05 无线电波传播理论及5G频谱

合集下载

5g常用的频谱

5g常用的频谱

5g常用的频谱所谓“频谱”,是指特定类型的无线通信所在的射频范围。

不同的无线技术使用不同的频谱,因此互不干扰。

由于一项技术的频谱是有限的,因此频谱空间存在大量竞争,并且人们也在不断开发和增强全新的、高效率的频谱使用方式。

介绍5G 3GPP全球频谱频带的带宽越多,接收数据的量越大、速度越快。

带宽越多,下载大文件的用时越少。

因此,移动网络运营商和监管机构正在尽一切可能,重构、获取或共享频谱资源。

所谓“频谱重构”,是一种将一个现有应用所使用的频谱转移到新应用的方法(例如:2010年,移动网络运营商将2G应用使用的频谱直接转移到4G LTE应用)。

在释放频谱资源上,尽管监管机构已有长足进步,但仍需采取其他措施。

为适应5G通信的众多用例和性能需求,必须在所有频率范围都提供频谱资源。

另外,承运商为支持5G需要增加容量,由于带宽是提高数据率的关键,因此运营商必须取得更多宽带。

3GPP为全球各个地区分配国际移动电信(IMT)频带。

3GPP是一个由移动系统制造商组成的集体性项目合作伙伴组织。

过去几年,3GPP通过重构和清理数字电视等现有服务,稳步增加新的时分双工(TDD)和频分双工(FDD)3G和4G频带。

甚至在5G到来之前,4G LTE就已在许多方面完善了频谱效率。

随着高位调制技术的进步,例如:64和256正交波幅调制技术(QAM),以及多入多出(MIMO)和波束赋形技术的推出,每秒峰值数据率被推升至2吉比特。

另外,LTE载波聚合技术也为移动网络运营商新增一个提高带宽的选项,即:将多个20MHz带宽的频率载波合并,提供最高140MHz的可用频谱。

在美国,当非特许LAA和CBRS 频谱与7分量载波(CC)聚合时,可实现140MHz的聚合带宽。

5G 更进一步,允许进一步加大分量载波带宽。

在7GHz以下的FR1频段,能够实现100MHz带宽;对于FR2频段毫米波,则可实现400MHz 的带宽。

如果个体移动网络运营商拥有足够的频谱许可证,5G在FR2频段能够聚合达到800MHz的带宽。

电波传播基础知识

电波传播基础知识

电波传播基础知识无线电波传播(radio wave propagation)频率从几十赫(甚至更低)到30000千兆赫左右(波长从几万千米到0.1毫米左右)整个频谱范围内的电磁波,称为无线电波。

发射天线或自然源辐射的无线电波,通过介质或受到介质分界面的影响,而到达接收天线的过程,称为无线电波传播。

无线电波在介质或介质分界面的影响下,有被折射、反射、散射、绕射和吸收等现象。

接收点的无线电信号,也有衰减和干扰出现。

为了确定无线电系统的频率、功率、增益、灵敏度、信号噪声比和工作方式等,都需要对无线电波传播特性有所了解。

根据何种介质或何种介质分界面对电波传播产生主要的影响,可将常遇到的电波传播方式分为:(1)地波传播(电波传播主要受地球表面的影响)。

(2)对流层电波传播(电波传播主要受对流层影响)。

(3)电离层电波传播(电波传播主要受电离层影响)。

(4)地—电离层波导电波传播(电波传播主要受电离层下缘和地面的影响,此外还有埋地天线、地壳中电波传播、火箭喷焰、再入等离子体鞘套和核爆炸等影响)。

各种频段的无线电波的传播方式和特点及其应用,可见各有关词汇。

地波传播(propagation of ground wave)沿地球表面的无线电波的传播,称为地波传播。

其特点是信号比较稳定。

在讨论地波传播问题时,一般是将对流层视为均匀介质(有时认为对流层的折射指数垂直梯度为常数),电离层的影响不予考虑,而主要考虑地球表面对电波传播的影响。

半导电性地球表面的影响,一方面使地波的垂直方向电场强度远大于水平方向电场强度,并因在地面上产生感应电流,使地波有较大的衰减;另一方面,由于地球是椭球形,在视线距离以外,地波传播可以认为是围绕弧形地球面的绕射传播。

垂直偶极子所产生的地波垂直电场E通常表示为E=E0ν其中:E0为理想导电地面上的垂直电场,ν称为衰减因子,它是频率、距离和地面电参数的复杂函数。

一般说来,频率愈高,地面电导率愈低,地波随距离衰减就愈快。

无线电波传播理论

无线电波传播理论
02
电离层传播模型需要考虑电离层 的结构、成分、电子密度等参数 ,以及电离层对电波的吸收和反 射等作用。
地面对无线电波的吸收
地面对无线电波的吸收是指电波在传 播过程中,由于地面物质的吸收作用 而导致的能量损耗。
VS
地面对无线电波的吸收与地面的物质 成分、湿度、温度等因素有关,不同 的地面类型对电波的吸收程度不同。
对流层传播模型
对流层传播模型适用于电波在对流层中的传播,由于对流层的气象条件复杂多变,电波传播受到大气 折射、散射、吸收等因素影响。
对流层传播模型需要考虑大气温度、湿度、气压等参数,以及气象条件对电波传播的影响。
电离层传播模型
01
电离层传播模型适用于电波在电 离层中的传播,电离层对电波的 折射、反射、散射等作用会影响 电波的传播路径和强度。
、雷达等领域。
无线电波的产生与传播
产生
无线电波可以通过电子运动、振荡器 、天线等设备产生。
传播
无线电波在传播过程中会受到多种因 素的影响,如大气、地形、建筑物等 ,其传播方式和距离也会因此而有所 不同。
02 无线电波传播方式
直射传播
直射传播是指无线电波直接从发射天线沿直线到达接收设备 ,不经过其他介质或物体的反射、折射或散射。直射传播的 路径损耗较小,信号质量较好,但受地形、建筑物等遮挡物 的影响较大。
自由空间传播模型
自由空间传播模型适用于电波在自由 空间中的传播,其假设电波在均匀介 质中沿直线传播,不受地球曲率、大 气折射等因素影响。
自由空间传播模型的公式为:$d = frac{c}{2pi f sqrt{epsilon}}$,其中 $d$为电波传播距离,$c$为光速,$f$ 为电波频率,$epsilon$为介电常数。

无线电传播理论

无线电传播理论

视距传播对于导航信号而言是一种优秀的传播方式,获 得了非常广泛的应用。目前,民用航空所使用的绝大部分 导航系统,如VOR、DME、ILS、MLS、LRRA以及GNSS 等,均采用了这种传播方式。
4.三种传播方式特点的比较及导航信号的传播方式
导航信号的传播方式有三种。 ➢ 地波传播、 ➢ 视距传播、 ➢ 波导模传播(OMEGA系统)
图 地波传播(Ground-Wave Propagation)
地波传播的优点和缺点可以看出,地波传播是适合传播导航 信号的,但对于要求苛刻的航空用户而言,相比于视距传播, 地波传播并不是一种优秀的传播方式。采用地波传播的导 航系统主要有奥米加导航系统、罗兰-A和罗兰-C以及 ADF-NDB,但对于民用航空使用的奥米加导航系统和ADFNDB来讲,ICAO已在20世纪90年代停止使用奥米加导航系 统,ADF-NDB尽管还在使用,但只能作为辅助导航系统。
2.天波传播(Ionospheric Propagation)
天波传播是指电波由发射天线向高空辐射,在高空被电离 层连续折射或散射而返回地面接收点的传播方式,有时也 称为电离层电波传播,如图2-x所示。长、中、短波都可 以利用电离层反射传播,但以短波为主。
电离层是地球高空大气层的一部分,高度从60km一直 延伸到1000km左右。在此范围内,主要由于太阳的紫 外辐射和高能微粒辐射,也受其他星体紫外辐射的影响, 使大气分子部分游离,形成了自由电子、正负离子和中 性分子、原子等组成的等离子体。
3.视距传播(Direct-Wave Propagation)
视距传播是指在发射天线和接收天线之间能相互“看 见”的距离内,电波直接从发射点传播到接收点的一种传 播方式,也常称为直达波传播,如图2-x所示。这种传播方 式主要发生在甚高频(VHF)以及VHF以上各频段信号的 传播。

无线电波段划分及传播方式

无线电波段划分及传播方式

无线电波段划分及传播方式频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm 到0.1mm左右)频谱范围内的电磁波,称为无线电波。

电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。

发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播.无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段.根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别。

光速÷频率=波长无线电波波段划分波段名称波长范围(m)频段名称频率范围超长波长波中波短波1,000,000~10,00010,000~1,0001,000~100100~~1010~11~0.10.1~0.010.01~0。

001甚低频低频中频高频甚高频特高频超高频极高频3~30KHz30~300KHz 300~3,000KHz 3~30MHz30~300MHz 300~3,000MHz 3~30GHz30~300GHz超短波米波分米波厘米波毫米波电波主要传播方式电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间.任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。

传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。

根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种:地表传播对有些电波来说,地球本身就是一个障碍物。

当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。

那些走直线的电波就过不去了.只有某些电波能够沿着地球拱起的部分传播出去,这种沿着地球表面传播的电波就叫地波,也叫表面波。

无线电波传播特性与频段的划分

无线电波传播特性与频段的划分
1.3 无线电管理
(3)排他性 当某个频段被人占用以后,同一时间,同一区域 的其他人就不能再使用这个频段,两个通信系统同 时使用相同的频段将造成严重的干扰。因此,从管 理的角度来看,频率资源的使用具有排他性,即一 个部门(个人)使用以后,另一个部门(个人)就 不能同时使用这一资源。这种矛盾也必须通过管理 来解决。
2、介质对无线电波传播的影响 (1)金属对于无线电波的屏蔽作用
金属是良导体,电磁波在金属中传播时会感应 出传导电流,这一电流在金属中流动时发热,电 磁波能量转化为热能,无线电波很快衰减。因此, 无线电波不能在金属等良导体介质中传播。根据 这个道理,用金属板围成一个密闭的房间,外面 的无线电信号就无法进入这个房间,这表明金属 对于无线电波有屏蔽作用。
天 波 传 播
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (4)散射传播 :包括对流层散射传播和电离层散射传播两种模

无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (5)地空传播:穿透电离层的直射传播模式称为地空传播 模式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性
无线电波传播特性与频段的划分
1.3 无线电管理
(2)微功率无线电设备研制 研制微功率无线电设备须按国家无线电管理机构 发布的《研制无线电发射设备的管理规定》办理有 关手续。 (3)微功率无线电设备的生产和进口 生产、进口微功率无线电设备须按国家无线电管 理机构发布的《进口无线电发射设备的管理定》、 《生产无线电发射设备的管理规定》办理有关手 续。所生产的产品性能指标须符合本规定的要求, 不符合要求的产品不得出厂。波传播
地 波 传 播
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (2)空间波传播 :一部分直接由发射天线传向接收天线;另一

第3讲 无线电波传播理论

第3讲 无线电波传播理论

ε μ
E2
θ θ E1
WdBm XdBm
穿透损耗=X-W=B dB
电磁波穿透墙体的反射和折射
物体阻挡/穿透损耗为:
隔墙阻挡:5~20dB
楼层阻挡:>20dB,
室内损耗值是楼层高度的函数,-1.9dB/层
家具和其它障碍物的阻挡: 2~15dB
厚玻璃: 6~10dB
火车车厢的穿透损耗为:15~30dB
基本原理-传播路径
①建筑物反射波 ②绕射波 ③直达波 ④地面反射波
在一个典型的蜂窝移动通信环境中,在蜂窝基站与
移动台之间的通信不是通过直达路径,而是通过许多其
他路径完成的。
无线电波以视距内直射波、反射波和散射为主要传
播方式,大部分情况是移动台附近散射体产生的多个反
射波。这些经过不同传播路径到达接收机的信号将具有
3.3无线电波传播模型
无线传播模型是计算电磁波在传播过程中的传播损耗
的数学模型。
传播模型是十分重要的,是移动通信网规划的基础。
无线电波的传播模型就是通过实际的测量,并借助计 算机,对不同区域的测量结果进行曲线拟合,最终勾 勒出电波在不同地形条件的传播公式。
传播模型的准确与否关系到小区规划是否合理,运营
号,在接收端对不同频率的信号进行合成,利用不同频
率的无线载波的不同路径减少或消除衰落的影响。
由于频率资源的限制,在移动通信系统中一般不
采用这种分集技术。
抗多径衰落技术—分集接收
分集的含义 ������ 接收机对多个携带同一信息且衰落特性相互独立 的接收信号处理后达到克服多径衰落的目的
两种处理方法:
无线传播环境十分复杂,传播方式多种多样,几乎 包括了电波传播的所有过程,如:直射、绕射、反射、 散射。 直射: 直射是无线电波在自由空间传播的方式。自由空间 是一个理想的无限大的空间,是为了减化问题的研究而 提出的一种科学的抽象。在自由空间的传播衰落不考虑 其它衰落因素,仅考虑由能量的扩散而引起的损耗。

5.无线电波传播的基本理论(V0.2)

5.无线电波传播的基本理论(V0.2)
L = K1 + K 2 Log10 (d ) + K 3 H ms + K 4 Log10 H ms + K 5 Log10 ( H eff ) + K 6 H eff Log10 (d m ) + K 7 ( LDIFF ) + K clutter
移动台距基站的距离 绕射损耗
d
LDIFF
H eff 基站天线的有效高度
6
反射
在平地面上传播的双射线模型
7
多径衰落
多径衰落
当接收机在可引起反射、绕射的复杂环境下移动时, 当接收机在可引起反射、绕射的复杂环境下移动时, 在不到一个波长范围内会出现几十分贝的电平变化和激烈的相位摆动
8
绕射
当接收机和发射机之 间的无线路径被物体 的边缘阻挡时发生绕 射。 绕射使得无线电信号能够传播 到阻挡物后面。 到阻挡物后面。
通常基于几何绕射理论 )、物理光学 (GTD)、物理光学 )、 (PO)的射线跟踪或其 ) 他精确方法。 他精确方法。
29
三类小区
宏小区(宏蜂窝) 宏小区(宏蜂窝)
覆盖范围通常大于1Km 覆盖范围通常大于 高发射功率,大于20W 高发射功率,大于 高增益天线10dBi~20dBi 高增益天线 ~ 天线高过周围环境 常用于郊区、农村、 常用于郊区、农村、公路等 解决覆盖问题 通常采用经验传播模型或半 确定性经验传播模型进行预 测
16
陆地移动通信中的无线信号
小尺度衰落 小尺度上信号包络的变化是描述多径衰落的, 小尺度上信号包络的变化是描述多径衰落的, 通常服从瑞利概率密度函数, 通常服从瑞利概率密度函数,因而也称为瑞利 衰落。 衰落。 中尺度衰落 中尺度的传播机制描述的是阴影衰落, 中尺度的传播机制描述的是阴影衰落, 当以分贝表示时, 当以分贝表示时,这种变化趋向于正态 高斯)分布, (高斯)分布,通常称为对数正态衰落 大尺度衰落 大尺度的传播机制描述的 是区域均值, 是区域均值,具有幂定律 传播特征, 传播特征,即中值信号功 率与距离长度增加的某次 幂成反比变化

《无线电波的发射、接收和传播》课件1

《无线电波的发射、接收和传播》课件1
( ). A.必须对信号进行调制 B.必须使信号产生电谐振 C.必须把传输信号加到高频电流上 D.必须使用开放回路
解析 该题考查电磁波的发射过程.电磁波的发射过程中, 一定要对低频输入信号进行调制,用开放电路发射.为了有 效地向外发射电磁波,必须使电路开放,A、C、D正确.而 产生电谐振的过程是在接收无线电波,B不正确.
答案 BD
借题发挥 记住波长越长衍射能力越强,波在各种介质中传 播时频率不变,传播速度公式v=λf是解题的关键.
【变式2】 下列说法正确的是
( ).
A.发射出去的电磁波,可以传到无限远处
B.无线电波遇到导体,就可以在导体中激起同频率的 振荡电流
C.波长越短的电磁波,越接近直线传播
D.移动电话是利用无线电波进行通信的
(2)高频电磁波的频率随信号的强弱而变的调制方式叫调频, 电台的立体声广播和电视中的伴音信号,采用调频波.
解调是调制的逆过程
声音、图象等信号频率相对较低,不能转化为电信号直接 发射出去,而要将这些低频信号加载到高频电磁波信号上 去.将声音、图象信号加载到高频电磁波上的过程就是调 制.而将声音、图象信号从高频信号中还原出来的过程就 是解调.
二、无线电波的分类 λ≥1毫米的电磁波叫无线电波. 无线电波可以分成若干波段
波段 长波
波长
频率
30 000~3 10~100千赫 000米
传播方式 地波
主要用途
超远程无线 电通讯和导 航
续表
中波 中短波 短波
3 000~ 200米
100~1 500千赫
200~ 1 500~6 000千 50米 赫
正确理解调谐的作用
世界上有许许多多的无线电台、电视台及各种无线电信号, 如果不加选择全部接收下来,那必然是一片混乱,分辨不 清.因此接收信号时,首先要从各种电磁波中把我们需要 的选出来,通常叫选台.在无线电技术中利用电谐振达到 该目的.

《5G移动通信系统及关键技术》第05章 5G的频谱5.4-5.5

《5G移动通信系统及关键技术》第05章 5G的频谱5.4-5.5

频谱资源的使用主要存在的两个矛盾:
一是可用频谱资源稀缺,而已用频谱资源利用率低;
二是频谱划分固定,而频谱需求动态变化。
问题根源:频谱管理方式确定的频谱划分无法及时地根据需
求做出及时调整。
解决方法:采用动态的频谱管理方式进行动态频谱共享,可
显著提升频谱资源的使用效率。
1-17
5.4.4 动态频谱共享技术
第五章 5G的频谱
内容提要
5.1 无线频谱 中低频频谱
5.4 频谱共享
5.5 高频频谱
5.6 白频谱的利用
5.7 全频谱接入
5.8 认知无线电
1-2
频谱共享
频谱目前主要由国家统一管理和授权使用。
当前无线频谱利用中最突出的问题是整体频谱利用效率低。
频谱分配方式——独占授权方式,即无线电管理部门通过行
TV白频谱
免执照模式
用户等级
最高
次要
次要

已有主用户




牌照发放
需要
需要
不需要
不需要
牌照区域有效性
全国
全国或分区域


频谱使用方式
独占
共享
机会接入
机会接入
功率
高功率
高功率/低功率
低功率
低功率
QoS
有效保证
有效保证
不保证
不保证
感知
不需要
可选
可选
不需要
数据库
不需要
需要
需要
不需要
1-6
5.4.1 频谱共享的内涵
或应用共享使用。
实现简单,授权用户在获得授权前即通过与原频谱所有者及

无线电波传播基础理论-PPT文档资料27页

无线电波传播基础理论-PPT文档资料27页
Coverage Threshold dBm
Location P robablity %
-70 -74 -78 -82 -86 -90 -94 -98 -102 -106 -110
1.8 传播模型
• 总体而言GSM1800MHz频段的覆盖比GSM900M频段要差一些:
– Okumura – Hata公式中GSM1800M频段的路径损耗比GSM900M频段大
9.79dB
– 功率预算中GSM1800M频段MS发射功率比GSM900M频段小3dB(各自 分别为30dBm和33dBm)
– 50m长 7/8” 电缆损耗差值为0.97dB – GSM1800与GSM900相比较,所有以上各项给出了 13.77 dB差值 • 但实际的场强测量和1800M频段的模型校正发现平均差值并没有这么大 – 通常 Okumura – Hata模型1800M频段的修正因子比900M频段小3~6dB。
1.1 研究电波传播特性的必要性
• 无线电波传播特性的研究和了解是移动通信网络规划和建设的基础,从 频段的确定、频率分配、无线电波的覆盖范围、计算通信概率及系统 间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传 播特性的研究、了解和据此进行的场强预测。
• 无线电波传播与工作频率有关,如450MHz、900MHz和1800MHz的电 波传播特性差别很大;
1805-1850MHz(BS)
CDMA
825-835MHz (MS) 870-880MHz (BS)
由上表可以看出移动通信频段位于UHF频段范围内,是以空 间波的方式进行传输的。
1.3 dB概念的介绍
• Calculations in dB (deci-Bel) • logarithm ic, relative scale

无线电各频段的传播规律

无线电各频段的传播规律

无线电波段的传播规律无线电频率从低频到高频被划分成许多不连续的波段,常用的有HF频段、VHF频段和UHF频段,频率再高的微波频段只用于业余卫星通讯和微波通讯实验。

下面简要的介绍一下常用的业余无线电波段的传播规律。

一、160m频段(频率1.80~2.00MHz)这是业余无线电台允许使用的最低频段。

这个波段的传播规律跟中波很相似,白天主要是靠地面波进行近距离的通讯,晚上可以通过电离层D层反射进行远距离通讯,最佳的通讯时机是通讯双方都处于日出日落的交界时间。

在冬天的傍晚或黎明时分,是用160m频段进行远距离通讯的时候。

由于这个频段频率比较低,需要架设庞大的天线,电离层对它的衰减也比较大,需要较大的功率才能达到远距离的通讯,因此,操作的人较少,并且多用CW进行联络。

二、80m频段(频率3.50~3.90MHz)这个频段的传播规律与160m频段相似,主要是以F层和E层混合传播为主。

夏天和白天由于D层和E层的电子密度高,这个频段以下的电波会被吸收掉而不能经电离层反射,白天只能进行100~200km距离的通讯。

同时,在夏天经常发生雷电,使频段上有很大的噪音,弱小的信号不能被听到。

在冬季的傍晚或黎明时分,进行远距离通讯的效果比160m频段好,通联到远距离电台的机会也大。

这个波段的天线也是比较庞大,但比起160m频段的天线已经缩小了许多,况且现在也有许多缩短型的产品天线,使这个波段架设天线的难度减低。

一般简易架设多用水平半波偶极天线,缩短型的产品无线多为垂直接地型的天线,有大的架设场地和充足的资金就可以在几十米的铁塔上架设起庞大的八木定向天线!效果好的天线是既要架得高,又要长度够。

三、40m频段(频率7.00~7.20MHz)这是个短波初学者的入门频段之一,也是最拥挤热闹的频段。

这个频段操作范围比较窄,但几乎全年全天大多可以进行QSO。

白天可以进行几百公里的通联,在傍晚或黎明时分是开通远距离通讯的好机会,这时各国的许多电台在狭窄的频段内互相拥挤,加上本身频段的严重杂音,汇集成一幅繁华的市井图。

5g电波传播与无线信道测量虚拟仿真实验原理

5g电波传播与无线信道测量虚拟仿真实验原理

5g电波传播与无线信道测量虚拟仿真实验原理
5G网络中的电波传播和无线信道测量是关键技术,而虚拟仿真实验则是研究这些技术的常用手段。

其原理如下:
1. 电波传播模型:电波在空气中传播时受到衰减和反射等干扰。

对于不同的环境和频率,传播模型也不同。

虚拟仿真实验可以通过构建不同的场景和环境,模拟不同频率的电波在空间空气中的传播和干扰情况。

2. 无线信道测量模拟:无线信道测量是对网络中无线传输历程的测试和评估。

因为其难以在真实环境中进行精确实验,虚拟仿真实验可以通过模拟不同网络场景下的无线信道传播,测试无线信号的接收质量和干扰程度。

3. 虚拟仿真实验设计:在进行虚拟仿真实验时,需要选取合适的仿真软件和相应的模型。

通过模拟现实情境,设计实验方案和数据采集,进行模拟仿真实验,获得数据,进行数据分析,最终评估网络的质量。

通过上述原理,虚拟仿真实验可以对5G网络中的电波传播和无线信道测量进行模拟研究,在真实环境不易得到的情况下,提供了一种有效手段,为5G网络的建设和优化提供指导。

教科版高中物理选择性必修第二册精品课件 第4章 无线电波的发射、传播与接收 无线电波与移动互联网

教科版高中物理选择性必修第二册精品课件 第4章 无线电波的发射、传播与接收 无线电波与移动互联网

频率 相
等时,电路中激起的感应电流最强,这种现象叫作电磁谐振,也称为电谐振。
(3)调谐:使接收电路中产生 电谐振
的过程叫作调谐。能够调谐的接
收电路叫调谐电路。
四、无线电波与移动互联网
(1)信息技术的核心内容:获取、表达、 存储 和 传递 。
(2)蜂窝系统:每一个固定的 基站 的工作范围经过合理的调配后呈正六
C.增大自感线圈的匝数
D.提高供电电压
解析 要增大无线电波向空间发射电磁波的能力,必须提高其振荡频率,即
减小L或减小C,要减小L,可通过减小线圈匝数、向外抽铁芯的方法;要减小
C,可采用增大板间距离、减小极板正对面积、减小介电常数的方法,故B
正确。
探究点二
无线电波的接收
导学探究
如图所示,我们调节旋钮改变的是什么?调节的目的又是什么?
振幅也就随着声音信号的变化而变化,这就是调制。它不但影响了正半周,
也影响了负半周,故选B。
1 2 3 4
4.(电磁波发射)(多选)在电磁波的发射过程中,用一平行板电容器C和一个
线圈L组成LC振荡电路,要增大发射电磁波的波长,下列调节正确的是( BD )
A.增大电容器两极板间的距离
B.增大线圈的匝数,在线圈中加铁芯
电磁波。
(2)调制:把传递的信号加到载波上的过程。
①调幅:振幅随信号的强弱而变。
②调频:频率随信号的强弱而变。
二、无线电波的传播
(1)地波:沿地球表面空间传播的无线电波叫作地波。 长波
和中短波可用作地波。
电离层
(2)天波:依靠
中波
、________
的反射来传播的无线电波叫作天波。
短波
最适合以天波的形式传播,可传播到几千千米外的地方。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

w2
ε 0μ 0
ε μ ε 0μ 0
E2
θ

θ
WdBm XdBm
E1
穿透损耗=X-W=B dB
电磁波穿透墙体的反射和折射
穿透损耗
P
1
4
Lfs 10log(
Pt Gt Gr
) 20log( ) (dB)
Lfs 32.45 20log(dkm ) 20log(fMHz ) (dB)
其它传播模型都是以自由空间传播模型为理论基础发展起来的
无线传播的特点
陆地移动通信的电波传播机制
LOS和NLOS
实际环境的无线传播

空间某处只要有变化的磁场就能激发出涡旋电场,而变化的电场又能激发涡旋磁场。 交变的电场和磁场互相激发就形成了连续不断的电磁振荡即电磁波。 电磁波的速度只随介质的电和磁的性质而变化,电微波在真空中传播的速度,等于光在真空
中传播的速度。 光和电磁波在本质上是相同的,光是一定波长的电磁波。

无线传播的理论基础
若接收天线有效接收面积为Ae (m2),增益为Gr (dBi) ,则两者关系:
2 Ae 4 Gr
(m 2)
因此在距离d处接收到的功率为:
P Pfs A e
P tGt
4d
2
2Gr 4
2 (4d) 2 Pt Gt Gr (W)

无线网络规划、设计的理论基础是传播损耗,自由空间传播损耗为:
10~1m

分米波(UHF,超高频)
300~3000MHz
2
10~10cm
厘米波(SHF,特高频)
3~30GHz
10~1cm
毫米波(EHF,极高频)
30~300GHz
10~1mm
微波
亚毫米波(超极高频)
300~3000GHz
1~0.1mm
注:上表摘自 潘仲英所著《电磁波、天线与电波传播》。
①建筑物反射波 ②绕射波 ③直射波 ④地面反射波
无线信道特征
无线信道随用户的位置和 时间而变化
Pr (dBm) -20
多径散射、阴影遮挡使得
接收功率发生剧烈变化
-40
慢衰落
-60
衰减:Pr正比于1/dn
阴影:障碍物遮挡
快衰落
10
20
多径效应
• 在很小的距离间隔和时间间隔上,信号强度快速变化 • 产生Doppler频移 • 产生时延扩展
利用无线通信可以传送电报、电话、传真、数据、图像 以及广播和电视节目等通信业务
无线电波的基本知识
无线电波是一种能量传输形式,在传播过程中, 电场和磁场在空间是相互垂直的,同时这两者又 都垂直于传播方向

电磁波的产生
根据Maxwell方程组:
假设点源发射功率为Prad (W),在距离d (m)处的单位面积功率(即Poynting矢量)为:
Pfs
P rad
4d 2
(W/m )2
对于实际天线,若辐射功率为Pt (W),天线增益为Gt (dBi) ,则Poynting矢量为:
Pfs
P tGt
4d 2
(W/m )2
无线电波理论及5G频谱

提纲
无线电波频段 电磁波理论 5G频段

电磁波谱

无线电波波段划分
波段
频率范围
波长范围
极长波(EFL,极低频)
3~30Hz
54
10~10km
特长波(SLF,特低频)
30~300Hz
43
10~10km
不同的频段内的频率具有不同的传播特性
无线电波波段用途

提纲
无线电波频段 电磁波理论 5G频段

无线电通信
利用电磁波的辐射和传播,经过空间传送信息的通信方 式称之为无线电通信(Wireless Communication), 称之为无线通信。
超长波(ULF,超低频)
300~3000Hz
32
10~10km
甚长波(VLF,甚低频)
3~30kHz
2
10~10km
长波(LF,低频)
30~300kHz
10~1km
中波(MF,中频)
300~3000kHz
32
10~10m
短波(HF,高频)
3~30MHz
2
10~10m
超短波(VHF,甚高频)
30~300MHz
绕射损耗
特点
电磁波在绕射点四处扩散 绕射波覆盖除障碍物外的所有方向 扩散损耗最为严重 计算公式复杂,随不同绕射常数变化

穿透损耗
室内信号取决于建筑物的穿透损耗 室内窗口处与室内中部信号差别较大 建筑物材质对穿透损耗影响较大 电磁波的入射角对穿透损耗影响较大
d
w1 D
• 可看作时间分集
时延扩展
多径传播:不同路径的信号到达接收机的时间不同
当多径信号不能被接收机区分时就产生同信道干扰(CCI),对于 WCDMA系统,多径时延必须大于一个码片周期(0.26µs)才能被识别
典型值 (µs): Open < 0.2, Suburban = 0.5, Urban = 3
快衰落 慢衰落

30
d (m)
分集技术
抗快衰落措施-分集技术
-显分集
• 空间分集 • 极化分集 • 频率分集:GSM--跳频,WCDMA--扩频技术 • 其它:方向性分集、场分集、发射分集
-隐分集

• 隐分集即是利用信号处理技术将分集作用隐含在被传输信号之中, 如RAKE接收技术、信道交织、纠错编码等
解决
均衡、RAKE技术www.huDoppler频移Doppler效应的例子:火车经过你的身边
移动通信中的Doppler频移
f1 f3
V:移动台速度 :信号到达角度

f2 V(km/h)
• 绕射损耗 T
• 地物损耗
损耗
T R
• 穿透损耗 R

振 子
电场
磁场
电场 电波传输方向
磁场
电场
电磁波的传播
池塘中的波纹:能量从源点向四周传播,并逐渐减弱 电磁波的传播与此类似,不同之处(当辐射源是各向同性的
理想点源时):
在三维空间以球面波的形式传播 传播介质不同,空气、障碍物、反射物

无线传播的理论基础
在自由空间中,由点源发射的正弦波向各个方向辐射球面波,此时该点源称为各向同性辐射源
相关文档
最新文档