短路保护日常工作二次侧应对措施高电压仪表目录一、电流互感器基础知识 (2)(一)定义 (2)(二)基本原理 (2)(三)使用原则 (2)二、电流互感器的二次回路开路故障分析 (3)(一)关于故障发生的原因 (3)(二)如何对故障进行检查和判断 (4)1、二次回路开路故障的伴随现象 (4)2、可采取的两种检查方法 (4)(三)电流互感器TA二次开路的后果 (4)三、电流互感器二次开路故障的处理和防范 (5)(一)电流互感器二次开路故障的处理 (5)(二)电流互感器二次开路的预防措施 (5)1日常防范 (5)2设计电路预防 (5)总结 (6)致谢 (7)参考文献 (8)一、电流互感器基础知识(一)定义1电流互感器为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量.但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的高电压和大电流按比例变换成低电压和小电流,供给测量仪表和保护装置使用.执行这些变换任务的设备,最常见的就是我们通常所说的互感器.进行电压转换的是电压互感器(voltage transformer),而进行电流转换的互感器为电流互感器,简称为TA。

电流互感器及其配置原则

电流互感器及其配置原则

保护用
电流互感器及其配置原则
2) 测量(计量)用电流互感器准确度等级: 6个标准准确度级,分别为:0.1、0.2、0.5、1、3和5
级,另有供特殊用途的0.2S 和0.5S级,如右图所示。
0.2S 和0.5S级也是用于测量计量用的电流互感器,与 0.2、0.5级的电流互感器相比,S类的电流互感器最大区 别是在小负荷时,具有更高的测量精度,主要是用于负荷 变动范围比较大的情况下,仍要求准确计量的场合。
02 电流互感器的准确度等级
电流互感器及其配置原则
02 电流互感器的准确度等级
1) 保护用电流互感器准确度等级:5P和10P
一般用εPM来表示,式中,ε为准确度等级;P 表示保护用;M是保证准确度的允许最大短路电流 倍数。
如右图中5P30,其含义是电流互感器一次电流 为30倍额定电流下的短路电流时,其误差满足5% 的要求。
谢谢欣赏
电流互感器 及其配置原则
CONTENTS
目 录
一 电流互感器 1 电流互感器的分类 2 电流互感器的准确度等级 3 电流互感器的二次额定电流
二 电流互感器的一般配置原则 1 电流互感器配置的要求 2 电流互感器二次绕组数量
01 电流互感器的分类
电流互感器及Байду номын сангаас配置原则
01 电流互感器的分类
按原理分:电磁式和电子式。 按用途分:测量用和保护用。 一台电磁式电流互感器通常提供多组二次绕组, 不同的二次绕组缠绕在不同的铁芯上。 一部分二次绕组用于继电保护及自动装置,称 为保护用电流互感器。 一部分给测量及计量仪表提供二次电流, 称为 测量(计量)用电流互感器。
04 电流互感器配置的要求 电流互感器的准确度等级
045)电故流障互录感波器二和次其绕他组自数动量装置应配置一个单独的二次绕组; 电6个流标互准感准器确的度准级确,度分等别级为:0. 当3)采母用线主、保线护路与或后变备压保器护要一求体双化重设主计保的护保时护,装应置配,置可两配个置单一独个的二二次次绕绕组组;,分别给两套不同的保护装置提供二次电流; 4)故障录波器和其他自动装置应配置一个单独的二次绕组; 电流互感器的准一确般度配等置级原则 一电般流用 互ε感PM器来二表次示绕,组式数中量,ε为准确度等级; 电流互感器二及次其绕配组置数原量则 12)电测流量互(感计器量的)标用准电二流次互额感定器电准流确为度1等A或级5:A。 4电)流故互障感录器波的器准和确其度他等自级动装置应配置一个单独的二次绕组; 53)测母量线和、计线量路应或各变自压配器置要单求独双的重二主次保绕护组时。,应配置两个单独的二次绕组,分别给两套不同的保护装置提供二次电流; 1)电流互感器的标准二次额定电流为1A或5A。 电流互感器及其配置原则 一部分给测量及计量仪表提供二次电流, 称为测量(计量)用电流互感器。 一部分给测量及计量仪表提供二次电流, 称为测量(计量)用电流互感器。 电流互感器及其配置原则 电流互感器的准确度等级 4)故障录波器和其他自动装置应配置一个单独的二次绕组; 电流互感器的二次额定电流 1)母线保护装置配置单独的二次绕组;

电流互感器二次侧短路的后果

电流互感器二次侧短路的后果

电流互感器二次侧短路的后果1.引言1.1 概述概述电流互感器是一种常见的电力测量仪器,被广泛应用于配电系统和电力设备中,用于测量高电压电流并将其变换为可测量范围的低电流。

然而,尽管电流互感器在电力系统中起着重要的作用,但当其二次侧发生短路时,将会产生一系列严重的后果。

本文将对电流互感器二次侧短路的定义、原因以及其所带来的影响和后果进行详细探讨。

我们将首先介绍电流互感器二次侧短路的定义和常见原因,然后讨论该问题可能导致的影响和后果。

最后,我们将总结文章内容,并提出针对电流互感器二次侧短路的应对措施。

通过本文的阐述,读者将能够更好地了解电流互感器二次侧短路的危害,以及如何通过相应的措施来预防和解决该问题。

这对于确保电力系统的运行安全和稳定具有重要意义,同时也有助于提高电力设备的维护和管理水平。

在接下来的章节中,我们将深入探讨电流互感器二次侧短路的定义和原因,希望读者能够从中受益,并能够更好地理解和应对这一问题。

1.2 文章结构文章结构部分的内容:本文主要介绍电流互感器二次侧短路的后果,文章结构分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个方面。

首先,我们将简要概述电流互感器二次侧短路的问题,并指出其重要性。

接着,我们将介绍文章的结构安排,说明各个部分的内容和重要性。

最后,我们明确文章的目的,即通过研究电流互感器二次侧短路的后果,提高人们对该问题的认识和应对能力。

正文部分分为电流互感器二次侧短路的定义和原因,以及其影响和后果两个方面。

在2.1节中,我们将对电流互感器二次侧短路进行定义,并分析引起该问题的原因,包括设备老化、外部短路和设计缺陷等方面。

在2.2节中,我们将详细阐述电流互感器二次侧短路的各种影响和后果,如误差放大、安全隐患、设备损坏等。

通过对这些后果的深入分析,可以更好地认识电流互感器二次侧短路问题的严重性和应对的必要性。

结论部分包括总结和对电流互感器二次侧短路的应对措施两个方面。

电流互感器的接线方式、饱和及伏安特性,值得收藏!

电流互感器的接线方式、饱和及伏安特性,值得收藏!

电流互感器的接线方式、饱和及伏安特性,值得收藏!电流互感器(CT)是电力系统重要的电气设备,它承担着高、低压系统之间的隔离及高压量向低压量转换的职能。

在系统的保护、测量、计量等设备的正常工作中扮演着极其重要的角色。

整理了关于CT的相关知识点与大家分享,具体内容包括以下四个方面:1.电流互感器二次回路接线方式2.电流互感器的饱和3.电流互感器伏安特性4.电流互感器回路接线错误案例分析01电流互感器二次回路接线方式在变电站中,常用的电流互感器二次回路接线方式有单相接线、两相星形(或不完全星形)接线、三相星形(或全星形)接线、三角形接线及和电流接线等,它们根据需要应用于不同场合。

现将各种接线的特点及应用场合介绍如下。

(1)单相接线方式单相式接线,这种接线只有一只电流互感器组成,接线简单。

它可以用于小电流接地系统零序电流的测量,也可以用于三相对称电流中电流的测量或过负荷保护等。

(2)两相星形接线方式两相星形接线,这种接线由两相电流互感器组成,与三相星形接线相比,它缺少一只电流互感器(一般为B相),所以又叫不完全星形接线。

它一般用于小电流接地系统的测量和保护回路,由于该系统没有零序电流,另外一相电流可以通过计算得出,所以该接线可以测量三相电流、有功功率、无功功率、电能等。

反应各类相间故障,但不能完全反应接地故障。

对于小电流接地系统,不完全星形接线不但节约了一相电流互感器的投资,在同一母线的不同出线发生异名相接地故障时,还能使跳开两条线路的几率下降了三分之二。

只有当AC相接地时才会跳开两条线路,AB、BC相接地时,由于B相没有电流互感器,则B相接地的一条线路将不跳闻。

由于小接地电流系统允许单相接地运行2小时,所以这一措施能够提高供电可靠性。

需要指出的是,同一母线上出线的电流互感器必须接在相同的相,否则有些故障时保护将不能动作。

(3)三相星形接线方式三相星形接线又叫全星形接线,这种接线由三只互感器按星形连接而成,相当于三只互感器公用零线。

电流互感器二次特性分析及校核方法

电流互感器二次特性分析及校核方法

附件3电流互感器二次特性分析及校核方法2012年12月,省调发现安阳地区晋家庄动力变电流互感器设计选型存在隐患,电流互感器设计参数中准确限值系数远小于晋家庄母线短路电流倍数,电流互感器传变特性可能难以保证保护装置的正确动作。

各供电公司、电厂、大用户开展了辖区内电流互感器隐患排查工作,排查出186台220千伏电流互感器设计准确限值系数小于短路电流倍数要求,其中各用户站74台,电厂7台,省公司105台。

短路电流超过电流互感器一次额定电流100倍的有35台,均为电解铝企业所属变电站的动力变与整流变电流互感器。

2012年12月13日和25日省调组织电科院、安阳公司、商丘公司对问题最严重的晋家庄、魏楼的动力变电流互感器进行现场二次伏安特性测试试验,根据测试数据和电流互感器相关规程校核后,确认两站动力变电流互感器不满足规程要求,存在易饱和的问题。

2013年将开展全网电流互感器隐患排查活动,计划年底完成全网设计准确限值系数小于短路电流倍数的电流互感器的测试试验,各设备隶属单位应制定整改措施,消除隐患,保证电网安全运行。

一、电流互感器设计选型需考虑的因素DL/T866-2004《电流互感器和电压互感器选择及计算导则》是为规范电流互感器的选择和计算而制定的,此规程统一对保护用电流互感器设计应用的技术要求及设计中存在问题予以详细说明。

规程4.3、4.4条强调在设计选型时需考虑影响电流互感器误差的参数,即根据规划短路容量和二次负荷阻抗,选择电流互感器的一次电流、二次电流、二次容量、准确级限值等参数。

二、电流互感器传变特性对保护装置的影响对电流互感器性能的设计基本要求是在规定使用条件下的误差应在规定限度内。

应用中的突出问题是系统故障时通过短路电流引起铁芯饱和,导致励磁电流显著增加,电流互感器的传变误差加大,二次波形产生畸变,畸变的程度与二次负荷大小也有关。

1. 电流互感器传变特性的分析负荷阻抗Rb图1 电流互感器等效原理图如图1所示,电流互感器的传变误差决定于一次电流I1与二次电流I2的差值,即励磁阻抗回路的电流I e。

常用的电流互感器二次接线

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。

但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。

变压器差动保护误动作的原因及处理方法如下:一、差动保护电流互感器二次接线错误(一)常用的电流互感器二次接线图1-101 常用的电流互感器二次接线图1-101是工程上常用的一种接线方式。

图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。

对图l-101进行相量分析如下:现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。

T2流出。

在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得:I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。

由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。

由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。

在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。

如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。

那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-102(c)中的相应相量反相。

如图1--102(d)所示。

电流互感器

电流互感器

电流互感器的配置
1)对中性点有效接地系统,电流互感器按三相配置,对中性点非 有效接地系统,依具体要求可按两相或三相配置。 2)继电保护和测量仪表宜用不同的二次绕组供电,若受条件限制 须共用一个二次绕组时,其性能应同时满足测量和保护的要求。 3)每组的二次绕组数量应满足工程的需要,一般情况下,主保护 与后备保护不能使用同一二次绕组,差动保护不能与其他保护使 用同一二次绕组。随着微机保护的广泛使用,许多保护综合在一 个装置内,可节约二次绕组数量,但对于采用保护双重化的系统, 一个元件的两套保护必须使用不同的二次绕组。 4)保护用电流互感器的配置应避免出现主保护的死区。 5)接入保护的电流互感器二次绕组的分配,应避免电流互感器内 部故障时出现保护死区,并尽可能缩小不适当的保护重叠区 。
电流互感器的接线方式
电流互感器的接线方式:
1)三相完全星形接法. 2)二相不完全星形接法. 3)二相电流差接法。 4)电流互感器三角形连接而继电器星计算:电流互感器的负荷通常 有两部分组成,一部分是所连接的测量 仪表或保护装置;另一部分是连接导线 (包括接触电阻)。Zb=KrcZr+ KlcZl+Rc 其中Krc为继电器阻抗换算系数。 Klc为连 接导线阻抗换算系数。Rc为接触电阻。Zr 为继电器电流线圈阻抗。Zl为连接导线阻 抗
影响饱和的因素
1)一次电流偏移程度。电力系统的X/R和故障初始电压相位决定一次电流波形的 偏移程度,直流分量将严重增大磁通,偏移程度愈大,铁心饱和愈快。 2)故障电流值。偏移程度相同时(偏移电流幅值正比于电流正弦分量的幅值), 故障电流幅值愈大,铁心饱和愈快。 3)互感器铁心的剩磁。剩磁将增加或减小由其他机理产生的磁通,取决于它们的 相对级性。当剩磁使总磁通增加时,达到饱和时间缩短。当剩磁很大时,铁心可 能很快饱和。 4)二次回路阻抗。其它因素相同时,电流互感器二次负荷较大则达到饱时间较短。 5)饱和电动势。电流互感器的二次励磁阻抗取决于铁心的大小和材质。铁以后截 面愈大,在到饱和要求的磁通愈大,使饱和电动势愈高。铁心材质不同,饱和磁 通密度不同,饱和磁通密度愈高,饱电动势愈高。 6)电流互感器变比。给定一次电流和铁心截面,增加互感器变比可减小磁通,也 即减小磁通密度 。

电流互感器二次回路

电流互感器二次回路

电流互感器二次回路一、电流互感器二次回路电流互感器是将交流一次侧大电流转换成可供测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离,保证工作人员的安全。

电流互感器是单相的,一次侧流过电力系统的一次电流,二次侧接负载ZL(表计、继电器线圈等),一般二次侧额定电流为5A 或1A 。

1.电流互感器的极性和相量图电流互感器一次绕组和二次绕组都是两个端子引出,如图8-l 所示,绕组L1-L2为一次绕组,绕组K1-K2为二次绕组。

在使用电流互感器时,需要考虑绕组的极性。

电流互感器一次绕组和二次绕组的极性通常采用减极性原则标注,即当一次和二次电流同时从互感器一次绕组和二次绕组的同极性端子流入时,它们在铁芯中产生的磁通方向相同。

在图8-1中,L1与K1是同极性端子,同样L2与K2也是同极性端子。

同极性端子还可以用“*”、“·”等符号标注。

电流互感器采用减极性原则标注时,当一次电流从L1(或L2)流人互感器一次绕组时,二次感应电流的规定正方向从K1(或K2)流出互感器二次绕组(这也是二次电流的实际方向),如图8-2(a )所示。

如果忽略电流互感器的励磁电流,其铁芯中合成磁通为:02211=-N I N I (8-1)则 TA n I N N I I 11211/ == (8-2)式中21I 、I ——电流互感器一次电流、二次电流;21、N N ——电流互感器一次绕组匝数、二次绕组匝数;TA n ——电流互感器变化。

可见,此时电流互感器一次电流、二次电流相位相同,如图8-2(b)所示。

2.电流互感器的接线方式电流互感器的接线方式指电流互感器二次数绕组与电流元件线圈之间的线接方式。

常用的接线方式有三相完全星形接线、两相不完全星形接线、两相电流差接线方式等。

例如用于电流保护的常用接线方式如图8-3所示。

图8-3(a)三相完全星形接线,三相都装有电流互感器以及相应的电流元件,能够反应三相的电流,正常情况下中性线电流为0=++=c b a n I I I I ;图8-3(b )两相不完全星形接线,只有两相(一般是A 、C 相)装有电流互感器以及相应的电流元件,只能反应两相的电流,正常情况下中性线电流为b c a n I I I I -=+=。

继电保护习题库及参考答案

继电保护习题库及参考答案

继电保护习题库及参考答案一、单选题(共30题,每题1分,共30分)1、微机保护具有信号测量、逻辑判断、( )等布线逻辑保护的功能。

A、硬件自检B、人机接口C、出口执行D、模数变换正确答案:C2、目前 10kV 电网采用的中性点接地低值电阻一般为( )。

A、10B、15C、200D、50正确答案:A3、电力系统中性点不接地系统发生单相接地故障时,三相线电压( )。

A、不对称B、对称C、某一线电压为 0 其余两线电压不变正确答案:B4、低压配电网中保护中性线代号为( )A、NB、PENC、PE正确答案:B5、低压配电网中性点接地方式采用( )A、经电抗接地B、直接接地C、经电阻接地D、经消弧线圈接地正确答案:B6、微机保护的基本构成包括硬件和( )A、模数变换B、逻辑判断C、软件D、人机接口正确答案:C7、高压电动机最严重的故障是( )将引起电动机本身绕组绝缘严重损坏、铁芯烧伤,造成供电电网电压降低,影响或破坏其他用户的正常工作。

A、相绕组的匝间短路B、过负荷引起的过电流C、定子绕组的相间短路故障正确答案:C8、对于容量在( )的油浸式变压器以及 400kVA 及以上的车间内油浸式变压器,应装设瓦斯保护。

A、800V 及以上B、800kV 及以下C、500kV 及以上D、500V 及以下正确答案:A9、能够使电流继电器开始动作的最小电流称为电流继电器的( )A、动作电流B、电流C、感应电流正确答案:A10、短路全电流中的最大瞬时值称为( )A、周期分量电流B、短路冲击电流C、非周期分量电流正确答案:B11、当电动机的容量小于 2MW 且电流速断保护不能满足灵敏度要求的电动机采用( )。

A、低电压保护B、纵差动保护C、起动时间过长保护正确答案:B12、电动机正序过电流保护可作为电动机的( )。

A、起动时间过长保护B、堵转保护C、对称过负荷保护正确答案:C13、电力系统在运行中发生各种类型短路故障时,将伴随着( )部分地区电压降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档