单片机的充电器

合集下载

基于51单片机的智能充电器的设计.doc

基于51单片机的智能充电器的设计.doc

基于51单片机的智能充电器的设计1. 引言智能充电器的设计是将充电器与微控制器相结合,实现充电过程的自动化和优化。

本文将介绍一种基于51单片机的智能充电器的设计方案。

该充电器能够根据电池的状态智能调整充电电流和充电时间,提高充电效率和电池寿命。

2. 设计方案智能充电器的设计方案如下:2.1 硬件设计充电器的硬件主要包括电源模块、控制模块、显示模块和充电模块。

2.1.1 电源模块电源模块提供稳定的直流电源供给整个系统,可以使用变压器和整流电路来获得所需要的直流电压。

2.1.2 控制模块控制模块使用51单片机作为主控芯片,通过各种传感器检测充电电流、充电电压和电池状态。

根据检测结果,控制模块可以自动调整充电电流和充电时间,以最佳的方式完成充电过程。

2.1.3 显示模块显示模块用于显示充电器的状态信息,可以使用液晶显示屏或LED灯来实现。

2.1.4 充电模块充电模块是将电能传输到电池上进行充电的部分,可以采用一定的充电控制电路来控制充电过程。

2.2 软件设计智能充电器的软件设计主要包括充电算法和控制逻辑。

2.2.1 充电算法充电算法根据电池的充电状态和特性,计算出最佳的充电电流和充电时间。

常见的充电算法包括恒压充电、恒流充电和多段充电等。

2.2.2 控制逻辑控制逻辑负责监测电池的电压、充电电流和充电时间,并根据充电算法决定是否需要调整充电参数。

控制逻辑还可以实现保护功能,比如过流保护、过温保护和反接保护等。

3. 实现过程智能充电器的实现过程可以分为硬件设计和软件开发两个步骤。

3.1 硬件设计在硬件设计阶段,需要根据设计方案选择合适的电源模块、传感器、显示模块和充电模块。

然后进行硬件电路的布局和连接,确保电路正常工作。

3.2 软件开发在软件开发阶段,首先需要编写51单片机的控制程序。

根据充电算法和控制逻辑编写相关的代码,并与硬件进行连接和测试。

然后进行功能测试和性能优化,确保系统的稳定性和可靠性。

4. 总结本文介绍了一种基于51单片机的智能充电器的设计方案。

基于单片机控制的锂电池充电器设计

基于单片机控制的锂电池充电器设计

基于单片机控制的锂电池充电器设计锂电池充电器是一种用于给锂电池进行充电的设备,可以帮助锂电池恢复电荷,延长其使用寿命。

在本文中,将设计一款基于单片机控制的锂电池充电器。

该充电器采用了单片机作为主控制器,能够对电池进行精确充电控制和状态监测,从而实现高效充电和安全使用。

首先,我们需要选择适合锂电池充电的充电电路。

在这里,我们选择了恒流恒压充电模式,这是一种最常见和最可靠的充电方式。

充电电路由电源、电流检测电阻、电流采样电路、电流反馈控制回路和电压反馈控制回路组成。

接下来,我们需要设计单片机控制电路。

为了实现对充电过程的精确控制,我们可以选择一款功能齐全且性能稳定的单片机,如STM32系列。

单片机将通过AD转换器读取电流和电压的值,并根据设定的充电算法计算出相应的控制参数,并通过PWM信号调节充电电路的输出。

同时,单片机还应该具备状态监测功能,以确保充电过程的安全性。

例如,单片机可以实时监测电压、电流和温度等参数,并根据预设的条件进行相应的保护措施,如断电、降功率或结束充电等。

此外,为了提高系统的可靠性和安全性,我们还可以添加一些辅助电路。

例如,过流保护电路可以通过检测输出电流是否超过一定的阈值来触发断电保护措施。

过热保护电路可以通过监测电池温度来触发降功率或断电保护。

短路保护电路可以通过监测电池和电路之间的电压差来触发断电保护。

最后,根据设计好的电路和程序,我们可以制作出实际的锂电池充电器原型。

在测试和调试的过程中,我们可以通过观察和记录充电电流、电压和温度等数据,来验证充电器的性能和可靠性。

综上所述,基于单片机控制的锂电池充电器设计是一个复杂而重要的工程。

通过合理的电路设计和程序编写,我们可以实现对锂电池的高效充电和安全使用,延长电池的寿命,为多种应用提供可靠的电源解决方案。

基于单片机技术的智能充电器设计

基于单片机技术的智能充电器设计

基于单片机技术的智能充电器设计1. 引言智能充电器是一种利用单片机技术实现智能控制的充电器,它能够根据充电设备的需求,自动调节充电电流和电压,实现高效、安全、快速的充电过程。

本文将详细介绍基于单片机技术的智能充电器设计,并探讨其在实际应用中的优势和挑战。

2. 智能充电器设计原理2.1 单片机控制基于单片机技术的智能充电器采用单片机作为控制核心,通过编程实现对充电过程中各种参数的监测和调节。

单片机具有高速、低功耗、易编程等优势,可以实现精确控制和智能化管理。

2.2 充放电管理智能充电器设计中重要一环是对锂离子等可再生储能设备进行精确管理。

通过监测储能设备的状态参数(如温度、容量等),可以根据设备需求自动调节输出功率,并确保安全快速地完成充放电过程。

3. 智能化算法设计3.1 全局最优算法为了最大限度地提高储能设备的利用率,智能充电器设计中应用了全局最优算法。

该算法通过对充电过程中的各种参数进行实时监测和分析,优化充电过程中的功率分配,使得充电器能够以最高效率完成充电任务。

3.2 自适应调节算法智能充电器设计中还应用了自适应调节算法,通过对设备需求的实时监测和分析,自动调节输出功率和电压。

该算法可以根据设备需求的变化进行动态调整,以提高充电效率和减少能量损耗。

4. 智能充电器设计实现4.1 硬件设计智能充电器硬件设计包括选择合适的单片机芯片、功率模块、传感器等元件,并进行合理布局和连接。

其中单片机芯片需要具备足够的计算性能和存储空间,以支持复杂的控制算法。

4.2 软件设计智能充电器软件设计包括编写控制程序、界面程序等。

控制程序需要实现对各种参数的监测、分析和控制,并根据设备需求进行动态调整。

界面程序可以提供用户友好的操作界面,并显示相关的充电信息。

5. 智能充电器的应用优势5.1 高效充电基于单片机技术的智能充电器能够根据设备需求智能调节输出功率和电压,以最高效率完成充电任务。

相比传统充电器,智能充电器可以大大缩短充电时间,提高储能设备的利用效率。

基于单片机的无线充电器设计

基于单片机的无线充电器设计

基于单片机的无线充电器设计学生姓名:学生学号:院(系):电气信息工程学院年级专业:电子信息工程指导教师:助理指导教师:二〇一五年五月摘要摘要随着用电设备对供电质量、可靠性、方便性、安全性、特殊场合、特殊地理环境等要求的不断提高,接触式的电能传输方式对于满足实际需要越来越显得捉襟见肘了。

与此同时,无线电能传输系统,摆脱了线路的限制,实现电器和电源的完全分离,具有无线传输电能、设备体积小、传输效率高、便于携带和集成等优点。

本课题设计介绍了一种运用新型的能量传输利用电磁波感应原理和有关的交流感应技术,采用STC12C5A60S2低功耗单片机作为无线传能充电器的监测控制核心,实现电流控制和电压控制功能,电能充满后给出充满提示且自动停止充电。

基于STC12C5A60S2单片机控制发射端和接收端产生的相应交流信号来进行充电的智能无线充电器。

利用设计通过对系统的硬件部分和软件部分的设计实现无线能量传输,在距离发射线圈的指定范围内对小型用电器如手机、MP3等直接充电。

硬件部分包括高效直流稳压模块、驱动模块、显示模块、控制模块等的设计;软件部分主要根据系统的设计思想设计出了主程序和子程序流程图,并通过C语言实现相应的编程要求。

通过理论分析和仿真证明,建立谐振耦合无线电能传输系统模型以及谐振耦合无线电能传输系统模型,通过计算得出了系统中电路参数与输出功率的关系。

设计并制作谐振耦合无线电能装置,使用LCD1602设计显示,实时充电电压显示。

关键词无线电能传输,谐振耦合,无线充电器, LCD1602,STC12C5A60S2单片机ABSTRACTABSTRACTThis paper introduced the use of a power transmission technology, wireless power supply technology model, using the principle of electromagnetic induction and the induction technology,intelligent wireless charger for charging the AC signal based on the STC12C5A60S2 single-chip microcomputer to control the transmitting end and the environment and other requirements continue to increase, the power transmission mode of contact to meet the actual needs become more and more difficult. At the same time, wireless power transmission system, get rid of the limit line, completely separate electrical and power, with the wireless transmission of electrical energy, the equipment has the advantages of small volume, high transmission efficiency, easy to carry and integration. In the rapid development of science and technology in 21 Century, the prospects for the development of intelligent wireless charger .The design through the design of the hardware part and the software part of the system to achieve the wireless energy transmission, within the specified range of the transmitting coil in small appliances such as mobile phone, MP3 and other direct charge. The hardware part includes efficient DC power module, drive module, display module, control module and so on; the software part is mainly based on the design thought of the system design of the main program and the subprogram flow chart, and through the C language to achieve the corresponding programming requirements. relationship between the circuit parameters and the output power of the system. The design and fabrication of resonant coupling wireless device, using the LCD1602 design draw progress bar shows charging, charging voltage, charging time display.Key words radio transmission, resonant coupling, wireless charger ,LCD1602 STC12C5A60S2目录摘要 (I)ABSTRACT ............................................................................................................... I I1 绪论 (1)1.1课题背景 (1)1.2 国内外研究现状、水平 (1)1.3本课题的发展趋势 (2)2 系统总体设计方案 (4)2.1系统总体设计方案简述 (4)2.1.1系统的基本功能 (4)2.1.2主要技术参数 (4)2.2系统设计方案选择 (5)2.3方案分析 (7)2.4系统的理论分析 (8)3 系统的硬件设计 (10)3.1单片机的选择与其控制 (10)3.1.1 单片机概述 (10)3.1.2 单片机STC12C5A60S2的介绍 (10)3.1.3 单片机最小系统的介绍 (11)3.1.4单片机控制模块设计 (13)3.2无线发射电路模块设计 (14)3.2.1 NE555芯片简介 (14)3.2.2 MOS管的选择与性能分析 (15)3.2.3振荡电路的设计 (16)3.2.4功率放大电路的设计 (17)3.3 电源稳压控制模块设计 (18)3.3.1稳压器LM2940简介 (18)3.3.2 KA7500B芯片简介 (19)3.3.3稳压控制电路设计 (19)3.4按键指示电路模块设计 (20)3.5显示电路设计及实现 (21)3.6 DC/DC转换电路设计 (23)3.6.1 DC/DC变换器简介 (23)3.6.2 运算放大器LM358简介 (24)3.6.3电压/电流采样模块设计 (24)3.7系统总体电路设计 (26)4 系统的软件设计 (28)4.1 整体设计思想 (28)4.2系统的主要程序框图 (29)4.3 主要程序模块 (29)4.3.1电路启动初始化 (29)4.3.2 按键采集程序 (30)4.3.3 LCD1602显示子程序 (31)4.3.4 数据采集及模数转换程序 (31)4.3.5 充电子程序的设计 (32)5 系统仿真设计与调试 (34)5.1.仿真软件Multisim的简介 (34)5.2电路的仿真 (34)5.2.1方波信号的产生 (34)5.2.2实际电路的测试 (36)5.3测试结果及分析 (36)5.3.1测试结构 (36)5.3.2实际电路的测试数据 (36)6 系统PCB设计 (38)6.1 PCB设计软件简介 (38)6.2 PCB板设计方法 (38)7 组装与调试 (40)7.1系统组装 (40)7.2硬件调试 (40)7.3软件调试 (40)7.4硬件软件联合调试 (40)7.5 调试结果 (40)结论 (41)参考文献 (42)附录A:无线充电控制系统源程序代码 (43)附录B:整体电路图和PCB板图 (53)附录C:设计实物图 (55)致谢 ........................................................................................ 错误!未定义书签。

基于单片机的智能电池充电器的设计

基于单片机的智能电池充电器的设计

基于单片机的智能电池充电器的设计智能电池充电器是一种能够智能识别电池类型和状态,并能根据电池需求实现快充和慢充的充电器。

本文将介绍一种基于单片机的智能电池充电器的设计。

一、设计原理智能电池充电器采用了单片机作为控制核心,通过对电源和电池状态进行实时监测以及控制充电电流和电压等参数,从而实现对电池的智能化管理。

二、主要功能1.电池类型识别:通过检测电池的电压和电流波形,智能电池充电器能够自动识别电池的类型,包括锂电池、铅酸电池等等。

2.电池状态检测:充电器能够实时监测电池的电流、电压以及温度等参数,通过这些参数的变化,判断电池的充电、放电状态,从而保证电池的安全和寿命。

3.充电控制:智能电池充电器可以根据电池类型和状态,动态调整充电电压和电流,以实现快充和慢充的切换,从而提高电池的充电效率和安全性。

4.过充保护:当电池充电至预设的电压值时,充电器能够自动停止充电,防止过充,保护电池安全。

5.温度保护:当电池温度过高时,充电器会自动停止充电,保护电池不受损坏。

三、硬件设计智能电池充电器的硬件设计包括电源电路、电流电压检测电路、控制电路和显示电路四个主要部分。

1.电源电路:充电器所需的电源电压一般为DC12V或AC220V,通过整流和滤波电路将交流电转化为直流电,并通过稳压电路将电压稳定在适合电池充电的范围内。

2.电流电压检测电路:用于实时检测电池的电流和电压值,通常采用放大电路和模数转换电路将模拟信号转化为数字信号,以供单片机进行处理。

3.控制电路:包括单片机和相关外围电路,单片机根据检测到的电池类型和状态,通过控制电源电压和电流调整电池的充电方式和速度。

4.显示电路:用于显示电池的充电状态、电流、电压等相关信息,通常采用数码管、LCD等显示器件。

四、软件设计智能电池充电器的软件设计主要包括单片机的程序设计和算法设计。

1.程序设计:根据单片机的指令系统和硬件接口进行开发,程序主要包括电池类型识别、电池状态检测、充电控制和保护控制等功能。

基于单片机的智能充电器硬件设计

基于单片机的智能充电器硬件设计

邮局订阅号:82-946120元/年技术创新嵌入式与SOC《PLC 技术应用200例》您的论文得到两院院士关注闫艳霞:讲师硕士基金申请人:姜利英;基金资助项目名称:基于BNI 融合的传感器构筑及性能研究;基金颁发部门:国家自然科学基金委;基金编号:(61002007)基于单片机的智能充电器硬件设计Design of intelligent charger based on single-chip microcomputer(郑州轻工业学院)闫艳霞姜利英姜素霞YAN Yan-xia JIANG Li-ying JIANG Su-xia摘要:锂离子电池以其诸多优点成为应用最广泛的可充电电池,针对锂离子电池充电器的不足,设计了一种采用单片机控制的智能型充电控制器,系统硬件组成包括单片机电路、充电控制电路、电压转换及光耦隔离电路,该智能充电器实现智能控制预充、快充、满充三个充电进程,判断充电终止状态,能够有效防止锂离子电池的欠充或过充,具有高效安全的充电控制、过压保护和过流保护功能。

关键词:锂离子电池;智能充电器;AT89C51;MAX1898中图分类号:TN248.4文献标识码:AAbstract:Lithiumion batteries have become the most widely used rechargeable batteries due to their many bined with the shortcomings of common chargers,I try to design a type of intelligent battery charger based on microcomputer.The hardware cir -cuits of the system include microcomputer circuit,charge control circuit,voltage transformation and the light pair isolating circuit..It can control both the three charging process which include previous charge,fast charge and full charge,and judge the charge termina -tion state smartly.It aslo can prevent less charged or overcharged of lithium battery effectively,it also has the functions of high secu -rity charge control,over-voltage protection and over-current protection.Keywords:Lithium battery;intelligent battery charger;AT89C51;MAX1898文章编号:1008-0570(2012)10-0207-02引言电池技术的进步要求复杂的充电算法以实现快速、安全的充电,因此需对充电过程进行更精确的监控(如对充、放电电流、充电电压、温度等的监控)。

基于单片机的智能充电器设计

基于单片机的智能充电器设计

基於單片機的鋰電池充電器設計摘要電子技術的快速發展使得各種各樣的電子產品都朝著可攜式和小型輕量化的方向發展,也使得更多的電氣化產品採用基於電池的供電系統。

目前,較多使用的電池有鎳鎘、鎳氫、鉛蓄電池和鋰電池。

它們的各自特點決定了它們將在相當長的時期內共存發展。

由於不同類型電池的充電特性不同,通常對不同類型,甚至不同電壓、容量等級的電池使用不同的充電器,但這在實際使用中有諸多不便。

本課題設計是一種基於單片機的鋰離子電池充電器,在設計上,選擇了簡潔、高效的硬體,設計穩定可靠的軟體,詳細說明了系統的硬體組成,包括單片機電路、充電控制電路、電壓轉換及光耦隔離電路,並對本充電器的核心器件—MAX1898充電晶片、AT89C2051單片機進行了較詳細的介紹。

闡述了系統的軟硬體設計。

以C語言為開發工具,進行了詳細設計和編碼。

實現了系統的可靠性、穩定性、安全性和經濟性。

該智能充電器具有檢測鋰離子電池的狀態;自動切換充電模式以滿足充電電池的充電需要;充電器短路保護功能;充電狀態顯示的功能。

在生活中更好的維護了充電電池,延長了它的使用壽命。

關鍵字:充電器;單片機;鋰電池;MAX1898Lithium Battery Charger Design Based On Single ChipAbstractElectronic technology's fast development causes various electronic products develops toward portable and the small lightweight direction, It also causes the more electrification products to use based on battery's power supply system. At present, the many use's batteries have the nickel cadmium, the nickel hydrogen, the lead accumulator and the lithium battery. Their respective characteristic had decided they will coexist in a long time develop. Because the different type battery's charge characteristic is different, usually to different type, even different voltage, capacity rank battery use different battery charger, but this has many inconveniences in the actual use.This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency.The intelligence battery charger has the examination lithium ion battery's condition; The automatic cut over charge pattern meets when rechargeable battery's charge needs; Battery charger has short circuit protection function; The charge condition demonstration's function. The battery charger has made the better maintenance rechargeable battery in the life,and lengthened the rechargeable battery’s service life.Key words:Charger; SCM;Lithium battery; MAX1898目錄引言 (1)第1章绪论 (2)1.1课题研究的背景 (2)1.2课题研究的主要工作 (3)第2章电池的充电方法与充电控制技术 (5)2.1电池的充电方法和充电器 (5)2.1.1 电池的充电方法 (5)2.1.2 充电器的要求和结构 (9)2.1.3单片机控制的充电器的优点 (10)2.2充电控制技术 (10)2.2.1 快速充电器介绍 (10)2.2.2 快速充电终止控制方法 (11)第3章锂电池充电器硬件设计 (14)3.1单片机电路 (14)3.2电压转换及光耦隔离电路 (17)3.3电源电路 (18)3.4充电控制电路 (20)3.4.1MAX1898充电芯片 (20)3.4.2充电控制电路的实现 (24)第4章锂电池充电器软件设计 (26)4.1程序功能 (26)4.2主要变量说明 (26)4.3程序流程图 (26)结论与展望 (29)致谢 (30)参考文献 (31)附录A 电路原理图 (32)附录B 外文文献及其译文 (33)附录C 主要参考文献的题录及摘要 (40)附录D 主要源程序 (42)插圖清單图2-1 恒流电源充电电路 (5)图2-2 准恒流充电电路 (5)图2-3 恒压充电电路 (6)图2-4 浮充方式充电电路 (6)图2-5 涓流方式的简单示意图 (6)图2-6 分阶段充电的简单示意图 (7)图2-7 -△V控制系统框图 (7)图2-8 充电电池、电池电压和充电时间的关系 (8)图2-9 电池温度检测简图 (8)图2-10 电池温度和充电时间的关系 (9)图2-11 充电器结构框图 (10)图2-12 锂电池的充电特性 (11)图2-13 快速充电器原理框图 (12)图3-16N137光耦合器 (18)图3-2 lm7805样品 (18)图3-3 LM7805内部结构框图 (19)图3-4 LM7805功能框图 (20)图3-5 MAX1898的引脚 (21)图3-6 MAX1898的典型充电电路 (22)图3-7 基于MAX1989的智能充电器的原理图 (23)图3-8 锂离子电池充电电路 (25)图4-1(a) 等待外部信号输入 (27)图4-1(b) 外部中断程序 (27)图4-1(c) 定时器程序 (28)图4-1 智能充电器的程序流程图 (28)安徽工程大学毕业设计(论文)- -5 表格清單表1-1 铅酸、镍镉、镍氢和锂离子电池的性能比较 (2)表4-1 P3口 (15)表4-2 LED 指示灯状态说明 (22)表5-1 变量及说明 (26)项冲:基于单片机的锂电池充电器设计引言社會資訊化進程的加快對電力、資訊系統的安全穩定運行提出了更高的要求。

基于单片机控制的电动自行车充电器的设计

基于单片机控制的电动自行车充电器的设计

eht dna regrahc erusserP snoitcirtser detimil tnerruc,elcycib cirtcele eht fo stnenopmoc eroc cirtcele ekat ot,elpoep eht gnoma ssenerawa latnemnorivne fo tnemecnahne eht htiW
sirettab elcycib cirtcle eht fo citsiretcarahc eht tsiaga,tcefrep ton si regrahc eseht
si hcihw regahc a ngised ew,pihc gnillortnoc eht sa desu si rellortnocorcim37F61CIP
eht era sregrahc dna seirettaB.eciohc tsrif’elpoep emoceb sah tropsnart fo snaem a sa elcycib
tcartsbA
III
23 ................................................................... 谢 92 ................................................................... 录
1.2.2
2 ........................................................ 择选式模电充 2.2 2 ..................................... 析分理原、构结的池电蓄酸铅封密 1.2 2 1
2 ................................................. 析分式模电充车行自动电 1 ................................................................... 论绪

基于单片机的通用充电器的设计

基于单片机的通用充电器的设计
] re ov h ehrigpo lm fnce— a mu at y n— hb e e,i im bt r, en e ot lh rcs Ab tatI od rosleterc ag rbe so i lcd im bt r, iw  ̄tr s lhu a e w edt cnr epoes n t n k e i t ty o ot
1 硬 件 电路 设 计
硬 件 电路 由单 片 机 电路 、 电源 电 路 、 电 控 制 电 路 3部分 组 成 。 充 下 面就 各 个 模 块 的 电路 给 出 具 体 的 设 计 方 案 。
科技信息
0机械 与电子O
S IN E&T C O O F MA I N CE C E HN L GYI OR T O N
21 0 1年
第 1 期 1
基于单片机的通用充电器的设计
吴 奇 飞
( 南师 范大 学物 理与 电子 工程 学 院 海 南 海 口 5 1 5 ) 海 7 8 1
量 时 就可 以 确定 该 电池 己经 充 满 , 而 将 充 电转 变 为 涓 流 充 电 。 时 间 从 控 制 预 定 充 电时 间 , 充 电 时 间达 到 后 , 充 电 器 停 止 充 电或 转 为 涓 当 使 流充电, 这种 方 法较 安 全 。 温度 控 制 法 是 当 电池 达 到 充 满 状 态 时 , 电池 温 度 上 升 较 快 , 量 电 池 温 度 或 温 度 的 变 化 , 而 确 定 是 否 对 电 池 停 测 从 止 充 电 。 高 电压 控 制 则 是 根 据 充 电 电池 的 最 高 允 许 电 压 来 判 断 充 电 最 状态 , 种方法灵活性较好 。 这
MA 8 6 通 过 A 0 3 X 4 A。 DC 82模 数 转换 采 集 电池 的充 电状 态 ,0 5 8 C 1对 采 可 充 电 电 池 具 有 较 高 的性 能 价格 比 、 电 电 流 大 、 命 长 等 特 点 , 放 寿 集 的 数 据 进 行 处 理 , 后 由充 电 控 制 器 MA 8 6 对 充 电状 态 做 出 反 然 X 4A 广 泛 应 用 于 各 种 通 信设 备 、 器仪 表 、 气测 量 装 置 中 。 同 的 电池 应 仪 电 不 应 , 到 充 满 电为 止 。在 充 电期 间 ,C 直 L D显 示 装 置 显 示 充 电 的 状态 , 电 采 用 不 同 的 充 电控 制 技 术 , 电技 术 主要 有 : 充 电压 负 增 量控 制 、 间 控 时 池 充 满 后 ,C 显示 装 置显 示 电池 已 充满 , 发 出报 警 信 号 。 LD 并 制、 温度 控制 、 高 电压 控 制 技 术 等 。充 电时 , 最 当测 量 到 电 池 电 压 负 增

基于单片机的智能电动汽车充电器的设计

基于单片机的智能电动汽车充电器的设计

基于单片机的智能电动汽车充电器的设计
简介
本文介绍了一种基于单片机的智能电动汽车充电器的设计方案。

智能电动汽车充电器可以根据电动汽车的电池状态和充电需求,进
行智能化控制,提高充电效率并减少能源浪费。

设计方案
本方案采用了单片机、功率电子器件、传感器等技术,实现了
电动汽车的智能化充电控制。

具体实现方案如下:
- 采用单片机控制充电器的输出电压和电流,实现精准控制电
动汽车的充电过程。

- 采用功率电子器件,实现电能的转换和调节,提高充电效率
和可靠性。

- 采用传感器,获取电动汽车电池的电量和温度等参数,并实
现智能控制。

功能特点
本设计方案具有以下功能特点:
- 支持智能充电,根据电动汽车的电量和充电需求进行精准控制,提高充电效率。

- 支持恒流充电和恒压充电模式,根据电池状态自动切换充电
模式,保护电池。

- 支持多种安全保护功能,如过流保护、过压保护、过温保护等,确保充电过程的安全稳定。

- 支持数据记录和查询功能,记录充电过程的数据,提供查询
和分析。

结论
本文介绍了一种基于单片机的智能电动汽车充电器的设计方案,该方案具有智能化控制、高效可靠、安全稳定等功能特点,适合用
于电动汽车的快速充电。

基于单片机的智能电动车充电器模块化设计

基于单片机的智能电动车充电器模块化设计

基于单片机的智能电动车充电器模块化设计
梁建智;朱名强;潘知南;李和明
【期刊名称】《南方农机》
【年(卷),期】2024(55)5
【摘要】【目的】解决传统电动车充电器充电过程中存在充电不足、过充电量大、电池组电压不同不能通用等问题。

【方法】课题组采用模块化设计方法,设计一款
基于STC8A8K64S4A12单片机的智能电动车充电器,优化了电源模块、电压采样
模块、电流采样模块、温度检测模块、数控模块、单片机控制模块、显示模块等电路设计,改良了恒流—恒压—定时脉冲充电方法。

【结果】仿真结果表明,该智能电动车充电器在充电过程中能够实时显示充电模式、充电曲线、电量、充电电压、充电电流、定时充电时间、剩余充电时间、预计充满时间等充电信息数据,能在48 V、60 V和72 V铅酸动力电池组上通用,采用优化的三段式充电方法充电。

【结论】
该智能电动车充电器具备三段式充电的优点,且过充电量小,能够有效防止充电过程
中出现充电不足、误充等情况;经过长时间测试验证,该智能电动车充电器能够提高
充电效率,延长铅酸动力电池的使用寿命。

【总页数】7页(P134-140)
【作者】梁建智;朱名强;潘知南;李和明
【作者单位】广西电力职业技术学院智能制造工程学院
【正文语种】中文
【中图分类】U469.72;U463.633
【相关文献】
1.基于NEC单片机的电动车充电器控制系统设计
2.基于51单片机的电动车手机充电器设计
3.基于单片机的三段式智能充电器设计
4.基于单片机的电动车智能充电器系统的设计
5.基于单片机的智能快速充电器设计
因版权原因,仅展示原文概要,查看原文内容请购买。

电动车充电器单片机工作原理

电动车充电器单片机工作原理

电动车充电器单片机工作原理电动车充电器是一种用于给电动车电池进行充电的设备,它通过单片机控制电路来实现对电池的充电。

本文将从电动车充电器的工作原理来详细介绍单片机在其中的作用和工作方式。

让我们来了解一下电动车充电器的基本原理。

电动车充电器主要由输入电源、整流电路、滤波电路、控制电路、变压器和输出电路等组成。

其中,控制电路起着至关重要的作用,它通过单片机来实现对充电过程的监控和控制。

单片机作为充电器控制电路的核心,负责监测电池的电压、电流和温度等参数,并根据设定的充电策略来控制充电过程。

它通过与其他电路的配合和通信,实现对充电器工作状态的监测和控制。

在充电过程中,单片机首先通过模拟输入端口读取电池的电压和电流信息,并将其转换为数字信号进行处理。

然后,通过内部的算法和逻辑判断,确定充电策略,包括充电电流、充电时间和充电模式等。

接下来,单片机通过PWM技术控制充电器的开关管,调节充电器的输出电流和电压。

PWM技术是一种通过不断开关电路来调节平均电压或电流的技术,它能够更精确地控制充电过程,提高充电效率和安全性。

单片机还可以实现对充电过程中的各个参数进行监测和保护。

例如,当电池电压过高或过低时,单片机可以发出警报,并自动停止充电过程,以避免对电池的损坏。

此外,单片机还可以监测电池的温度,当温度过高时,及时采取措施进行散热,确保充电过程的安全性。

单片机还可以通过与用户界面的交互,实现对充电器的参数设置和显示。

用户可以通过按键或触摸屏等方式,选择充电模式、设定充电电流和监测充电过程中的各项参数。

单片机负责接收用户的输入,并将其转化为指令,控制充电器的工作。

单片机在电动车充电器中起着至关重要的作用。

它通过监测和控制充电过程中的各项参数,保证充电的安全性和效率。

同时,单片机还可以实现与用户的交互,提供便捷的操作和显示功能。

随着科技的不断进步,单片机在电动车充电器中的应用也会不断发展和完善,为电动车的充电提供更加智能和便捷的解决方案。

基于单片机的锂电池充电器设计

基于单片机的锂电池充电器设计

图2 52单片机电路原理图
3.3 充电电路控制部分
充电状态输出引脚/CHG经反相器74LS04后与单片机的P3.2口连接,触发外部中断。PNP为P沟道的场效应管或三极管。D1为绿色发光二极管,处于通电状态时亮;D2为红色放光二极管,电源接通时亮。R1设置充电电流的电阻,阻值为2.8千欧,设置最大充电电流为500mA;C2为设置充电时间的电容,容值为100μF,设置最大充电时间为3小时。
4)无记忆效应,锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无须放电。
5)寿命长,正常工作条件下,锂电池充放电循环次数远大于500次。
6)多个锂电池可以随意并联使用。
7)无污染,由于锂电池中不含镉、铅、汞等重金属元素,对环境无污染。
8)快速充电,使用额定电压为4.2V的恒流恒压充电器,可使锂电池在1-2小时内得到满充。锂电池与其他可充电电池相比,其价格相对较高。但是随着技术的发展,锂电池的性价比越来越高,目前已广泛应用在各类便携式移动设备上。
2 锂电池的主要特点
1)高能量密度,锂离子电池的重量是相同容量的镍镉或镍氢电池的一半,体积是镍镉的40%~50%,镍氢的20%~30%.因此,锂电池具有更高的重量能量比、体积能量比。
2)高电压,单节锂电池电压平均为3.6V,等于三只镍镉或镍氢充电电池的串联电压。
3)自放电小,可长时间存放。
3ห้องสมุดไป่ตู้锂电池充电器的硬件设计方案
3.1 系统结构框图
系统硬件电路由单片机电路、电压转换及光耦合隔离电路、充电控制电路三部分组成。通过单片机的控制实现预充、快充、满充、断电、报警等充电过程。
图1 系统结构框图
3.2 52单片机电路原理图

基于单片机的电动车智能充电器的设计

基于单片机的电动车智能充电器的设计

中文摘要: (2)前言 (3)第一章充电器原理 (4)1.1 蓄电池与充电技术 (4)1.2 密封铅酸蓄电池的充电特性 (4)1.3 充电器充电原理 (5)1.3.1 蓄电池充电理论基础 (5)1.3.2 充电器的工作原理 (7)第二章总体设计方案 (9)2.1 系统设计 (9)2.2 方案策略 (9)第三章硬件电路设计 (11)3.1 电路总体设计 (11)3.2 芯片介绍 (11)3.2.1 LM358双运放 (11)3.2.2 UC3842单管开关电源 (12)3.2.3 EL817光耦合器 (13)3.2.4 场效应管K1358 (14)3.3 电动车充电器原理及各元件作用的概述 (15)3.3.1 充电器原理图 (15)图3.5 充电器原理图 (15)3.3.2 各元器件作用概述 (15)3.4 功能模块电路设计 (16)3.4.1 第一路通电开始 (16)3.4.2 第二路UC3842电路 (16)3.4.3 第三路LM358(双运算放大器)电路 (17)3.5 电动车充电器改进方案 (20)3.5.1 增加充满电发声提示电路 (20)3.5.2 加散热风扇 (21)第四章总结与展望 (22)参考文献 (23)致谢 (24)电动车智能充电器设计及应用中文摘要:本设计介绍了充电器对蓄电池充电的一般原理,从阀控蓄电池内部氧循环的设计理念出发,研究各种充电方法对铅酸蓄电池寿命的影响。

针对蓄电池充电过程中出现的种种问题,分析现有各种充电方法存在的问题,提出一种可对铅酸蓄电池实现四段式慢脉冲充电的智能充电器设计方案。

控制开关电源的脉冲频率和占空比,从而调节充电电流和电压,实现对蓄电池的分级慢脉冲充电。

这个方案不仅可实现快速充电,同时可以减少析气,消除硫化,进行均衡充电,从而大大地延长了铅酸蓄电池的使用寿命。

关键词:慢脉冲充电;蓄电池;充电器;Abstract: The design describes the charger to the battery charger of the general principles, from the internal oxygen cycle of valve-regulated battery design concepts starting to study a variety of charging methods for lead-acid battery life implications. For battery charging problems arising in the process, analysis of existing problems in a variety of charging methods, proposed a lead-acid batteries could achieve the Four-slow pulse charge of the intelligent charger design. Control the switching power supply pulse frequency and duty cycle, thus regulating charge current and voltage to achieve the classification of the battery charge with slow pulse. This program not only for fast charging, while reducing analysis of gas, to eliminate sulfide, a balanced charge, thus greatly extending the service life of lead-acid batteries.Key words: slow pulse charge; batteries; charger;前言以动力蓄电池为能源的电动车被认为是21世纪的绿色工程,它的出现将汽车工业的发展带入了一个全新的领域。

单片机太阳能充电器应用 实现太阳能充电系统

单片机太阳能充电器应用 实现太阳能充电系统

单片机太阳能充电器应用实现太阳能充电系统在当今节能环保的浪潮下,太阳能充电系统备受关注。

随着技术的进步和单片机的应用,太阳能充电器的功能得到了极大的增强。

本文将探讨单片机在太阳能充电器应用中的实现,以及太阳能充电系统对能源的利用情况。

一、单片机在太阳能充电器中的应用太阳能充电器是利用太阳能将光能转化为电能进行充电的设备。

单片机在太阳能充电器中的应用是实现充电器的智能控制和优化能量管理的关键。

通过单片机的控制,太阳能充电器可以根据光照强度和充电需求来自动控制充电电流和电压,实现对电池的智能充电。

首先,单片机可以通过光敏电阻感测环境光强度,并将光强度数据转换为电信号输入单片机进行处理。

单片机可以根据不同光强度的输入,自动调节太阳能电池板的输出电压和电流,使其适应不同光照强度下充电的需要。

其次,单片机还可以监测电池的电量情况,通过测量电池内部电压实现对电量的准确测量。

当太阳能电池板输出电流较大时,单片机能自动降低充电电流,以防止电池过充或过放;反之当太阳能电池板输出电流较小时,单片机能自动增加充电电流,以快速充满电池。

最后,单片机还可以根据充电状态和充电需求来决定是否启用充电器对电池进行充电。

当充电器检测到电池已充满时,单片机能够自动停止充电,以避免电池过充和能量的浪费。

二、太阳能充电系统对能源的利用情况太阳能充电系统作为一种绿色、清洁、可再生能源的利用方式,对能源的利用情况非常优越。

与传统电源相比,太阳能充电系统减少了对传统电网的依赖,大大节约了能源资源。

首先,太阳能是一种无限可再生能源,不会产生二氧化碳等有害气体,不会对环境造成污染。

太阳能充电器通过太阳能电池板将太阳能转化为电能,实现了能源的自给自足。

在没有光的夜晚,电池储能能够保证电能的供应,充分利用光能,最大程度地减少对传统能源的依赖。

其次,太阳能充电系统还具有灵活性和便携性。

由于太阳能充电系统不需要外部电源,因此可以在任何地方都可以使用。

尤其适用于户外探险、露营和旅行等场景。

基于单片机的智能手机充电器的设计

基于单片机的智能手机充电器的设计

基于单片机的智能手机充电器的设计一、引言在当今数字化的时代,智能手机已经成为人们生活中不可或缺的一部分。

而作为智能手机的重要配件,充电器的性能和安全性至关重要。

传统的充电器往往功能单一,充电效率低下,且缺乏智能化的控制。

为了满足人们对高效、安全、智能充电的需求,基于单片机的智能手机充电器应运而生。

二、设计目标与要求(一)高效充电能够快速为智能手机充电,缩短充电时间,提高充电效率。

(二)安全保护具备过压保护、过流保护、短路保护等功能,确保充电过程的安全可靠。

(三)智能控制能够根据手机电池的状态自动调整充电电流和电压,实现智能充电。

(四)兼容性兼容多种智能手机型号,具有广泛的适用性。

三、硬件设计(一)电源输入模块采用交流市电输入,通过变压器降压和整流滤波电路,将交流电转换为稳定的直流电。

(二)单片机控制模块选择合适的单片机,如 STM32 系列,负责整个充电器的控制和监测。

(三)充电管理模块采用专用的充电管理芯片,如 TP4056,实现对充电电流和电压的精确控制。

(四)电压电流检测模块通过传感器实时检测充电电压和电流,并将数据反馈给单片机。

(五)显示模块使用液晶显示屏或 LED 指示灯,显示充电状态、电量等信息。

四、软件设计(一)主程序负责初始化各个模块,设置充电参数,以及循环监测充电状态。

(二)中断服务程序处理电压电流检测模块产生的中断,实现过压、过流等异常情况的保护。

(三)充电控制算法根据电池的电量和充电状态,采用智能充电算法,动态调整充电电流和电压。

五、充电过程控制(一)预充电阶段当电池电量极低时,采用小电流进行预充电,避免对电池造成损伤。

(二)恒流充电阶段在电池电量较低时,以恒定的大电流进行充电,快速提升电量。

(三)恒压充电阶段当电池电量接近充满时,自动切换到恒压充电模式,确保电池充满且不过充。

(四)充电结束阶段当电池充满后,自动停止充电,防止过充对电池寿命造成影响。

六、安全保护机制(一)过压保护当检测到充电电压超过设定的安全阈值时,立即切断充电电路,保护手机电池和充电器。

基于单片机控制的智能锂电池充电器

基于单片机控制的智能锂电池充电器

基于单片机控制的智能锂电池充电器智能锂电池充电器是一种通过使用单片机控制技术,对锂电池进行精确、高效的充电的设备。

它不仅能够提供安全、可靠的充电过程,还能够根据具体的需求对充电进行调节和优化。

本文将介绍智能锂电池充电器的工作原理、特点以及在实际应用中的优势。

一、工作原理智能锂电池充电器的工作原理基于单片机控制技术。

当电池连接到充电器时,充电器通过测量电池的电压、电流以及温度等参数,将这些数据发送给单片机。

单片机根据这些数据来判断充电状态,然后根据预设的充电模式来调节电压和电流进行充电。

同时,单片机还可以对充电过程进行实时监控和反馈,确保充电安全可靠。

二、特点智能锂电池充电器具有以下几个特点:1. 高安全性:智能锂电池充电器通过单片机控制技术实时监测和管理电池的充电状态,能够避免因过充、过放、过流等问题引发的安全隐患,有效保护电池和使用者的安全。

2. 高充电效率:智能锂电池充电器能够根据电池的需求来动态调节电压和电流,实现更加高效的充电,提高充电效率,缩短充电时间。

3. 多功能性:智能锂电池充电器可以配置多种充电模式,如恒压充电、恒流充电、三级充电等,以满足不同种类锂电池的充电需求。

4. 显示和保护功能:智能锂电池充电器通常配备有液晶显示屏,可以实时显示充电状态和参数,便于用户了解和掌握充电过程。

同时,它还具备过温保护、短路保护等多重安全功能,确保充电过程的安全性。

5. 设计精巧、体积小巧:智能锂电池充电器结构紧凑,外观美观,便于携带。

用户可以随时随地对锂电池进行充电,方便实用。

三、实际应用优势智能锂电池充电器在实际应用中有诸多优势:1. 广泛应用于移动设备领域:由于智能锂电池充电器的高效、安全、多功能特点,它广泛应用于手机、平板电脑、便携式音乐播放器等移动设备充电场景。

用户可以通过智能锂电池充电器轻松、安全地对移动设备进行充电。

2. 智能家居领域的充电设备:随着智能家居的快速发展,各类智能设备如智能手表、智能音箱等电子产品也得到了广泛应用。

基于单片机的锂电池充电器设计

基于单片机的锂电池充电器设计

基于单片机的锂电池充电器设计锂电池是一种高能量密度、长寿命、轻巧的电池,被广泛应用于便携式电子设备、电动工具、无人机等领域。

为了正确而安全地充电锂电池,我们可以设计一个基于单片机的锂电池充电器。

本文将详细介绍此设计。

首先,我们需要明确设计的目标和要求。

一个理想的锂电池充电器应具备以下特点:充电电流可调;充电电流稳定性好;电池充电过程可实时监测;充电接口友好;具备过充保护、过放保护等安全保护机制。

基于这些要求,我们可以开始设计锂电池充电器。

一、电路设计1.电源电路设计:我们可以采用交流-直流变换的方式,将交流电源转换为直流电源供给锂电池充电器。

这里我们选择了一个标准的变压器、整流桥和滤波电容组成的整流电源模块。

变压器将交流电压转换为较低的交流电压,整流桥将交流电压整流为直流,滤波电容将直流电压进行平滑。

2.充电控制电路设计:充电控制电路是整个充电器的核心部分。

我们选择使用单片机作为控制器,采用PWM控制方式调节充电电流。

单片机内置了计数器和定时器功能,可以根据设定的参数控制PWM输出,实现电流的调节。

通过监控电池电压和充电电流,单片机还可以进行实时监测和保护控制。

3.充电保护电路设计:为了确保充电过程的安全,我们需要设计过充保护电路和过放保护电路。

过充保护电路主要用于监测电池电压,当电池电压超过设定的阈值时,会切断充电电路,以避免过充。

过放保护电路主要用于监测电池电压,当电池电压低于设定的阈值时,会切断充电电路,以避免过放。

这些保护电路一般使用功率MOS管来实现。

二、软件设计为了实现充电器的功能,我们需要编写相应的软件程序。

软件程序主要包括以下几个方面的功能:1.充电控制功能:根据选择的充电电流设置,通过PWM控制充电电流,并实时监测电池电压和充电电流。

2.充电保护功能:在充电过程中,实时监测电池电压,一旦电池电压超过设定的阈值,立即切断充电电路,避免过充。

一旦电池电压低于设定的阈值,立即切断充电电路,避免过放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的智能充电器的设计
摘要:介绍常用充电电池的特点与充电方式,详细讨论了采用单片机控制的能够对镍铬、镍氢和锂离子电池进行充电的通用型智能充电器的软件和硬件设计。

关键词:充电电池;单片机
1 蓄电池的特点
目前常用的四种化学电池是铅酸电池(PbSO4)、锂离子电池(Li +)、镍铬电池(NiCd)和镍氢电池(NiMH)。

由于环保问题和对电池的要求越来越高等综合因素,推动了新电池技术的发展。

1.1 镍铬电池和镍氢电池
镍铬电池的容量比镍氢电池或锂离子电池低,具有低阻抗特性,对于需要短时间大电流的应用场合很具吸引力。

但镍铬电池如果未经充分放电又进行充电,或者长时间处于小电流放电状态,就会产生枝状晶体,引起“记忆效应”,从而导致电池内阻变大,容量变小,缩短了电池寿命。

如果在充电前进行完全放电,使每节电池的电压降到1.0V左右,就能消除引起“记忆效应”的枝状晶体,恢复电池的性能。

镍氢电池具有较高的容量,但其自放电率也较高,约为镍铬电池的二倍。

在初始阶段其放电率尤高(每天放掉1%)。

所以镍氢电池不宜用于需要长时间保持电池容量的场合。

就充电方式而言,两种电池非常相似,都是以恒流的方式进行充电,可采用快速、标准或者涓流的方式进行充电。

它们都能以超过2C(C为电池容量,单位为安培)
的速率进行充电(但一般采用C/2速率)。

由于存在内部损耗,充电效率一般小于100%,所以,在采用C/2的速率充电时,通常需要两个多小时才能把电池充满。

充电过程中的损耗随着充电速率和电池的不同而不同。

在恒流充电时,电池电压会缓慢达到峰值(ΔV/Δt变为0),镍氢电池需在这个峰值点终止快速充电,镍铬电池的充电须在峰值点后当电池电压开始下降时(ΔV/Δt变为负)即终止快速充电,否则会导致电池内压力和温度上升而损坏电池。

当充电速率大于C/2时,则要监测电池的电压和温度,因为当电池快充满时,电池的温度会急剧上升。

对于镍铬电池和镍氢电池,还可以采用比较简便的涓流充电,这时只会造成极小的温升,不会损坏电池,也就无需终止涓流充电或者监测电池的电压。

允许的最大涓流随着电池类型和环境温度的不同而不同,典型条件下C/15较为安全。

1.2 锂离子电池
过去几年中,电池技术领域最突出的创新就是锂离子电池。

相对于镍基电池而言,锂离子电池具有更高的容量。

从容量/体积比来衡量,锂离子电池比镍氢电池高出10%~30%,从容量/质量比来看,锂离子电池比镍氢电池高出近两倍。

但锂离子电池对于过充电和欠充电很敏感。

要达到最大容量就必须充电到最高电压,而过高的电压和过大的充电或放电电流又会造成电池的永久性损坏。

如果多次放电至过低的电压则会造成容量损失,所以,充电和放电时都须限制其电压和电流,以保护电池不受损坏。

锂离子电池的充电方式不同于镍基材料的化学电池,充电时需用一个电压—电流源来进行充电。

为了获得
最大的充电量而又不损坏电池,须使电压保持在1%的精度内。

快速充电开始时,电池的电压比较低,充电电流即为电流极限。

随着充电的进行,电池电压缓慢上升,最终当每节电池达到浮空电压4.2V时,此时即可终止充电。

2 总体设计
2.1 充电器芯片MAX846A
MAX846A是一种16脚QSOP封装的通用型充电控制芯片,可以单独构成锂离子电池充电器,也可以在单片机的控制下对锂离子电池和镍基电池进行充电。

图1为其QSOP封装的管脚图。

图中,1脚DCIN 和4脚GND及15脚PGND分别为电源和地端。

2脚VL端可提供3.3V,1%的电压基准。

3脚CCI和5脚CCV分别为电流和电压调节回路补偿端。

7脚ISET和6脚VSET分别为充电电流和电压回路设定端。

8脚OFFV为电压调节回路控制端,对于镍基电池置为高电平。

当VL端电压低于3V时,9脚PWROK输出低电平,可给MCU提供复位信号。

10脚CELL2为锂离子电池选择端,低电平时为一节,高电平时为两节。

11脚ON为充电控制端,低电平时停止充电。

12脚BATT端接电
池正极。

13脚CS+和14脚CS-为内部电流检测放大器输入端。

16脚DRV为外部调节晶体管驱动端。

2.2 硬件设计
充电器硬件结构图如图2所示。

整个系统以MCU为核心构成,包括电源电路、调节电路、充电与放电电路、键盘与显示电路及报警电路等环节。

MCU选用AT89C51,片内带4K的EEPROM,这样就无需扩展程序存储器,简化了电路设计。

电源回路中,220V的交流电经变压器降为12V,经过整流滤波变为14V左右,作为MAX846A的充电电源,另外经7805稳压后作为其他电路单元的工作电源。

调节电路主要由A /D和D/A构成,用于检测电池的电压和温度及设置电池的浮空电压和充电电流。

充电电路以MAX846A为中心,完成充电过程。

充电过程的启停及充电方式的选择由单片机对MAX846A进行控制来实现。

放电电路用以消除镍铬电池的“记忆效应”。

报警电路在系统工作时给出必要的声音提示。

键盘和显示电路用于设置和显示相关的参数。

2.3 充电器的功能设计
系统工作时通过键盘选择电池类型和充电方式,并由一位数码管显
示。

具体方式如下所示
(1)镍铬电池全电流快速充电方式
(2)镍铬电池标准充电方式
(3)镍氢电池全电流快速充电方式
(4)镍氢电池标准充电方式
(5)锂离子电池快速充电方式
(6)锂离子电池标准充电方式
系统启动时先进行初始化,随后检查电池是否开路。

如开路则LED显示0并蜂鸣提示,如正常则按照设置的充电方式进行充电。

在对镍铬电池充电时,首先检测电池是否已充分放电,如单节电池电压在1.0V以上,则先进行完全放电以消除其“记忆效应”。

对于镍基电池,无论采用哪一种充电方式,在充电结束后自动进入涓流充电方式,以补偿电池的自放电。

锂离子电池的自放电率最低,所以无需涓流充电。

在快速充电时,镍铬电池采用负斜率终止充电(ΔV/Δt 小于0),镍氢电池采用零斜率终止充电(ΔV/Δt等于0),锂离子电池采用顶端截止。

另外,在快速充电时,如电池电压或者温度超限以及充电时间超过三小时,系统都将停止充电并蜂鸣提示。

充电结束时数码管显示P并蜂鸣提示。

出于对电池寿命的考虑,在多次快充后,建议采用标准方式充电一次。

2.4 软件设计
系统的软件设计采用模块式结构,主要由初始化程序、充电方式设置模块、预处理模块、A/D转换模块、D/A转换模块、定时模块和显示模块等部分组成。

其中,充电方式设置模块用于设置电池类型和充电方式;A/D转换模块用于检测电池的电压和温度,以确定是否终止充电过程;D/A转换模块用于设置充电电流和电压;定时模块用于确定零斜率或负斜率检测的频度以及快充的时间监测,斜率检测为每分钟一次,快充的时间限为三小时。

T_LEQU 36H ;程序初始化T_H EQU 35H ;
FLAG1BIT 01H ; DQ BIT 91H
T_D2 EQU 52H T_D3 EQU 53H
T_D4 EQU 54H
T_D5 EQU 55H
TIME_CY EQU4H ;数码管位数AB_164 BIT 0B4H;164数据输入端 P3.4
CLK_164 BIT 0B5H;164时钟端P3.5
MOV IE,#81H ;打开中断 0且允许中断
ORG 0000H
SJMPMAIN
ORG 0003H
AJMP INT0_
ORG 0030H
MAIN: ;主程序
JMB P3.2,LOOP
LOOP:
LCALLGET_TEMPER ;读出转换后的温度值
MOVA,T_L
ADDA,T_H
CJNEA,#50,LOOP0;温度值大于等于 50则 CY=0
LOOP0:
JCLOOP1
CLRP1.2
CLRP1.4
LOOP1:
MOVR1,#T_H
MOVR0,#T_D3
LCALLTH_D ;将从 DS18B20中读出度数据进行转化为十进制数
LCALLINIT_T_HDIS ;对温度和湿度的数值处理
MOV R0,#T_D5
LCALLxianshi LCALLDELAY_1S
SJMPMAIN
;************************** **********************
;外中断子程序,P3.2中断使停止充电,并引发蜂鸣器报警
;************************** **********************
INT0_:MOVR5,#4H ;延时 4s LOOP2:ACALLDELAY_1S
DJNZ R5,LOOP2
CLR P1.2
CLR P1.4
RETI
3 结束语
采用单片机和充电集成电路进行充电器的设计,不但能够实现对一般的蓄电池进行充电,而且还能够实现相应的过压和温度保护,从而可以充分发挥蓄电池的性能,延长电池的使用寿命,并避免简易充电器在充电时可能对电池造成损害的情况发生,具有一定的智能功能,符合目前的环境保护潮流。









班级:自动化0701
姓名:邱宇轩
学号:0706050121。

相关文档
最新文档