反应器流动模型

合集下载

连续反应器的停留时间分布及流动模型参数的测定

连续反应器的停留时间分布及流动模型参数的测定

连续反应器的停留时间分布及流动模型参数的测定连续反应器是化工过程中常用的反应器之一,其特点是进料和产物的连续流动,反应物在反应器中的停留时间是一个重要的参数。

停留时间分布及流动模型参数的测定对于反应器的设计、操作和优化具有重要意义。

停留时间分布是指进料从反应器的进口到出口所经历的时间。

在连续反应器中,每个分子或粒子在反应器中的停留时间可能不同,形成一定的分布。

停留时间分布的测定可以采用多种方法,其中较常用的是色谱法。

色谱法是一种基于成分浓度变化对时间的记录和分析的方法。

在连续反应器中,可以通过在进料中添加示踪剂,如某种色谱指示剂,来追踪反应物在反应器中的停留时间。

通过取样和分析,在不同时刻得到的浓度-时间曲线可以计算出停留时间分布。

流动模型参数的测定是指描述反应物在连续反应器中流动行为的参数。

常用的流动模型包括完全混合模型(CSTR)和分层流模型(PFR)。

完全混合模型假设反应物在反应器中快速均匀混合,适用于物理吸附、解离反应等。

分层流模型假设反应物在反应器中按照一定的流动方式进行,适用于化学反应、催化反应等。

流动模型参数的测定可以采用理论计算和实验测定结合的方法。

理论计算常用的方法包括理论模型的建立和数值模拟。

通过建立反应动力学模型和反应器流体力学模型,进行数值模拟,可以得到流动模型参数。

实验测定常用的方法包括加入示踪剂进行测定,如通过采样得到浓度-时间曲线,根据模型进行拟合,得到流动模型参数。

除了色谱法,还有其他一些测定停留时间分布和流动模型参数的方法。

例如,可以使用放射性示踪剂法,通过测量放射性示踪剂在反应器中的浓度变化,得到反应物的停留时间分布。

可以使用激光多普勒测速仪等仪器,测量流体在反应器中的速度分布,从而得到流动模型参数。

在连续反应器的设计和操作中,准确的停留时间分布和流动模型参数是非常重要的。

它们可以帮助确定最佳反应器尺寸和操作条件,提高反应器的效率和产物的质量。

因此,对于连续反应器的停留时间分布及流动模型参数的测定,需要选择合适的方法,并进行仔细的测量和分析。

第五章 停留时间分布及反应器的流动模型

第五章  停留时间分布及反应器的流动模型

停留时间分布的测定
2. 脉冲法
c0(t)
输入曲线
响应(输出)曲线
m E td Q t c td t
E(t) Qc(t) m
m Qc(t)dt
0
E (t) c(t)
c(t )dt
0
m 为示踪剂 的加入量
停留时间分布的测定
3. 升阶法
主流体Q0
系统 Q
F(t) c(t) c()
含示踪剂的流 体(C(∞) )
• 由于每个流体粒子与其周围不 发生任何关系,就像一个间歇 反应器一样进行反应,其反应 程度只取决于该粒子在反应器 内的停留时间。
反应器出口处A的平均转化率
• 根据转化率的定义,式CA0CA(t)E(t)dt可改写成:
1 X A 0 1 X A ( t ) E ( t ) d 0 E t ( t ) d 0 X t A ( t ) E ( t ) dt
标轴上的投影
因次:时间
面积重心
t
⑵ 方差 2
方差用来表示随机变量的分散程度,是描述停留时间分布的
重要参量。在数学上它表示E(t)曲线对于平均停留时间的二 次矩 (t t)2 :
t20 ( tE t)2E (t( )td )0 (d t tt)t2E( t0 )d 2 tEt( tt)2 d 0
响应曲线
脉冲法的特点 由实验数据直接求得E(t) 示踪剂用量少 示踪剂瞬间加入困难
阶跃法的特点 由实验数据直接求得F(t) 示踪过程易于实现 示踪剂量大 由F(t)求E(t)涉及求导的数值计算
11
停留时间分布的实验测定
停留时间分布的测定一般采用示踪技术,示踪剂选用易检 测其浓度的物质,根据其光学、电学、化学及放射等特性, 采用比色、电导、放射检测等测定浓度。

第5章停留时间分布与反应器的流动模型

第5章停留时间分布与反应器的流动模型

E(t) 被称为停留时间分布密度函数。
此定义函数具有归一化的性质:
E(t)dt 1
0
因为当时间无限长时,t = 0时刻加入的流体质点都会流出反应器,即
ndt N
0

E(t)dt
ndt
N 1
0
0
停留时间分布密度具有如下的特性:
E t 0 t<0 E t 0 t 0
13
停留时间分布函数
如果假定红色粒子和主流体之间除了颜色的差别以外,其余 所有性质都完全相同,那么就可以认为这100个粒子的停留 时间分布就是主流体的停留时间分布。
10
N N
停留时间为t t t的物料量 t 0时瞬间进入反应器的物料量
以时间t为横坐标,出口流中红色粒子数为纵坐标,将上表作图。
N 表示停留时间为t→t+△t的物料占总进料的分率。 N
反应器内的返混程度不同—停留时间不同—浓度分布 不同—反应速率不同—反应结果不同—生产能力不同
非理想流动反应器:介于两种理想情况之间,停留时间是 随机变量,因此停留时间分布是一种概率分布。
6
几个概念:
停留时间: 流体从进入反应器系统到离开系统总共经历的时间,即流体从系
统的进口到出口所耗费的时间。
年龄 反应物料质点从进入反应器算起已经停留的时间;是对仍留在反
应器中的物料质点而言的。 寿命
反应物料质点从进入反应器到离开反应器的时间;是对已经离开反 应器的物料质点而言的。
7
相互联系: 寿命指反应器出口流出流体的年龄 实际测得的一般是寿命分布,应用价值大。停 留时间分布一般指的是寿命分布。
返混: 又称逆向返混,不同年龄的质点之间的混合。
———是时间概念上的混合

反应器基础知识—流体流动

反应器基础知识—流体流动

改善措施
1、增大流体在设备内的湍流程度,以消除轴向扩散而造
非 理
成的停留时间分布不均匀的现象。
想 2、在反应器内装设填充物,以改变设备内速度分布和浓
流 动
度分布,从而使停留时间分布趋于均一化。但要注意避免
的 沟流和短路现象的发生。


善 3、增加设备级数或在设备内增设挡板。
4、采用适当的气体分布装置,或调节各组反应管的阻力,
停留时间描述
理 想 混 合 流 动 模 型
E(t) 1 et /
F (t) 1 et /
e d 1 0
2
2e d
1 1
0
流体流动
流体的流动特征:
指反应器内流体的流动状态和混合情况,它们随反应器的几何结 构(包括内部构件)和几何尺寸不同发生变化。由于反应流体在反 应器内流动的复杂性导致反应器内不仅存在流体流速的分布,更重 要的是还存在浓度和温度的分布。使得反应器内存在不同停留时间 的流体粒子以及不同停留时间流体粒子之间的混合即返混,从而导 致反应器内反应物料处于不同的温度和浓度下进行反应。影响反应 速率和反应选择性,使反应结果发生变化。
t≤0, F(t)=0 0<t<∞,0<F(t)<1 t=∞, F(t)=1。
E(t) dF(t) dt
1、数学期望

留 时 间
1.0
t 0 tdF(t) 0 tE(t)dt

布 的 2、方差

征 值
2 t
(t t)2 E(t)dt
0
t 2 E(t)dt t 2
0

脉冲法:

流体流动的描述
1、停留时间分布密度函数

停留时间分布与反应器的流动模型

停留时间分布与反应器的流动模型

停留时间分布与反应器的流动模型在实际反应器中,流出反应器的反应物浓度的变化与流入反应器的浓度变化之间存在着一定的延迟。

这种延迟现象可以用停留时间来描述,即停留时间越长,反应物浓度的变化越大。

因此,停留时间分布的形态将直接影响反应物浓度和反应速率的分布。

关于停留时间分布的研究,可以采用物理实验方法和数学模型方法。

物理实验方法主要基于示踪剂法,通过在反应器中添加示踪剂,然后在反应物的进出口处进行测量,从而获得停留时间分布的数据。

示踪剂可以是稳定物质,也可以是具有明显性质差异的物质。

物理实验方法可以较为准确地获得停留时间分布的数据,但其工作量大且成本高。

数学模型方法则是通过建立数学方程来描述停留时间分布。

数学模型方法可以采用连续模型和离散模型两种方式。

连续模型是指将反应器内的流体视为连续介质,通过求解偏微分方程来描述流体在空间和时间上的分布。

而离散模型则是将反应器内的流体划分为离散的传输单元,通过求解离散的代数方程来描述传输单元之间的质量传递过程。

针对不同类型的反应器,可以采用不同的数学模型来描述停留时间分布。

例如,对于连续搅拌罐反应器,可以使用完全混合模型(CSTR model),假设反应器内的流体完全混合,从而得到均匀的停留时间分布。

而对于管式反应器,则可以使用两区模型(two-zone model),将管内的流体划分为两个区域,即分子在低速输运区域停留的时间较长,在高速输运区域停留的时间较短。

值得注意的是,停留时间分布对于反应器的性能有着重要的影响。

例如,在反应器中的流体停留时间分布较宽且对称时,反应物的转化率较高,反应速率较快。

而当停留时间分布较窄且偏斜时,反应物的转化率较低,反应速率较慢。

因此,在反应器设计和优化中,需要充分考虑停留时间分布对反应性能的影响,以实现高效的反应过程。

总之,停留时间分布是描述反应器内流体停留时间的概率分布函数。

在反应器设计和优化中,停留时间分布是一个重要的概念,对反应器的性能和反应物转化率等有着直接的影响。

停留时间分布与反应器的流动模型讲义

停留时间分布与反应器的流动模型讲义

停留时间分布与反应器的流动模型讲义停留时间分布(RTD)是描述流体在反应器内停留时间的分布情况。

它对于理解反应器的性能和效率至关重要。

通过分析停留时间分布,可以评估反应过程中各种反应物的浓度分布,从而优化反应器设计和操作。

在反应器中,流体进入并通过反应器。

然而,由于流体的动力学特性和反应器的几何形状,不同流体分子停留在反应器中的时间是不一样的。

停留时间分布图描述了流动物质的停留时间的概率分布。

停留时间分布可以通过数学模型来描述。

最常用的数学模型是以连续搅拌反应器(CSTR)为基础的模型。

CSTR是一种理想化的反应器类型,其中反应物在反应器中均匀分布,并以恒定的速率混合。

CSTR模型假设反应物的停留时间服从完美的指数分布。

另一个常用的模型是斑点流动模型(PFR)。

在PFR中,流体在反应器中形成了一系列的“斑点”,每个斑点代表一个流体分子,它们按照一定的速率顺序通过反应器。

PFR模型假设反应物的停留时间服从完美的单谷型分布。

PFR模型更适用于流体通过小直径管道或多孔介质的情况。

反应器的流动模型是利用数学模型描述反应物在反应器内的运动和行为,从而揭示反应过程中的动力学特性。

通过结合停留时间分布和流动模型,可以研究反应器中的物质传递、反应速率、混合程度等重要参数。

总结一下,停留时间分布和反应器的流动模型对于理解反应器的性能和优化设计非常重要。

它们可以帮助我们预测和改进反应过程中的各种流体动力学参数,从而提高反应器的效率和产量。

停留时间分布(RTD)与反应器的流动模型在化学工程领域具有广泛的应用。

通过分析停留时间分布和建立合适的流动模型,可以有效地揭示反应器内复杂流动与反应过程之间的关系,优化反应器设计和流程操作。

首先,停留时间分布是评估反应器性能的一个重要指标。

它反映了反应物在反应器内停留的时间分布情况。

对于快速反应,需要较短的停留时间,而对于缓慢反应,则需要较长的停留时间。

停留时间分布可以通过实验测量或数值模拟来获得。

停留时间分布与反应器的流动模型课件(PPT 123页)

停留时间分布与反应器的流动模型课件(PPT 123页)
4
5.1 停留时间分布
•形成停留时间分布可能的原因有:
Short circuiting
u
Dead
zone




存在速度分布
存在死区和短路现象
存在沟流和回流
偏离理想流动模式,反应结果与理想反应器的计算值具有 较大的差异。
5
5.1 停留时间分布
• 3.流动状况对反应的影响 • 釜式和管式反应器中流体的流动状况明显不同,通
过前面对釜式和管式反应器的学习,可以发现: • 对于单一反应,反应器出口的转化率与器内的流动
状况有关; • 对于复合反应,反应器出口目的产物的分布与流动
状况有关。
6
全混流反应器:机械混合最大 逆向混合最大
平推流反应器:机械混合为零 逆向混合为零
间歇反应器:机械混全最大 逆向混合为零
返混程度无穷大 返混程度等于零 返混程度等于零
反应器内的返混程度不同—停留时间不同—浓度分布 不同—反应速率不同—反应结果不同—生产能力不同
非理想流动反应器:介于两种理想情况之间,停留时间是 随机变量,因此停留时间分布是一种概率分布。
7
几个概念:
停留时间: 流体从进入反应器系统到离开系统总共经历的时间,即流体从系
统的进口到出口所耗费的时间。
年龄 反应物料质点从进入反应器算起已经停留的时间;是对仍留在反
在所围的面积的重心在t坐标上的投影
在数学上称t为Et 曲线对于坐标原点的一次矩,又称 Et
的数学期望。
35
② 方差:
t20 (t E t)(2 t)E d (tt)dt0 (tt)2E (t)dt0 t2E (t)dtt2 0
即流体从系统的进口到出口所耗费的时间。

多阶段流反应器中多相流动模型的研究

多阶段流反应器中多相流动模型的研究

多阶段流反应器中多相流动模型的研究随着工业化的发展,越来越多的化工过程涉及多相反应器,而多相流动模型在这些反应器中扮演了至关重要的角色。

多相流动模型的研究不仅可以帮助化工工程师更好地理解多相反应器的行为,还能提高化工反应器的效率和安全性。

本文将对多阶段流反应器中多相流动模型的研究进行探讨。

1. 多相流动模型概述在化工反应器中,多相流动模型是用来描述多组分、多相、多步反应的数学模型。

它通常包括质量守恒、动量守恒、能量守恒和化学反应动力学方程等方程式,可用于预测反应器中的组分浓度、速度、温度、压力和反应物质和产物在反应器内的传输。

多相流动模型的建模涉及许多不同的物理过程,如物质转移、能量传递、多相流动和相变等等,因此对研究者的技术水平要求很高。

2. 多阶段流反应器多阶段流反应器是基于一个或多个液相相继的多相反应的反应器系统,反应物进入一个阶段反应,然后与其中一个或多个不同的液相反应,直到产生最终产物。

在多阶段流反应器中,化学反应所涉及的组分浓度和物流模式是多相流动模型中需要考虑的主要因素。

在多阶段流反应器中,多相流动模型需要特别考虑不同液相的物理和化学特性,包括密度、粘度、表面张力、化学反应动力学等等,并需要建立一个相互协调的模型。

先前的研究表明,使用多相流动模型可以更好地预测多阶段流反应器中的流动和反应行为。

对于传热系数、质量转移率等参数,多相流动模型是预测反应器性能和行为的可靠方法。

3. 多相流动模型的发展在多相流动模型的发展过程中,学者们不断地扩展模型的应用范围和适用性。

例如,Ergun等人研究了具有不同截面形状的管道中气-固体流动的模型,提出了计算气固流动中压降和介质速度的方程式。

Glicksman等人通过对气泡流动实验的研究,发现在抛物线中描绘气泡的运动相对于水下降更慢,因此可以利用气泡轨迹方程式来描述气泡在浮力和摩擦力之间的二次运动。

然而,多相流动模型的研究还存在一些问题,比如大规模的反应器建模和计算、反应条件的实验数据获取等等。

反应工程反应器的流动模型与混合特性课件

反应工程反应器的流动模型与混合特性课件
反应工程反应器 的流动模型与混 合特性课件
目录
• 引言 • 反应工程基础 • 反应器的流动模型 • 反应器的混合特性 • 反应器流动与混合的数值模拟 • 案例分析
01
引言
课程目标
01
掌握反应工程反应器的 基本原理和流动模型。
02
理解反应器的混合特性 及其对反应过程的影响 。
03
学会运用数学模型和计 算机模拟方法进行反应 器设计和优化。
混合模拟的应用
预测反应器的混合程度、停留时间分布、传质和传热等,优化反应器的混合效果 和操作参数。
06
案例分析
案例一:管式反应器的流动与混合特性
总结词
管式反应器是一种长管状设备,常用于连续流动反应。其流动特性主要表现为流体在管 内的层流,混合特性受流体粘度、管径和流速影响。
详细描述
管式反应器在工业上应用广泛,主要用于实现连续流动和反应。由于其长管状结构,流 体在管内主要以层流形式流动,即流体各层之间相对滑动,流速随管径和流速的增加而 增加。管式反应器的混合特性主要受流体粘度、管径和流速的影响。粘度越大,混合越
03
反应器的流动模型
层流模型
层流模型描述的是低雷诺数下的 流动状态,流体质点沿着流动方 向作有规则的层状运动,没有或
很少有横向混
层流模型适用于描述粘性流体在 管内作低速、层状流动的情况, 例如:化学反应器中的流动、高
粘液体的流动等。
层流模型可以预测流体的压力降 、流量分布和摩擦阻力等参数。
湍流模型
02
反应工程基础
化学反应动力学基础
01
02
03
04
化学反应速率
描述化学反应快慢的物理量, 与反应物浓度、温度等因素有

连续反应器的停留时间分布及流动模型参数的测定

连续反应器的停留时间分布及流动模型参数的测定

连续反应器是化工生产过程中常见的一种反应设备,其停留时间分布和流动模型参数的测定是对其性能进行评估和优化的重要步骤。

本文将就连续反应器的停留时间分布及流动模型参数的测定进行深入探讨,以期为相关领域的研究和实践提供有益的参考。

一、连续反应器的停留时间分布1. 理论基础:连续反应器的停留时间分布是指在反应器中参与化学反应的物质颗粒或分子所停留的时间在不同时间间隔内所占的比例。

它是影响反应器反应性能和产物分布的重要参数,也是评价反应器混合程度和性能优劣的重要依据。

2. 测定方法:常见的连续反应器停留时间分布的测定方法包括示踪剂法、直接测定法和间接测定法。

其中,示踪剂法是常用的一种方法,通过向反应器中加入示踪剂,并测定出口处的示踪剂浓度随时间的变化曲线,从而推导出停留时间分布的曲线。

3. 影响因素:连续反应器的停留时间分布受到很多因素的影响,如反应器结构形式、进料方式、搅拌强度等。

在测定过程中,需要考虑这些因素对停留时间分布的影响,以获得准确可靠的测定结果。

二、连续反应器的流动模型参数的测定1. 理论基础:流动模型参数是描述流体在连续反应器中运动规律的参数,它们包括流体的速度场、浓度场、温度场等。

测定这些参数可以揭示反应器内部流体运动的规律,为进一步优化反应器设计和操作提供依据。

2. 测定方法:常见的连续反应器流动模型参数的测定方法包括数值模拟方法、实验测定方法和经验公式法。

数值模拟方法是近年来发展较快的一种方法,通过建立流体力学模型,利用计算机进行模拟计算,可以较为准确地得到流体在反应器内的运动规律。

3. 应用实例:连续反应器的流动模型参数的测定方法已经得到了广泛的应用。

在工业生产中,通过测定反应器内部的流动参数,可以优化反应条件,提高反应效率和产物纯度,降低生产成本,具有重要的应用价值。

三、结语连续反应器的停留时间分布和流动模型参数的测定是重要的研究内容,对于提高反应器的反应性能、优化工艺条件具有重要的意义。

7章 反应器流动模型和热稳定性

7章 反应器流动模型和热稳定性

出口响应 E(t) (t t )
t V , v
t2
(t t )2 E(t)dt (t
0
t )2 0
从而可知: 平推流反应器 的方差 = 0
2
2 t 2
2 2
1
c
对CSTR
E (t )
t 0
t
脉冲示踪
t
t
出口响应
E (t )
1
t
e
从而可知:CSTR的方差= 2 ,无因子方差
(1) RTD密度函数 E(t)
在t=0时刻进入反应器的N个流体微元,将在t=(0∞)全部离开反 应器。 E(t)定义为在 t 时刻(tt+dt)微元离开反应器的概率,即
E(t) 1 ( N (t,t dt)) 1 dN(t)
N (0, ) dt
N dt
在零时刻同时进入反应器的N个流体微元中,其寿命为 t到 t+dt 的微元数为dN,它占总数N的百分数为E(t)dt 即
0 cAdt
t 3
(c A1
4c A2
2c A3
4c A4
c AN
5 [0 4(3 5 2) 2(5 4 1) 0] 100 3
t tE(t)dt 5 [0 4(0.15 0.75 0.5) 2(0.5 0.8 0.3) 0] 15min
0
3
V 12 15min
u
Dead
zone




存在速度分布
存在死区和短路现象
存在沟流和回流
偏离理想流动模式,反应结果与理想反应器的计算值具有 较大的差异。
2 停留时间分布的定量(统计)描述
借用人口学(Population)中两个统计参数 a) 社会人口的年 龄分布和 b) 寿命(死亡年龄)分布,在反应工程中假设:

化 学 反 应 工 程-第四章 停留时间分布与流动模型

化 学 反 应 工 程-第四章 停留时间分布与流动模型
区别:寿命分布是指系统出口处的流体微元的停留时间;而年龄分
布则是对系统内的流体微元而言的停留时间
4.1.1 停留时间分布的定量描述
在反应工程中假设:
Feed
Effluent
a)
Injection
Reactor
Detection
b) 各微元保持 独立身份(identification), 即微元间不能混合 c) 不研究微元在反应器内的历程, 只研究它在反应器内的停 留时间。 则定义: a) 在反应器内流体微元:年龄分布 b) 在反应器出口流体微元:寿命分布
实际停留时间ti不尽相同,转化率x1, x2, …, x5亦不相同。出口转化率应 为各个质点转化率的平均值,即
x A xi N
i 1
N
聚集态的影响
理想反应器假定混合为分子尺度,实际工程难以达到,如
结团
弥散
喷 雾
两种体系的反应程度显然应该是不 同的。
鼓泡
气体 液体
工程中,尽量改善体系的分散尺度,以达到最有效的混合, 从而改善反应效果。
E(t)dt
(t t ) E(t)dt t 2 E(t)dt (t ) 2
2 0
0


因次:[时间]2
方差 t2反映停留时间分布的离散程度: 物理意义:
2 t t2
,停留时间分布就越宽;
,停留时间分布越集中
4.1.4 停留时间分布函数的数字特征

2 t

0
(t t ) E(t)dt
第四章 停留时间分布与流动模型
4. 1. 2 停留时间分布的函数表达式
物料在反应器内的停留时间是一个随机过程,对随 机过程通常用概率进行描述,有两种表示形式: 对出口流体而言: F(t)——停留时间分布函数,也称概率函数 E(t)——停留时间分布密度函数,也称概率密度函数 对反应器内的流体而言: y(t) ——年龄分布函数 I(t)——年龄分布密度函数

化学反应过程与设备课件03反应器中的流体流动模型

化学反应过程与设备课件03反应器中的流体流动模型

理想流动非理想流动理想流动反应器的分类和应用反应器内流体的流动特征主要指反应器内反应流体的流动状态、混合状态等,它们随反应器的几何结构和几何尺寸而异。

反应流体在反应器内不仅存在浓度和温度的分布,而且还存在流速分布。

这样的分布容易造成反应器内反应物处于不同的温度和浓度下进行反应,出现不同停留时间的微团之间的混合,即返混。

这些流动特征影响反应速率和反应选择率,直接影响反应结果。

所以,研究反应器中的流体流动模型是反应器选型、计算和优化的基础。

流动模型是对反应器中流体流动与返混状态的描述。

一般将流动模型分为两大类型,即理想流动模型和非理想流动模型。

非理想流动模型是关于实际工业反应器中流体流动状况对理想流动偏离的描述。

è 理想置换流动模型¢含义:理想置换流动模型也称作平推流模型或活塞流模型。

与流动方向相垂直的同一截面上各点流速、流向完全相同,即物料是齐头并肩向前运动的。

¢特点在定态情况下,所有分子的停留时间相同,浓度等参数只沿管长发生变化,与时间无关。

所有物料质点在反应器中都具有相同的停留时间。

¢反应器内浓度变化¢长径比较大和流速较高的连续操作管式反应器中的流体流动可视为理想置换流动。

è理想混合流动模型¢含义:理想混合流动模型也称为全混流模型。

反应物料以稳定的流量进入反应器,刚进入反应器的新鲜物料与存留在其中的物料瞬间达到完全混合。

反应器内物料质点返混程度为无穷大。

¢特点:所有空间位置物料的各种参数完全均匀一致,而且出口处物料性质与反应器内完全相同。

¢反应器内浓度变化¢搅拌十分强烈的连续操作搅拌釜式反应器中的流体流动可视为理想混合流动。

è非理想流动理想流动模型是二种极端状况下的流体流动,而实际的工业反应器中的反应物料流动模型往往介于两者之间。

对于所有偏离理想置换和理想混合的流动模式统称为非理想流动。

理想流动反应器

理想流动反应器

第二章理想流动反应器研究反应器中的流体流动模型是反应器选型、设计和优化的基础。

根据流体流动质点的返混情况{理想流动模型非理想流动模型本章主要介绍理想流动模型的反应器,包括平推流反应器和全混流反应器。

§2.1反应器流动模型反应器中流体流动模型是相对连续过程而言的。

间歇反应器:反映温度、浓度仅随时间而变,无空间梯度所有物料质点在反应器内经历相同的反应时间连续反应器:停留时间相同:平推流反应器(图示)停留时间不同:全混反应器(图示)一、理想流动模型1、平推流模型活塞流或理想置换模型特点:沿物流方向,反应混合物T、C不断变化,而垂直于物流方向的任一截面(称径向平面)上物料的所有参数,如:C、T、P、U等均相同。

总而言之,在定态情况下,沿流动方向上物料质点不存在返混,垂直于流动方向上的物料质点参数相同。

实例:长径比很大,流速较高的管式反应器。

2、全混流模型理想混合或连续搅拌槽式反应器模型特点:在反应器中所有空间位置的物料参数(C、T、P)都是均匀的,而且等于物料在反应器出口处的性质。

实例:搅拌很好的连续搅拌槽式反应器。

关于物料质点停留时间的描述:①年龄:指反应物料质点从进入反应器时算起已经停留的时间。

②寿命:指反应物料质点从进入反应器到离开反应器的时间,即质点在反应器中总共停留的时间。

寿命可看作时反应器出口物料质点的年龄。

关于返混:返混:又称逆向混合,是指不同年龄质点之间的混合,即“逆向”为时间上得逆向,而非一般的搅拌混合。

如间歇反应器,虽然物料被搅拌均匀,但并不存在返混,而只是统一时间进入反应器的物料之间的混合。

平推流反应器不产生返混,而全混流反应器中为完全返混,返混程度最大。

关于实际反应器的返混。

介于平推流和全混流反应器之间。

关于各种反应器的推动力:△C A等温下:C A、C Af、C A *(a)间歇反应器△C A随时间变化↘(b)平推流反应器△C A随时间变化↘(c)全混流反应器△C A随时间变化↘非理想流动反应器,其反应推动力介于平推流和全混流之间。

05 第五章 停留时间分布与反应器的流动模型1

05 第五章  停留时间分布与反应器的流动模型1

1. 基本概念
闭式系统 只与外界交换能量(作 功或热量)而不交换质量 的系统。 停留时间分布 年龄:对存留在系统的粒子而言,从进入系统 算起在系统中停留的时间。 寿命:流体粒子从进入系统起到离开系统止, 在系统内停留的时间。 停留时间分布理论的应用 对现有设备进行工况分析
5.1停留时间分布 Residence Time Distribution, RTD
流动状况对反应的影响 化学反应器中流体流动状况影响反应速率和反应选择 性,直接影响反应结果。 釜式和管式反应器中流体的流动状况明显不同,通过 前面对釜式和管式反应器的学习,可以发现: 对于单一反应,反应器出口的转化率与器内的流动状 况有关; 对于复合反应,反应器出口目的产物的分布与流动状 况有关。 反应器选型、设计和优化的基础——反应器中的流体 流动与返混研究,即反应器流动模型研究。
选择示踪剂要求:
1) 与主流体物性相近,互溶,且与主流体不发生化 学反应; 2) 高低浓度均易检测,以减少示踪剂的用量; 3) 示踪剂的加入不影响主流体的流动形态;
F(t) F t 0t 0 性质 F () 1
当时间无限长时,t = 0时刻加入的 13 流体质点都会流出反应器

0
E(t )dt 1 归一化
停留时间分布的实验测定
停留时间分布的测定一般采用示踪技术。示踪剂选用易 检测其浓度的物质,根据其光学、电学、化学及放射等特 性,采用比色、电导、放射检测等测定浓度。
4
理想反应器的流动模式 ---- 平推流和全混流
平推流
间 歇 釜
u = const
全 混 釜
理想的平推流和间歇釜停留时间均一,无返混。 全混釜反应器的返混最大,出口物料停留时间分布与釜 内物料的停留时间分布相同。

第2课 反应器流动模型

第2课 反应器流动模型

课程纲要
流动模型
理想流动模型 非理想流动模型 课程作业
理想混合流动模型
理想混合特点: 理想混合特点: (1)反应器内的浓度和温度均匀一致,并且等于出 口处的物料浓度和温度。 (2)物料粒子的停留时间参差不齐,有一个典型分 布。 返混: 返混: 在反应器内,不同停留时间的粒子间的混合。 思考 (1)引起返混的原因有哪些? (2)分析返混的利弊,如何控制返混程度(具体措 施)?
课程纲要
流动模型
理想流动模型 非理想流动模型 课程作业
理想置换流
返回
课程纲要 流动模型 理想流动模型 非理想流动模型 课程作业
引起返混的原因
(1)由于搅拌造成涡流扩散,使物料粒子出现倒 流。 (2)由于垂直于流向的截面上流速分布不均所致, 如管式反应器内流体作层流,流速呈抛物线分布, 同一截面上不同半径处的物料粒子的停留时间不一 样,它们之间的混合也就是不同停留时间的物料间 的混合,也就是返混。 (3)反应器内形成的死角也会导致返混。
课程纲要
流动模型
理想流动模型 非理想流动模型 课程作业
本课总结 (1)理想置换流动模型 (2)理想混合流动模型
课程纲要
流动模型
理想流动模型 非理想流动模型 课程作业
课程作业
阅读下一课内容, 阅读下一课内容,思考平推流和全混流 对反应速率有什么影响?( ?(不做到作业 对反应速率有什么影响?(不做到作业 本上) 本上) 预习: 课 预习:第3课 反应器设计和优化 均相反应速率及反应动力学
课程纲要 流动模型 理想流动模型 非理想流动模型 课程作业
理想混合流动模型也称为全混流模型。 由于强烈搅拌,反应器内物料质点返混程度为无穷大, 所有空间位置物料的各种参数完全均匀一致。 反应物料以稳定的流量进入反应器,刚进入反应器的 新鲜物料与存留在其中的物料瞬间达到完全混合,而 且出口处物料性质与反应器内完全相同。流体由于受 搅拌的作用,进入反应器的物料质点可能有一部分立 即从出口流出,停留时间很短,另有一部分可能刚到 出口附近又被搅拌出来,致使这些物料质点在反应器 中的停留时间极长。 所以,物料质点在理想混合反应器中的停留时间参差 不齐,存在停留时间的分布。

反应器操作与控制基础知识—反应器内的流体流动

反应器操作与控制基础知识—反应器内的流体流动
《化学反应器操作与控制》
非理想流动
非理想流动模型
理想流动模型
理想置换模型
理想混合模型
非理想流动模型
理想置换流动模型
非理想流动模型
非理想流动模型
一是由于反应器中物料颗粒的运动(如搅拌、分子扩散等)导致与主 流体流动方向相反的运动;
二是由于设备内部结构特点造成的各处速度的不均匀性。
例如:设备的两端、挡板等易产生死角; 反应器内因催化剂或填料装填不均匀易造成沟流或短路; 直径较大的鼓泡塔或釜式反应器内易造成循环流等。
横向分割
挡网
流化床反应器
挡板
非理想流动模型——降低返混的措施
纵向分割
垂直构件
流化床反应器
《化学反应器操作与控制》
理想流动模型
理想流动模型
理想流动模型——一、分类
理想置换流动模型
理想混合流动模型
理想流动模型
理想流动模型——二、特点
理想置换模型
平推流模型
活塞流模型
理想置换流动模型
①在定态情况下,所有分子的停留时间相同,浓 度等参数只沿管长发生变化,与时间无关。
②所有物料质点在反应器中都具有相同的停留时 间,且等于物料通过反应器所需的时间;
③垂直于物料流向的任一截面上,所有的物系参 数都是均匀的,亦即任一截面上各点的温度、 压力、浓度和流速都相等。理想置换流动 模型特点
理想置换流动模型
长径比较大和流速较高 的连续操作管式反应器中的流 体流动可视为理想置换流动。
非理想流动模型——1.返混
专指不同时刻进入反应器的物料之间的 混合,是逆向的混合,或者说是不同年龄质点 之间的混合。
定义
返混
影响
返混改变了反应器内的浓度分布,使器内反 应物的浓度下降,反应产物的浓度上升。反应速率 下降,改变复杂反应的选择性。

第五章 停留时间分布与反应器的流动模型 (1)

第五章 停留时间分布与反应器的流动模型 (1)

35
F (35) 0 E(t)dt
右边的积分值应等于图中带斜线的面积,其值为 0.523,此即t=35s时的停留时间分布函数值。
阶跃输入法
阶跃法的实质是将在系统中作定常流动的流体 切换 为流量相同的含有示踪剂的流体,或者相反。
前一种做法称为升阶法 (或称正阶跃法),后一种则叫 降阶法 (或称负阶跃法)。
返混对自催化反应等的影响
对于自催化反应,由于反应系统中需要一 定的产物浓度,因此一定程度的返混对反 应是有利的。有时候需要采用全混流反应 器 串联 活塞流反应器使用,就是出于此 目的。
返混的影响--对于某些复杂反应
对于某些复杂反应系统,如果反应组分在主 反应中的浓度级数低于其在副反应中的浓度 级数,降低反应物浓度,即存在一定的返混 则有利于反应选择性的提高。
一般情况下所说的停留时间分布是指流体粒子的寿命 分布
停留时间分布所适应的系统---------
闭式系统
一般所讨论的停留时间分布只 限于仅有一个进口和一个出口 的闭式系统。
所谓闭式系统,其基本假定是 流体粒子一旦进入系统再也不 返回到输入流体的导管中,而 由输出管流出的流体粒子也再 不返回到系统中。
流体系统的停留时间分布
对流体不能对单个分子考察其停留时间,而是对 一堆分子进行研究。这一堆分子所组成的流体, 称之为流体粒子或微团(微元)。
流体微元(物料粒子) :研究流体流动的最小单 元。
流体粒子的体积比起系统的体积小到可以忽略不 计,但其所包含的分子又足够多,具有确切的统 计平均性质。
流动体系的停留时间分布
流动系统 , 连续 流入 流出,-----比较复杂。 通常所说的停留时间---- 是指流体以进入系统时起,
到其离开系统时为止,在系统内总共经历的时间, 即流体从系统的进口至出口所耗费的时间。 同时进入系统的流体,是否也同时离开系统? 由于流体是连续的,而流体分子的运动又是无序的, 所有分子都遵循同一的途径向前移动是不可能的, 因此,流体微元的停留时间完全是一个随机过程。

停留时间分布与反应器的流动模型

停留时间分布与反应器的流动模型

停留时间分布与反应器的流动模型停留时间(residence time)是指流体在反应器中停留的平均时间,通常用时间单位表示。

它在反应器设计和操作中起着重要的作用,对反应器性能和产品质量有着直接影响。

此外,停留时间分布(residence time distribution)还可以用来描述流体在反应器中停留时间的分布情况。

停留时间分布与反应器的流动模型密切相关。

在反应器中,流体的流动通常遵循不同的模型,如完全混合模型、分层模型、或完全不混合模型等。

不同的流动模型会导致不同的停留时间分布。

完全混合模型是指在整个反应器内部,流体以均匀的速度混合和流动。

这意味着反应器内的任何一点,流体的特性都是相同的。

在完全混合模型中,停留时间分布是均匀的,即流体停留的时间是相等的,没有明显的梯度。

这种模型通常适用于小规模反应器或具有高速搅拌的大规模反应器。

分层模型是指在反应器中,流体分为不同的层次流动,形成不同的流速和混合程度。

在这种模型中,停留时间分布是不均匀的,不同位置的流体停留的时间不同。

通常,在底部和顶部的流体停留时间较长,而在中间位置的流体停留时间较短。

这种模型适用于某些特定的反应器类型,如换热塔或蓄能反应器。

完全不混合模型是指反应器中流体不进行混合,而是呈现分层的状态。

在这种模型中,停留时间分布是非常不均匀的,不同位置的流体停留时间差异非常大。

这种模型通常适用于某些特殊的反应器,如上升气流床反应器或固定床反应器。

为了更好地理解停留时间分布和反应器的流动模型,研究者通常使用流体动力学实验和数值模拟方法。

通过实验,可以测量反应器中不同位置的流体停留时间,进而推导出停留时间分布。

而数值模拟可以通过求解反应器内的流体运动方程,得到停留时间分布和流速分布等参数。

停留时间分布与反应器的流动模型对反应器的设计和运行具有重要意义。

在反应器设计中,需要选择合适的流动模型和控制参数,以满足反应物转化率和产品选择性的要求。

在反应器操作中,需要实时监测和控制停留时间分布,以确保反应器的稳定性和效率。

第五章停留时间分布与反应器的流动模型

第五章停留时间分布与反应器的流动模型

可以用的示踪物很多,利用其光学的、电学 的、化学的或放射性的特点,配合其测试 装置,进行检测。
例如:最直观的方法是在物料中加入少量有 色颜料,然后用光电比色仪测定流出液颜 色的变化,采用哪种示踪物,要根据物料 的物态(气、液、固)、相系(均相还是 非均相)以及反应器的类型(固定床、流 化床)等情况而定。
• 停留时间的长短直接影响到反应率 (即影响到反应进行的程度)时间越 长,反应进行的越完全,粒子在出口 时反应率就高,可见研究反应物料在 反应器内的停留时间问题具有十分重 要的意义。
在第3 章中讨论了两种不同类型的流动反 应器——全混流反应器和平推流反应器。 在相同的情况下,两者的操作效果有很 大的差别,究其原因是由于反应物料在 反应器内的流动状况不同,即停留时间 分布不同。
F (t) t dN 0N
F(t) 被称为停留时间 分布函数,无因次量。也可以说停留
时间介于0-t之间的物料的百分率。
停留时间分布函数F (t)
t
F (t) 0 E(t)dt
E(t)与F(t)的关系
E(t) dF(t) dt
分布密度就是分布函数对停留时间的一阶导数,
也就是F(t)~t曲线的切线斜率。
dN E(t)dt N

N
• E(t) 被称为停留时间分布密度函数。
E(t) = 0 t <0
E(t)≥ 0 t≥0
停留时间分布密度函数E (t)


E(t)dt 1 化
0


2.停留时间分布函数F(t)定义 • 定义:在稳定连续流动系统中,同时
进入反应器的N个流体粒子中,其停 留时间小于t的那部分粒子占总粒子 数N的分率记作:
0.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反应器内浓度变化
搅拌十分强烈的连续操作搅拌釜式反应器中的流体流动可视为 理想混合流动。
非理想流动
理想流动模型是二种极端状况下的流体流动,而实际的工 业反应器中的反应物料流动模型往往介于两者之间。对于所有 偏离理想置换和理想混合的流动模式统称为非理想流动。
实际反应器中流动状况偏离理想流动状况的原因
➢ 间歇反应器中不存在返混 ➢ 理想置换反应器不存在返混 ➢ 理想混合反应器返混达到极限状态 ➢ 非理想流动反应器存在不同程度的返混
返混对反应过程的影响
➢ 返混带来的最大影响是反应器进口处反应物高浓度区的消 失或减低。 ➢ 返混改变了反应器内的浓度分布,使器内反应物的浓度下 降,反应产物的浓度上升。但是,这种浓度分布的改变对反 应的利弊取决于反应过程的浓度效应。 ➢ 返混是连续反应器中的一个重要工程因素,任何过程在连 续化时,必须充分考虑这个因素的影响,否则不但不能强化 生产,反而有可能导致生产能力的下降或反应选择率的降低。
理想置换流动模型
含义:理想置换流动模型也称作平推流模型或活塞流模型。 与流动方向相垂直的同一截面上各点流速、流向完全相同, 即物料是齐头并肩向前运动的。
特点
在定态情况下,所有分子的停留时间相同,浓度等参数只 沿管长发生变化,与时间无关。所有物料质点在反应器中 都具有相同的停留时间。
反应器内浓度变化
降低返混程度的措施
返混对反应器的意义 ➢ 对反应过程产生不同程度的影响 在返混对反应不利的情况下,要使反应过程由间歇操作转 为连续操作时,应当考虑返混可能造成的危害。选择反应器的 型式时,应尽量避免选用可能造成返混的反应器,特别应当注 意有些反应器内的返混程度会随其几何尺寸的变化而显著增强。
反应器流动模型(P19) 理想流动 非理想流动
反应器内流体的流动特征主要指反应器内反应流体的流动状态、 混合状态等,它们随反应器的几何结构和几何尺寸而异。
反应流体在反应器内不仅存在浓度和温度的分布,而且还存在流 速分布。这样的分布容易造成反应器内反应物处于不同的温度和浓 度下进行反应,出现不同停留时间的微团之间的混合,即返混。
这些流动特征影响反应速率和反应选择率,直接影响 反应结果。所以,研究反应器中的流体流动模型是反应器选 型、计算和优化的基础。流动模型是对反应器中流体流动与 返混状态的描述。
一般将流动模型分为两大类型,即理想流动模型和非理想 流动模型。非理想流动模型是关于实际工业反应器中流体流 动状况对理想流动偏离的描述。
种,其中重要的是__________。 连续搅拌釜式反ห้องสมุดไป่ตู้器为减少返混,工业上常采用________的操作
➢ 连续操作的搅拌釜式反应器 为减少返混,工业上常采用多釜串联的操作。当串联釜 数足够多时,连续多釜串联的操作性能就很接近理想置 换反应器的性能。(横向纵向?)
➢ 流化床 由于气泡运动造成气相和固相都存在严重的返混。为了 限制返混,对高径比较大的,常在其内部装置横向挡板 以减少返混;而对高径比较小的流化床反应器,则可设 置垂直管作为内部构件(横向纵向?)
➢ 在工程放大中产生的问题
由于放大后的反应器中流动状况的改变,导致了返混程度 的变化,给反应器的放大计算带来很大的困难。因此,在分析 各种类型反应器的特征及选用反应器时都必须把反应器的返混 状况作为一项重要特征加以考虑。
降低返混程度的措施
降低返混程度的主要措施是分割,通常有横向分割和纵向分 割两种,其中重要的是横向分割。
长径比较大和流速较高的连续操作管式反应器中的流体流 动可视为理想置换流动。
理想混合流动模型
含义:理想混合流动模型也称为全混流模型。反应物料以稳 定的流量进入反应器,刚进入反应器的新鲜物料与存留在其中 的物料瞬间达到完全混合。反应器内物料质点返混程度为无穷 大。
特点:所有空间位置物料的各种参数完全均匀一致,而且出 口处物料性质与反应器内完全相同。
➢气液鼓泡反应器 由于气泡搅动所造成的液体反向流动,形成很大的液相循环
流量。因此,其液相流动十分接近于理想混合。 ①放置填料 ②设置多孔多层横向挡板,把床层分成若干级 ③设置垂直管
练习
理想流动模型分为两种类型,即________和_________ 返混专指________进入反应器的物料之间的混合 说明下列反应器中的返混情况: 间歇反应器中返混为_____, 理想置换反应器返混为_______ 理想混合反应器返混为____, 非理想流动反应器返混为_____ 返混带来的最大影响是_____________________________ 返混对反应来说是有害的,必须采取各种措施进行抑制。 降低返混程度的主要措施是______,通常有________和________两
➢滞留区的存在 ➢存在沟流与短路 ➢循环流 ➢流体流速分布不均匀 ➢扩散
上述是造成非理想流动的几种常见原因,对一个流 动系统可能全部存在,也可能是其中的几种,甚至有 其它的原因。
返混及其对反应过程的影响
返混含义:专指不同时刻进入反应器的物料之间的混合, 是逆向的混合,或者说是不同年龄质点之间的混合。
相关文档
最新文档