高层建筑框支剪力墙结构设计

合集下载

高层建筑工程的框支剪力墙结构浅析

高层建筑工程的框支剪力墙结构浅析

高层建筑工程的框支剪力墙结构浅析前言现如今,随着社会经济的快速发展以及城市化建设的不断加快,使得我国建筑工程取得不断发展。

在城市中,高层建筑工程越来越多,并且结构形式复杂、功能多样化。

在建筑结构中,框支剪力墙结构是当前应用较为广泛的结构形式。

基于此,下文对其要点进行探析一、框支剪力墙的类型框支剪力墙类型有很多种,下面就其分类进行简析:1)整截面墙。

整截面墙是不开洞或开洞面积不大于15%的整截面剪力墙。

其受力特点为整体悬臂墙,弯矩图既不突变也无反弯点。

其变形特点为弯曲型变形。

2)整体小开口墙。

整体小开口墙为开洞面积大于15%但仍较小的墙。

其受力特点为弯矩图在连系梁处发生突变,但在整个墙肢高度上没有或仅在个别楼层中才出现反弯点。

其变形特点为以弯曲型为主3)双肢墙及多肢墙。

双肢墙及多肢墙为开洞较大、洞口成列布置的墙。

其受力特点为与整体小开口墙相似。

其变形特点为以弯曲型为主。

4)壁式框支。

壁式框支为开洞尺寸大、连梁线刚度大于或接近墙肢线刚度的墙。

其受力特点为弯矩图在楼层处有突变,在大多数楼层中都出现反弯点。

其变形特点为以剪切型为主。

二、转换层在建筑工程中的应用目前,建筑为了满足多方面的需要,一般具有多种功能,对其综合用途也提出了更高的要求。

从建筑的使用功能来看,通常在中上层设计小开间,而在下层部位设置大开间。

但从结构的布置角度来看,二者的情况却恰好相反,为了使建筑实现相应的功能,在布置方面就必须采用与常规相反的形式。

因此,强度较弱的框架柱往往布置在下层,上层则布置刚度较大的剪力墙。

这样一来,就必须要设置相应的转换机构来对两种不同的结构进行衔接,同时传递两者之间的内力,这就是转换层应发挥的的作用。

在上部剪力墙转换为下部建筑框架的过程中,转换层发挥了重要的作用,它可以为建筑物的底部创造出较大的内部自由空间。

在高层建筑中,转换层的位置决定着建筑的抗震能力,其位置宜低不宜高。

大量的工程实践证明,当转换层位置较高时,容易使框支剪力墙结构上下内力的传递路线发生突变,随之会产生较大的刚度变化。

高层建筑框支剪力墙结构设计

高层建筑框支剪力墙结构设计

高层建筑框支剪力墙结构设计摘要:本文结合某高层建筑结构设计的实例,对其框支剪力墙结构的抗震设计进行了分析。

关键词:高层建筑剪力墙结构1 工程概况本工程主体结构层高60.3m,地下室2 层,层高分别为3.5m,4.7m;地上1 层为居民活动空间,高5.4m;2层~13 层为住宅,层高2.8m,以上至屋顶层高均为3.0m。

2 结构设计中的计算和分析2.1转换体系的选取与计算框支转换层楼板在地震中受力变形较大, 其在整体电算中的模型选择很关键。

由于工程转换梁上部层数多,地震时楼板将传递相当大的地震力,其在平面内的变形是不可忽略的。

因此采用弹性板或弹性膜的计算模型较为适宜。

由于弹性板的平面外刚度在整体计算中已被计入,相当于考虑了板对梁的卸荷作用,会使梁的设计偏于不安全。

在进行整体结构分析时,将转换层楼板用弹性膜单元模拟。

2.2嵌固端与转换层楼板板厚的确定工程以±0.000 板作为嵌固端,既保证上部结构的地震剪力通过地下室顶板传递到全部地下室结构, 同时能够保证上部结构在地震作用下的变形是以地下室为参照原点。

《抗规》第6.1.14条规定:当地下室顶板作为上部嵌固端部位时, 地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2。

故地下室顶板厚度取200mm,同时,为了有效地将水平地震力传递给剪力墙,在应力集中的楼层,将楼板厚度加大,转换层楼板取180mm,与其相邻的层也适当加厚至150mm。

考虑抗震需要,施工图阶段时更有意提高转换层配筋率,使单层配筋率达到0.35%, 以进一步提高转换层楼板和(1)q≤ect310l02(2)γe≤δ1h2δ2h1框支大梁共同作用的能力。

考虑到梁宽大于上部剪力墙的两倍,宽度较宽,对边转换梁,板面钢筋不是简单地要求伸入梁内满足锚固要求即可,而是要求必须贯穿梁顶截面,以确保梁内扭矩在板上的有效传递。

2.3框支柱与剪力墙底部加强部位墙厚的设计框支柱基本布置于上部剪力墙对齐的下方或就近区域, 这样不仅能使竖向荷载的传力途径直接、明确,减少转换板的内力,同时,上下抗侧力结构对齐,对于抵抗水平地震荷载作用,改善转换板的复杂受力情况也是大有益处的(详见图1)。

框架剪力墙结构设计要点

框架剪力墙结构设计要点

框架剪力墙结构设计要点整体规定◆A级高度乙类、丙类高层建筑的剪力墙结构最大适用高度:全部落地剪力墙——非抗震、6度、7度、8度、9度抗震时,分别为150、140、120、100、60m部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为130、120、100、80m,9度抗震时不宜采用A级高度甲类高层建筑的剪力墙结构最大适用高度:6度、7度、8度抗震时,将本地区设防烈度提高一级后,按乙类、丙类建筑采用9度抗震时,应专门研究(说明:房屋高度指室外地面至主要屋面高度,不包括局部突出屋面的电梯机房、水箱、构架等高度)◆B级高度乙类、丙类高层建筑的剪力墙结构最大适用高度:全部落地剪力墙——非抗震、6度、7度、8度抗震时,分别为180、170、150、130m部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为150、140、120、100mB级高度甲类高层建筑的剪力墙结构最大适用高度:6度、7度抗震时,按本地区设防烈度提高一级后,按乙类、丙类建筑采用8度抗震时,应专门研究◆结构的最大高宽比:A级高度——非抗震、6度、7度、8度、9度抗震时,分别为6、6、6、5、4B级高度——非抗震、6度、7度、8度抗震时,分别为8、7、7、6◆质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响;其他情况,应计算单向水平地震作用的扭转影响◆考虑非承重墙的刚度影响,结构自振周期折减系数取值0.9~1.0◆平面规则检查,需满足:扭转:A级高度——B级高度、混合结构高层、复杂高层——楼板:有效楼板宽≥该层楼板典型宽度的50%开洞面积≤该层楼面面积的30%无较大的楼层错层凹凸:平面凹进的一侧尺寸≤相应投影方向总尺寸的30%◆竖向规则检查,需满足:侧向刚度:除顶层外,局部收进的水平向尺寸≤相邻下一层的25%楼层承载力:A级高度——抗侧力结构的层间受剪承载力(宜)≥相邻上一层的80%薄弱层抗侧力结构的受剪承载力(应)≥相邻上一层的65%B级高度——抗侧力结构的层间受剪承载力(应)≥相邻上一层的75%(说明:楼层层间抗侧力结构受剪承载力指在所考虑的水平地震作用方向,该层全部柱及剪力墙的受剪承载力之和)竖向连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力不得由水平转换构件(梁等)向下传递◆水平位移验算:多遇地震作用下的最大层间位移角≤罕遇地震作用下的薄弱层层间弹塑性位移角≤1/120◆舒适度要求:高度超过150m的高层建筑,按10年一遇的风荷载取值计算的顺风向与横风向结构顶点的最大加速度限值为:住宅、公寓0.15 m/s2,办公、旅馆0.25 m/s2◆伸缩缝 1. 最大间距:现浇45m,装配65m2. 可适当放宽最大间距的条件:①顶层、底层、山墙和纵墙端开间等温度变化影响较大的部位提高配筋率②顶层加强保温隔热措施,外墙设置外保温层③每隔30~40m留出后浇带,带宽800~1000mm,钢筋采用搭接接头,后浇带砼两个月之后浇灌④顶部楼层改用刚度较小的结构形式,或顶部设局部温度缝,将结构划分为长度较短的区段⑤采用收缩较小的水泥,减少水泥用量,砼中加入适宜的外加剂⑥提高每层楼板的构造配筋率,或采用部分预应力混凝土◆防震缝1. 最小宽度:按框架结构的50%取用,但不宜小于70mm。

小高层建筑框支短肢剪力墙结构设计

小高层建筑框支短肢剪力墙结构设计

浅谈小高层建筑框支短肢剪力墙结构设计摘要:本文结合工程实例,分析了框支短肢剪力墙结构形式的特点、适用范围、结构构件设计及构造措施等, 提出了设计此类结构时应注意的一些问题, 以期指导实践。

关键词:工程实例;框支短肢剪力墙;框支短肢剪力墙结构出现时间较晚。

近年来,随着该结构形式的推广,但设计中存在的转换层上首层标准层墙肢容易超筋及转换层角柱位移较大等问题,对这类结构安全性的评估已十分必要。

1.工程概况实例分析的对象为南宁市某房地产开发的一大型商住综合性的小高层建筑。

该建筑下部一层为商业用途,上部为住宅,主体结构形式为典型的框支短肢剪力墙结构,结构总高度39m,地面首层为6米层高的商铺和超市,二层以上为标注层高3米的住宅10层。

1层为购物超市的超市的区域采用框支结构形式;2-10层为公寓式住宅,采用短肢剪力墙一筒体结构;11层(屋面突出部分)为电梯机房;基础采用梁筏基础;结构转换层设在2层,采用深梁转换。

整个小区项目结构为八个塔楼,根据受力特点,对结构沿首层大底盘用分隔缝或后浇带的方式进行了分隔;将一号塔楼连带其底部群房单独提出作为分析对象。

根据本工程特点结构设计需处理好以下2个问题:首先是首层转换结构的选择,其次是上部短肢剪力墙的合理布置。

结构抗震等级首层为二级抗震,2-11层为三级抗震。

场地土类型为11类场地土。

按最新抗震设计规范规定,东莞地区抗震设防烈度为7度,设计基本地震加速度值为0.10g,场地特征周期值0.35s。

2.概念设计与结构布置本工程属于复杂高层建筑结构中带转换层的结构类型,转换层在首层,因为首层商业功能的需要,上部需要转换的墙肢比较多。

底部加强部位剪力墙及框支柱抗震等级为二级,底部加强部位以上标准层剪力墙抗震等级为三级,短肢剪力墙抗震等级为二级。

2.1转换结构选型与布置由于结构竖向传力构件的不连续,造成结构上部荷载不能直接传给下部对应构件,而是通过转换结构的内力重分配,再向下传递。

《高层》第6章 框架-剪力墙结构设计

《高层》第6章 框架-剪力墙结构设计

注意查表得到的是“剪力墙的广义剪力”V_W VW m “框架的广义剪力”V_F VF m
近似按刚度比分开,得到“总框架剪力”和“梁端总约束
弯矩” VF
CF
CF
_
mij VF
h
mij
m CF
h
mij
_
VF
h
_
“总剪力墙的剪力”为 VW VW m

6EI (1 a b) l(1 a b)3(1
)
6EI (1 a b)
m12 l(1 a b)31
m21

6EI (1 b a)
l(1 a b)31

M12 m12 M 21 m21
mi x
M ij h

mij h
330 WH
770 WH
注:H—结构地面以上的高度(m);W—结构地面以上的总重量。
1.框架一剪力墙结构应设计成双向抗侧体系。抗震设计 时,结构两主轴方向均应布置剪力墙。
2.框架一剪力墙结构可采用下列形式): (1)框架与剪力墙(单片墙、联肢墙或较小井筒)分开
布置; (2)在框架结构的若干跨内嵌入剪力墙(带边框剪力墙
); (3)在单片抗侧力结构内连续分别布置框架和剪力墙; (4)上述形式的混合。
3.框架—剪力墙结构中,梁与柱或柱与剪 力墙的中线宜重合;框架梁、柱中点之间 有偏离时,应符合:
1)
1

e0 4 bc
2)计算中应考虑其对节点核心和柱的不利影 响。
① 剪力墙宜均匀布置在建筑物的周边附近、楼 梯间、电梯间、平面形状变化及恒载较大的部 位,剪力墙间距不宜过大;
第6章 框架-剪力墙结构设计

高层框支剪力墙结构设计

高层框支剪力墙结构设计

探析高层框支剪力墙结构设计摘要:文章结合工程实践,主要介绍了高层建筑的结构方案,重点探讨了梁式转换结构设计和转换构件设计的特点和应注意的一些问题。

关键词:高层建筑剪力墙框支体会目前,一些框支剪力墙结构由于底部几层有较大的空间,能适用于各种建筑的使用功能要求。

主要广泛应用于底层为商店、餐厅、车库、机房,上部为住宅、公寓、饭店、综合楼等高层建筑。

但是,这种结构在受力上也有明显的缺点:传力不直接,结构竖向刚度变化很大,甚至是突变,地震作用下易形成结构薄弱层,加上构造复杂,给结构设计带来较大难度。

为了满足建筑功能的要求,结构必须设置转换层进行结构转换柱下部大空间框支剪力墙结构可以在建筑物下部形成一层或多层的大空间,通过结构转换层,用框架柱代替剪力墙以满足建筑功能的要求。

1 工程概况本工程总建筑面积为214338.36㎡,住宅部分首层架空,转换层以上为25层、27层、28层住宅。

一层为地下室和两层为车库,地下一层局部设核六级人防及设备用房,平时用作停车库。

本建筑抗震设防类别为丙类。

建筑结构的安全等级为二级。

2 梁式转换层的结构设计分析2.1抗震等级的确定本工程转换层以下为框架—剪力墙结构,转换层以上为纯剪力墙结构,是多种结构形式共存的复杂高层建筑,因而不能像单纯的框架结构或者剪力墙结构那样笼统地确定抗震等级,而应该严格按照现行规范的不同章节,有针对性地分别确定结构体系各部位不同结构构件的抗震等级。

该工程属“框支剪力墙”结构,地上高度79.4m,转换层设在三层楼面(属高位转换),7度抗震设防,其框支框架抗震等级为一级,加强部位剪力墙抗震等级为一级,非底部加强部位剪力墙抗震等级为二级。

2.2结构竖向布置高层建筑的侧向刚度宜下大上小,且应避免刚度突变,然而带转换层的结构显然有悖于此,因此《高规》对转换层结构的侧向刚度作了专门规定。

对该工程而言,属于高位转换,转换层上下等效侧向刚度比宜接近于1,不应大于1.3。

在设计过程中,应把握的原则归纳起来就是要强化下部,弱化上部,尽量避免出现薄弱层。

高层框架-剪力墙结构设计

高层框架-剪力墙结构设计

2. 综合性能
SAP84 在软件计算结果的准确性上是最为精确的,其单 元类型库非常丰富,能够对结构进行静力、动力等多种计算, 而且SAP84 还可以根据结构的实际情况进行单元划分,计算 模型最为接近实际结构。 TBSAP 提供的单元除了常用的杆单元、梁柱单元外, 还提供了用以计算板的四边形或三角形壳元、墙元,用以计 算厚板转换层的八节点四十八自由度三维元、广义单元,以 及进行基础计算用的弹性地基梁单元、弹性地基柱单元、三 角形或四边形弹性地基板单元和地基土单元,因而TBSAP可 以对结构进行基础- 上部结构- 楼板的整体分析。
f f
计算V f
计算V f
V f,max
V f,max
0.2V 0
1.5V f,max
1.5V f,max 0.2V 0
2.各层框架所承担的地震总剪力按第一点要求调整后,应按 调整前、后总剪力的比值调整每根框架柱和与之相连框架梁 的剪力及端部弯矩标准值,框架柱的轴力标准值可不予调整; 3.按振型分解反应谱法计算地震作用时,第一点所规定的调 整可在振型组合之后进行。 这里应当注意的是在框架内力调整后,剪力墙部分仍保 持原协同工作计算值而不作调整。
1. 高层结构分析软件的类型及模型
薄壁杆件模型 代表软件:TAT(中国建研院 PKPM CAD 工程部)、TBSA(中国建研院 高层室) 、SS (广东省建筑设计研究 院GSCAD) 特点:整个结构是空间杆件体系,基 本未知量少,计算简单,分析效率 高。高度较大、结构布置(特别是 剪力墙布置)比较规则的结构计算 结果比较理想的,计算精度足以满 足工程设计要求。高度较低或结构 布置比较复杂的结构,薄壁杆件模 型并不理想。
板壳墙元模型 代表软件:SUPERSAP(美国AIS公司)、SAP2000(美国CSI公 司)、ANSYS(美国ANSYS 公司)、STAADⅢ(美国REI公司)、 SAP84(北京大学)、SATWE(中国建研院PKPM CAD 工程部) 和TBSAP(中国建研院高层室)等。 这种模型分为空间壳元和在壳元基础上经静力凝聚而成 的超单元──板壳墙元两种形式来模拟剪力墙。 特点:接近实际受力情况,分析精度高,计算速度快。

谈高层住宅框支剪力墙建筑结构设计

谈高层住宅框支剪力墙建筑结构设计
插筋。
【 Ke y wo r d s 】 b u i l in d g s t r u c t u r e , f r a me - s h e r a wa l l s t uc r t u r e , t r a -
n s i t i o n l a y e r , c o n c e p t d e s i n g


建筑结构方案及布置 按有关 甲方 要求,上部住宅为为 了做到 不露梁
抬柱 ,有 限元与整体分 析的结果接近 ,一般后者偏
大些 ,显然转换 梁与剪力墙没有共同工作 。有限元
分 析 表 明 ,梁 中 仍 有 轴 力 存 在 , 不 容 忽 视 。
及柱 ,采用剪力墙 结构形式,下部为满足大 空间建 筑功 能的要 求,采用框支剪力墙结构体系 。在结构
me r c i l a a n d r e s i d e n t i a l f r a me - s u p p o r t e d s h e a r wa ll s t r u c t u r e , i - n c l u d i n g b u i l d i n g s t r u c t u r e c o n c e p t d e s i g n , b u i l d i n g t h r e e — d i m- e n s i o n l a i n t e g r l a s t r u c t u r e na a ly s i s , d y n m i a c e l a s t i c t i me h i s t o —
换层 以下结 构刚度 ,除3 .几个 构造 问题
发现,转换梁与上部剪力墙之 问存在有共 同工作 、 部分共同工作及 无共 同作用三种情况 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高层建筑框支剪力墙结构设计探讨摘要:剪力墙结构作为高层建筑中的主要结构形式,被广泛运用于现代高层建筑领域。

本文作者结合工程实例,主要针对高层建筑框支剪力墙结构设计中的结构布置、计算调整、分析模型与设计计算等进行了分析。

关键词:高层建筑;框剪结构;抗震设计
abstract: the shear wall structure as the main structure form in tall buildings, is widely used in modern high-rise building fields. in this paper the author combined with engineering examples, and the major in high-rise building with frame shear wall structure design of the structural layout, calculation and adjustment, and model and design calculation is analyzed.
keywords: high building; box shear structure; seismic design
中图分类号:tu97 文献标识码:a文章编号:
目前,一些框支剪力墙结构由于底部几层有较大的空间,能适用于各种建筑的使用功能要求。

主要广泛应用于底层为商店、餐厅、车库、机房,上部为住宅、公寓、饭店、综合楼等高层建筑。

但是,这种结构在受力上也有明显的缺点:传力不直接,结构竖向刚度变化很大,甚至是突变,地震作用下易形成结构薄弱层,加上构造复
杂,给结构设计带来较大难度。

为了满足建筑功能的要求,结构必须设置转换层进行结构转换,柱下部大空间框支剪力墙结构可以在建筑物下部形成一层或多层的大空间,通过结构转换层,用框支柱代替剪力墙以满足建筑功能的要求。

1 、工程概况
该工程为某小区高层建筑中的一座商住综合楼。

1、2 层用于商业,转换层设在2层顶;3~30层为住宅;地下1层为地下室,用于车库、水池和设备间。

室外地面至主要屋面的高度为90.5m,至局部电梯机房女儿墙顶的高度为99.2m。

标准层和转换层结构平面分别如图1和图2 所示。

本工程为丙类建筑,抗震设防烈度为 6 度,基本地震加速度为 0.05g,建筑场地类别为 ii 类, 设计地震分组为第一组, 基本风压为0.35kn/m2,地面粗糙度为c 类。

图1 标准层结构平面
图2转换层结构平面
典型的板式住宅,南北通透,进深小,立面宽。

由于建筑平面狭长,并且西端局部轴线转向,如图设一道防震缝将建筑物分为东、西两个结构单元。

东座为长矩形平面,西座平面严重不对称,高宽比都很大。

2 、结构布置与计算调整
住宅建筑平面形状复杂,高宽比的计算方法没有明确的标准。

如果按所考虑方向的最小投影宽度计算高宽比:东座达90.2∶
9.3=9.7,西座达87.3∶9.3=9.4,远远超过了规范限值6。

本工程平面中, 局部突出部分占有相当大的面积, 并且其外伸长宽比
4.55∶7.2=0.63比较小, 如果按包括突出部分的最大投影宽度计算高宽比,东座为90.2∶17.2=
5.2,西座为87.3∶17.2=5.1。

为了得到理想的户型布置, 尽量不加大平面南北向最小宽度,
而是通过剪力墙的平面布置来控制结构的侧向刚度和承载能力,保证稳定,防止倾覆,并实现良好的技术经济指标。

结构布置中增加y 轴方向剪力墙的数量和长度,南北立面上局部突出的部分加强了剪力墙布置,尤其注意保证了足够的y轴方向落地剪力墙。

弹性计算显示:风荷载作用下,东座y向最大层间位移角为
1/1184, 西座为 1/1250;多遇地震作用下东座y向最大层间位移角为1/2219,西座为 1/2420;东座y向刚重比为3.4,西座为3.83,均远大于1.4,满足规范的整体稳定要求;剪力墙、框支柱等抗侧力构件配筋量正常,多数是构造配筋,无异常超限情况;基础底面也未出现零应力区。

计算中发现,东座由于平面狭长,扭转为主的第一自振周期与平动为主的第一自振周期之比偏大。

延长周边剪力墙,同时缩短内部剪力墙,使抗侧力构件的平面布置更加合理有效。

调整剪力墙布置时,同时关注刚心的移动, 避免无意间增大了偏心率而收到降低耦联周期比的效果。

西座由于严重不对称,楼层扭转位移比很大。

通过调整剪力墙布置,尽可能减小楼层刚度中心与质量中心之间的偏心。

关于多高层
结构刚心的定义存在争议,现代空间结构计算方法并不需要确定刚心的位置,但刚心仍是概念设计的有用工具。

satwe 软件把每一楼层当作单层结构计算出楼层刚心,pmsap 软件按照某种方式考虑所计算楼层与整体结构的关系而得出楼层刚心。

参考软件计算的刚心和质心位置,调整平面布置。

东座平面规则,框支柱距比较大 ,而且由于商场建筑布局的需
要以及保证结构y向刚度和控制落地墙间距的考虑,y向落地剪力墙较多,x向落地墙较少,使得x向转换层附近竖向刚度突变比较明显。

框支框架截面和落地墙厚已无法加大, 主要通过适当缩短上部住
宅剪力墙,加宽洞口,并利用裙房的侧向刚度,使转换层上、下结构等效侧向刚度比满足规范要求。

3 、分析模型与设计计算
本工程为带转换层的复杂高层建筑结构,设计时采用 satwe和pmsap两种不同力学模型的三维空间分析软件进行整体计算。

在联肢剪力墙中, 连梁是一种对结构整体刚度很敏感的构件,
用壳元建模分析更准确。

但是当连梁跨高比比较大时,对采用单元结点协调的satwe会带来与连梁相连处墙肢单元划分困难的问题。

鉴于目前的设计软件不能人工干预单元的划分,当连梁跨高比不小于5时用杆元建模,小于5时,用壳元建模。

本工程楼盖整体性较好,无狭长楼板或局部大洞口,可以采用刚性楼板计算以减少自由度数。

转换层楼板起到传递分配不落地墙水平剪力的作用,另外在框支剪力墙中需考虑转换梁的轴向拉力,水
平转换和竖向转换都要求考虑楼板平面内变形,应采用弹性板计算。

为了使转换梁转换竖向荷载的传力路线清楚,不考虑转换层楼板的平面外刚度,按弹性膜计算,偏于安全。

考虑到水平荷载的转换也不是全部在转换层完成的,其上相邻的标准层楼板也定义为弹性膜。

裙房屋面与转换层楼面在同一标高, 裙房框架柱的内力也会受到水平荷载转换的影响, 故将裙房屋面板与转换层楼面板一起定义为弹性膜。

但在计算扭转位移比时,为了反映结构的整体扭转,全楼强制采用刚性楼板假定。

pmsap中梁、柱不能偏心建模,当转换梁与其上剪力墙之间存在偏心时, 辅助建立若干与转换梁轴线垂直的分布足够密的小段刚性梁,以传递剪力墙和转换梁之间的荷载并协调变形,准确反映框支剪力墙的协同工作。

在结构整体计算中,考虑双向地震作用和偶然偏心,但二者不叠加。

转换层及其附近的弹性板使整体结构的独立质量总数和固有振型总数大幅增长,振型复杂。

为了使复杂高层建筑结构的地震反应谱分析达到足够的精度,保证足够大的各地震作用方向有效质量系数,在振型分解反应谱计算中取前30阶振型。

由于在转换层附近采用了弹性板建模, 使用总刚计算方法直接形成结构的总刚度矩阵和总质量矩阵进行地震反应分析。

西座中因轴线转向有部分斜交构件, 增加计算45°和135°方向水平地震作
用。

在振型分解反应谱法计算后检查楼层剪重比,转换层薄弱层处有足够的设计地震剪力。

两种设计软件的各项计算结果比较接近, 表明分析模型和方法合理,计算结果可靠,满足了规范各项要求。

主要计算结果示于表1~表4。

表1 东座自振周期计算结果
表2西座自振周期计算结果
表3东座主要计算结果
表4 西座主要计算结果
注:表中最大位移比和最大层间位移比只计塔部分,不含底部裙房和突出屋面的电梯机房。

4、结束语
高层建筑的造型和功能日趋多样化。

带转换层复杂高层建筑结构能满足建筑物上、下不同使用功能的要求,但该类结构由于刚度突变,竖向构件不连续,属于不利于抗震的结构。

转换层结构设计是结构设计的一个难点,更是不同形式结构体系转换的关键点,设计时应不断研究和进行方案比较,合理建立分析计算模型,正确运用设计软件,透彻理解规范条文的含义和背景,在现有认识水平的
基础上设计出安全可靠经济适用的结构。

参考文献
【1】jgj-3 -2010,高层建筑混凝土结构技术规程条文说明[s].
【2】jgj-3 -2010,高层建筑混凝土结构技术规程[s].
【3】徐培福,黄吉锋,韦承基.高层建筑结构的扭转反应控制[j].土木工程学报,2006,39(7):1-8.
【4】蔡健,潘东辉,黄炎生.高层建筑结构扭转振动效应控制研究[j].工程力学,2007,24(7):116—121.
【5】吴晓云,陈森,魏琏.论地震作用下多层平扭耦联建筑的刚心[j].地震工程与工程振动,1988,8(4):33-44.
注:文章内所有公式及图表请用pdf形式查看。

相关文档
最新文档