液相色谱正相与反相区别

合集下载

岛津液相色谱仪教材

岛津液相色谱仪教材

基础知识讲解内容
1、色谱基础知识 2、硬件基础知识 3、定量基础知识 4、维护基础知识
第一部分 色谱基础知识
色谱起源
石油醚
色素混合物 碳酸钙颗粒
色谱 分离组分
色谱发展史
20世纪初,俄国植物学家M.S. Tswett提出经典液相色谱法; 20-30年代,柱分配色谱和纸色谱; 50年代,气相色谱,薄层色谱; 60年代,凝胶渗透色谱及高效液相色谱; 70年代,高效毛细管气相色谱法; 80年代,电色谱; 90年代,光色谱。
滤膜类型: 聚四氟乙烯滤膜:适用于所有溶剂,酸和盐。
醋酸纤维滤膜:不适用于有机溶剂,特别适用于水 基溶剂。
尼龙66滤膜:适用于绝大多数有机溶剂和水溶 液,可以用于强酸,不适用于 DMF,THF, CHCl3 等溶剂。
再生纤维素滤膜:蛋白吸收低,同样适用于水溶性样 品和有机溶剂。
溶剂前处理-脱气
脱气:除去流动相中溶解或因混合而产生的气泡
毛细管电泳
Capillary Electrophoresis (CE)
HPLC vs GC
液相色谱:
以液体作为流动相的色谱分离方法
适用于高沸点、大分子、强极性 和热稳定性差的化合物的分析 流动相具有运载样品分子和选择 性分离的双重作用
气相色谱:
以气体作为流动相的色谱分离方法
适用于沸点较低、热稳定性好的中小分子 化合物的分析 流动相只起运载样品分子的能力
在售产品
岛津HPLC的历史
1997
THECNLOGY BREAKTHROUGH
Flexible HPLC System with Micro-stroke Volume Solvent Delivery Unit
LC-VP

亲水作用(Hilic)色谱简介,以及和正相色谱相、反相色谱比较

亲水作用(Hilic)色谱简介,以及和正相色谱相、反相色谱比较

亲水作用(H i l i c)色谱,有时被称为“含水正相色谱”,有时又被称为“反反相色谱”,简单来说,是极性的固定相和极性的流动相组成,参考表1,在固定相方面,看似和正相色谱一样,那么,同一款色谱柱是否既可以用于正相色谱,又可以用于H i l i c色谱?在流动相方面,和反相色谱接近,那两种模式保留行为和流动相对保留的影响规律有什么差异?你对H i l i c色谱是否也疑惑重重?接下来让我们一起揭开亲水作用(H i l i c)色谱的神秘面纱吧。

表1 反相、正相、Hilic色谱对比一、Hilic简介1.1流动相在大多数的Hilic分离中,采用的流动相为含有少量水/缓冲液与有机相混合(典型的是乙腈),水的比例为3%-40%之间。

水的比例不低于3%是由于Hilic色谱的保留机理决定的,普遍认为Hilic色谱流动相中的水会被吸附到极性固定相的表面形成水膜,然后分析物在水膜和流动相之间进行液液分配作用,加上极性官能团和固定相之间的氢键作用力,离子官能团之间的静电作用力等,实现被分析物的保留。

水膜的作用非常重要,所以Hilic流动相中至少含有3%的水。

当水的比例大于40%时,保留一般很弱(k≈0)。

1.2固定相应用于Hilic色谱的固定相有:纯硅胶柱、氨基柱、二醇基柱、酰胺基柱等。

纯硅胶柱有固定相不易流失的优点,在使用CAD、ELSD和LC-MS检测器时,最受欢迎;氨基柱,在Hilic 色谱中的应用,特别适合碳水化合物(糖类)分离;二醇基柱,亲水性很好,可以提供不同的选择性。

二、Hilic和正相色谱相比2.1固定相的区别同样是Silica,NH2,Diol柱,与用于正相色谱中的色谱柱不同,专为Hilic色谱设计的色谱柱,可以用于水/有机物的流动相中,换句话说,Hilic色谱对固定相的耐水性要求更高,否则会因固定相的水解,出现基线噪音大、色谱柱寿命短等问题。

所以用于正相色谱中的色谱柱,不一定能用于Hilic色谱。

液相色谱柱的经典问题总结

液相色谱柱的经典问题总结

液相色谱柱的经典问题总结1、什么是反相柱、正相柱?“反相”和“正相”的概念是液相色谱法早期提出的概念,当时键合相色谱柱尚未出现,固定相被涂覆在载体表面,极易流失,为此科学家对流动相使用给出了合理的建议:流动相极性与固定液极性应具有较大差别,以减少固定液流失。

固定相极性弱于流动相时的液相色谱法被称为反相色谱法,固定相极性强于流动相时的液相色谱法被称为正相色谱法。

尽管目前键合相色谱柱已成为主流,但这一概念在色谱方法开发、预测出峰顺序等方面具有重要意义。

由上面的介绍可知具体的色谱方法、色谱柱属于正相还是反相不仅取决于固定相极性,同时还取决于流动相极性。

C18(硅胶键合十八烷基硅烷)、C8(硅胶键合辛基硅烷)、PH(硅胶键合苯基硅烷)等色谱柱,由于固定相极性极低,比目前已知的任何流动相的极性都要低,因而是标准的反相柱;Silica(硅胶)、NH2(硅胶键合氨丙基硅烷)具有较高的极性,主要用于分离带有极性基团的化合物,所用流动相的极性通常低于这些固定相,因而是标准的正相柱。

CN(硅胶键合腈丙基)的极性适中,当流动相极性超过CN时,它属于反相柱,反之则是正相柱。

2、色谱柱规格对分析结果会产生何种影响?色谱柱内径决定载样量,载样量与内径的平方成正比;色谱柱长度与塔板数成正比,与柱压成正比;粒径影响涡流扩散相,粒径越小涡流扩散相越小,柱效越高,粒径与柱效近似成反比;粒径越小,压力也越大,压力与粒径的平方成反比。

填料孔径对分析对象的分子量有限制,当孔径为分析物尺寸的5倍以上时,分析物才能顺利通过孔隙,孔径处于60~120 Å的色谱柱适用于相对分子量小于10000的分析物,孔径为300 Å的色谱柱可以满足分子量处于10000以上的大分子化合物分析。

3、液相色谱分析中如何才能提高分离度?下式为分离度计算公式:N:柱效反映色谱柱性能,柱效越高,分离度越好。

在其他条件恒定的情况下,塔板数增加一倍,分离度仅提高40%。

高效液相色谱分析

高效液相色谱分析
色 谱 泵 进 样 器
数 据 处 理
检 测 器
色 谱 柱
高效液相色谱仪一般可分为5个主要部分: 高压输液系统、进样系统、分离系统、检测系统、 计算机控制及数据处理系统。此外还配有辅助装 置:如梯度洗脱,也叫梯度淋洗,自动进样及数 据处理等。其工作过程如下:首先高压泵将贮液 器中流动相溶剂经过进样器送入色谱柱,然后从 控制器的出口流出。当注入欲分离的样品时,流 经进样器贮液器的流动相将样品同时带入色谱柱 进行分离,然后依先后顺序进入检测器,记录仪 将检测器送出的信号记录下来,由此得到液相色 谱图。
纯 水 制 备 仪
超 纯 水 制 备 仪



乙腈 这是反相高效液相色谱常用的溶剂,实验室常用的 只能满足紫外检测器的需要。这样的试剂很难符合荧光 和电化学检测器的要求。 甲醇 反相高效液相色谱常用的溶剂之一,其杂质主要是 水。市面上能够买到紫外光谱纯的商品,但它的主要问 题也是有些特性满足不了荧光和电化学检测分析。 氯代烃类溶剂 在正相高效液相色谱中常用的二氯甲烷等 氯代烃类溶剂中,添加稳定剂甲醇或乙醇。乙醇能够提 高流动相的极性,缩短正相高效液相色谱分析中各组分 的保留时间。各批次之间浓度的变化也许会影响重复性。 国内市场上可能不容易买到不含稳定剂的氯代烃类溶剂, 但是可以用氧化铝柱吸附的办法或者用水萃取脱掉。不 含稳定剂的氯代烃类溶剂可以缓慢的分解,特别是与其 他溶剂共存时。分解的盐酸会腐蚀不锈钢部件,损害色 谱柱。以戊烯为稳定剂的氯代烃类溶剂可避免上述产生 的问题。
由于高效液相色谱所用固定相颗粒极细,因此对流动相 阻力很大,为使流动相较快流动,必须配备有高压输液系统。 它是高效液相色谱仪最重要的部件,一般由储液罐、高压输 液泵、过滤器、压力脉动阻力器等组成,其中高压输液泵是 核心部件。对于一个好的高压输液泵应符合密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速更换溶剂及耐 腐蚀等要求。常用的输液泵分为恒流泵和恒压泵两种。恒流 泵特点是在一定操作条件下,输出流量保持恒定而与色谱柱 引起阻力变化无关;恒压泵是指能保持输出压力恒定,但其 流量则随色谱系统阻力而变化,故保留时间的重现性差,它 们各有优缺点。目前恒流泵正逐渐取代恒压泵。恒流泵又称 机械泵,它又分机械注射泵和机械往复泵两种,应用最多的 是机械往复泵。

正反相色谱

正反相色谱

反相色谱中,固定相非极性,流动相极性。

典型的流动相一般是水或水系缓冲液与甲醇、乙腈或四氢呋喃的混合物。

典型的固定相是用脂肪烃硅完化的硅胶键合相,其它用于反相色谱的基质有石墨化碳和苯乙烯-二乙烯苯基质。

反相色谱的性能还受残留的硅醇基的活性的影响。

硅醇基与洗脱物的极性基团作用。

因此,根据硅醇基的活性不同,填料显示出不同的选择性。

而且,常能观察到碱性物质在硅醇基活性高的填料上产生拖尾峰。

修饰硅醇基活性的一个办法是封端,即用硅烷化试剂把硅醇基转变成三甲基甲硅烷基基团。

不过,即使是作了封端,基质表面的硅醇基密度还是比键合配基的密度大。

硅醇基的活性也和硅胶的预处理(基质灭活)、硅胶纯度有关。

碱性分析物的色谱分析推荐使用高纯度硅胶基质、充分封端的键合相。

未封端的填料在许多应用中有可以获得不同选择性的优点。

使用带有离子电荷的固定相,使根据洗脱物电荷进行分离成为可能。

对于硅胶基质的离子交换填料,离子基团通过标准的硅烷化技术键合到硅胶表面。

对于聚合物基质的离子交换填料,离子交换基团分布于交联聚合物的整体(through the matrix)。

有四种离子交换填料:强/弱阳离子交换填料和强/弱离子交换填料。

弱离子交换填料的特征是电量与pH值有函数关系。

以羧酸基为功能基的离子交换剂是弱阳离子交换剂的代表。

弱阴离子交换剂由一级、二级、三级铵为功能基。

大部分强离子交换剂的电荷与pH值无关。

四级铵形成强阴离子交换剂,而磺酸基构成了强阳离子交换剂。

所有这些离子交换基团都可以在聚合物基质上见到,主要用于分离生物大分子。

除了弱阳离子基团外,其它功能基都可以键合到硅胶上。

反相色谱柱C18、C8柱液相色谱根据流动相和固定相的相对极性不同,可分为正相色谱和反相色谱。

正相色谱指的是使用极性的固定相和非极性的流动相,适于分离极性组分。

反相色谱是采用非极性的固定相和极性的流动相,适于分离非极性或弱极性的组分。

正相色谱液-液色谱有正相和反相之分。

正相色谱vs反相色谱

正相色谱vs反相色谱

正相色谱vs反相色谱点击次数:986 发布时间:2009-11-9现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择.但是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解.1,正相色谱正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团 (NH2,APS)和氰基团(CN,CPS)的键合相填料.由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱. 正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等.2,反相色谱反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相. 反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物. 样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有更强的保留. 常用的反相填料有C18(ODS),C8(MOS),C4(B),C6H5(Phenyl)等.二,聚合物填料聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~ 14均可使用. 相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效. 现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低. 三,其他无机填料其它HPLC的无机填料色谱柱也已经商品化.由于其特殊的性质,一般仅限于特殊的用途.如石墨化碳也用于正逐渐成为反相色谱填料.这种填料的分离不同与硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用.氧化铝也可用于HPLC, 氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用. 但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用, 新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应用PH范围1~14,温度可达100℃.由于氧化锆填料几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行中.怎样选择填料粒度目前,商品化的色谱料粒度从1um到超过30um均有销售,而目前分析分离主要用3um, 5um和10um填料,填料的粒度主要影响填充柱的两个参数,即柱效和背压.粒度越小,填充柱的柱效越高;小于3um的填料应用,在相同选择性条件下,提高柱效可提高分离度, 但不是唯一的因素.如果固定相选择是正确,但是分离度不够,那么选择更小粒度的填料是很有用的,3um填料填充柱的柱数比相同条件下的5um填料的柱效提高近30%;然而, 3um的色相谱的背压却是5um的2倍.与此同时,柱效提高意味着在相同条件下可以选择更短的色谱柱,以缩短分析时间,另外,可以采用低粘度的溶剂做流动相或增加色谱柱的使用温度,比如用乙腈代替甲醇,以降低色谱柱的压力.如何选择液相色谱仪发布日期:[2009-10-30] 共阅[241]次如何选择液相色谱仪一台品质优良的液相色谱系统应从以下几个方面考虑:一.主要技术指标优异首先是如何看指标。

高效液相色谱法的分类及原理

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。

1.液-固色谱法(液-固吸附色谱法)固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。

①液-固色谱法的作用机制吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。

流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应:X(液相)+nS(吸附)<==>X(吸附)+nS(液相)其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。

吸附反应的平衡常数K为:K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。

K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。

发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。

②液-固色谱法的吸附剂和流动相常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。

一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。

对流动相的基本要求:试样要能够溶于流动相中流动相粘度较小流动相不能影响试样的检测常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。

③液-固色谱法的应用常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。

2.液-液色谱法(液-液分配色谱法)将液体固定液涂渍在担体上作为固定相。

①液-液色谱法的作用机制溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。

液相色谱柱的选择

液相色谱柱的选择

液相色谱柱的选择、使用、维护和常见故障及排除液相色谱的柱子通常分为正相柱和反相柱;正相柱大多以硅胶为柱,或是在硅胶表面键合-CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团ODS 称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等;另外还有离子交换柱,GPC柱,聚合物填料柱等;本文重点介绍反相色谱柱的选择和使用:一、反相色谱柱的选择1.柱子的PH值使用范围反相柱优点是固定相稳定,应用广泛,可使用多种溶剂;但硅胶为基质的填料,使用时一定要注意流动相的PH范围;一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH 值大于7时硅胶易溶解;经常使用缓冲液固定相要降解;一旦发生上述情况,色谱柱人口处会塌陷;同样填料各种不同牌号的色谱柱不尽相同;如果流动相PH较高或经常使用缓冲液时,建议选择PH范围大的柱子,例如戴安公司的Acclaim柱PH2-9或Zorbax的PH2-11.5的柱子;2.填料的端基封尾或称封口把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好;如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱;3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾;PH2-9范围内兼容,低流失,高柱效;尤其是2003年推出的Acclaim极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用;对酸性和碱性化合物有极为尖锐的好的色谱峰形,与现有的一流色谱柱相比有更好的立体选择性;下图是Acclaim极性封尾C16柱和市售极性封尾一流色谱柱分离酸性化合物谱图的比较二、液相色谱柱的使用色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考;在做柱性能测试时要按照色谱柱出厂报告中的条件进行出厂测试所使用的条件是最佳条件,只有这样,测得的结果才有可比性;但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;1、样品的前处理a、最好使用流动相溶解样品;b、使用预处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质;c、使用0.45μm的过滤膜过滤除去微粒杂质;2、流动相的配制液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点:a、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中或长时间保留在柱中;b、流动相与样品不产生化学反应c、流动相的黏度要尽量小,以便得到好的分离效果;降低柱压降,延长泵的使用寿命可运用提高温度的方法降低流动相的黏度;d、流动相的物化性质要与使用的检测器相适应;如使用UV检测器,最好使用对紫外吸收较低的溶剂配制;e、流动相沸点不要太低,否则容易产生气泡,导致实验无法进行;f、在流动相配制好后,一定要进行脱气;除去溶解在流动相中的微量气体既有利于检测,还可以防止流动相中的微量氧与样品发生作用;3、流动相流速的选择因柱效是柱中流动相线性流速的函数,使用不同的流速可得到不同的柱效;对于一根特定的色谱柱,要追求最佳柱效,最好使用最佳流速;对内径为4.6mm的色谱柱,流速一般选择1ml/min,对于内径为4.0mm柱,流速0.8ml/min为佳;当选用最佳流速时,分析时间可能延长;可采用改变流动相的洗涤强度的方法以缩短分析时间如使用反相柱时,可适当增加甲醇或乙腈的含量;注意:a.含水流动相最好在实验前配制,尤其是夏天使用缓冲溶液作为流动相不要过夜;最好加入叠氮化钠,防止细菌生长;b.流动相要求使用0.45μm滤膜过滤,除去微粒杂质;c.使用HPLC级溶剂配制流动相,使用合适的流动相可延长色谱柱的使用寿命,提高柱性能;三.色谱柱的维护1.色谱柱的平衡反相色谱柱由工厂测试后是保存在乙腈/水中的;新柱应先使用10-20倍柱体积的甲醇或乙腈冲洗色谱柱;请一定确保您分析样品所使用的流动相和乙腈/水互溶;每天用足够的时间以流动相来平衡色谱柱,您就会在处理问题方面获得最大的"补偿",而且您的色谱柱的寿命也会变得更长操作步骤:a.平衡开始时将流速缓慢地提高,用流动相平衡色谱柱直到获得稳定的基线缓冲盐或离子对试剂流速如果较低,则需要较长的时间来平衡b.如果使用的流动相中含有缓冲盐,应注意用纯水"过渡"即每天分析开始前必须先用纯水冲洗30分钟以上再用缓冲盐流动相平衡;分析结束后必须先用纯水冲洗30分钟以上除去缓冲盐之后再用甲醇冲洗30分钟保护柱子;2.色谱柱的再生长期使用的色谱柱,往往柱效会下降柱子的理论塔板数减低;可以对色谱柱进行再生,在有条件的实验室应使用一个廉价的泵进行柱子的再生;建议用来冲洗柱子的溶剂体积色谱柱尺寸柱体积所用溶剂的体积125-4mm1.6ml30ml250-4 mm3.2ml60ml250-10mm20ml400ml选择再生方法:极性固定相如Si,NH2,DIOL基色谱填料的再生:正庚烷→氯仿→乙酸乙酯→丙酮→乙醇→水非极性固定相如反相色谱填料RP-18,RP-8,CN等的再生:水→乙腈→氯仿或异丙醇→乙腈→水注意:a.在对NH2改性的色谱柱进行再生时,由于NH2可能以铵根离子的形式存在,因此应该在水洗后用0.1M 的氨水冲洗,然后再用水冲洗至碱溶液完全流出;b.0.05M稀硫酸可以用来清洗已污染的色谱柱,如果简单的用有机溶剂/水的处理不能够完全洗去硅胶表面吸附的杂质,在水洗后加用0.05M稀硫酸冲洗非常有效;3.色谱柱的维护a.使用预柱保护分析柱硅胶在极性流动相/离子性流动相中有一定的溶解度b.大多数反相色谱柱的pH稳定范围是2-7.5,尽量不超过该色谱柱的pH范围c.避免流动相组成及极性的剧烈变化d.流动相使用前必须经脱气和过滤处理e.如果使用极性或离子性的缓冲溶液作流动相,应在实验完毕柱子冲洗干净,并保存于甲醇或乙腈中f.氯化物的溶剂对其有一定的腐蚀性,故使用时要注意,柱及连接管内不能长时间存留此类溶剂,以避免腐蚀;怎样选择色谱柱现代高效液相色谱中,分离效果好坏的一个重要指标是色谱填的选择;但是色谱填料的选择范围很宽,因此,要做合适的选择,必须对此有一定的认识和了解;一.硅胶基质填料1·正相色谱正相色谱用的固定相通常为硅胶Silica以及其他具有极性官能团胺基团,如NH2,APS和氰基团CN,CPS的键合相填料;由于硅胶表面的硅轻基SiOH或其他极性基团极性较强,因此,分离的次序是依据样品中各组份的极性大小,即极性较弱的组份最先被冲洗出色谱柱;正相色谱使用的流动相极性相对比固定相低,如:正己烷Hexane、氯仿Choroform、二氯甲烷MethyleneCloride等;2,反相色谱反相色谱用的填料常是以硅胶为基质,表面键合有极性相对较弱官能团的键合相;反相色谱所使用的流动相极性较强,通常为水、缓冲掖与甲醇、乙情等的混合物;样品流出色谱柱的顺序是极性较强的组份最先被冲洗出,而极性弱的组份会在色谱柱上有更强的保留;常用的反相填料有:C18ODS、C8MOS、C4Butyl、C6H,Phenyl等;二·聚合物填料聚合物填料多为聚苯乙烯-二乙烯基苯或聚甲基丙烯酸醋等,其主要优点是在pH值为1一14均可使用;相对于硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效;现有的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低;三、其它无机填料其它HPLC的无机填料色谱柱也已经商品化由于其特殊的性质,一般仅限于特殊的用途;如,石墨化碳黑正逐渐成为反向色谱柱填料;这种填料的分离不同于硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性;该柱填料一般比烷基键合相硅胶或多孔聚合物填料的保留能力更强;石墨化碳可用于分离某些几何异构体,由于在HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用;氧化铝也可以用于HPLC;氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可以在PH高达12的流动相中使用;但由于氧化铝与碱性化合物的作用也很强,应用范围受到一定限制,所以未能广泛应用;新型色谱氧化锆基质填料也可用于HPLC;商品化的只有聚合物涂层的多孔氧化锆微球色谱柱,应用PH1-14,温度可达100℃;由于氧化锆填料是最近几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行之中;怎样选择填料粒度目前,商品化的色谱填料粒度从1um到超过30um均有销售,而目前分析分离主要用3和5um填料进行;填料的粒度主要影响填充柱的两个参数,即柱效和背压;粒度越小,柱压越大,柱压的增加限制了粒度小于3um的填料应用;在相同选择性条件下,提高柱效可提高分离度,但不是唯一的因素;如果固定相选择是正确,但是分离度不够,那么选用更小的粒度的填料是很有用的;3um填料填充柱的柱效比相同条件下的5um填料的柱效提高近30%;然而,3um的色谱柱的背压却是5um的2倍;与此同时,柱效提高意味着在相同条件下可以选用更短的色谱柱,即相同的塔板数或分离能力,但是柱长更短,以缩短分析时间;另外,可以采用低粘度的溶剂做流动相或增加色谱柱的使用温度,比如用乙腈代替甲醇,以降低色谱柱的压力;。

高效液相色谱流动相的选择

高效液相色谱流动相的选择

按使用方式分:固定组成淋洗和梯度淋洗。
常用溶剂:己烷、四氯化碳、甲苯、乙酸乙酯、乙醇、 乙腈、水。 采用二元或多元组合溶剂作为流动相可以灵活调节流动 相的极性或增加选择性,以改进分离或调整出峰时间。
3. 流动相选择
在选择溶剂时,溶剂的极性是选择的重要依据。 采用正相液-液分配分离时:首先选择中等极性溶剂, 若组分的保留时间太短,降低溶剂极性,反之增加。也可 在低极性溶剂中,逐渐增加其中的极性溶剂,使保留时间 缩短。
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期 累积损坏色谱柱和使检测器噪声增加。 (2)避免使用会引起柱效损失或保留特性变化的溶剂。 在液—液色谱中,流动相与固定性不互溶,否则固定性 流失,柱的保留特性改变。
(3)试样在流动相中应有适宜的溶解度,防止产生沉 淀并在柱头沉积。 (4)溶剂的黏度小些为好,黏度大降低组分的扩散系 数,造成柱效下降,温度相同柱压随着黏度的增加而增 加。 ( 5)流动相同时还应满足检测器的要求。当使用紫外 检测器时,流动相不应有紫外吸收。
流动相的选择 与注意事项
1. 流动相性质
(1)液相色谱的流动相根据作用可分为底剂和洗脱剂。
底剂决定基本的色谱分离情况,洗脱剂对某几个组分选择分
离。流动相组成改变,极性改变,可显著改变组分分离状况;
( 2)亲水性固定液常采用疏水性流动相,即流动相的极 性小于固定相的极性,称为正相液液色谱法,极性柱也称正
相柱。正相柱的底剂若流动相的极性大于固定液的极性,则称为反相液
液色谱,非极性柱也称为反相柱。组分在两种类型分离柱上
的出峰顺序相反。反相柱通常以水为流动相的主体,再加入 不同配比的有机溶剂做调节剂。
2. 流动相类别
按流动相组成分:单组分和多组分; 按极性分:极性、弱极性、非极性;

高效液相色谱实验技术问题解答

高效液相色谱实验技术问题解答

高效液相色谱实验技术问题解答高效液相色谱以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测。

1、高效液相色谱是如何实现高效、快速、灵敏的? 解:气相色谱理论和技术上的成就为液相色谱的发展创造条件,从它的高效、高速和高灵敏渡得到启发,采用5一10四微粒出定相以提高柱效,采用高压泵加快液体流动相的流速;设计高灵敏度、死体积小的紫外、荧光等检测器,提高检测灵敏度,克服经典液相色谱曲缺点,从而达到高效、快速、灵敏。

2、与气相色谱法相比高效液相色谱有哪些优点和不足? 解:气相色谱的分析对象是在校温下具有一定的挥发性、对热稳定购物质。

因此它只限于分析气体和沸点低的化合物或挥发性的衍生物。

而高效液相色谱由于以液体作为流动相,只要被分析的物质在选用的流动相中有一定的按解度,便可以分析,所以适用性广,不受样品挥发性和热稳定性的限制,特别适合于那些沸点高、极性强、热稳定性差的化合物,例如,生化物质和药物、离子型化合物、热稳定性差的天然产物等。

在目前已知的有机化台物中,只有20%样品可不经化学处理而能满意地用气相色谱分离,80%的有机化合物要用高效液相色谱分析。

气相色谱中流动相是惰性的,它对组分没有作用力,仅起运载作用、而高效液相色谱的流动相不仅起运载作用,而且流动相对组分有一定亲合力,可以通过改变流动相种类和组成提高分离的选择性,另外可作流动相的化合物多,选择余地广。

与气相色谱相比,高效液相色谱的另一个优点是样品的回收比较容易,只要开口容器放在柱子末端,就可以很容易地将所分离的各组分收集。

回收是定量的,可以用来提纯和制备具有足够纯度的单一物质。

高效液相色谱不足的是,日前检测器的灵敏度不及气相色谱。

必须特别注意“柱外效应”对柱效率及色谱分离的影响。

3、试比较气相色谱与液相色谱的H-u曲线,分析产生不同的原因。

解:从图可看出,气相色谱和液相色谱得到的H-u曲线,形状迥然不同,流动相的流速对柱效的影响也不一样,在气相色谱的H-u曲线上,塔板高度H随u变化呈双曲线.曲线有一最低点,这时柱效最高,板高最小,流速最佳。

高效液相色谱法

高效液相色谱法

31
特点: 特点: 氰基键合相选择性与硅胶类似 键合相选择性与硅胶类似, ① 氰基键合相选择性与硅胶类似, 但极性更小。相同流动相, 但极性更小。相同流动相,组分保留 时间小于硅胶。 时间小于硅胶。 氨基键合相 主要用于糖类分析, ② 氨基键合相 主要用于糖类分析, 糖类分析专用柱 分析专用柱。 是糖类分析敏度: 紫外、荧光、电化学、 紫外、荧光、电化学、质谱等高灵敏 度检测器使用。 度检测器使用。 最小检测量: 最小检测量: 10-9 ~10-11 g 4. 高度自动化: 高度自动化: 采用色谱专家系统为核心的色谱智 能化和仿真优化技术, 能化和仿真优化技术,使 HPLC不仅能 不仅能 自动处理数据,绘图和打印分析结果, 自动处理数据,绘图和打印分析结果, 而且还可以自动控制色谱条件。 而且还可以自动控制色谱条件。
32
2. 流动相极性与容量因子的关系 流动相极性大,洗脱能力增加, 流动相极性大,洗脱能力增加, k 减小,tR 减小;反之, k 与 tR 均 减小, 减小;反之, 增加。 增加。 极性小的组分先出柱
33
四、正、反相色谱法 正相HPLC(normal phase HPLC) ( 正相 ) 固定相: 固定相:极性 常用:改性硅胶 硅胶、 常用:改性硅胶、氰基柱 流动相: 非极性(或弱极性) 流动相 非极性(或弱极性) 常用: 正己烷 常用: 流动相极性小于固定相极性
11
第二节 分离机制 一、液-固吸附色谱法 固吸附色谱法
(Liquid-Solid Chromatography)
(一)吸附机理 根据吸附剂对样品中各组分的吸 根据吸附剂对样品中各组分的吸 附能力差异而分离 而分离。 附能力差异而分离。 吸附过程是被分离组分的分子 与流动相分子争夺吸附剂表面活性 中心(active center)的结果。 的结果。 中心 的结果

反相高效液相色谱

反相高效液相色谱

高效液相色谱的结构及原理
钙调蛋白肽段的反相HPLC分离实验
实验仪器和试剂:
仪器: 反相高效液相色谱仪 离心机
试剂: 乙腈 水 0.1%TFA溶剂 钙调蛋白 消化酶
实验步骤:
• 1、打开HPLC,设定所需数值,如:波长 (210nm),流动相流量和比例(乙腈5%到 70%v/v梯度)
• 2、样品处理:样品消化,真空离心浓缩 • 3、待基线平衡和压力稳定后,注射进样 • 4、收集与监测器上出现的吸收峰相对应的组分
• ④高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级 • ⑤应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别
是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势
HPLC分类:按照分离机理的不同,可分为以下几类
• HPLC
1、吸附色谱法(adsorptionchromatography) :以吸附剂为固定相 的色谱
• 1970年中期以后,微处理机技术用于液相色谱,进一步提高了仪器的 自动化水平和分析精度 。
• 1990年以后,生物工程和生命科学在国际和国内的迅速发展,为高效 液相色谱技术提出了更多、更新的分离、纯化、制备的课题,如人类 基因组计划,蛋白质组学有HPLC作预分离等 。
HPLC特点:
• 高效液相色谱法有“四高一广”的特点 :
• 分配色谱法
反相色谱法(reversedphasechromatography)流动相极性大于固定相极性的 分配色谱法称为反相分配色谱法,简称为反相色谱法。反相色谱法使用非极性 固定相,最常用的非极性固定相是十八烷基硅烷键合硅胶,还有辛烷基硅烷键 合硅胶等。流动相常用水与甲醇、乙腈或四氢呋喃的混合溶剂。在反相色谱中 极大的组分因K值较小先流出色谱柱,极性较小的组分后流出。流动相中有机 溶剂的比例增加,流动相极性减小,洗脱力增强。反相色谱法是目前应用最广 的高效液相色谱法。

(完整word版)仪器分析复习笔记

(完整word版)仪器分析复习笔记

一、色谱分析色谱法的分离原理:混合物中各组分在经过由固定相和流动相组成的体系时,由于各组分性质上的差异,在两相中具有不同的分配系数;当两相作相对运动时,各组分随流动相一起流动,并在两相中进行反复多次的分配,使各组分最终得以分离。

一、气相色谱a.概念气相色谱:流动相是气体,固定相是固体或液体的色谱法称为气相色谱法.基线:反映检测器系统噪声随时间变化的线基线漂移:基线随时间定向的变化基线噪声: 由各种因素引起的基线起伏保留值:试样中各组分在色谱柱中的滞留时间,由色谱分离过程中的热力学因素控制,作定性参数死时间tM:不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现极大值所需时间保留时间tR:试样从进样到柱后出现峰极大值所经历的时间调整保留时间tR’: tR’= tR—tM程序升温:指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称.各组分的保留值可用色谱峰最高处的相应温度即保留温度表示。

b.流程示意图c。

分离过程溶解-脱溶解-再溶解-再脱溶d.原理气相色谱法亦称气体色谱法或气相层析法,是以气体为流动相的柱色谱分离技术。

它分离的主要依据是利用样品中各组分在色谱柱中吸附力或溶解度不同,也既是利用各组分在色谱住中气相和固定相的分配系数不同来达到样品的分离。

对于气—固色谱(也叫吸附色谱),它的分配系数确切地讲,应称吸附平衡常数,主要用于永久性气体或气态烃等的分离分析。

本课程主要介绍气-液色谱。

e。

色谱流出曲线这种以组分的浓度变化(或某种信号)作为纵坐标,以流出时间(或相应流出物的体积)作为横坐标,所绘出的曲线称为色谱流出曲线.f。

色谱分析的依据(1)色谱峰的位置(即保留时间或保留体积)决定于物质的性质,是色谱定性的依据;(2)色谱峰的高度或面积是组分浓度或含量的量度,是色谱定量的依据;(3)色谱峰的位置与其宽度,可以对色谱柱分离的情况进行评价。

液相相关

液相相关

一、正相色谱:固定相极性大于流动相极性反相色谱:固定相极性小于流动相极性,洗脱顺序取决于溶质分子的疏水性,疏水性强的保留时间长!在正相色谱体系中组分的出峰次序为:极性弱的组分,在流动相中溶解度较大,因此k值小,先出峰。

极性强的组分,在固定相中的溶解度较大,因此k值大,后出峰。

在反相色谱中组分的出峰次序为:极性弱的组分在固定相上的溶解度大,k值大,后出峰,相反极性强的组分在流动相中溶解度大,k值小,所以先出峰。

流动相的比例,是有根据的。

主要看你流动相的组成成分,一般来说,如果要分离的成分出峰时间较快,那么流动相中有机相就相对要少!总之只要能使样品峰的分离度(大于1.5)、理论塔板数(根据实际情况而定)、峰拖尾因子(0.95~1.05之间)达到要求的比例就行。

建议朋友有问题,可到分析测试百科网去提问,基本上问题都能得到解答,百度上搜下就有。

流动相用0.45μm微孔滤膜过滤后超声脱气15min,标准品是纯溶液的话不需要过滤,待测样品为生物样品是需要经过处理的(沉淀蛋白,萃取,高速离心),离心之后取上清液直接进样,不能过滤HPLC 的流动相的选择要看你使用的色谱柱固定相的种类,如果用C18等非极性键合相的色谱柱,流动相需要选定极性的例如甲醇、乙腈、水等;如果选用的硅胶或者二醇基等极性键合相的色谱柱,则需要选择非极性的流动相,例如正己烷、正庚烷等等;8 流动相为什么要预先脱气?常用的脱气方法有哪几种?解流动相中溶解气体存在以下几个方面的害处,气泡进入检测器,引起光吸收成电信号的变化,基线突然跳动,干扰检测;溶解在溶剂中的气体进入色谱柱时,可能与流动相或固定相发生化学反应;溶解气体还会引起某些样品的氧化降解.对分离和分析结果带来误差。

因此,使用前必须进行脱气处理。

常用的脱气法有以下几种:(1)加热脱气法;(2)抽吸脱气法;(3)吹氦脱气法;(4)超声波振荡脱气法。

9 按固定相孔径大小分类,液相色谱固定相有哪几类?各有什么特性及适用范围?解从固定相的孔隙深度考虑,液相色谱固定相分为表面多孔型(薄壳型)和全多孔型(全孔型)两类。

植物甾醇高效液相色谱法正相和反相检测方法对比

植物甾醇高效液相色谱法正相和反相检测方法对比
浙 江 大 学 学报 ( 农业与生命科学版) 3 9 ( 2 ) : 2 3 3 ~2 3 6 , 2 0 1 3
J o u r n a l o f Zh e j i a n g Un i v e r s i t y( Ag r i c . & Li f e S c i . )
c a m pe s t e r o l ,a nd r a pe s e e d s t e r o1 . The y h av e at t r a c t e d gr owi n g a t t e nt i o n o wi ng t o t he i r b e ne f i c i a l e f f e c t s. H i gh
醇 出峰 时 间 比 反 相 体 系快 , 可 节 约 实验 时 间 . 说 明在不要求各种 甾醇分离效果的前提下 , 正 相 柱 更 适 合 用 于植 物
甾 醇检 测 .
关键词
植 物 甾醇 ;高 效 液相 色谱 法 ;正相 色谱 柱 ; 反 相 色谱 柱 ;内标 法 0 6 2 9 . 2 1 文献 标 志 码 A
相 为纯甲醇, 柱温3 5℃ , 流速 1 . 0 mL / mi n , 检 测波长 2 0 5 n m.结 果 表 明 : 混 合 甾 醇在 反 相 柱 分 离下 出现 3个 峰 ,
各 种 甾醇 的 分 离度 好 ; 正相 柱 的 甾醇 只 有 1个 峰 , 但 样 品 在 正 相 体 系 中 的 溶 解 性 高 于反 相 体 系 , 而且正相 体 系甾

植物 甾醇 高效 液 相 色 谱 法 正相 和 反 相检 测 方 法对 比
阮 慧 娜 ,刘 松 柏
( 浙 江 大学 生 物 系统 工程 与食 品科 学 学 院食 品科 学 与 营 养 系 , 杭州 3 1 0 0 5 8 )

高效液相色谱实验技术问题解答

高效液相色谱实验技术问题解答

1、高效液相色谱是如何实现高效、快速、灵敏的?解:气相色谱理论和技术上的成就为液相色谱的发展创造条件,从它的高效、高速和高灵敏渡得到启发,采用5一10四微粒出定相以提高柱效,采用高压泵加快液体流动相的流速;设计高灵敏度、死体积小的紫外、荧光等检测器,提高检测灵敏度,克服经典液相色谱曲缺点,从而达到高效、快速、灵敏。

2、与气相色谱法相比高效液相色谱有哪些优点和不足?解:气相色谱的分析对象是在校温下具有一定的挥发性、对热稳定购物质。

因此它只限于分析气体和沸点低的化合物或挥发性的衍生物。

而高效液相色谱由于以液体作为流动相,只要被分析的物质在选用的流动相中有一定的按解度,便可以分析,所以适用性广,不受样品挥发性和热稳定性的限制,特别适合于那些沸点高、极性强、热稳定性差的化合物,例如,生化物质和药物、离子型化合物、热稳定性差的天然产物等。

在目前已知的有机化台物中,只有20%样品可不经化学处理而能满意地用气相色谱分离,80%的有机化合物要用高效液相色谱分析。

气相色谱中流动相是惰性的,它对组分没有作用力,仅起运载作用、而高效液相色谱的流动相不仅起运载作用,而且流动相对组分有一定亲合力,可以通过改变流动相种类和组成提高分离的选择性,另外可作流动相的化合物多,选择余地广。

与气相色谱相比,高效液相色谱的另一个优点是样品的回收比较容易,只要开口容器放在柱子末端,就可以很容易地将所分离的各组分收集。

回收是定量的,可以用来提纯和制备具有足够纯度的单一物质。

高效液相色谱不足的是,日前检测器的灵敏度不及气相色谱。

必须特别注意“柱外效应”对柱效率及色谱分离的影响。

3、试比较气相色谱与液相色谱的H-u曲线,分析产生不同的原因。

解:从图可看出,气相色谱和液相色谱得到的H-u曲线,形状迥然不同,流动相的流速对柱效的影响也不一样,在气相色谱的H-u曲线上,塔板高度H随u变化呈双曲线.曲线有一最低点,这时柱效最高,板高最小,流速最佳。

而液相色谱H-u曲线,未出现流速降低板高增加的现象,由于最佳流速趋近于零,一般观察不到最低板高相对应的最佳流速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液相色谱仪正相与反相区别在液相色谱仪分析中,根据流动相和固定相相对极性的不同,可分为正相色谱和反相色谱。

所谓正相色谱是指固定相极性大于流动相极性的情况,反之,固定相的极性小于流动相的极性,则称为反相色谱。

正相色谱与反相色谱的区别是什么呢?由于极性化合物更容易被极性固定相所保留,所以正相色谱系统一般适用于分离极性化合物,极性小的组分先流出。

相反,反相色谱系统一般适用于分离非极性或弱极性化合物,极性大的组分先流出。

因此在应用上,正相色谱用于分离极性较大的物质,如蛋白质、生物碱等。

反相色谱多用于分离极性较小的物质,在流动相的选择上,反相色谱的优势更大,在实际工作中反相色谱的应用更为广泛。

正相色谱用的固定相通常为硅胶,以及其他具有极性官能团,如胺基团和氰基团的键合相填料。

由于硅胶表面的硅羟基或其他团的极性较强,因此,分离的次序是依据样品中的各组份的极性大小,即极性弱的组份最先被冲洗出色谱柱。

反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。

反相色色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。

样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有更强的保留。

常用的反相填料有C18、C8、C4、C6H5等。

反相液相色谱柱效高、分离能力强、保留机理清楚,是液相色谱分离模式中使用最为广泛的一种,对于生物大分子、蛋白质及酶的分离分析,反相液相色谱正受到越来越多的关注.反相色谱法是以表面非极性载体为固定相,以比固定相极性强的溶剂为流动相的一种液相色谱分离模式.反相色谱固定相大多是硅胶表面键合疏水基团,基于样品中的不同组分和疏水基团之间疏水作用的不同而分离.在生物大分子分离中,多采用离子强度较低的酸性水溶液,添加一定量乙腈、异丙醇或甲醇等与水互溶的有机溶剂作流动相.普通的反相色谱固定相和孔径大于300Å的硅胶键合烷基固定相应用较为普遍,聚合物基质的反相色谱固定相也有较多应用.
在分析实验中需将反相色谱切换正相色谱的方法如下:
1、先将色谱柱用相应的溶剂冲洗干净,然后将色谱柱拆下来密封保存。

用双通将进样器与检测器连接;
2、将贮液瓶内装入300ml的二次蒸馏水,将流速渐次提高到2.0ml/min冲洗系统1.5h。

注意观察泵压;
3、将流速渐次降到0ml/min,把二次蒸馏水更换为甲醇,将流速渐次提高到2.0ml/min冲洗系统1h;
4、用同样的方法将甲醇更换为异丙醇、四氢呋喃,各冲系统1h;
5、最后将四氢呋喃更换为预先配制好的流动相冲系统1h,同时将柱塞杆清洗系统内的10%异丙醇更换为流动相,保持50-60滴/min的速度清洗柱塞杆。

再将双通更换为正相色谱柱,待液相色谱仪色谱柱平衡好以后就可分析样品了。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档