大学物理 振动与波练习题解
大学物理A-振动波动练习题
8*、一平面简谐波,其振辐为A,频率为,沿X轴正向传播.设
t=t0时刻波形如所示.则X=0处质点振动方程为:
(A) y =Acos[2 (t +t0) + /2]; (B) y =Acos[2 (t -t0) + /2]; (C) y =Acos[2 (t -t0) - /2]; (D) y =Acos[2 (t -t0) + ]。
答案:[(C)]
4、图a为某质点振动图线,其初相记为1,图b为某列行波在
t=0时的波形曲线,0点处质点振动的初相记为2;图C为另一
行波在t=T/4时刻的波形曲线,0点处质点振动的初相为3,
则:
(A) 1 =2 =3 = / 2;
Y
(B) 1 =3 /2,2 =3 = / 2 ;
(C) 1 =2 =3 = 3 /2 ; (D) 1 =3 /2,2 = /2 ,3 =0 。
8m
6m
X
C
B
A
答案.:y =510 -2 cos( 4 t+0.2 x);
y =510 -2 cos( 4 t+0.2 x -1.2 ); y =510 -2 cos( 4 t-2.8 )。
11*、一平面简谐波在空中传播。己知波线上P点的振动规律为: y =Acos (t + );根据图中所示两种情况,分别列出以O点为 原点时的波动方程。对于图a是: 对于图b是:
3
Байду номын сангаас
(D)0 =- /2,2 = /2 ,3 = 。 0 1 2 4
u X(m)
答案:[(C)]
7*、一质点沿Y方向振动,振辐为A,周期为T,平衡位置在坐标原 点,己知t=0时刻质点向y轴负方向运动,由该点发出的波波长为, 则沿X轴正向传播的简谐波波动方程为:
成都大学_大学物理(2)综合练习题及参考答案1(振动波光近代)
.一质点同时参与了两 个同方向的简谐振动, 它们的振动 9 0.05 cos(t 1 )( SI ),x2 0.05 cos(t )( SI ), 方程分别为 x1 4 12 其合成运动的运动方程 为x __________ __________ ____ .
8
解法三: 旋转矢量法
由旋转矢量图知, A1 A2 ,
A A1 A2 0.05 2 (m)
2 2
0
4
4
2
合振动方程x A cos(t 0 ) 即x 0.05 2 cos(t )( SI ) 2
光学
一、选择题
1.在双缝干涉实验中,屏幕E上的P点处是明纹.若将缝S 2盖住, 并在S1S 2连线的垂直平分面处放一高折射率介质反射面M,如图所示, 则此时( ).
2 2 3 C. x2 A cos(t ) D. x2 A cos(t ) 2
由题意作两简谐振动的旋转矢量图如下 解:
要写出质点2的振动方程, 应先求出其初相 2
2 ( )
2
x2 A cos(t 2 ) A cos[t ( )] A cos(t ) 2 2 (选B)
t , 解: 由图可知, 2s时 x 0
2 2 v A A 6 3 (cm s 1 ) T 4
答案: 3cm.s 0;
1
7
.一弹簧振子系统具有 1.0 J的振动能量、 0.10 m的振幅和
×1的最大速率,则弹簧的 劲度系数为 _____ ,振子的振动 1.0 m s 频率为 _______ . 1 2 E 2 1.0 解: E kA2 , 得k 2 由 200( N .m 1 ), 2 A 0.12
高考物理《机械振动和机械波》真题练习含答案
高考物理《机械振动和机械波》真题练习含答案1.[2023·新课标卷]船上的人和水下的潜水员都能听见轮船的鸣笛声.声波在空气中和在水中传播时的()A.波速和波长均不同B.频率和波速均不同C.波长和周期均不同D.周期和频率均不同答案:A解析:声波的周期和频率由振源决定,故声波在空气中和在水中传播的周期和频率均相同,但声波在空气和水中传播的波速不同,根据波速与波长关系v=λf可知,波长也不同,故A正确,B、C、D错误.故选A.2.[2024·浙江1月]如图1所示,质量相等的小球和点光源,分别用相同的弹簧竖直悬挂于同一水平杆上,间距为l,竖直悬挂的观测屏与小球水平间距为2l,小球和光源做小振幅运动时,在观测屏上可观测小球影子的运动.以竖直向上为正方向,小球和光源的振动图像如图2所示,则()A.t1时刻小球向上运动B.t2时刻光源的加速度向上C.t2时刻小球与影子相位差为πD.t3时刻影子的位移为5A答案:D解析:以竖直向上为正方向,根据图2可知,t1时刻,小球位于平衡位置,随后位移为负值,且位移增大,可知,t1时刻小球向下运动,A错误;t2时刻,光源的位移为正值,光源振动图像为正弦式,表明其做简谐运动,根据F回=-kx=ma可知,其加速度方向与位移方向相反,位移方向向上,则加速度方向向下,B错误;根据图2可知,小球与光源的振动步调总是相反,由于影子是光源发出的光被小球遮挡后,在屏上留下的阴影,可知,影子与小球的振动步调总是相同,即t2时刻小球与影子相位差为0,C错误;根据图2可知,t3时刻,光源位于最低点,小球位于最高点,根据光沿直线传播,光源能够在屏上留下影子的位置也处于最高点,影子位于正向最大位移处,根据几何关系有ll+2l =A+AA+x影子,解得x影子=5A,即t3时刻影子的位移为5A,D正确.3.[2024·吉林卷]某同学自制双缝干涉实验装置:在纸板上割出一条窄缝,于窄缝中央沿缝方向固定一根拉直的头发丝形成双缝,将该纸板与墙面平行放置,如图所示.用绿色激光照双缝,能够在墙面上观察到干涉条纹.下列做法可以使相邻两条亮条纹中央间距变小的是()A.换用更粗的头发丝B.换用红色激光照射双缝C.增大纸板与墙面的距离D.减小光源与纸板的距离答案:A解析:由于干涉条纹间距Δx=ldλ可知,换用更粗的头发丝,双缝间距d变大,则相邻两条亮条纹中央间距Δx变小,故A正确;换用红色激光照双缝,波长变长,则相邻两条亮条纹中央间距Δx变大,故B错误;增大纸板与墙面的距离l,则相邻两条亮条纹中央间距Δx 变大,故C错误;减小光源与纸板的距离,不会影响相邻两条亮条纹中央间距Δx,故D错误.故选A.4.[2024·浙江1月](多选)在如图所示的直角坐标系中,xOz平面为介质Ⅰ和Ⅱ的分界面(z轴垂直纸面向外).在介质Ⅰ中的P(0,4λ)处有一点波源,产生波长为λ、速度为v的波.波传到介质Ⅱ中,其速度为2v.图示时刻介质Ⅱ中仅有一个波峰,与x轴和y轴分别交于R 和S点,此时波源也恰好位于波峰.M为O、R连线的中点,入射波与反射波在O点相干加强,则()A .介质Ⅱ中波的频率为2v λB. S 点的坐标为(0,-2 λ)C .入射波与反射波在M 点相干减弱D. 折射角α的正弦值sin α=352 答案:BD解析:波从一种介质到另一种介质,频率不变,故介质Ⅱ中波的频率为f =v λ,A 错误;在介质Ⅱ中波长为λ′=2v f=2 λ,由于图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,故S 点的坐标为(0,-2 λ),B 正确;由于S 为波峰,且波传到介质Ⅱ中,其速度为2 v .图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,则R 也为波峰,故P 到R 比P 到O 多一个波峰,则PR =5λ,则OR =3λ,由于||MO -PM≠2n ·λ2 或(2n +1)λ2 (n =0,1,2,…),故M 点不是减弱点,C 错误;根据n =λ′λ=2 ,则n =sin αOR PR,解得sin α=352 ,D 正确. 5.[2021·天津卷]一列沿x 轴正方向传播的简谐横波,传播速度v =10 m/s ,t =0时位于坐标原点的质点从平衡位置沿y 轴正方向运动,下列图形中哪个是t =0.6 s 时的波形( )答案:B解析:由图中可以看出该波的波长为λ=4 m ,根据v =λT可知该列波的周期为T =0.4 s ,又因为t=0时位于坐标原点的质点从平衡位置沿y轴正方向运动,当t=0.6 s时经历了1.5 T,所以此时位于坐标原点的质点从平衡位置沿y轴负方向运动,结合图像可知B正确.6.[2023·湖南卷]如图(a),在均匀介质中有A、B、C和D四点,其中A、B、C三点位于同一直线上,AC=BC=4 m,DC=3 m,DC垂直AB.t=0时,位于A、B、C处的三个完全相同的横波波源同时开始振动,振动图像均如图(b)所示,振动方向与平面ABD垂直,已知波长为4 m.下列说法正确的是()A.这三列波的波速均为2 m/sB.t=2 s时,D处的质点开始振动C.t=4.5 s时,D处的质点向y轴负方向运动D.t=6 s时,D处的质点与平衡位置的距离是6 cm答案:C解析:由图(b)的振动图像可知,振动的周期为4 s,故三列波的波速为v=λT=4 m4 s=1m/s,A错误;由图(a)可知,D处距离波源C最近的距离为3 m,故开始振动后波源C处的横波传播到D处所需的时间为t C=DC v=3 m1 m/s=3 s故t=2 s时,D处的质点还未开始振动,B错误;由几何关系可知AD=BD=5 m,波源A、B产生的横波传播到D处所需的时间为t AB=ADv=5 m1 m/s=5 s故t=4.5 s时,仅波源C处的横波传播到D处,此时D处的质点振动时间为t1=t-t C =1.5 s由振动图像可知此时D处的质点向y轴负方向运动,C正确;t=6 s时,波源C处的横波传播到D处后振动时间为t2=t-t C=3 s由振动图像可知此时D处为波源C处传播横波的波谷;t=6 s时,波源A、B处的横波传播到D处后振动时间为t3=t-t AB=1 s由振动图像可知此时D处为波源A、B处传播横波的波峰.根据波的叠加原理可知此时D处质点的位移为y=2A-A=2 cm故t=6 s时,D处的质点与平衡位置的距离是2 cm,D错误.故选C.。
大学物理知识总结习题答案(第八章)振动与波动
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,为角频率,(t+)称为谐振动的相位,t =0时的相位称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力· 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
大学物理题库-振动与波动
振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( ) (A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
振动、波动部分答案(新)
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
大学物理习题及解答(振动与波、波动光学)
1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。
假如使物体上下振动,且规定向下为正方向。
〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。
〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
如此弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。
题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。
大学物理习题解答8第八章振动与波动 (2)
第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。
· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为d d t=-F e其中Φ为磁链,负号表示感应电动势的方向。
对螺线管有N 匝线圈,可以有m N Φ=Φ。
2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。
3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。
动生电动势可以看成是洛仑兹力引起的。
· 由动生电动势的定义可得:()d bab ae 醋ò=v B l· 洛伦兹力不做功,但起能量转换的作用。
4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。
d dd d d d L S t te F =??蝌Ñ-=-i E r B S 其中E i 为感生电场强度。
5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L iL te =-(L 一定时)负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。
· 自感系数表达式为:L iY =· 自感磁能212m W LI =6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。
大学物理活页答案(振动和波)
大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。
11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。
振动与波专题(2024高考真题及解析)
振动与波专题1.[2024·安徽卷] 某仪器发射甲、乙两列横波,在同一均匀介质中相向传播,波速v大小相等.某时刻的波形图如图所示,则这两列横波()A.在x=9.0 m处开始相遇B.在x=10.0 m处开始相遇C.波峰在x=10.5 m处相遇D.波峰在x=11.5 m处相遇1.C[解析] 由题意可知两列波的波速相同,所以相同时间内传播的距离相同,故两列横波在x=11.0 m处开始相遇,故A、B错误;甲波峰的坐标为x1=5 m,乙波峰的坐标为x2=16 m,m=10.5 m处相遇,故C正确,D错误.由于两列波的波速相同,所以波峰在x'=5 m+16-522.[2024·北京卷] 图甲为用手机和轻弹簧制作的一个振动装置.手机加速度传感器记录了手机在竖直方向的振动情况,以向上为正方向,得到手机振动过程中加速度a随时间t变化的曲线为正弦曲线,如图乙所示.下列说法正确的是()A.t=0时,弹簧弹力为0B.t=0.2 s时,手机位于平衡位置上方C.从t=0至t=0.2 s,手机的动能增大D.a随t变化的关系式为a=4sin (2.5πt) m/s22.D[解析] 由题图乙知,t=0时,手机加速度为0,由牛顿第二定律得弹簧弹力大小为F=mg,A错误;由题图乙知,t=0.2 s时,手机的加速度为正,则手机位于平衡位置下方,B错误;由题图乙知,从t=0至t=0.2 s,手机的加速度增大,手机从平衡位置向最大位移处运动,速度=2.5π rad/s,则a随t变化的关系减小,动能减小,C错误;由题图乙知T=0.8 s,则圆频率ω=2πT式为a=4sin (2.5πt) m/s2,D正确.3.[2024·福建卷] 某简谐运动的y -t 图像如图所示,则以下说法正确的是( )A .振幅为2 cmB .频率为2.5 HzC .0.1 s 时速度为0D .0.2 s 时加速度方向竖直向下3.B [解析] 根据图像可知,振幅为1 cm,周期为T =0.4 s,则频率为f =1T =10.4 Hz=2.5 Hz,故A 错误,B 正确;根据图像可知,0.1 s 时质点处于平衡位置,此时速度最大,故C 错误;根据图像可知,0.2 s 时质点处于负向最大位置处,此时加速度方向竖直向上,故D 错误.4.[2024·甘肃卷] 如图为某单摆的振动图像,重力加速度g 取10 m/s 2,下列说法正确的是 ( ) A .摆长为1.6 m,起始时刻速度最大 B .摆长为2.5 m,起始时刻速度为零 C .摆长为1.6 m,A 、C 点的速度相同 D .摆长为2.5 m,A 、B 点的速度相同4.C [解析] 由单摆的振动图像可知振动周期为T =0.8π s,由单摆的周期公式T =2π√lg 得摆长为l =gT 24π2=1.6 m,A 、C 点的速度相同,A 、B 点的速度大小相同,方向不同;综上所述,可知C 正确.5.[2024·广东卷] 一列简谐横波沿x 轴正方向传播,波速为1 m/s,t =0时的波形如图所示.t =1 s 时,x =1.5 m 处的质点相对平衡位置的位移为 ( )A .0B .0.1 mC .-0.1 mD .0.2 m5.B [解析] 由图像可知,波长λ=2 m,周期T =λv =2 s,由于1 s-0=T2,故t =1 s 时,x =1.5 m 处的质点运动到波峰,相对平衡位置的位移为0.1 m,B 正确.6.[2024·河北卷] 如图所示,一电动机带动轻杆在竖直框架平面内匀速转动,轻杆一端固定在电动机的转轴上,另一端悬挂一紫外光笔,转动时紫外光始终竖直投射至水平铺开的感光纸上,沿垂直于框架的方向匀速拖动感光纸,感光纸上就画出了描述光点振动的x -t 图像.已知轻杆在竖直面内长0.1 m,电动机转速为12 r/min .该振动的圆频率和光点在12.5 s 内通过的路程分别为 ( )A .0.2 rad/s,1.0 mB .0.2 rad/s,1.25 mC .1.26 rad/s,1.0 mD .1.26 rad/s,1.25 m6.C [解析] 根据题意可知,紫外光笔的光点在纸面上沿x 轴方向做简谐运动,光点的振动为受迫振动,其振动周期等于电动机转动周期,故该振动的圆频率ω=2πT =2πn =0.4π rad/s≈1.26 rad/s,A 、B 错误;该振动的周期T =1n =5 s,由于轻杆长0.1 m,故振幅A =0.1 m,因12.5 s=(2+12)T ,故12.5 s 内光点通过的路程s =(2+12)×4A =1.0 m,C 正确,D 错误.7.[2024·湖南卷] 如图所示,健身者在公园以每分钟60次的频率上下抖动长绳的一端,长绳自右向左呈现波浪状起伏,可近似为单向传播的简谐横波.长绳上A 、B 两点平衡位置相距6 m,t 0时刻A 点位于波谷,B 点位于波峰,两者之间还有一个波谷.下列说法正确的是 ( )A .波长为3 mB .波速为12 m/sC .t 0+0.25 s 时刻,B 点速度为0D .t 0+0.50 s 时刻,A 点速度为07.D [解析] 由题意知A 、B 的平衡位置之间的距离x =32λ=6 m,解得λ=4 m,A 错误;波源的振动频率为f =6060 Hz=1 Hz,则波速v =λf =4 m/s,B 错误;质点的振动周期T =1f =1 s,由于0.25 s=T 4,故B 点在t 0+0.25 s 时刻即14周期后由波峰运动至平衡位置,速度最大,C 错误;由于0.50 s=T2,故A 点在t 0+0.50 s 时刻即12周期后由波谷运动至波峰,速度为0,D 正确.8.[2024·江西卷] 如图甲所示,利用超声波可以检测飞机机翼内部缺陷.在某次检测实验中,入射波为连续的正弦信号,探头先后探测到机翼表面和缺陷表面的反射信号,分别如图乙、丙所示.已知超声波在机翼材料中的波速为6300 m/s.关于这两个反射信号在探头处的叠加效果和缺陷深度d,下列选项正确的是 ()A.振动减弱;d=4.725 mmB.振动加强;d=4.725 mmC.振动减弱;d=9.45 mmD.振动加强;d=9.45 mm8.A[解析] 根据题图乙可知,超声波的传播周期T=2×10-7 s,又波速v=6300 m/s,则超声波在机翼材料中的波长λ=vT=1.26×10-3 m,结合题图乙和题图丙可知,两个反射信号传播到λ,解探头处的时间差为Δt=1.5×10-6 s,故两个反射信号的路程差为2d=vΔt=9.45×10-3 m=152得d=4.725×10-3 m;由题图乙和题图丙可知,这两个反射信号的起振方向相同,振动周期相同,传播到探头处的路程差为半波长的奇数倍,则这两个反射信号发生干涉且在探头处振动方向相反,故这两个反射信号在探头处振动减弱,A正确.9.(多选)[2024·山东卷] 甲、乙两列简谐横波在同一均匀介质中沿x轴相向传播,波速均为2 m/s.t=0时刻二者在x=2 m处相遇,波形图如图所示.关于平衡位置在x=2 m处的质点P,下列说法正确的是()A.t=0.5 s时,P偏离平衡位置的位移为0B.t=0.5 s时,P偏离平衡位置的位移为-2 cmC.t=1.0 s时,P向y轴正方向运动D.t=1.0 s时,P向y轴负方向运动9.BC [解析] 由于两波的波速均为2 m/s,故t =0.5 s 时,两波均传播了Δx =v Δt =2×0.5 m=1 m,题图所示平衡位置在x =1 m 处和x =3 m 处两质点的振动形式传到P 点处,由波的叠加原理可知,t =0.5 s 时,P 偏离平衡位置的位移为-2 cm,A 错误,B 正确;同理,t =1 s 时,题图所示平衡位置在x =0处和x =4 m 处两质点的振动形式(均向y 轴正方向运动)传到P 点处,根据波的叠加原理可知,t =1 s 时,P 向y 轴正方向运动,C 正确,D 错误.10.(多选)[2024·新课标卷] 位于坐标原点O 的波源在t =0时开始振动,振动图像如图所示,所形成的简谐横波沿x 轴正方向传播.平衡位置在x =3.5 m 处的质点P 开始振动时,波源恰好第2次处于波谷位置,则 ( )A .波的周期是0.1 sB .波的振幅是0.2 mC .波的传播速度是10 m/sD .平衡位置在x =4.5 m 处的质点Q 开始振动时,质点P 处于波峰位置10.BC [解析] 波的周期和振幅与波源振动的周期和振幅一致,可知波的周期为T =0.2 s,振幅为A =0.2 m,故A 错误,B 正确;质点P 开始振动时,波源第2次到达波谷,可知波从波源传到质点P 所用的时间为t =34T +T =0.35 s,则波速为v =x OP t=3.5-00.35 m/s=10 m/s,故C 正确;质点Q 的平衡位置在x =4.5 m 处,波从质点P 传到质点Q 需要的时间为t'=x PQ v=4.5-3.510 s=0.1 s=12T ,所以质点Q 开始振动时,质点P 处于平衡位置,故D 错误.11.[2024·浙江6月选考] 如图所示,不可伸长的光滑细线穿过质量为0.1 kg 的小铁球,两端A 、B 悬挂在倾角为30°的固定斜杆上,间距为 1.5 m .小球平衡时,A 端细线与杆垂直;当小球受到垂直纸面方向的扰动做微小摆动时,等效于悬挂点位于小球重垂线与AB 交点的单摆,重力加速度g 取10 m/s 2,则 ( )A .摆角变小时,周期变大B .小球摆动周期约为2 sC .小球平衡时,A 端拉力为√32 ND.小球平衡时,A端拉力小于B端拉力11.B[解析] 单摆的周期T=2π√Lg,与摆角无关,故A错误.光滑细线穿过小铁球,则小铁球两侧细线上拉力大小相等,所以A端拉力与B端拉力大小相等,平衡时对小球受力分析如图所示,根据数学关系可知F A=F B=mg2cos30°=√33N,故C、D错误.根据几何关系可知,细线与竖直方向夹角为30°,两侧细线夹角为60°,等效摆长为L=d AB cot60°cos30°=1 m,则小球摆动周期T=2π√Lg≈2 s,故B正确.12.[2024·浙江6月选考] 频率相同的简谐波源S1、S2和接收点M位于同一平面内,S1、S2到M的距离之差为6 m.t=0时,S1、S2同时垂直平面开始振动,M点的振动图像如图所示,则()A.两列波的波长为2 mB.两列波的起振方向均沿x正方向C.S1和S2在平面内不能产生干涉现象D.两列波的振幅分别为3 cm和1 cm12.B[解析] 由图像知,t=4 s时一列波传到M点且使M点沿x正方向振动,振幅A1=3 cm,t=7 s时这列波使M点沿x负方向振动且振幅变小为A=1 cm,说明此时另一列波也传到M点且其使M点沿x正方向振动,这列波的振幅A2=A1-A=2 cm,所以两列波刚传到M 时均使M点沿x正方向振动,即两列波的起振方向均沿x正方向,B正确,D错误;S1、S2到M的距离之差为Δx=6 m,由图像可知两列波传到M的时间之差为Δt=7 s-4 s=3 s,则波速v=ΔxΔt=2 m/s,由图像可知振动周期T=2 s,则波长λ=vT=4 m,A错误;S1、S2频率相等,所以在平面内能产生干涉现象,C错误.。
大学物理2-1第六章(振动与波)习题答案
精品习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm 。
现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时。
求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间。
[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系rad/s 07.74200m 1.0N/m 2001030602=====⨯=-m k A k ω设振动方程为 ()φ+=t x 07.7cos0=t 时 1.0=x φcos 1.01.0= 0=φ故振动方程为 ()m 07.7cos 1.0t x =(2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 2.0200400===k mg x精品因而有 ()N 3005.02.0200=-⨯=F(3)设第一次越过平衡位置时刻为1t ,则()107.7cos 1.00t = 07.5.01π=t第一次运动到上方5cm 处时刻为2t ,则()207.7cos 1.005.0t =- ()07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二经过点B ,若已知该质点在A 、B 两点具有相同的速率,且AB =10cm ,求:(1)质点的振动方程:(1)质点在A 点处的速率。
[解] 由旋转矢量图和||||b a v v =可知421=T s精品由于4/2s 8/1,s 81ππνων====-T精品(1) 以AB 的中点为坐标原点,x 轴指向右方。
t =0时, φcos 5A x =-=t =2s 时, φφωsin )2cos(5A A x -=+==由以上二式得 1tan =φ因为在A 点质点的速度大于零,所以43πφ-= cm x A 25cos /==φ所以,运动方程为:)SI ()4/34/cos(10252ππ-⨯=-t x(2)速度为: )434sin(41025d d 2πππ-⨯-==-t t x v 当t =2s 时 m/s 1093.3)434sin(41025d d 22--⨯=-⨯-==πππt t x v6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ; (2)速度为12s cm 时的位移。
大学物理D-06振动和波-参考答案
B 2 ;波的周期为 B C lC ;此质元的初相位为
;波长为
2 C
;离波源距离为 l
lC 。
6.1.5 一平面简谐波沿 ox 轴正向传播,波动方程为 y A cos[ (t 振动方程为 为 2 1 二、选择题
x ) ] ,则 x L1 处质点的 u 4
y A cos[ (t
由 t=0 和 t=0.25 时的波形图,得
O
t
x
2 x x 2 10 (t ) ] 0.2 cos[2t x ] (2)波动表式为 y A cos[ ( t ) 0 ] 0.2 cos[ 1 0.6 2 3 2 u
O 点的振动表式为
y 0 | t 0 A cos 0 0 , v 0 | t 0 A sin 0 0 , 0
3 , 4
x1 x3振幅最大 。
2
0 20 , 0 20
5 3 (或 )时, x2 x3振幅最小 4 4
0 , 0 20 84 o 48时, x1 x 2 x3振幅最大 0 0
6.4.2
2
o
4
2
3
4
2
6.2.6 两相干平面简谐波沿不同方向传播,如图所示,波速均为 u 0.40m / s ,其中一列波在 A 点 引 起 的 振 动 方 程 为 y 1 A1 cos( 2 t
2
) ,另一列波在 B 点引起的振动方程为
y 2 A2 cos( 2 t
[ A ] (A)0; (B) /2; (C) ; (D)3 /2。 三、简答题
大学物理振动与波练习题与答案
第二章 振动与波习题答案12、一放置在水平桌面上的弹簧振子,振幅2100.2-⨯=A 米,周期50.0=T 秒,当0=t 时 (1) 物体在正方向的端点;(2) 物体在负方向的端点;(3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。
求以上各种情况的谐振动方程。
【解】:π=π=ω45.02 )m ()t 4cos(02.0x ϕ+π=, )s /m ()2t 4cos(08.0v π+ϕ+ππ=(1) 01)cos(=ϕ=ϕ,, )m ()t 4cos(02.0x π=(2) π=ϕ-=ϕ,1)cos(, )m ()t 4cos(02.0x π+π=(3) 21)2cos(π=ϕ-=π+ϕ, , )m ()2t 4cos(02.0x π+π= (4) 21)2cos(π-=ϕ=π+ϕ, , )m ()2t 4cos(02.0x π-π=13、已知一个谐振动的振幅02.0=A 米,园频率πω4=弧度/秒,初相2/π=ϕ。
(1) 写出谐振动方程;(2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】:)m ()2t 4cos(02.0x π+π= , )(212T 秒=ωπ=15、图中两条曲线表示两个谐振动(1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。
【解】:振幅相同,频率和初相不同。
虚线: )2t 21cos(03.0x 1π-π= 米实线: t cos 03.0x 2π= 米16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为t 3cos 4x 1= 厘米)32t 3cos(2x 2π+= 厘米试用旋转矢量法求出合振动方程。
【解】:)cm ()6t 3cos(32x π+=17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。
(1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。
第10章振动与波动习题与答案汇总
第10章振动与波动一. 基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念 来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,二.内容提要作谐振动的物体所受到的力为线性回复力,即F则简谐振动的动力学方程(即微分方程)为d 2x 23. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,A 斗X 2+V04.周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数 Y 称为频率。
T 1 十 1 T =—或V =—VT了解驻波和行波的区别,了解半波损失。
1.简谐振动的动力学特征取系统的平衡位置为坐标原点, 2.简谐振动的运动学特征函数关系,即作谐振动的物体的位置坐标 X 与时间t 成余弦(或正弦)由它可导出物体的振动速度 X = Acos(©t + 旳V =-©Asi n((a t + 切 物体的振动加速度a = -O 2 Acos(©t + 场周期与频率互为倒数,即作谐振动的物体在2n秒内完成振动的次数,它与周期、5.角频率(也称圆频率)频率的关系为T =—0510.机械波产生的条件机械波的产生必须同时具备两个条件:第一,要有作机械振11. 波长入 在同一波线上振动状态完全相同的两相邻质点间的距离(一个完整波的 长度),它是波的空间周期性的反映。
大学物理机械振动与机械波综合练习题(含答案)
解: A1 = 5cm , A2 = 6 cm ,1 = 0.75 , 2 = 0.25
A = A12 + A22 + 2 A1 A2 cos( 2 − 1 ) = 52 + 62 + 2 5 6 cos(0.25 − 0.75 )
= 120 Hz ,另一列火车 B 以 u2 = 25 m/s 的速度行驶。当 A 、B 两车相向而行时,B 的 司机听到汽笛的频率 为137 Hz ;当 A 、 B 两车运行方向相同时,且 B 车在 A 车前方, B 的司机听到汽笛的频率 为118 Hz 。
解:波源与观察者相向运动: = u + vR = 331+ 20 120 = 137 H z
A
=
2.00 cm
。x
= 10cm
处有一点 a
在t
=
3s
时
ya
=
0
,d y dt
|a
0
;当 t
=
5s
时,x
=
0处
的位移 y0 = 0 ,此刻该点速度 v = − 6.28 cm/s 。
解:
y0
=
A cos( 2 T
t
+0),
ya
=
Acos[2 ( t T
−
x
)
+
0
]
x = 10 cm , t = 3s , = vT = 10 cm
= 61cm
u
5.图为 t = 0 时刻,以余弦函数表示的沿 x 轴
大学物理振动与波题库及答案
一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .A/ -A(C) 0.5 m . (D) 0.25 m . [ ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [ ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 21,21,0.05. (D) 2,2,0.05. [ ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ ]25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定x y O u(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y . (B) }]/)([cos{00φω+--=u x x t A y . (C) }]/)[(cos{00φω+--=u x x t A y . (D) }]/)[(cos{00φω+-+=u x x t A y . [ ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ ]28、一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ. (D) π=-π+-k r r 2/)(22112λφφ.[ ]31、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为 (A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . x y t =t 0u O其中的k = 0,1,2,3, …. [ ]32、有两列沿相反方向传播的相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ ]34、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2cos 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(cos 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ. (B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ ]39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ ] 二、填空题:(每题4分)41、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.42、三个简谐振动方程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.43、一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为x = ________________________(SI).44、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_____________________________.45、一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动 周期为______________________.46、在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.47、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.48、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所示,则两个简谐振动 的频率之比ν1∶ν2=__________________,加速度最 大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.50、有简谐振动方程为x = 1×10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同一个坐标上画出上述三个振动曲线.51、一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________.53、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零 的状态时,应对应于曲线上的________点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力 为-kA 的状态时,应对应于曲线上的____________点.x (cm)t (s)O- x (cm)54、一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________; φ =_______________.55、已知两个简谐振动曲线如图所示.x 1的相位比x 2 的相位超前_______.56、两个简谐振动方程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω 在同一坐标上画出两者的x —t 曲线.xtO57、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.58、已知三个简谐振动曲线如图所示,则振动方程分别为:x 1 =______________________,x 2 = _____________________,x 3 =_______________________.59、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表 x (cm)t (s)O 12示的振动方程为x =__________________________(SI).60、一质点作简谐振动的角频率为ω 、振幅为A .当t = 0时质点位于A x 21=处,且向x 正方向运动.试画出此振动的旋转矢量图.61、两个同方向的简谐振动曲线如图所示.合振动的振幅 为_______________________________,合振动的振动方程 为________________________________. 62、一平面简谐波.波速为6.0 m/s ,振动周期为0.1 s ,则波长为___________.在波的传播方向上,有两质点(其间距离小于波长)的振动相位差为5π /6,则此两质点相距___________.63、一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B _____________ ;C ______________ . 64、一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量, 此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.66、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时, 波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示. 可知波长λ = ____________; 振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.·---y (m)71、已知一平面简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播方向为x 轴正方向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).72、一横波的表达式是)4.0100(2sin 02.0π-π=t y (SI), 则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、一简谐波的频率为 5×104 Hz ,波速为 1.5×103 m/s .在传播路径上相距5×10-3 m 的两点之间的振动相位差为_______________.75、一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.76、已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.77、在简谐波的一条射线上,相距0.2 m 两点的振动相位差为π /6.又知振动周期为0.4 s ,则波长为_________________,波速为________________.78、一声纳装置向海水中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率ν = _________________ ,波长λ = __________________, 海水中声速u = __________________.79、已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.80、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.81、在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.82、两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y . S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.83、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.84、两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.85、一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.86、一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.87、在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.88、频率为ν = 5×107 Hz 的电磁波在真空中波长为_______________m ,在折射率为n = 1.5 的媒质中波长为______________m .89、在电磁波传播的空间(或各向同性介质)中,任一点的E 和H 的方向及波传播方向之间的关系是:_________________________________________________________________________________________________________.90、在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式为)/(2cos 600c x t E y -π=ν (SI),则磁场强度波的表达式是______________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)91、在真空中沿着x 轴负方向传播的平面电磁波,其电场强度的波的表达式为)/(2cos 800c x t E y +π=ν (SI),则磁场强度波的表达式是________________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)92、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )93、在真空中沿着负z 方向传播的平面电磁波的磁场强度为)/(2cos 50.1λνz t H x +π= (SI),则它的电场强度为E y = ____________________. (真空介电常量ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )94真空中一简谐平面电磁波的电场强度振幅为 E m = 1.20×10-2 V/m 该电磁波的强度为_________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )95、在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为___________________________. (真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )96、在地球上测得来自太阳的辐射的强度=S 1.4 kW/m 2.太阳到地球的距离约为1.50×1011 m .由此估算,太阳每秒钟辐射的总能量为__________________.97、在真空中沿着z 轴负方向传播的平面电磁波,O 点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为_____________________________________.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.98、电磁波在真空中的传播速度是_________________(m/s)(写三位有效数字).99、电磁波在媒质中传播速度的大小是由媒质的____________________决定的.100、电磁波的E 矢量与H 矢量的方向互相____________,相位__________.三、计算题:(每题10分)101、一质点按如下规律沿x 轴作简谐振动:)328cos(1.0π+π=t x (SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值.102、一质量为0.20 kg 的质点作简谐振动,其振动方程为)215cos(6.0π-=t x (SI).求:(1) 质点的初速度;(2) 质点在正向最大位移一半处所受的力.z yxO103、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为 4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.104、有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相.105、质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.106、一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.107、一质量为10 g 的物体作简谐振动,其振幅为2 cm ,频率为4 Hz ,t = 0时位移为 -2 cm ,初速度为零.求(1) 振动表达式;(2) t = (1/4) s 时物体所受的作用力.108、两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.109、一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.110、在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长∆l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求(1) 小球的振动周期; (2) 振动能量.111、一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?112、一横波沿绳子传播,其波的表达式为)2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.113、一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.114、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.115、一简谐波沿x 轴负方向传播,波速为1 m/s ,在x 轴上某质点的振动频率为1 Hz 、振幅为0.01 m .t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x 轴的原点.求此一维简谐波的表达式.116、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.117、一横波方程为 )(2cos x ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.118、如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程; (2) 该质点的速度表达式与加速度表达式.119、一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流;(2) 波的平均能流密度;(3) 波的平均能量密度.120、一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .O P大学物理------振动与波参考答案一、选择题1 - 5 CBDBB 6 -10 BCBBD 11-15 EBBBC 16-20 ACDCB 21-25 DBCCA 26-30 ABACD 31-35 DCCDB 36-40 CCCBC二、填空题41.(1) π; (2)2/π-; (3)3/π; 42. 略; 43. 21510cos[6]2t ππ-⨯+; 44. (1)2cos[]2A t T ππ-, (2) 2cos[]3A t T πλ+;45. 2 46. 1:2; 47. m 05.0,π205.0- or 09.36-; 48. 25210cos[]22x t π-=⨯- ; 49. 1:2,1:4,1:2; 51. 0,s m /3; 52. 1:1; 53. e a f b ,,,;54. cm 10,s rad /6/π,3/π;55. 3/4π; 56. 略 ;57.(1),...2,1,0,2/)12(=+n n ,(2),...2,1,0,=n n ,(3),...2,1,0,2/)14(=+n n ,; 58. t πcos 1.0,)2/cos(1.0ππ-t ,)cos(1.0ππ±t ; 59. ]24cos[04.0ππ-t ; 60. 略; 61. 21A A -, ]22cos[12ππ+-=t T A A x ; 62. m 6.0,m 25.0; 63. 向下,向上;64. cm 30,30; 65. c /2π,c B /,cd ; 66. s m /503;67. π;68. m 8.0,m 2.0,Hz 125;69. m 233.0;70. u x x /)(12-ω;71. ]24cos[1.0x t ππ-;72. cm 2,cm 5.2,Hz 100,51~2500;73. b a /; 74. 3/π; 75. 0;76. aE ; 77. m 4.2, s m /0.6;78. Hz 4100.5⨯,m 21086.2-⨯,s m /1043.13⨯; 79. m 2107.1~17-⨯; 80. )23cos(2.02x t πππ+-; 81. 4; 82. 0; 83. 0; 84. A 2; 85. m 2,Hz 45; 86. s m /100; 87. 2/λ; 88. m 6, m 4; 89. H E S ⨯= ; 90. )](2cos[59.1c x t H z -=πν; 91. )](2cos[12.2cx t H z +-=πν; 92. ])(cos[754πω+--=c z t E y ; 93. )](2cos[565λνπz t +; 94. 271091.1--⨯wm ;95. ]62cos[39.2ππν+=t H y ; 96. J 26100.4⨯;97. ]32cos[796.0ππν+-=t H y ;98. 81000.3⨯; 99. με,; 100. 垂直,相同,相同三、计算题101、解:周期 25.0/2=π=ωT s ,振幅 A = 0.1 m ,初相 φ = 2π/3,v max = ω A = 0.8π m/s ( = 2.5 m/s ),a max = ω 2A = 6.4π2 m/s 2 ( =63 m/s 2 ).102、解:(1) )25sin(0.3d d π--==t t x v (SI) t 0 = 0 , v 0 = 3.0 m/s .(2) x m ma F 2ω-==A x 21= 时, F = -1.5 N . 103、解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m取下m 1上m 2后, 2.11/2==m k ω rad/sω/2π=T =0.56 st = 0时, φcos m 10220A x =⨯-=-φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI)或 x = 2.05×10-2cos(11.2t +3.36) (SI)104、解:(1) 13.3/==l g ω rad/s ,5.0)2/(=π=ων Hz(2) t = 0 时,x 0 = -6 cm= A cos φ, v 0 = 20 cm/s= -A ω sin φ由上二式解得 A = 8.8 cm ,φ = 180°+46.8°= 226.8°= 3.96 rad ,(或-2.33 rad )105、解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 (2) )318sin(1042π+π⨯π-==-t x v (SI))318cos(103222π+π⨯π-==-t x a (SI)(3) 2222121A m kA E E E P K ω==+==7.90×10-5 J(4) 平均动能 ⎰=TK t m T E 02d 21)/1(v⎰π+π⨯π-=-T t t m T 0222d )318(sin )104(21)/1(= 3.95×10-5 J = E 21同理 E E P 21== 3.95×10-5 J106、解: (1) 1s 10/-==m k ω, 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A得 3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI)107、解:(1) t = 0时,x 0 = -2 cm = -A , 故初相 φ = π ,ω = 2 πν = 8 π s -1)8cos(1022π+π⨯=-t x (SI)(2) t = (1/4) s 时,物体所受的作用力 126.02=-=x m F ω N 108、解:依题意画出旋转矢量图。
《大学物理》振动练习题及答案解析
《大学物理》振动练习题及答案解析一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。
2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。
3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。
或:位移x 与加速度a 的关系为正比反向关系。
4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。
答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtxd 222ω-=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x 动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足 6、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。
7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。
8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。
答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。
9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式glT π2=计算摆长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动与波练习题2005
一、填空题
1.一物体作简谐振动,振动方程为x = A cos (
ωt +π/ 4 )。
在t =T / 4 (T 为周期)时刻,物体的加速度为 .
2.一质点沿x 轴作简谐振动,振动方程为x = 4×10-
2 cos (2πt + π3
1
) (SI) 。
从t = 0 时
刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 0t =时,03
πφ=
;t 时刻,20x cm υ=->且
43πφ所以=。
433
t ππ
ωπ∆=-=由可得
0.5()2t s ππωπ
∆=
==
3.已知两个简谐振动曲线如图1所示。
x 1的位相比x 2的位相为 B 。
(A) 落后π/2 (B )超前π/2 (C) 落后π (D) 超前π
4.一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为
22
22sin(/4)sin(/4)2cos(/4)cos(/4)/4112,222
dx A t A t dt T d a A t A t dt T t T A a A πυωωπωπυπωωπωπυ
ωω=-+=-+=-+=-+====代入得=-
解:由旋转矢量图
可知
6
π
ϕ=
∆,所以
12
2
6T
T
t=
=
∆
=
∆
π
π
ω
ϕ
5.一平面简谐波,沿x轴负方向传播。
圆频率为ω,波速为u 。
设t=T/4时刻的波形如图2所示,则该波的表达式为。
由t = 0的旋转矢量图可知:y0=-A,
φπ
=
O点振动方程cos()
y A tωπ
=+
波动方程:cos()
x
y A t
u
ωπ
⎡⎤
=++
⎢⎥
⎣⎦
6.当机械波在媒质中传播时,一媒质质元的最大变形量发生在位置处。
平衡位置处
7.如图3所示两相干波源S1和S2相距λ/4,(λ为波长)S1的位相比S2的位相超前π/2,在S1,S2的连线上,S1外侧各点(例如P点)两波引起的两谐振动的位相差是.
解:P点情况
()
2121
12
22()
2
2
4
2
r r S P S P
ππ
π
ϕϕ
λλ
λ
π
π
π
λ
--
-+=+
=+=
8.一质点作简谐振动。
其振动曲线如图4所示。
根据此图,它的周期T =,用余弦函数描述时初位相φ=。
图4 由图t = 0 时,
02
A
y=-,且
4
3
vφπ
>∴=.
9.一物体同时参与同一直线上的两个简谐振动:
x1 = 0.05 cos (4πt +π/3 ) (SI)
x1 = 0.03 cos (4πt -2π/3 ) (SI)
合振动的振幅为 m.
12
12
0.050.030.02()
A A A SI
φφπ
-=
∴=-=-=
合
10一平面简谐波沿X轴正方向传播,波速u = 100 m/s,t = 0时刻的波形曲线如图所示。
波长λ=,振幅 A = ,频率ν=。
0.80.2,
100
125
0.8
m A m
u
Hz
λ
ν
λ
=
===
由=,
11.一平面简谐波(机械波)沿x轴正方向传播,波动方程为y = 0.2 cos (πt –πx/2 )(SI),则x = -3 m 处媒质质点的振动加速度a的表达式为。
2
2
2
2
0.2cos()
2
3
0.2cos()
2
d y x
a t
dt
t
π
ππ
π
ππ
==--
=-+
12.在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 =16,则这两列波的振幅之比是A1 / A2 =
221
1
22
1
2
4I A u A I A I ρω=
==
13.在弦线上有一驻波,其表达式为y = 2A cos (2πx /λ ) cos (2πνt) 两个相邻波节之间的距离是 。
22()0,
,2
2
x
x
COS k x k
x ππλ
πλ
λ
λ
∆====
二、计算题
1.一横波沿绳子传播,其波的表达式为 y = 0.05 cos (100πt – 2πx) (SI )
(1) 求此波的振幅、波速、频率和波长。
(2) 求绳子上各质点的最大振动速度和最大振动加速度。
(3) 求x 1 = 0.2 m 处和x 2 =0.7 m 处二质点振动的位相差。
(1)将本题波的表达式0.05cos(1002)y t x ππ=- 与标准形式2cos(2)x
y A t ππνλ
=-
比较得
1
1
max max 22232
max max 2210.05,50, 1.0,
50(2)()215.7()4 4.93102()
(3)A m Hz m u ms y
v A ms t y
a A ms t
x x νλλνπνπνπφπ
λ
∆---=====∂===∂∂===⨯∂-==
二振动反向。
2.一简谐波O x 轴正方向传播,波长λ=4 m ,周期T = 4 s ,已知x = 0处质点的振动曲线如图所示,
(1) 写出x = 0 处质点的振动方程; (2) 写出波的表达式;
解:O 点在t = 0 时:002022
3
A
Y v π
φ=
=<=+
且
(1)O点处质点的振动方程为
2
2
cos210cos(m)
23
y A t t
T
πππ
φ-
⎛⎫⎛⎫
=+=⨯+
⎪ ⎪
⎝⎭⎝⎭
(2)波动方程
2
2
22
cos210cos
243
210cos(m)
223
x x
y A t t
x
t
ππππ
ωφ
λ
πππ
-
-
⎛⎫⎛⎫
=-+=⨯-+
⎪ ⎪
⎝⎭⎝⎭
⎛⎫
=⨯-+
⎪
⎝⎭
3.如图所示为一平面简谐波在t = 0时刻的波形图,设此简谐波的频率为250Hz,且此时质点P的运动方向向下,求(1)该波的波动方程;(2)在距原点O为100 m 处质点的振动方程与振动速度表达式。
解:由P点运动方向可知波向左传播(沿X轴负方向传播)
41
200m,20025050000510ms
u
λλν-
===⨯==⨯
又t = 0时
2
2
y A
=且
4
v
π
φ
<∴=
所以O点振动方程为
()
cos2cos500
4
y A t A t
π
πνφπ
⎛⎫
=+=+
⎪
⎝⎭
波动方程:
2
cos500
4
cos500
1004
x
y A t
x
A t
ππ
π
λ
ππ
π
⎛⎫
=++
⎪
⎝⎭
⎛⎫
=++
⎪
⎝⎭
距原点为100m处质点的振动方程
1005cos 500cos 50044d 5sin 500d 45500sin 500m 4y A t A t y v A t t A t ππππππωππππ⎛⎫⎛
⎫
=++=+
⎪ ⎪⎝⎭⎝
⎭
⎛⎫==-+
⎪⎝⎭
⎛
⎫=-+ ⎪⎝⎭
4、如图所示为一平面简谐波在t = 0时刻的波形图,求(1)该波的波动方程;(2)P 处质点的振动方程。