数字地、模拟地隔离——系统抗干扰
数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
数模地隔离
模拟地和数字地之间链接(1)模拟地和数字地间串接电感一般取值多大?一般用几uH到数十uH。
(2)用0欧电阻是最佳选择(1)可保证直流电位相等、(2)单点接地(限制噪声)、(3)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。
磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。
电容不通直流,会导致压差和静电积累,摸机壳会麻手。
如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。
串联的话就显得不伦不类。
电感特性不稳定,离散分布参数不好控制,体积大。
电感也是陷波,LC谐振(分布电容),对噪点有特效。
总之,关键是模拟地和数字地要一点接地。
建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。
2 磁珠电感和磁珠的什么联系与区别电感是储能元件,而磁珠是能量转换(消耗)器件电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。
两者都可用于处理EMC、EMI问题。
磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过错50MHZ。
★地的连接一般用电感,电源的连接也用电感,而对信号线则采用磁珠?但实际上磁珠应该也能达到吸收高频干扰的目的啊?而且电感在高频谐振以后都不能再起电感的作用了……先必需明白EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法。
前者用磁珠,后者用电感。
对于扳子的IO部分,是不是基于EMC的目的可以用电感将IO部分和扳子的地进行隔离,比如将USB 的地和扳子的地用10uH的电感隔离可以防止插拔的噪声干扰地平面?电感一般用于电路的匹配和信号质量的控制上。
模拟地和数字地_隔离等问题
只要是地,最终都要接到一起,然后入大地。
如果不接在一起就是"浮地",存在压差,容易积累电荷,造成静电。
地是参考0电位,所有电压都是参考地得出的,地的标准要一致,故各种地应短接在一起。
人们认为大地能够吸收所有电荷,始终维持稳定,是最终的地参考点。
虽然有些板子没有接大地,但发电厂是接大地的,板子上的电源最终还是会返回发电厂入地。
模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。
既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。
对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。
而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。
另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。
不要有无用的大面积铜箔。
地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。
但如果只是低频电路,则应避免地线环路。
数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。
低频中没有多大影响,但建议模拟和数字一点接地。
高频时,可通过磁珠把模拟和数字地一点共地。
如果把模拟地和数字地大面积直接相连,会导致互相干扰。
不短接又不妥,理由如上有四种方法解决此问题∶1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。
磁珠的等效电路相当于带阻滤波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。
对于频率不确定或无法预知的情况,磁珠不合。
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地
3、在场效应管(或 COMS 器件)中,VDD 为漏极,VSS 为源极,VDD 和 VSS 指的是元件引脚,而不表示供电电压。
VDD:电源电压(单极器件);电源电压(4000 系列数字电 路);漏极电压(场 效应管)
它是绿色
安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源 的低阻抗通道”。注意要求是”低阻抗”和“通路”。
Q3:常见ND,FG-保护地或机壳;BGND 或 DC-RETURN-直流-48V(+24V)电源(电 池)回流;GND-工作地;DGND-数字地;
------------------------
几种接地符号
第 1 个我用做电源正或数字电路 VCC,不用作地. 第 2 个我用作数字地或数字模拟公共地. 第 3 个用作模拟地. 第 4 个当然是机箱外壳或外壳接大地了.
Q8:单板的接口器件如何接地?
Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口 RJ45 连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连
有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。 一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。 以上这些地线处理是系统设计、安装、调试中的一个重要问题。下面就接地
问题提出一些看法: (1)控制系统宜采用一点接地。一般情况下,高频电路应就近多点接地,低 频电路应一点接地。在低频电路中,布线和元件间的电感并不是什么大问题,然 而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不 适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之 间又产生电感耦合。一般来说,频率在 1MHz 以下,可用一点接地;高于 10MHz 时,采用多点接地;在 1~10MHz 之间可用一点接地,也可用多点接地。 (2)交流地与信号地不能共用。由于在一段电源地线的两点间会有数 mV 甚至几 V 电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加
关于电路中各种接地的方法:数字地、模拟地、信号地等等
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
数字地模拟地隔离
数字地和模拟地处理的基本原则如下:1模拟地和数字地之间链接(1)模拟地和数字地间串接电感一般取值多大?一般用几uH到数十uH。
(2)用0欧电阻是最佳选择 (1)可保证直流电位相等、(2)单点接地(限制噪声)、(3)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。
磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。
电容不通直流,会导致压差和静电积累,摸机壳会麻手。
如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。
串联的话就显得不伦不类。
电感特性不稳定,离散分布参数不好控制,体积大。
电感也是陷波,LC 谐振(分布电容),对噪点有特效。
总之,关键是模拟地和数字地要一点接地。
建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。
2 磁珠采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。
主要参数:标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆 .一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。
额定电流:额定电流是指能保证电路正常工作允许通过电流.3 电感与磁珠的区别:有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠;电感是储能元件,而磁珠是能量转换(消耗)器件;电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题;电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用磁珠.磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。
数字地和模拟地处理的基本原则
数字地和模拟地处理的基本原则作者:未知时间:2010-3-17 19:48:03在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。
形成干扰的基本要素有三个:(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。
如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。
典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。
如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
(类似于传染病的预防)1 抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
抑制干扰源的常用措施如下:(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。
仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。
注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
机壳地、数字地与模拟地的关系
机壳地、数字地与模拟地的关系在电子设备中,接地是抑制噪声的重要方法。
如能将接地和屏蔽正确结合起来使用,可解决大部分噪声问题。
电子设备中地线结构大致分为:系统地,机壳地(屏蔽地),数字地(逻辑地)和电源模拟地等。
在地线设计中应注意以下几点:A、正确选择单点接地与多点接地在低频电路中,信号的工作频率小于1MHz,它的布线和组件间的电感影响较小,而接地电路形成的环流对噪声影响较大,因而应采用一点接地。
当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。
当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。
B、将数字电路与电源模拟电路分开如果电路板上有高速逻辑电路,又有线性模拟电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连(???)。
要尽量加大线性电路的接地面积。
C、尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。
因此应将接地线尽量加粗,使它能通过三位于印刷电路板的允许电流。
如有可能,接地线的宽度应大于3mm。
D、将接地线构成死循环路设计只由数字电路组成的印刷电路板的地线系统时,将接地线做成死循环路可以明显的提高抗噪声能力。
其原因在于:印刷电路板上有很多集成电路组件,尤其遇有耗电多的组件时,因受接地线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地结构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。
这是几个不同的问题:模拟地和数字地,顾名思意也就是模拟电路和数字电路接地。
1.数字地和模拟地应分开;在高要求电路中,数字地与模拟地必需分开。
即使是对于A/D、D/A转换器同一芯片上两种“地”最好也要分开,仅在系统一点上把两种“地”连接起来。
2.浮地与接地;系统浮地,是将系统电路的各部分的地线浮置起来,不与大地相连。
这种接法,有一定抗干扰能力。
将数字地和模拟地分开的方法
将数字地和模拟地分开的方法
将数字地和模拟地分开的方法主要是为了避免两者之间的相互干扰,从而提高电路的稳定性和性能。
以下是实现这一目标的一些常见方法:
1.使用独立的地线:为数字电路和模拟电路分别设置独立的地线,这样可以确保它们
之间的干扰最小化。
这种方法在电路板设计中很常见,通过合理规划布线,使数字地和模拟地分别连接到不同的接地点。
2.使用磁珠或电感:在数字地和模拟地之间加入磁珠或电感,可以减小两者之间的干
扰。
磁珠和电感具有抑制高频噪声的作用,通过将它们连接在数字地和模拟地之间,可以降低噪声对模拟电路的影响。
3.使用地线隔离器:地线隔离器是一种专门用于隔离数字地和模拟地的设备。
它可以
通过电容耦合或变压器耦合等方式,将数字地和模拟地隔离开来,从而减小它们之间的干扰。
4.优化布线设计:在电路板布线时,要注意避免数字地和模拟地之间的交叉布线,以
减少它们之间的耦合。
此外,还可以采用地线加粗、地线敷铜等措施,提高地线的导电性能,降低电阻和电感,从而减小干扰。
需要注意的是,虽然将数字地和模拟地分开可以降低干扰,但并不能完全消除干扰。
因此,在实际应用中,还需要根据具体需求和电路设计情况,采取其他措施来进一步减小干扰,提高电路的稳定性和性能。
数字地与模拟地
电压是处处相同的,但实际上不是,所以地上有电流在流动,但这个电流从数字部分流到模拟部分时就会有干扰,而且数字信号带有各种频率的分量,干扰会很严重。
所以数字地和模拟地应该除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
电源地-信号地-数字地-模拟地的处理方式
一般在我们的AD系统里面,都有非常明确的模拟电源/模拟地;数字电源数字地,这些的处理相对比较重要.通常的系统中==1,我们常用10~20欧姆电阻来做个模拟电源和数字电源的隔离,可以从下图中看出,当然,使用分组的隔离电源是最好的选择,但是成本相对较高2,处理模拟地数字地时,最终使用1点接连的办法,这个连接点要选在PCB上的电荷平衡点,以防止出现电压差,这个需要PCB和模拟设计良好的基础及经验3,使用PSRR高的LDO,尽量避免使用DCDC和纹波超过300UV的电源温压器件,当然,我们可以通过差分输入来减少来自电源的干扰4,良好的屏蔽罩同样可以减少外部空间电磁辐射对AD系统的影响,诸如雷达,手机辐射,紫外线等电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上大的电流会在信号地上产生一个电压差(可以解释为:导线是有阻抗的,只是很小的阻值,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V,如果信号地的电位较大时,有可能会使信号本来是高电平的,但却误判为低电平。
当然电源地本来就很不干净,这样做也避免由于干扰使信号误判。
所以将两者地在布线时稍微注意一下,就可以。
一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。
除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
DGNDPGNDGNDAGND各是什么意思
DGNDPGNDGNDAGND各是什么意思
DGND PGND GND AGND各是什么意思?
GND=Ground,也就是最普通的地,⼀般认为是电路中的参考地。
有些电路上会将其等同于earth(⼤地),但不是全部都如此。
DGND=Digital Ground,也就是数字地,通常⽤于数字电路上。
来,数字地和模拟地要隔离,防⽌互相⼲扰(数字地上的谐波成分要远多于模拟地,共地的话会影响模拟地的稳定性)PGND=Protect Ground,也就是保护地,⼀般⽤于机壳,作为危险电流的泄放通道。
AVDD,DVDD,DOVDD是什么意思?
VDD、VCC常⽤于表⽰数字电路的电源+,如5V,3.3V等
VSS常⽤于表⽰数字电路的电源公共端,如GND,VSS是数字电源负极
AVDD⼀般⽤于表⽰模拟电路电源
DVDD⼀般在有模拟电源情况下才⽤,表⽰数字电路电源+
在没有模拟电路电源情况下,⼀般⽤VDD、VCC表⽰。
电源地,信号地,数字地,模拟地的处理方式
一般在我们的AD系统里面,都有非常明确的模拟电源/模拟地;数字电源数字地,这些的处理相对比较重要.通常的系统中==1,我们常用10~20欧姆电阻来做个模拟电源和数字电源的隔离,可以从下图中看出,当然,使用分组的隔离电源是最好的选择,但是成本相对较高2,处理模拟地数字地时,最终使用1点接连的办法,这个连接点要选在PCB上的电荷平衡点,以防止出现电压差,这个需要PCB和模拟设计良好的基础及经验3,使用PSRR高的LDO,尽量避免使用DCDC和纹波超过300UV的电源温压器件,当然,我们可以通过差分输入来减少来自电源的干扰4,良好的屏蔽罩同样可以减少外部空间电磁辐射对AD系统的影响,诸如雷达,手机辐射,紫外线等电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上大的电流会在信号地上产生一个电压差(可以解释为:导线是有阻抗的,只是很小的阻值,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V,如果信号地的电位较大时,有可能会使信号本来是高电平的,但却误判为低电平。
当然电源地本来就很不干净,这样做也避免由于干扰使信号误判。
所以将两者地在布线时稍微注意一下,就可以。
一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。
除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
关于模拟地与数字地的分割
有关模拟地和数字地分割的介绍如何降低数字信号和模拟信号间的相互干扰呢?在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。
在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。
尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。
最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。
在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
如图1所示,我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。
流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。
最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。
另外,模拟地和数字地通过一个长导线连接在一起会构成偶极天线。
了解电流回流到地的路径和方式是优化混合信号电路板设计的关键。
许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。
如果必须对地线层进行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后通过该连接桥布线。
这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。
采用光隔离器件或变压器也能实现信号跨越分割间隙。
数字地模拟地隔离
数字地和模仿地处理的基起源基础则如下:【1 】1模仿地和数字地之间链接(1)模仿地和数字地间串接电感一般取值多大?一般用几uH到数十uH.(2)用0欧电阻是最佳选择 (1)可包管直流电位相等.(2)单点接地(限制噪声).(3)对所有频率的噪声都有衰减感化(0欧也有阻抗,并且电流路径狭小,可以限制噪声电流畅过).磁珠相当于带阻陷波器,只对某个频点的噪声有克制造用,假如不克不及预知噪点,若何选择型号,何况,噪点频率也不一定固定,故磁珠不是一个好的选择.电容不通直流,会导致压差和静电积聚,摸机壳会麻手.假如把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将掉效.串联的话就显得不伦不类.电感特征不稳固,离散散布参数不好掌握,体积大.电感也是陷波,LC谐振(散布电容),对噪点有特效.总之,症结是模仿地和数字地要一点接地.建议,不合种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频旌旗灯号线耦合用小电容;电感用在大功率低频上.2 磁珠采取在高频段具有优越阻抗特征的铁氧体材料烧结面成,专用于克制旌旗灯号线.电源线上的高频噪声和尖峰干扰,还具有接收静电脉冲的才能.重要参数:标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆 .一般以100MHz为尺度,比方2012B601,就是指在100MHz的时刻磁珠的阻抗为600欧姆.额定电流:额定电流是指能包管电路正常工作许可经由过程电流.3 电感与磁珠的差别:有一匝以上的线圈习惯称为电感线圈,少于一匝(导线纵贯磁环)的线圈习惯称之为磁珠;电感是储能元件,而磁珠是能量转换(消费)器件;电感多用于电源滤波回路,磁珠多用于旌旗灯号回路,用于EMC对策;磁珠重要用于克制电磁辐射干扰,而电感用于这方面则着重于克制传导性干扰.两者都可用于处理EMC.EMI问题;电感一般用于电路的匹配和旌旗灯号质量的掌握上.在模仿地和数字地联合的地方用磁珠.磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变更.他比通俗的电感有更好的高频滤波特征,在高频时呈现阻性,所以能在相当宽的频率规模内保持较高的阻抗,从而进步调频滤波后果.作为电源滤波,可以运用电感.磁珠的电路符号就是电感但是型号上可以看出运用的是磁珠在电路功效上,磁珠和电感是道理雷同的,只是频率特征不合罢了磁珠由氧磁体构成,电感由磁心和线圈构成,磁珠把交换旌旗灯号转化为热能,电感把交换存储起来,迟缓的释放出去.磁珠对高频旌旗灯号才有较大阻碍感化,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多.铁氧体磁珠 (Ferrite Bead) 是今朝运用成长很快的一种抗干扰组件,便宜.易用,滤除高频噪声后果明显.在电路中只要导线穿过它即可(我用的都是象通俗电阻模样的,导线已穿过并胶合,也有概况贴装的情势,但很少见到卖的).当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减感化.高频电流在个中以热量情势披发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例.磁珠种类许多,制造商应供给技巧指标解释,特殊是磁珠的阻抗与频率关系的曲线.电感和磁珠的什么接洽与差别电感是储能元件,而磁珠是能量转换(消费)器件电感多用于电源滤波回路,磁珠多用于旌旗灯号回路,用于EMC对策磁珠重要用于克制电磁辐射干扰,而电感用于这方面则着重于克制传导性干扰.两者都可用于处理EMC.EMI问题.磁珠是用来接收超高频旌旗灯号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都须要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其运用频率规模很少超出错50MHZ.★地的衔接一般用电感,电源的衔接也用电感,而对旌旗灯号线则采取磁珠?但现实上磁珠应当也能达到接收高频干扰的目标啊?并且电感在高频谐振今后都不克不及复兴电感的感化了……先必须明确EMI的两个门路,即:辐射和传导,不合的门路采取不合的克制办法.前者用磁珠,后者用电感.对于扳子的IO部分,是不是基于EMC的目标可以用电感将IO部分和扳子的地进行隔离,比方将USB的地和扳子的地用10uH的电感隔离可以防止插拔的噪声干扰地平面?电感一般用于电路的匹配和旌旗灯号质量的掌握上.在模仿地和数字地联合的地方用磁珠.在模仿地和数字地联合的地方用磁珠.数字地和模仿地之间的磁珠用多大磁珠的大小(确实的说应当是磁珠的特征曲线)取决于你须要磁珠接收的干扰波的频率为什么磁珠的单位和电阻是一样的呢??都是欧姆!!磁珠就是阻高频嘛,对直流电阻低,对高频电阻高,不就好懂得了吗,比方1000R@100Mhz就是说对100M频率的旌旗灯号有1000欧姆的电阻因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆.磁珠的datasheet上一般会附有频率和阻抗的特征曲线图.一般以100MHz为尺度,比方2012B601,就是指在100MHz的时刻磁珠的Impedance为600欧姆.在许多产品中,交换机的两个地用电容衔接起来,为什么不必电感?你说的两个地,个中一个是不是机壳的?我估量(以下全体估量,有错请指导)假如用磁珠或者直接相连的话,人体静电等不测电平会随意马虎进入交换机的地,如许交换机工作就不正常了.但假如它们之间断开,那么遭遇雷击或者其他高压的时刻,两个地之间的电火花引起起火……加电容则防止这种情形.对于加电容的解释我也以为很勉强呵呵,请高手指教!交换机的地,是经由过程两个地之间的之间的电容去清除谐波.就像高阻抗的变压器一样,他附加了一个清除谐波的通路!我本身以为!请斧正!铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可所以电感的线圈绕组之间在高频高阻的情形下产生的电容最小.铁氧体材料平日在高频情形下运用,因为在低频时他们重要程电感特征,使得线上的损耗很小.在高频情形下,他们重要呈电抗特征比并且随频率转变.现实运用中,铁氧体材料是作为射频电路的高频衰减器运用的.现实上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全体经由过程电阻.铁氧体是一个消费装配,高频能量在上面转化为热能,这是由他的电阻特征决议的.线圈,磁珠有一匝以上的线圈习惯称为电感线圈,少于一匝(导线纵贯磁环)的线圈习惯称之为磁珠.用处由起所需电感量决议.就教:对于骅讯的USB声卡计划中,在UBS电源端与地端也分离接有一个磁珠,不知是否有人清晰,但是在现实临盆中也有些工程把磁珠用电感去代替了,请问如许可以吗?那边的磁珠是起什么感化哟?作为电源滤波,可以运用电感.磁珠的电路符号就是电感但是型号上可以看出运用的是磁珠在电路功效上,磁珠和电感是道理雷同的,只是频率特征不合罢了★数字地和模仿地处理的基起源基础则如下:1).若为低频模仿电路,加粗和缩短地线;单点接地,可有用防止因为地线公共阻抗而导致的部件之间的互相关扰.而高频电路和数字电路,地线的电感效应较轻微,单点接地会导致现实地线加长,故应多点接地和单点接地相联合.2).高频电路还应斟酌若何克制高频辐射噪声.办法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输旌旗灯号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有逝世的无用大面积铜箔.3).地线应构成环路,以防止产生高频辐射噪声,但环路面积不成过大,以免产生较大的感应电流.留意若为低频电路,则应防止地线环路.4).数字电源和模仿电源最好隔离,地线离开安插,假如有A/D转换电路,则只在尽量接近该器件处单点接地.1).若为低频模仿电路,加粗和缩短地线;单点接地,可有用防止因为地线公共阻抗而导致的部件之间的互相关扰.而高频电路和数字电路,地线的电感效应较轻微,单点接地会导致现实地线加长,故应多点接地和单点接地相联合.2).高频电路还应斟酌若何克制高频辐射噪声.办法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输旌旗灯号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有逝世的无用大面积铜箔.3).地线应构成环路,以防止产生高频辐射噪声,但环路面积不成过大,以免产生较大的感应电流.留意若为低频电路,则应防止地线环路.4).数字电源和模仿电源最好隔离,地线离开安插,假如有A/D转换电路,则只在尽量接近该器件处单点接地.问题:数字地和模地低之间应当想一些办法进行隔离噪声,我搜到的办法有接0电阻,电感,电容和磁珠,不知道哪种办法比较好,各是针对什么情形运用的?别的,我的电路有器件正好数字地和模仿地在一路,那该怎么办?感谢列位高手指导!答复:磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有明显克制造用,运用时须要预先估量噪点频率,以便选用恰当型号.对于频率不肯定或无法预知的情形, 磁珠不合.电容隔纵贯交,造成浮地(模仿地和数字地没有接在一路,消失压差,轻易积聚电荷,造成静电).电感体积大,杂散参数多,不稳固. 0欧电阻相当于很窄的电流畅路,可以或许有用地限制环路电流,使噪声得到克制.电阻在所有频带上都有衰减感化(0欧电阻也有阻抗),这点比磁珠强.。
抗干扰和接地
.2009-10-08 | 抗干扰和接地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V 电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字地与模拟地的隔离探讨1.数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
但是,制做PCB板时一般都做铺铜走线,而走线都与GND相联,请问,铺铜之后,模拟地和数字地还能区分出来吗,还能像上面说的那样,只有一个联接点吗?两个地起不同的名字,分别辅铜,最后可以用一个10uH电感或0欧姆电阻连起来。
模拟部分的器件尽量集中,放置在与其它板子接口的附近,减小信号衰减。
数字部分线路长一些没关系。
先对模拟地敷铜,然后对整个板敷数字地。
模拟地和数字地之间会自动分隔,用一个1uH的电感或0欧的电阻作为共地点。
2在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。
形成干扰的基本要素有三个:(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt 大的地方就是干扰源。
如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。
典型的干扰传播路径是通过导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。
如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。
抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。
(类似于传染病的预防)1 抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。
这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。
减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。
减小干扰源的 di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。
抑制干扰源的常用措施如下:(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。
仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。
注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。
按干扰的传播路径可分为传导干扰和辐射干扰两类。
所谓传导干扰是指通过导线传播到敏感器件的干扰。
高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。
电源噪声的危害最大,要特别注意处理。
所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。
一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。
2 切断干扰传播路径的常用措施如下:(1)充分考虑电源对单片机的影响。
电源做得好,整个电路的抗干扰就解决了一大半。
许多单片机对电源噪声很敏感, 要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。
比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。
(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。
(3)注意晶振布线。
晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。
此措施可解决许多疑难问题。
(4)电路板合理分区,如强、弱信号,数字、模拟信号。
尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。
(5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。
A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。
(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。
大功率器件尽可能放在电路板边缘。
(7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。
3 提高敏感器件的抗干扰性能提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。
提高敏感器件抗干扰性能的常用措施如下:(1)布线时尽量减少回路环的面积,以降低感应噪声。
(2)布线时,电源线和地线要尽量粗。
除减小压降外,更重要的是降低耦合噪声。
(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。
其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。
(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整个电路的抗干扰性能。
(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。
(6)IC器件尽量直接焊在电路板上,少用IC座。
为了达到很好的抗干扰,于是我们常看到PCB板上有地分割的布线方式。
但是也不是所有的数字电路和模拟电路混合都一定要进行地平面分割。
因为这样分割是为了降低噪声的干扰。
理论:在数字电路中一般的频率会比模拟电路中的频率要高,而且它们本身的信号会跟地平面形成一个回流(因为在信号传输中,铜线与铜线之间存在着各种各样的电感和分布电容),如果我们把地线混合在一起,那么这个回流就会在数字和模拟电路中相互串扰。
而我们分开就是让它们只在自己本身内部形成一个回流。
它们之间只用一个零欧电阻或是磁珠连接起来就是因为原来它们就是同一个物理意义的地,现在布线把它们分开了,最后还应该把它们连接起来。
如何分析它们是属于数字部分呢还是模拟部分?这个问题常常是我们在具体画PCB时得考滤的。
我个人的看法是要判断一个元件是属于模拟的,还是数字的关键是看与它相关的主要芯片是数字的还是模拟的。
比如:电源它可能给模拟电路供电,那它就是模拟部分的,如果它是给单片机或是数据类芯片供电,那它就是数字的。
当它们是同一个电源时就需要用一个桥的方法把一个电源从另一个部分引过来。
最典形的就是D/A了,它应该是一个一半是数字,一半是模拟的芯片。
我认为如果能把数字输入处理好后,剩下的就可以画到模拟部分去了。
数字地和模地低之间应该想一些办法进行隔离噪声,我搜到的方法有接0电阻,电感,电容和磁珠,不知道哪种方法比较好,各是针对什么情况使用的?另外,我的电路有器件正好数字地和模拟地在一起,那该怎么办?谢谢各位高手指点!回答:磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。
对于频率不确定或无法预知的情况,磁珠不合。
电容隔直通交,造成浮地(模拟地和数字地没有接在一起,存在压差,容易积累电荷,造成静电)。
电感体积大,杂散参数多,不稳定。
0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。
电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。
数字地和模拟地处理的基本原则如下:1模拟地和数字地之间链接(1)模拟地和数字地间串接电感一般取值多大?一般用几uH到数十uH。
(2)用0欧电阻是最佳选择: (a)可保证直流电位相等、(b)单点接地(限制噪声)、(c)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。
磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。
电容不通直流,会导致压差和静电积累,摸机壳会麻手。
如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。
串联的话就显得不伦不类。
电感特性不稳定,离散分布参数不好控制,体积大。
电感也是陷波,LC谐振(分布电容),对噪点有特效。
总之,关键是模拟地和数字地要一点接地。
建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。
★数字地和模拟地处理的基本原则如下:1)、若为低频模拟电路,加粗和缩短地线;单点接地,可有效防止由于地线公共阻抗而导致的部件之间的互相干扰。
而高频电路和数字电路,地线的电感效应较严重,单点接地会导致实际地线加长,故应多点接地和单点接地相结合。
2)、高频电路还应考虑如何抑制高频辐射噪声。
方法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输信号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有死的无用大面积铜箔。
3)、地线应构成环路,以防止产生高频辐射噪声,但环路面积不可过大,以免产生较大的感应电流。
注意若为低频电路,则应避免地线环路。
4)、数字电源和模拟电源最好隔离,地线分开布置,如果有A/D转换电路,则只在尽量靠近该器件处单点接地。