2019年秋七年级数学上册 第一章 有理数 1.5 有理数的乘方 1.5.1 乘方 第1课时 乘方习
初中数学七年级上册《1.5.1有理数的乘方(第一课时)》教学课件
2.你能迅速判断下列各幂的正负吗?
165
254
(-8)5
(-3)6
(-1)101
(-2)50
新知小结一
根据有理数乘法法则可以得出: 负数的奇次幂是______,负数的偶次幂是______. 正数的任何次幂都是______, 0的任何正整数次幂都是______.
巩固练习二 1.(-10)8 中-10叫做____数,8叫做____数. 2. -(-2)3 是________(填正数或负数).
人教版七年级上册第一章《有理数》
1.5.1有理数的乘方
学习目标
1.知道乘方、底数、幂的意义,会读乘方算式,会进行 有理数乘方运算. 2.经历乘方符号法则的探究过程,知道乘方的符号法则. 3.能够进行有理数混合运算.
一 内容感知
知识探究一
1.边长为3cm的正方形的面积是多少?
2.棱长为3cm的正方体的体积是多少?
新知小结二
一个运算中,含有有理数的加、减、乘、除、乘方等多 种运算,称为有理数的混合运算.
做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号、中括号、 大括号依次进行.
巩固练习三
巩固练习二
3.计算
(1)(-1)8Βιβλιοθήκη (2)(-1)7(4) 34
(5)(-2)3
(7)(-0.1)3 (8)(-10)4
(3)(-3)3 (6)(-2)4 (9)(-10)5
例1.计算
例题讲解
例题讲解
例2.观察下列三行数,回答下列问题. -2,4,-8,16,-32,64,…; ① 0,6,-6,18,-30,66,…; ② -1,2,-4,8,-16,32,….; ③ (1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关系?
人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计
人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。
本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。
教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。
但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。
因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。
三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。
2.能够熟练进行有理数的乘方运算。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。
2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。
五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。
2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。
3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。
4.实际应用:引导学生运用有理数乘方知识解决实际问题。
六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。
2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。
3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。
七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。
让学生初步认识有理数乘方。
2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。
2019年秋七年级数学上册 第一章 有理数 1.5 有理数的乘方 1.5.1 有理数的乘方课件 新
h
14
课堂练习
1、在 46 中,底数是 4 ,指数 6 ,
2、 47 读做 -4的7次方或-4的7次幂;
3、 2 15 的结果是 负 数(填“正”或“负”)
4、计算: 23 = -8 .
5、计算:
1 2
4
=
1 16
.
6、(1)2n12n10 .
h
15
课堂练习
7、0.25848 = 1 .
8、m 的底数是 m 指数是 1
(4)在5中,底数是___5__,指数是__1____.
h
12
探索新知
h
13
典题精讲
例1:计算
(1) 4 3 64
(3) ( 5 ) 2 25
(2) ( 2 ) 4 16
3
81
(4) (4)3 64
(5)
2 3
4
16 81
(6) 0 7 0
想一想:
观察例1的结果,乘方运算的符号有什么规律?
h
5
情景导入
珠穆朗玛峰是世界的最高峰, 它的海拔高度是8844.43米。
把一张足够大的厚度为0.1毫 米的纸,连续对折30次的厚度能超 过珠穆朗玛峰。这是真的吗?
真的
230×0.1=1073741824 × 0.1
=107374182.4(毫米)
≈ 107374(米)
h
6
探索新知
探究过程要求:把一张纸进行对 折、再对折……并回答下面的问 题?
这样捏合到第 7 次后可拉出128根面条。
h
17
课堂小结
乘方的 求n个相同因数积的运算叫做乘方.
意义
1、正数的任何次幂都是_正__数__
人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)
.
解:(1) (-4)3=(-4)×(-4)×(-4)=-64;
(2) (-2)4=(-2)×(-2)×(-2)×(-2)=16;
(3) 2 3 3= 2 3 2 3 2 3 =2 8 7.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数. 正数的任何正整数次幂都是正数,0的任何正 整数次幂都是0.
- 1 (当n为奇数时)
(9)(-1)n=
1
(当.n为偶数时).
1.求几个相同因数的积的运算,叫做乘方.
a 幂
n 指数
2.乘方的符号法则: 底数 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)零的正整数次幂都是零
3.注意:
an与an 二者的区别及相互关系;
人教版七年级数学上册1.5有理数的乘方1.乘 方第1课时 乘 方
13.视察下列算式并总结规律:31=3,32=9,33=27,34=81,35 =243,36=729,37=2187,38=6561,….用你发现的规律写出3999 的末尾数字是( D ) A.1 B.3 C.9 D.7
14.视察下列各式: 13=12, 13+23=32, 13+23+33=62, 13+23+33+43=102, … 猜想13+23+33+…+103=_5_5_2_.
9.(1)(2017·湖州模拟)计算:23×(12)2=__2__; (2)一个数的平方等于它本身,这个数是__1_或__0___.
10.计算:
(1)(-5)2; (2)-(-23)3; 解:25 解:287 (3)(-10)4; (4)(-131)3. 解:10000 解:-6247
11.下列结论:①-(-2)2=4;②-5÷15×5=-5;③232=94;④(-3)2×(- 13)=3;⑤-33=9.其中错误的个数为( D ) A.2 个 B.3 个 C.4 个 D.5 个 12.若 a 为有理数,则下列各式:①(-a)2=a2;②(-a)2=-a2;③(-a)3 =a3;④|-a3|=a3.其中一定成立的有( A ) A.1 个 B.2 个 C.3 个 D.4 个
解:由题意,得26=64(根).因为28=256,所以当对折成256根面条时, 对折了8次
18.(阿凡题:1069926)若|a-1|与(b+2)2互为相反数,试求a202X+(a+b)2015的 值. 解:由题意得|a-1|+(b+2)2=0,所以a-1=0,且b+2=0.所以a=1,b=-2. 所以a202X+(a+b)2015=1202X+[1+(-2)]2015=1202X+(-1)2015=1+(-1)=0
6.计算(-18)+(-1)9的值是( C ) A.0 B.2 C.-2 D.不能确定 7.下列各组数中,相等的一组是( C ) A.23与32 B.23与(-2)3 C.32与(-3)2 D.-23与-32 8.下列说法错误的是( C ) A.-52是5的平方的相反数 B.0的任何正整数次幂都是0 C.任何有理数的偶数次幂都是正数 D.任何有理数的平方是非负数
人教版七年级上册数学1.5.1《有理数的乘方》教学设计
引导学生探讨乘方的逆运算,如开平方、开立方等,激发学生的思维,为后续学习打下基础。
6.总结反馈,查漏补缺
通过课堂小结,让学生回顾本节课的学习内容,发现并弥补自己的知识漏洞。
7.课后作业,巩固提高
布置适量的课后作业,包括基础题和提高题,让学生在课后巩固所学知识,并适当拓展。
8.关注个体差异,实施个性化教学
(2)一个正方体的边长是5cm,求它的表面积和体积。
4.思考题:
(1)如何计算负数的奇数次幂和偶数次幂?
(2)有理数的乘方在实际生活中有哪些应用?
作业要求:
1.认真完成作业,字迹清楚,保持卷面整洁。
2.注意有理数乘方的计算法则,避免常见错误。
3.对于应用题和思考题,尽量用自己的语言进行解答,体现思考过程。
2.教师引导学生通过具体的例子,总结有理数乘方的计算法则。
师:请同学们观察以下算式,并总结有理数乘方的计算法则。
算式:(-2)^2, (-2)^3, (-2)^4, ...
生:负数的偶数次幂是正数,负数的奇数次幂是负数。
3.教师强调有理数乘方计算法则中的注意事项,并进行讲解。
(三)学生小组讨论,500字
人教版七年级上册数学1.5.1《有理数的乘方》教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的定义,知道乘方的意义是表示几个相同因数的乘积。
2.掌握有理数乘方的计算法则,能够准确进行有理数乘方运算。
3.能够运用有理数乘方的知识解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
1.观察生活中的乘方现象,培养学生发现问题的能力。
2.学生分享学习心得,教师给予鼓励和肯定。
3.教师布置课后作业,要求学生在课后巩固所学知识,并为下一节课做好准备。
数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an
人教新课标版 初中数学七年级上册第一章1.5.1有理数的乘方课件
猜一猜
2
1.5 有理数的乘方
3
学习目标
(1)理解有理数乘方的意义. (2)理解乘方运算、幂、底数等概念的意义. (3)能正确进行有理数乘方运算. 学习重点:有理数乘方的意义. 学习难点:幂、底数、指数的概念及其表示 .
4
合作交流 探究新知
这种求n个相同因数a的积的运算叫做乘方,
乘方的结果叫做幂,a叫做底数,n叫做指数,
an读作a的n次幂(或a的n次方)。
a×a×……×a = a n
n个a
a 底数
n
指数
相同因数的个数
因数
幂
(1次方可省略不写,2次方又叫平方,3次方又叫立方)
5
巩固训练 深化理解
1、在 9 4 中,底数是_________,指数是_______, 9 4 表示4个____相乘,读作___________,也读作_______.
致亲爱的同学们:
天空的幸福是穿一身蓝 森林的幸福是披一身绿 阳光的幸福是如钻石般耀眼 老师的幸福是因为认识了你们 愿你们努力进取,永不言败
1
创设情境
珠穆朗玛峰是世界的 最高峰,它的海拔高度 是8844米。
把一张足够大的厚度 为0.1毫米的纸,连续 对折30次的厚度能超过 珠穆朗玛峰。这是真的 吗?
2、( - 5)2 的底数是______,指数是________,表示_________,
读作_____的2次方,也读作-5的__________.
3(、2 )4 表示______个 2 相乘,叫做 2 的______次方,也叫
3
3
3
做
2 3
2
的_____次幂,其中,3
叫做_______,4叫做_______.
人教版七年级上册数学教学课件:1.5.1 乘方
首页
末页
目录
教材全面解读
易错易混警示
重点题型剖析
中考教材对接
注意
乘方就是几个相同的因数相乘,因此可以利用有理 数的乘法运算来进行乘方运算.根据乘方的意义可 知,我们现在所学的乘方中,其指数都是正整数.
首页
末页
目录
教材全面解读
易错易混警示
重点题型剖析
中考教材对接
例1 填空: (1)(-9)7的底数是__-_9____,指数是___7____,可读作 ___-_9_的__7_次__方____或__-9_的__7__次__幂_____,它表示 __7_个__-_9_相__乘_____,-97的底数是___9____,指数是 ___7____,可读作__9_的__7_次__方__的__相__反__数_____,它表示 _(-_(_2_)9_×_把_9_×2__9_×2__9_×2__9_×2__9写_×__成9_×_乘_9_方)__的. 形式为___72__4 __.
正数的任何次幂都是正数
0的任何正整数次幂都是0
乘方运算的 先根据乘方的符号法则确定乘方的符号;
一般步骤
计算乘方的绝对值
首页
末页
目录
教材全面解读
易错易混警示
重点题型剖析
中考教材对接
(1)任何非零数的偶次幂都是非负数,奇 次幂没有这样的性质. (2)互为相反数的两个非零数的同一奇次 幂仍互为相反数,同一偶次幂相等. (3)1的任何次幂都是1,-1的偶次幂是1, -1的奇次幂是-1.
3 5
=
27 125
.
(3)-(-4)3=-[(-4)×(-4)×(-4)]=64.
(4) 33 = 3 3 3 = 27 .
七年级上数学上册 1.5.1 有理数的乘方(一)教案 人教新课标版
1.5.1 有理数的乘方(一)教学目标1,在现实背景中,理解有理数乘方的意义。
2,能进行有理数的乘方运算,并会用计算器进行乘方运算。
3,掌握幂的符号法则。
教学难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算。
知识重点有理数乘方的意义设置情境引入课题1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果。
2.结合学生熟悉的边长为a的正方形的面积是a•a,棱长为a的正方体的体积是a•a•a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容。
小组合作1. 分小组学习教科书49页,要求能结合教产书中的示意图,用自己的语言表达下列几个概念的意义及相互关系。
底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果。
2. 补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?(1)(-2.3)×(-2.3)×(-2.3)×(-2.3)(2)(-)×(-)×(-)×(-)(3)x•x•x•……•x(1999个)3. 此例可由学生口述,教师板述完成。
教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-2)×(-2)×(-2)记作(-2)此例可由学生口述,教师板书完成。
4、小组讨论:应用新知巩固练习1、做一做:教科书第51页练习第1题。
2、用计算器算,以及教科书51页练习第2题。
3、小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0 .课堂小结1、由学生小结本堂课所学的内容。
2、总结五种已学的运算及其结果:运算加减乘除乘方运算结果和差积商幂课后反思:——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————。
【最新】新人教版七年级数学上册第1章《有理数》配套习题1.5.1含答案.docx
4.B - * 3= - -1=-
-1=- -1=- 1 .
5.
6. ± -
2015 2015
7.1 0 若 x,y 互为倒数 ,则 xy= 1,所以 (xy) = 1 = 1;若 x,y 互为相反数 ,则 x+y= 0,所以 ( x+y )2016= 02016= 0.
n
8.(1)8 (2)5 经过分析 ,设捏合次数为 n,则可拉出的细面条根数为 2 .
)
A. 珠穆朗玛峰的高度
B.三层住宅楼的高度
C.一层住宅楼的高度
D.一张纸的厚度
4.现规定一种新的运算 “*”,a*b=a b-1,如 3* 2= 32-1= 8,则 - * 3 等于 (
)
A. -
B. -1
C.- 2
D. -
5.把
写成乘方的形式为
,其底数是
.
6.
的平方是 ,
的立方是 Leabharlann .7.若 x,y 互为倒数 ,则 (xy)2 015=
; 若 x,y 互为相反数 ,则 (x+y )2 016=
.
★ 8.你喜欢吃拉面吗 ?拉面馆的师傅用一根很粗的面条 ,把两头捏合在一起拉伸
就能拉成许多细面条 .如图所示 :
,再捏合、拉伸 ,反复多次 ,
(1)经过第 3 次捏合后 ,可以拉出
根细面条 ;
(2)到第
次捏合后可拉出 32 根细面条 .
9.计算 :
()
A.9 2 016-1
B.9 2 017-1
-
C.
-
D.
★ 11.观察下列各组数 :①-1,2,-4,8,-16,32,… ;②0,3,-3,9,-15,33,… ;③ -2,4,-8,16,-32,64,… .
人教版七年级上册数学第1章1.5.1有理数的乘方(教案)
1.教学重点
(1)有理数乘方的定义:重点理解正整数指数、零指数、负整数指数的乘方运算。
-正整数指数乘方:a^n(a为有理数,n为正整数),如2^3=8。
-零指数乘方:负整数指数乘方:a^(-n)=1/(a^n)(a≠0,n为正整数),如2^(-3)=1/8。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调正整数指数、零指数、负整数指数乘方的概念,以及同底数乘方的运算法则。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过实际折叠纸张来观察面积的变化,演示有理数乘方的实际原理。
人教版七年级上册数学第1章1.5.1有理数的乘方(教案)
一、教学内容
人教版七年级上册数学第1章《有理数》1.5.1节“有理数的乘方”,主要包括以下内容:
1.有理数的乘方定义:理解有理数乘方的概念,掌握正整数指数、零指数、负整数指数的乘方运算。
2.有理数乘方的法则:掌握同底数乘方的运算法则,了解不同底数乘方的性质。
(2)有理数乘方的法则:重点掌握同底数乘方的运算法则。
- a^m × a^n = a^(m+n),如2^2 × 2^3 = 2^(2+3) = 2^5。
人教版数学七年级上册第一章有理数乘方
示例 有理数的乘方运算
1.5.1 乘方
栏目索引
1.5.1 乘方
(2)-32×(-3)3-(-2)3÷2
=32×33+23÷2=9×27+8÷2=243+4=247.
(3) 12
1
2 3
7 4
×(-6)2= 12
5 3
7 4
× 36
= 1 ×36- 5×36+ ×736=18-60+63=21.
2
3
4
(4)-22+[18-(-3)×(-2)4]÷6
栏目索引
3.an,-an及(-a)n的区别与联系
an
-an
(-a)n
相同点
指数都是n
不同点 意义不同
n个a相乘的积
n个a相乘的积的相反数
n个-a相乘的积
底数不同
a
a
-a
联系
n为奇数
-an=(-a)n,且-an,(-a)n都与an互为相反数(a≠0)
n为偶数
an=(-a)n,且an,(-a)n都与-an互为相反数(a≠0)
(2)-42-3×22×
1 3
1÷
1
1 3
=-16-3×4× 23× =34-16-6=-22.
点拨 对于乘方运算,要注意幂的符号,注意区分负数乘方与正数乘方
七年级数学上册教学课件-第一章有理数1.5有理数的乘方1.5.1乘方第2课时有理数的混合运算
例1 计算: (1)2×(-3)3-4×(-3)+15;
(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
解:(1)原式=2×(-27)-(-12)+15 =-54+12+15 =-27
(2)原式=-8+(-3)×(16+2)-9÷(-2)
=-8+(-3)×18-(-4.5) =-8-54+4.5 =-57.5
= -4 -1
= -5
例2
计算:
(3)2
2 3
(
5 9
)
解法一:
解法二:
点拨:在运算过程中, 巧用运算律,可简化计
算
解:原式=
9 (
11 9
)
= -11
解:
原式=
9 (
2 3
)
9
(
5 9
)
=-6+(-5)
=-11
讨论交流:你认为哪种方法 更好呢?
例3 观察下面三行数: -2, 4, -8, 16, -32, 64,…;① 0, 6, -6, 18, -30, 66,…;② -1, 2, -4, 8, -16, 32,…. ③
(3)取每行数的第10个数,计算这三个数的和. 解:(3)每行数中的第10个数的和是
当堂练习
B
D -25
C B
5、计算
( 5)2 (0.6 1 4 2 1 ) ( 3 )
6
5 10
10
( 3 )3 (0.6) 2 ( 4 ) 2 1.53 23 ( 2)3
2
5
3
( 5)2 (0.6 1 4 2 1 ) ( 3 )
人教版七年级数学上册:1.5.1 《乘方》教案
人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。
教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。
本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。
但乘方作为一个新的概念,需要学生从新的角度去理解。
学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。
三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.乘方的意义和运算规则。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.实例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。
2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。
例如,2的3次方表示2乘以自己3次,即2×2×2=8。
3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。
可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。
4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。
例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。
2019秋七年级数学上册 第一章 有理数 1.5 有理数的乘方 1.5.1 乘方 第2课时 有理
第一章有理数...;×89+11×0.12.如果有___________,先算、________及_______运算,这样的(1)136()-÷⨯-在只有加减或只有乘除的同一级运算中,按照式子的顺序从________向_________依次进行.解:原式3(=-÷- 3=.22233()22=363÷) =0.(3)111()÷-解:原式16362=÷-÷ 113266=⨯-⨯1123=- 16=. 【自主归纳】号,要先算括号里面的.三、自学自测 计算:(1)23-()-(-6); 四、我的疑惑一、要点探究探究点1思考:30+5÷22×(-51)-1归纳:1.2.3.例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).探究点2:数字规律探究 例2 观察下面三行数:-2, 4, -8, 16, -32, 64,…;① 0, 6, -6, 18, -30, 66,…;② -1, 2, -4, 8, -16, 32,…. ③ (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系? (3)取每行数的第10个数,计算这三个数的和.分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.1.计算 (1))1(10-×2+)2(3-÷4(2))5(3--3×)21(4-2.观察下列各式: 1=21-1 1+2=22-1 1+2+22=23-1猜想:1+2+22+23+…263= .若n 是正整数,那么1+2+22+…2n= .1.计算3(25)-⨯=( )A.-1000B.1000C.30D.-305.计算:(1)2223(23)-⨯--⨯; (2) 23122(3)(1)6293--⨯-÷-; (3)235()(4)0.25(5)(4)8-⨯--⨯-⨯-; (4) {1+[3)43(41--]×(-2)4}÷(-5.043101--).。
七年级数学上册教学课件《乘方(第1课时)》
.
你发现负数的幂的正负有什么规律?
探究新知
归纳总结
1.5 有理数的乘方
根据有理数的乘法法则可以得出:
1.负数的奇次幂是负数,负数的偶次幂是正数.
2.正数的任何正整数次幂都是正数,0的任何正整 数次幂都是0.
巩固练习
1.5 有理数的乘方
判断:(对的画“√”,错的画“×”.)
(1) 32 = 3×2 = 6;(× ) 32 = 3×3=9
(1)对折3次后,厚度为多少毫米? (2)对折7次后,厚度为多少毫米?
0.8毫米 12.8毫米.
(3)用计算器计算对折30次后纸的厚度.
0.1×230=0.1×1073741824=107374182.4(毫米)
107374182.4毫米=107374.1824米 >8848.86米(珠穆朗玛峰高度)
探究新知
素养考点 3
例3 计算
含有乘方的运算
1.5 有理数的乘方
(1)(-3)2 (- 2)
3
(2)–23×(–32)
解:(1) (-3)2 (- 2 ) 9 (- 2 ) 6;
3
3
(2) –23×(–32)= –8×(–9)=72;
(3)64÷(–2)5
(3)64÷(–2)5=64÷(–32)= –2;
【试一试】
1. (–5)2的底数是__–_5__,指数是___2__,(–5)2表示2个__–_5__相
乘,读作__–_5__的2次方,也读作–5的_平__方__.
2.
1 2
6
表示
6
个 1 相乘,读作1 的
2
2
6 次方,也读作1的 6次幂,
2
其中1叫做 底数
【新人教版】七年级数学上册1.5.1有理数的乘方(第一课时)教案及练习(含答案)
有理数的乘方(1)1.在背景中,理解有理数乘方的意知与技能2. 会利用算器行乘方运算教学目程与方法已知一个数,会求出它的正整数指数,渗透化思想情感度价培养学生察、能力,以及思考、解决的能力,切提高学生的运算能力.教学重点、底数、指数的概念及其表示,理解有理数乘法运算与乘方的系,理好数的乘方运算。
教学点准确建立底数、指数和三个概念,并能求的运算教学程(生活)理念1. 提并引学生回答:在小学里我学一个数的回小学相关知平方和立方是如何定的?怎表示?,利入状a·a 作 a2, 作 a 的平方(或 a 的 2 次方),即 a2=a·a;a·a·a作 a3,作 a 的立方(或 a 的 3 次方),即a3=a·a·a.(分是 a 的正方形的面与棱a 的正方体的体)2. 教展示胞分裂的示意,引学生分析某种胞在背景中置情境情境激学生的分裂程,学生回答教提出来的,并明如引入的学趣。
何得出果。
3. 合学生熟悉的 a 的正方形的面是 a· a, 棱a 的正方体的体是a· a·a 及它的法,告学生几个相同因数 a 相乘的运算就是堂所要学通算正方体的内容。
面和正方体体的例,引出。
乘方定:一般地, n 个相同的因数 a 相乘,即 a· a·⋯· a,作 a n,作 a 的 n 次方.求 n 个相同因数的的运算,叫做乘方,乘方的果叫做.新知探究n中, a 叫做底数, n 叫做指数,当n看作 a 的 n 次在 a a方的果,也可作 a 的 n 次.明:( 1)例 94明概念及法;(2)一个数可以看作个数本身的一次方,通常省略指数 1 不写;n( 3)因为 a 就是 n 个 a 相乘,所以可以利用有理数的( 4)乘方是一种运算,幂是乘方运算的结果.例 1 说出下列各数的底数,指数,表示的含义,并求出结果.5 2,( -3) 4 2,-32 ,1,- 5 452使学生清楚的理点拨:对于每一个数, 应注意是哪一部分进行乘方,解有理数乘方的那才是真正的底数. 若底数为负数或分数, 应打上括号, 意义,真正掌握若没有打括号,表示只有其中的一部分进行乘方.幂、底数、指数解: 52 底数 5,指数 2,52= 5× 5=25. 52 表示 2 个等概念的意义。
人教版数学七年级上册1.5有理数的乘方-课件
出底数,指数各是什么?
1. 5×5×5×5×5
55
2. (-1.3)(-1.3)(-1.3)(-1.3) ( 1 .3) 4
3. 111111 ( 1 ) 6 555555 5
4. m·m ·m ·… ·m
m 2a
2a个
2. 把下列乘方写成乘法的形式:
0.93 = 0 .9 0 .9 0 .9 ;
1.5.1 有理数的乘方
复习提问:
1. 几个不是0的有理数相乘,积的符号是 由什么确定的?
积的符号是由负因数的个数确定的, 若负因数的个数为偶数时,积的符号为正; 当负因数的个数为奇数时,积的符号为负.
问题情境:1个细胞30分钟后分裂成2个,经过5
小时,这种细胞由1个能分裂成多少个?
2×2×·······×2×2
(3) (-3)4
4
(4)
2 (
2=
)9
3
(5)
1
(-
1
3 =-
)8
2
想一想:
观察例1的结果,你能 发现乘方运算的符号有 什么规律?
乘方运算的符号规律
正数的任何次幂都是正 数 负数的偶次幂是正数, 奇次幂是负数
乘方运算的符号规律
(1)正数的任何次幂是正数; (2)负数的偶次幂是正数;
负数的奇次幂是负数; (3)0的任何次幂等于零;天每ຫໍສະໝຸດ 开个放孩;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.