数学人教版八年级上册全等三角形判定之角边角公理及推论

合集下载

《三角形全等的判定 “角边角”、“角角边”》课件(3套)

《三角形全等的判定  “角边角”、“角角边”》课件(3套)

\ DAOC DBOD (ASA)
2. 如图,点B、E、C、F在一条直线上,AB=DE,
AB∥DE,∠A=∠D.
求证:BE=CF.
AD
BE
CF
(2) (1)
小明踢球时不慎把一块 三角形玻璃打碎为两块,他是 否可以只带其中的一块碎片 到商店去,就能配一块于原来 一样的三角形玻璃呢?
如果可以,带哪块去合适 呢?为什么?
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上 的高也相等.
画法:1、画A/B/=AB; 2、在 A/B/的同旁画∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D,B/E交于点C/。
△A/B/C/就是所要画的三角形。
C
E
D
C’
A
B
通过实验你发现了什么规律?A’
B’
探究反映的规律是:
两角和它们的夹边对应相等的两个三角形全 等 (可以简写成“角边角”或“ASA”)。
第十二章 全等三角形
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法“ASA”
和“AAS”.
2.会用三角形全等的判定方法“ASA”和“AAS”

数学人教版八年级上册全等三角形判定之角边角公理及推论

数学人教版八年级上册全等三角形判定之角边角公理及推论

知识应用 [ P13: 1,2. ]
2.如图,AB⊥BC, AD⊥DC, ∠1=∠2. 求证: AB=AD. 证明: ∵ AB⊥BC, AD⊥DC, ∴ ∠B=∠D=900,
在△ABC和△ADC中, ∠B=∠D, ∠1=∠2, AC=AC, ∴ △ABC ≌△ADC (AAS) ∴ AB=AD.
练一练:
数学思想:
要学会用分类的思想,转化的思想解决问题。
例2.如图,∠1=∠2,∠3=∠4
求证:AC=AD
如果把已知中的 ∠3=∠4 改成, ∠D=∠C 此题又如何?
已知: 如图∠B=∠DEF, BC=EF, 求证:ΔABC≌ ΔDEF (1)若要以“SAS”为依据,还缺条件AB=DE ______; ∠ACB= ∠DEF (2)若要以“ASA”为依据,还缺条件______; AB=DE、AC=DF (3)若要以“SSS” 为依据,还缺条件______; (4)若要以“AAS” 为依据,还缺条件______;过实验你发现了什么规律?
A’
B’
探究反映的规律是:
两角和它们的夹边对应相等的两个三角形全 等 (可以简写成“角边角”或“ASA”)。 用数学符号表示:
在△ABE和△A’CD中 ∠A=∠A’ (已知 ) AB=A’C(已知 ) ∠B=∠C(已知 ) ∴ △ABE≌△A’CD(ASA) B
A
A'
1、如图∠ACB=∠DFE,BC=EF,根据SAS,ASA或AAS, 或∠B=∠E或∠A=∠D 那么应补充一个直接条件 AC=DF --------------------------, (写出一个即可),才能使△ABC≌△DEF.
A
F B E D
1 2
A
C
D

人教版数学八年级上册1.3直角三角形全等的判定教学课件

人教版数学八年级上册1.3直角三角形全等的判定教学课件

【例3】如图,已知AD,AF分别是两个钝角△ABC和 △ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.
证明:∵AD,AF分别是两个钝 角△ABC和△ABE的高,且AD =AF,AC=AE, ∴Rt△ADC≌Rt△AFE(HL). ∴CD=EF. ∵AD=AF,AB=AB, ∴Rt△ABD≌Rt△ABF(HL). ∴BD=BF. ∴BD-CD=BF-EF.即BC=BE.
D
F
作图探究
如图,线段a、c(a<c),直角α。求作: Rt△ABC,使∠C=∠α,BC=a,AB=c。
a
c α
思考:通过上面的探究,你能得出什么结论?
知识要点
“斜边、直角边”判定方法 文字语言:
“SSA”可以判定两个直角 三角形全等,但是“边边” 指的是斜边和一直角边, 而“角”指的是直角.
斜边和一条直角边对应相等的两个直角三角形全等
∠BFG=∠DEG ∠BGF=∠DGE
D
Rt△GBF≌Rt△GDE(AAS).
FG=EG BD平分EF
变式训练2
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.想想:BD
平分EF吗?
AB=CD, AF=CE.
Rt△ABF≌Rt△CDE(HL).
C
BF=DE
∠BFG=∠DEG ∠BGF=∠DGE
则 CH的长为( A )
A.1 B.2 C.3
D.4
3.如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC 全等 (填“全等”或
“不全等”),根据 HL (用简写法).

4.如图,在△ABC中,已知BD⊥AC,CE ⊥AB,
BD=CE.求证:△EBC≌△DCB.

八年级数学上册《三角形全等的判定》知识点总结整理

八年级数学上册《三角形全等的判定》知识点总结整理

让知识带有温度。

八年级数学上册《三角形全等的判定》知识点总结整

八年级数学上册《三角形全等的判定》学问点总结
1、三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。

(2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。

(3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。

(4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。

2、直角三角形全等的判定
利用一般三角形全等的判定都能证明直角三角形全等.
斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”).
留意:两边一对角(SSA)和三角(AAA)对应相等的`两个三角形不肯定全等。

小练习
第1页/共2页
千里之行,始于足下。

1、已知AB=AD,∠BAE=∠DAC ,要使∠ABC∠∠ADE,可补充的条件是______
核心考点: 全等三角形的判定
2、王师傅在做完门框后,经常在门框上斜钉两根木条,这样做的数学原理是______
核心考点: 三角形的稳定性
3、将两根钢条AA’、BB’的中点O连在一起, 使AA’、BB’可以围着点O自由旋转, 就做成了一个测量工件, 则A’B’的长等于内槽宽AB, 那么判定∠OAB∠∠OA’B’的理由是______
文档内容到此结束,欢迎大家下载、修改、丰富并分享给更多有需要的人。

第2页/共2页。

数学人教版八年级上册三角形全等判定(边角边)精品PPT课件

数学人教版八年级上册三角形全等判定(边角边)精品PPT课件

探索“SSA”能否识别两三角形全等
画△ABC,使AB=8cm, ∠A=45°, BC=6cm。 观察所得的三角形与同桌所 画的三角形比较,两个三角形是否全等?SSA.gsp
探索“SSA”能否识别两三角形全等
画△ABC,使AB=8cm, ∠A=45°, BC=6cm。 观察所得的三角形与同桌所 画的三角形比较,两个三角形是否全等?SSA.gsp
把你们所画的三角形剪下来与同桌所画的三角形进行比较,它们能互相重 合吗?
探究边角边的判定方法
已知△ABC是任意一个三角形,画△A'B'C', 使∠A' = ∠A ,A'B' =AB ,A'C'=AC .
画法:任意三角形全等.avi
三角形全等的判定 两边和它们的夹角分别相等的两个三角形全等。(简写成“边角边”或“SAS” )
用符号语言表达为: 在△ABC与△ A'B'C'中 AB=A'B'
∠A=∠A' AC=A'C'
∴△ABC≌△A'B'C'(SAS)
C
A
B
C'
A'
B'
已知: 如图,AC=AD ,∠CAB=∠DAB.
求证: △ACB ≌ △ADB.
C
证明:
△ACB ≌ △ADB
A
B
这两个条件够吗?
还要什么条件呢?
∴△ABC≌△DEC(SAS)
E
D
∴AB=DE (全等三角形的对应边相等)
1. 已知:如图AD∥BC,AD=BC,
求证:△ADC≌△CBA
证明:∵ AD∥BC ∴ ∠DAC= ∠ACB 在△ADC和△CBA中,

全等三角形判定公理以及推论

全等三角形判定公理以及推论

全等三角形判定公理以及推论一、全等三角形判定公理1. SSS(边边边)公理- 内容:三边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。

- 作用:当我们知道两个三角形的三条边分别相等时,就可以直接判定这两个三角形全等。

这是全等三角形判定中最基本的一种方法,不需要考虑角的大小。

2. SAS(边角边)公理- 内容:两边和它们的夹角对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。

这里的角必须是两条边的夹角。

- 作用:如果已知两个三角形有两条边相等且这两条边所夹的角也相等,就可以判定它们全等。

在实际解题中,经常需要通过已知条件找出对应的边和角是否满足该公理。

3. ASA(角边角)公理- 内容:两角和它们的夹边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,∠B = ∠E,BC = EF,∠C = ∠F,那么△ABC≌△DEF。

这里的边是两个角的夹边。

- 作用:当我们知道两个三角形有两个角以及这两个角的夹边相等时,可以判定这两个三角形全等。

在证明三角形全等时,如果能找到这样的角和边的关系,就可以使用该公理。

4. AAS(角角边)推论- 内容:两角和其中一角的对边对应相等的两个三角形全等。

- 例如:在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,BC = EF,那么△ABC≌△DEF。

这里是两个角相等,并且其中一个角的对边相等。

- 作用:在有些情况下,当我们知道两个三角形的两个角相等,且其中一个角的对边相等时,可以使用该推论判定全等。

它是ASA公理的一种延伸,在证明过程中可以根据已知条件灵活运用。

5. HL(斜边、直角边)公理(适用于直角三角形)- 内容:斜边和一条直角边对应相等的两个直角三角形全等。

- 例如:在Rt△ABC和Rt△DEF中,∠C = ∠F = 90°,AB = DE,AC = DF,那么Rt△ABC≌Rt△DEF。

八年级数学教案三角形全等的判定“角边角”

八年级数学教案三角形全等的判定“角边角”

八年级数学教案三角形全等的判定“角边角”教学过程设计∠B=∠B ′、AB=A ′B ′呢?问题4:如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D CABFE例题:如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:AD=AE .D CABE三、课堂训练1.如图,已知∠B =∠DEF ,AB =DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是__________(只需写出一个).2..如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带②和③去3.如图,已知AE ∥CF ,且AE =CF ,AB ⊥EF 于B ,CD ⊥EF 于D .求证:FB =DE .4. 如图,已知:D 在AB 上,E 在AC 上,BE 、CD 相交于点O ,AB =AC ,∠B =∠C .求证:OB =OCC ′,并与△ABC 比较。

最终形成三角形全等的判定定理——“角边角”学生探究、证明,获得“角角边”判定定理。

观察图形,找全等三角形及三角形全等所需的条件。

完成证明后与教材中对照。

学生充分讨论,综合应用所学知识解决问题。

的方法及加深对“角边角”定理的理解。

应用“角边角”定理解题,强化知识间的联系。

规范证明的过程的书写。

巩固本节课所学知识及提升综合应用所学知识解决问题的能力。

板书设计。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

人教版八年级上册数学教案:12.2三角形全等的判定——“角边角”

人教版八年级上册数学教案:12.2三角形全等的判定——“角边角”

1
教学内容
师生活动
问题 4:如图,在△ABC 和△DEF 中,∠A=∠D,∠B=∠E,BC=EF,△ABC 学生探究、证明,获
与△DEF 全等吗?能利用角边角条件证明你的结论吗?
得“角角边”判定定
例题:如下图,D 在 AB 上,E 在 AC 上,AB=AC,∠B=∠C.求证:AD=AE. 理。
三、巩固新知
回忆两个三角形中 满足三个条件对应 相等的四种情况。
3.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们 接着探究已知两角一边是否可以判断两三角形全等呢?
二、探索新知
问题 1:三角形中已知两角一边有几种可能?
问题 2:三角形的两个内角分别是 60°和 80°,它们的夹边为 4cm,•你 学生思考回答。
完成证明后与教材中 对照。
如图,已知:D 在 AB 上,E 在 AC 上,BE、CD 相交于点 O,AB=AC, ∠B=∠C.求证:OB=OC
四、归纳总结
1.用“角边角”和“角角边”来判定两个三角形全等; 2.用三角形全等来证明线段的相等或角的相等; 3.到目前已学了的判定三角形全等的方法有:SSS、SAS、ASA、AAS。 五、布置作业 1.教材 12.2 第 5 题;
通过探究三角形全等条件的活动,培养学生发现问题、解决问题的能 力.
“角边角”条件及“角角边”条件.
教学难点
指导学生分析问题,寻找判定三角形全等的条件.
教学手段
多媒体




教学内容
师生活动
一、情境引入 1.三角形中已知三个元素,包括哪几种情况? 2.到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比

人教版八年级上册数学讲义 第二章全等三角形的判定(基础)

人教版八年级上册数学讲义 第二章全等三角形的判定(基础)

第三讲全等三角形的判定(基础)考试目标解读一.全等图形1.全等图形的概念:能够完全重合的两个图形就是全等图形;2.全等图形的性质:全等多边形的对应边和对应角分别相等;3.全等三角形:三角形是特殊的多边形,因此,全等三角形对应边,对应角分别相等。

同样,如果两个三角形的边,角分别对应相等,那么这两个三角形全等。

全等的符号是“≌”,读作“全等于”。

全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

二.全等三角形判定两个全等三角形能重合到一起,重合的顶点叫对应顶点,重合的边叫做对应边,重合的角叫做对应角。

三角形全等的条件:1.三边对应相等的两个三角形全等(可写成“边边边”或“SSS”)2.两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)3.两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)4.角边角(ASA)公理推论:有两个角和一角所对边对应相等的两个三角形全等。

(简称为“角边角”或“ASA”)。

5.斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边,直角边”或“HL”)1.典型例题例1:已知:如图AC=BD,∠CAB=∠DBA。

求证:∠CAD=∠DBC。

例2:已知:AB=CD,AB∥DC,求证:△ABC≌△CDB例3:已知:在△ABC中,AD为BC边上的中线,CE⊥AD,BF⊥AD。

求证:CE=BF例4.已知:如图AB=AC,AD=AE,BE和CD相交于G。

求证:AG平分∠BAC.例5:已知:△ABC中,D、E、F分别是AB、AC、BC上的点,连结DE、EF,∠ADE=∠EFC,∠AED=∠ACB,DE=FC。

求证:△ADE≌△EFC例6:已知:△ABC是等边三角形,∠GAB=∠HBC=∠DCA,∠GBA=∠HCB=∠DAC。

求证:△ABG≌△BCH≌△CAD。

八年级数学上册 第十二章 全等三角形知识点总结 新人教版

八年级数学上册 第十二章 全等三角形知识点总结 新人教版

第十二章全等三角形一、知识框架:二、知识清单:1.全等图形与全等三角形:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.全等三角形中互相重合的顶点叫做对应顶点;全等三角形中互相重合的边叫做对应边;全等三角形中互相重合的角叫做对应角.2.全等三角形性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定公理:⑴边边边公理:三边对应相等的两个三角形全等.(简记为“边边边”或“SSS”)⑵边角边公理:两边和它们的夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)⑶角边角公理:两角和它们的夹边对应相等的两个三角形全等.(简记为“角边角”或“ASA”)⑷角角边推论:两角和其中一角的对边对应相等的两个三角形全等.(简记为“角角边”或“AAS”)⑸斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等.(简记为“斜边、直角边”或“HL”)4.角平分线:把一个角平均分成两个等角的射线称为角的平分线.⑴角平分线的画法:a.以角的顶点为圆心,适当长为半径画弧,与角两边交于两个点;b.分别以两个交点为圆心,大于两交点连线段的1/2的相同长度为半径画弧,在角内交于一点;c.过角的顶点和b中的交点做射线.射线即为角的平分线.⑵角平分线性质定理:角平分线上的点到角两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等,三条角平分线的交点称为三角形的内心)5.证明的基本步骤:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.。

人教版八年级数学上册各章节知识点考点汇总

人教版八年级数学上册各章节知识点考点汇总

人教版八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

第十一章全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章 轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

初二年级数学的知识点:全等三角形

初二年级数学的知识点:全等三角形

初二年级数学的知识点:全等三角形小编为大伙儿查找了初二年级数学的知识点:全等三角形的资料。

如有关心,期望大伙儿下次一定要扫瞄查字典数学网。

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个能够通过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)边角边简称SAS(2)角边角简称ASA(3)边边边简称SSS(4)角角边简称AAS(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的差不多方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回忆三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形动身,引出全等图形进而引出全等三角形。

通过直观的明白得和比较发觉全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探究中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

一样说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
E
O
∴△ACD≌△ABE(ASA)
B
C
∴AD=AE(全等三角形的对应边相等)
又∵AB=AC(已知)
∴BD=CE
(2) (1)
小明踢球时不慎把一块 三角形玻璃打碎为两块,他是 否可以只带其中的一块碎片 到商店去,就能配一块于原来 一样的三角形玻璃呢?
如果可以,带哪块去合适 呢?为什么?
(2) (1)
△AOC与△BOD全等吗?为什么?
C
两角和对边
对应相等
A
O
B
解:在 DAOC和DBOD 中
D
∠C= ∠D (已知)
AO BO (中点的定义)
AOC BOD (对顶角相等)
\ DAOC DBOD (AAS)
知识应用 [ P13: 1,2. ]
2.如图,AB⊥BC, AD⊥DC, ∠1=∠2. 求证: AB=AD.
画法:1、画A/B/=AB; 2、在 A/B/的同旁画∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D,B/E交于点C/。
△A/B/C/就是所要画的三角形。
C
E
D
C’
A
B
通过实验你发现了什么规律?A’
B’
探究反映的规律是:
两角和它们的夹边对应相等的两个三角形全 等 (可以简写成“角边角”或“ASA”)。
证明: ∵ AB⊥BC, AD⊥DC, ∴ ∠B=∠D=900,
在△ABC和△ADC中, ∠B=∠D, ∠1=∠2, AC=AC,
∴ △ABC ≌△ADC (AAS) ∴ AB=AD.
练一练:
1、如图∠ACB=∠DFE,BC=EF,根据SAS,ASA或AAS,
那么应补充一个直接条件
AC=DF或∠B=∠E或∠A=∠D
ED C
∴ △ABE≌△A’CD(AAS)
练一练:
(1) 图中的两个三角形全等吗? 请说明理由.
全等.因为两角和其中一角的对边对应相等的 两个三角形全等.
解:在DABC和DDBC中
A
ABC DBC (已知)
110
A D (已知)
3ቤተ መጻሕፍቲ ባይዱ B 35
C
110
BC BC (公共边)
D
\DABC DDBC (AAS)
C
AO=BO , ∠1=∠2, (已知) ∴△AOC≌△BOD (ASA)
12
O D
A
例题讲解
例3.已知:点D在AB上,点E在AC上,BE和CD相交 于点O,AB=AC,∠B=∠C。
求证:(1)AD=AE; (2)BD=CE。
A
证明 :在△ADC和△AEB中
∠A=∠A(公共角) AC=AB(已知) ∠C=∠B(已知)
用数学符号表示:
A
A'
在△ABE和△A’CD中
∠A=∠A’ (已知 ) AB=A’C(已知 ) ∠B=∠C(已知 ) ∴ △ABE≌△A’CD(ASA)
B
ED C
两角和它们的夹边分别相等的两个三角形全 等 (可以简写成“角边角”或“ASA”)。
如图,应填什么就有 △AOC≌ △BOD:
B
∠A=∠B,(已知)
三步走:
①要证什么; ②已有什么; ③还缺什么。
= =
AD B EC F
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
20
结束语
当你尽了自己的最大努力时,失败 也是伟大的,所以不要放弃,坚持 就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
A
A
B
C
B
C
探究5
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B (即使两角和它们的夹边对应相等)。把画好的 △A/B/C/剪下,放到△ABC上,它们全等吗?
C
A
B
已知:任意 △ ABC,画一个△ A/B/C/, 使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B :
回首往事: 1.什么样的图形是全等三角形? 2.判断三角形全等至少要有几个条件?
答:至少要有三个条件
边边边公理: 有三边对应相等的两个三角形全等。
边角边公理: 有两边和它们夹角对应相等的两个
三角形全等。
问题:
如果已知一个三角形的两角及一边,那 么有几种可能的情况呢?
答:角边角(ASA) 角角边(AAS)
--------------------------,
(写出一个即可),才能使△ABC≌△DEF.
A
A
F
E
B
C
D
E
1
2
D
B
C
2、如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?
例2.如图,∠1=∠2,∠3=∠4 求证:AC=AD
如果把已知中的 ∠3=∠4
改成, ∠D=∠C 此题又如何?
练习:
例: 如图,O是AB的中点,∠A= ∠B, △AOC与△BOD全等吗?为什么?
两角和夹边 对应相等
C
A
O
B
解:在 DAOC和DBOD 中
D
A B (已知)
AO BO (中点的定义) AOC BOD (对顶角相等)
\ DAOC DBOD (ASA)
例: 如图,O是AB的中点,∠C= ∠D,
已知: 如图∠B=∠DEF, BC=EF, 求证:ΔABC≌ ΔDEF (1)若要以“SAS”为依据,还缺条件A_B=_D_E ___;
(2)若要以“ASA”为依据,还缺条件∠_A_CB_=_∠_D_EF; (3)若要以“SSS” 为依据,还缺条件A_B=_DE_、_A_C=_D;F
(4)若要以“AAS” 为依据,还缺条件∠_A_= ∠_D___;
演讲人:XXXXXX 时 间:XX年XX月XX日
D
A
(2)
C
利用“角边角”可知,带第(2)块去,
可以配到一个与原来全等的三角形玻E璃。
B
探究如6 下图,在△ABC和△DEF中,∠A =∠D, ∠ B=
∠E, BC=EF, △ABC与△DEF全等吗?能利用角边角条 件证明你的结论吗?
A
在△ABC和△DEF中,
∠A +∠B +∠C=1800,
∠D +∠E +∠F =1800,
C ∵ ∠A =∠D, ∠B=∠E,
B
D
∴ ∠C=∠F,
∴ ∠B=∠E,
BC=EF,
∠C=∠F,
E
F ∴ △ABC ≌△DEF (ASA)
探究反映的规律是:
两个角和其中一个角的对边分别相等的两个三角 形全等(可以简写成“角角边”或“AAS”)。
用数学符号表示:
A
A'
在△ABE和△A’CD中
AE=A’D(已知 ) ∠A=∠A’ (已知 ) ∠B=∠C(已知 ) B
相关文档
最新文档