3D打印技术之SLA(立体光固化成型法)

合集下载

SLA, DLP,FDM三种成型技术的特点

SLA, DLP,FDM三种成型技术的特点

SLA 、DLP、FDM三种成型技术的特点?SLA 、DLP、FDM这三种都是3D打印机常用到的三种技术。

FDM:全称叫“熔融沉积”技术,基本原理是通过加热装置将ABS、PLA等丝材加热融化,然后通过挤出头像挤牙膏一样挤出来,一层一层堆积上去,最后成形。

大家如果见过春蚕吐丝,就清楚了(我估计90后多半没见过),类似的也是如此。

蚕体内含有绢丝蛋白质的绢丝液,蚕用嘴挤压吐出,一层一层环绕,这种液体凝固后就成了丝茧。

SLA:全称叫“立体光固化成型”,基本原理是激光束在液态树脂表面勾画出物体的第一层形状,然后制作平台下降一定的距离(0.05-0.025mm之间),再让固化层浸入液态树脂中,如此反复。

使用的树脂是光敏树脂,激光束照射后会形成固态。

DLP:全称叫“数字光投影”技术。

使用的耗材和SLA一样,都是光固化树脂。

那和SLA有什么区别呢?为什么叫数字光投影呢?其实在机械结构方面,DLP与SLA最大的不同在于,DLP用的是投影仪的数字光源(没用用过投影仪?买一个试试,哈哈),SLA用的是激光头。

正因为如此,DLP一扫就是一片,SLA成形只能靠一个激光点。

一些DLP机器还可以打多种材料,例如DLP200台面可以打印多种材料,树脂ABS亚克力。

打印尺寸:FDM > SLA ≈DLPFDM的机器,在架构上灵活多样,有XYZ框架结构的,有三角州结构的,有机械手臂的,因此成形尺寸可以做得很小,也可以做得很大;而而SLA和DLP在成形原理上的限制,暂时就无法做出大型的机器,SLA理论上和FDM一样可以做的无限大的尺寸,只不过速度会慢,SLA也是通过光轴移动来打印的。

而DLP呢?如果做大的话,会牺牲精度,而SLA和FDM不会。

3D打印机有XYZ三个轴来控制精度,Z轴是步进电机精度,就是咱们说的层厚,这个精度FDM、DLP、SLA没什么区别,因为买的都是市面上的步进电机,理论上最小可以到0.01MM。

差别主要是在X、Y轴精度上。

3D打印机之SLA与CNC加工工艺对比

3D打印机之SLA与CNC加工工艺对比
就成本方面而言,由于SLA工艺成本主要与零件重量相关,对于高精细、薄壁或空心结构等零件,SLA成本优于CNC;而对于结构相对简单的厚重零件,则CNC的成本占优。
工业级SLA?相关机器:ProJet?3510HDPlus,ProJet?3500CPXMax,PROJET?6000,PROJET?7000,PROJET?3510MP,更多工业级SLA?请点击
3D打印机之SLA与CNC加工工艺对比如下:
SLA
CNC
工艺特点
1.?工艺柔性高,能一次性完成非常复杂结构的零件制作,且其制作成本和制作速度与零件的复杂程度基本无关;
2.?制作速度快,在设备的加工规格范围内可以同时制作数个零件的并行加工,从得到数模到零件完成只需几个小时到十几个小时即可完成;
3.?CAD/CAM无缝衔接,CAD数据可直接上机加工制作,无需进行数据编程和零件拆分
CNC加工耗材直接使用ABS、PP等真实材料,材料成本较低;但CNC工艺需要编程和拆分,通常一台CNC设备需要配备3-4个人员,人工成本较大。因此,CNC的成本主要取决于零件复杂度和材料消耗,零件越复杂,需要拆分和编程的工作量越大,后处理的拼接工序越复杂,所需人工工时就越多,成本越高
综述
SLA工艺主要适用各种复杂结构,或者工期要求高的零件制作。而CNC比较适宜制作结构较为简单、比较厚重的各种实心三达网()
SLA是"StereolithographyAppearance"的缩写,即立体光固化成型法。
CNC是Computernumericalcontrol:计算机数控,简称CNC,国外一般都称为CNC,很少再用NC这个概念了。数控机床(NumericalControlMachineTools)是指装备了计算机数控系统的机床,简称CNC机床。

立体光固化成型原理

立体光固化成型原理

立体光固化成型原理立体光固化成型(stereolithography,SLA)是一种聚合物3D打印技术,其原理是利用紫外线光源固化液态光敏树脂。

SLA是最早的商业化3D打印技术之一,其能将百万级零件制造到数天内,是高精度、高速度的打印技术之一。

SLA的原理简单来说是,通过把一层液态光敏树脂放置在建造平台上,利用逐层递增的方法将树脂被照射到随后的固化过程中。

然后,创造出的骨架被下降到接触涂层树脂中一层,将继续过程,并固化到下一层,最终产生一个立体复制品。

这种方法可实现高精度的3D打印零件,具有高表面质量的特点,结构可以非常复杂,同时可以实现非常精细的内部结构。

具体来说,SLA技术由三个主要的组成部分组成:液态树脂材料、光源和建造平台。

液态树脂材料是整个打印过程中的主要材料,它是在紫外线光的作用下固化成固态的材料;光源通常是一个固定的紫外线激光器,其通过数字坐标机器(DCM)获取并控制光的属性和位置;建造平台则提供了一个打印区域,用于固定和移动树脂瓶,并用于建立3D零件的缩放、旋转和位置。

总体来说,SLA技术是一种高度精确的3D打印方法,其在行业中具有一定的优势。

它可以制造出非常复杂的结构,具有很高的表面质量和准确度,并可以在非常短的时间内生产出零件。

此外,SLA技术还可以打印出精细的内部结构,这通常是其他3D打印方法难以准确实现的。

SLA技术也存在一些缺点。

由于材料本身的限制,其打印出的零件通常比其他3D打印技术弱一些,经常需要进一步的处理和处理。

此外,SLA技术通常比其他3D打印技术更昂贵,需要更高的能源和更多的材料,因此成本也更高。

总之,SLA技术是一种高度精确的3D打印技术,可以用于制造复杂的结构和精细的内部结构。

它在许多不同的行业中得到了广泛应用,包括医疗、汽车、航空航天等等。

随着技术的不断发展,SLA技术已经变得越来越成熟和成熟,为行业中的很多领域带来了巨大的变革。

sla工艺原理

sla工艺原理

sla工艺原理SLA工艺原理SLA是“Stereolithography Apparatus”的缩写,中文名为“光固化成型设备”,它是一种快速成型技术,也是3D打印中最早应用的一种技术。

SLA工艺原理是利用光敏树脂的光固化特性,通过逐层堆积,最终形成一个三维物体的过程。

SLA工艺的基本原理是利用激光束对光敏树脂进行扫描,使其局部固化,然后通过平台的升降控制,逐层堆积固化的层,最终形成一个完整的三维物体。

这个过程中,激光束的扫描路径由计算机控制,根据设计文件中的三维模型,将其切分成一层层的二维轮廓,然后逐层堆积形成三维物体。

在SLA工艺中,光敏树脂是关键材料。

光敏树脂是一种特殊的树脂,它能够在特定波长的光照射下发生光固化反应。

激光束的扫描路径决定了光敏树脂的固化轮廓,而平台的升降控制则决定了每一层的高度。

通过不断的扫描和堆积,逐渐形成一个完整的三维物体。

SLA工艺的优点之一是可以制造出非常复杂的结构。

由于激光束的扫描路径可以任意控制,因此可以制造出非常复杂的形状,例如曲线、曲面等。

同时,SLA工艺还可以制造出非常细小的细节,因为激光束的直径可以控制在很小的范围内。

SLA工艺还可以制造出具有高精度的产品。

激光束的直径决定了产品的最小分辨率,而平台的升降控制决定了产品的垂直精度。

因此,SLA工艺可以制造出具有高精度的产品,满足一些特殊应用的需求。

然而,SLA工艺也存在一些局限性。

首先,光敏树脂的材料种类有限,不同材料具有不同的物理特性和机械性能,因此在选择材料时需要根据具体应用进行权衡。

其次,SLA工艺制造的产品通常需要进行后处理,例如清洗、硬化等,以提高产品的性能和质量。

总的来说,SLA工艺是一种基于光固化原理的快速成型技术,通过逐层堆积光固化的树脂,最终形成一个完整的三维物体。

它具有制造复杂结构、高精度产品的优势,但也存在材料选择和后处理等方面的局限性。

随着科技的不断发展,SLA工艺在各个领域的应用将会越来越广泛,并为我们带来更多的创新和可能性。

sla技术原理

sla技术原理

SLA(Stereo Lithography Apparatus)技术,即立体光固化成型法,是一种最早实现商品化的快速成形(Rapid Prototyping)技术。

SLA技术基于液态光敏树脂的光聚合原理,通过逐层固化光敏树脂来生成三维实体模型。

SLA技术的工作原理如下:
1. 设计:首先通过计算机辅助设计(CAD)软件设计出三维实体模型。

2. 切片处理:利用离散程序将模型进行切片处理,将三维模型分解成一系列二维层。

3. 生成数据:根据切片处理结果,生成精确控制激光扫描器和升降台运动的路径数据。

4. 激光扫描:激光光束通过振镜的反射,按照设计的扫描路径照射到液态光敏树脂表面,使特定区域内的树脂固化。

5. 升降台运动:在激光扫描的同时,升降台按照设定的速度和路径进行运动,使激光扫描的区域逐层叠加,形成三维工件。

6. 固化层叠加:当一层加工完毕后,升降台上升一定距离,再覆盖一层液态树脂,进行下一层的扫描和固化。

这样一层层叠加,最终形成三维工件。

7. 后处理:将生成好的三维工件从树脂中取出,进行后续的固化、抛光、电镀、喷漆或着色等处理,得到最终产品。

总之,SLA技术通过逐层扫描和固化光敏树脂,实现三维物体的快速成型。

作为一种成熟的光固化技术,SLA具有加工速度快、精度高、材料选择范围广等优点。

3D打印技术之SLA(立体光)

3D打印技术之SLA(立体光)

Unirapid III 3D打印机
• 日本的Unirapid III3D打印机专门为 打印精细物品而设 计,最小层厚度仅 有0.05mm,最大 建模尺寸为 150×150×150mm。
Stratasys objet系列
Objet Connex500
Objet打印效果图
SLA成型技术的材料
• • •
• 主要有四大系列: Ciba (瑞士巴塞尔)公司生产的CibatoolSL 系列, Dupont(美国杜邦)公司的SOMOS系列, Zeneca(英国捷利康公司)公司的Stereocol 系列, RPC公司(瑞典)的RPCure系列。
光固化快速成型技术的优点:
(1)快速性。 (2)高度柔性。
(3)精度高。
(4)集成化。
(5)材料利用率高。
光固化快速成型技术的缺点:
(1)需要设计支撑结构。 (2)成本较高,可使用的材料较少。 (3)有气味和轻微毒性。
应用
目前医学上手术植入体模型的
制作、手术中的定位模型制作、医
学教学辅具制作、组织工程细胞载
体支架的制作等方面都运用到了光 固化快速成型技术。
STL 格式图形
结论
• 我国需加强创新研发、技术引进和投入, 争取在未来的市场竞争中占据有利位置。 • 国内需要借鉴美国3D 打印企业的运营模式, 要将研发重点移向技术应用,加大产学研 合作,加大扶植重点企业的研发,突破 “校园模式”,向市场和产业化转变。
• 该技术的核心,也是“颠覆制造业”的重 要因素就是材质,只有进行更多新材料的 开发才能拓展3D 打印技术的应用领域。
技术萌芽期
国内 国外 1999 年之前 1995 年之前
平稳增长期
2000 - 2007 年 1996 - 1998 年

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析随着科技的不断进步,3D打印技术已经成为当今的热门话题。

3D 打印技术通过将数字文件转化为物理对象,为生产和创新带来了巨大的便利。

目前市面上主流的3D打印技术有多种,其中最常见的技术包括SLA、FDM、SLS等。

本文将对这三个技术进行详细的对比分析。

一、SLA技术1.概念SLA是“光固化成型”,该技术是将纯液态光敏树脂涂覆在建模台上,然后利用UV激光束逐层固化,最后形成物体。

2.特点SLA技术的最大特点就是可以制作非常精细的模型,可以达到0.025mm的高精度,因此广泛应用于珠宝、艺术品、模型制作等领域。

SLA吸收材料的能力也很强,可以在有限的时间内生产大批量的模型。

3.应用SLA技术可以应用于复杂的3D打印模型,从家用电器的零件到医疗器械,都可以使用SLA技术,目前3D打印领域最成熟的技术之一。

二、FDM技术1.概念FDM是较常用的3D打印技术,该技术是通过将熔化的热塑性材料挤出喷嘴,然后通过精确控制的机器臂逐层叠加,最终形成物体。

2.特点FDM技术可以使用广泛的材料,如ABS、PLA、PVA等,因此可以制作出各种不同材质的物体。

此外,FDM技术可以使用废旧材料进行打印,具有环保节能的特征。

FDM技术的价格也比其他技术便宜,因此普及率很高。

3.应用FDM技术主要应用于制作机械零件、人造器官、模型等等。

FDM技术可以制作出高度精确的物体,而且速度快、方便实用,是3D打印领域的常用技术。

三、SLS技术1.概念SLS是“选择性激光烧结”,该技术是利用激光束烧结聚合性形式的粉末,从而在建模台上形成模型。

2.特点SLS技术适用范围广,可以使用多种不同的粉末材料进行打印,如聚酰胺、耐热材料、金属、陶瓷和玻璃等,可以制作非常大的物体。

SLS技术还可以制作出复杂的内部结构和薄壁结构,同时具有较高的强度和耐磨性。

3.应用SLS技术主要应用于制作模型、人工骨骼等各种半成品。

sla光固化方法

sla光固化方法

sla光固化方法SLA光固化方法SLA(Stereolithography Apparatus)光固化方法是一种常用于3D 打印技术中的加工方法,它能够将液态光敏树脂通过光固化技术逐层凝固,最终形成所需的实体模型。

在SLA光固化方法中,光敏树脂是通过紫外线光源进行固化的,该方法具有高精度、高速度、无需支撑物等优点,已广泛应用于各个领域。

SLA光固化方法的工作原理是将液态光敏树脂注入到一个透明的槽中,然后使用一个可控制的紫外线光源照射到树脂表面。

紫外线光源能够引发树脂中的光敏物质发生聚合反应,从而使树脂逐渐固化。

在固化后,槽中的平台会向下移动一层距离,使下一层树脂暴露在紫外线光源下,继续进行光固化。

如此循环,直到整个模型打印完成。

SLA光固化方法具有以下几个优点。

首先,它能够实现非常高的精度,通常可以达到数十微米的级别。

这是因为SLA光固化方法使用的紫外线光源具有较短的波长,能够提供高能量的光束,使得光敏树脂能够快速固化。

其次,SLA光固化方法的打印速度相对较快,可以在几个小时内完成一个复杂的模型。

这是因为光敏树脂的固化过程是瞬间完成的,不需要额外的时间等待。

此外,SLA光固化方法还具有无需支撑物的特点。

由于光敏树脂在固化后具有一定的强度,可以自己支撑起模型的形状,因此不需要额外的支撑结构,使得打印过程更加简便。

然而,SLA光固化方法也存在一些局限性。

首先,光敏树脂的材料种类相对较少,选择范围有限。

其次,由于紫外线光源只能照射到树脂表面,因此在打印过程中可能会出现一些表面质量不理想的情况,例如表面不光滑、存在层状痕迹等。

此外,SLA光固化方法的成本相对较高,光敏树脂的价格较贵,使得其在大规模生产中的应用受到了限制。

尽管SLA光固化方法存在一些局限性,但它仍然是一种非常重要和广泛应用的3D打印技术。

在医疗领域中,SLA光固化方法可以用于制作仿真器官、植入物等医疗器械。

在工业设计领域中,SLA光固化方法可以用于制作样机、模型等。

3d打印sla技术原理

3d打印sla技术原理

3d打印sla技术原理3D打印是一种快速成型技术,通过将材料逐层堆积以创建三维模型实体。

Sla技术是3D打印中的一种常用方法,其全称为立体光固化技术。

本文将详细介绍Sla技术的原理、系统组成及优缺点,帮助读者深入了解这一前沿技术。

Sla技术通过使用激光或其他光源将液态树脂固化,形成一层层的图像。

这些图像可以通过计算机建模软件创建,通过逐层叠加的方式最终形成三维物体。

该技术的核心在于使用光敏固化树脂作为支撑材料,通过特定波长的光线固化树脂中的单体分子,使其变得坚硬和结实。

在Sla打印过程中,光源从上方照射打印对象,通过精确控制光线和树脂溶液的接触面,使接触面的一层树脂固化。

然后通过刮板或真空装置将未固化的树脂液面下降一层,再继续下一层的固化,如此反复直至整个模型打印完成。

二、系统组成Sla打印机通常由软件、硬件和支撑材料三部分组成。

软件部分包括建模软件和切片软件,其中建模软件用于创建需要打印的三维模型,切片软件将建模软件中的模型按照打印机的运动轨迹进行切片,使光线能够准确照射到固化树脂中。

硬件部分包括打印机主体、光源、控制部件等,其中打印机主体包括平台、喷头、支撑结构等;光源通常使用高精度激光器,控制部件用于控制光源的照射时间和运动轨迹。

支撑材料一般为光敏固化树脂,以及相应的喷头和容器等部件。

三、Sla技术的优缺点优点:1.无需模具和机械加工,直接从计算机中生成实物模型。

2.制造过程绿色环保,减少了废弃物和有害物质的排放。

3.灵活度高,可以制作任意形状的三维实体。

4.材料利用率高,可以减少材料的浪费。

5.成本低,适合小批量生产。

缺点:1.打印时间较长,成型速度较慢。

2.支撑材料的使用会影响到模型的精度和稳定性。

3.对打印材料和环境的温度敏感,需要严格控制。

4.某些材料可能存在毒性或易燃性,使用时需注意安全。

四、应用领域Sla技术广泛应用于航空航天、医疗、建筑、玩具、艺术等领域。

例如,航空航天领域中,该技术被用于制造零部件和原型;医疗领域中,医生可以使用Sla技术制作个性化假肢和牙科模型;建筑领域中,该技术被用于制作建筑模型和展示工具;玩具领域中,该技术被用于制造可穿戴机器人和智能玩具等。

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析3D打印技术已经在多个领域取得了广泛应用,例如医疗、航空航天、汽车、工业制造等。

其中,SLA(StereoLithography)技术、FDM (Fused Deposition Modeling)技术、SLS(Selective Laser Sintering)技术是三种常见且应用广泛的技术。

本文将对这三种技术的特点和应用进行对比分析,以便更好地了解它们的优劣。

1. SLA技术SLA技术是一种利用光固化树脂的三维打印技术,通过使用紫外线激光照射在光敏树脂表面,将树脂固化成固体物体。

SLA技术的特点有:-高精度:由于激光精确照射在树脂表面,SLA技术可以实现非常高的精度和表面光滑度。

-材料多样性:SLA技术可以使用不同材质的光敏树脂,可以实现多种功能性的零件制造。

-成型速度较慢:由于要使用激光逐层固化树脂,SLA技术的成型速度相对较慢。

SLA技术的应用范围非常广泛,主要包括医疗领域中的生物医学模型制造、工业设计中的样机打印、珠宝设计中的模具制作等领域。

2. FDM技术FDM技术是一种利用熔融式塑料丝进行层层堆积的三维打印技术,通过加热喷嘴将塑料丝熔化后挤出,通过控制喷嘴的运动路径实现物体的制造。

FDM技术的特点包括:-较低的成本:相比其他技术,FDM技术的设备和材料成本相对较低。

-制造速度快:FDM技术可以实现较快的成型速度,适用于批量定制生产。

-材料种类丰富:FDM技术可以使用多种不同材质的塑料丝,可以满足不同领域的需求。

FDM技术的应用范围包括汽车领域的零部件制造、航空航天领域的样机验证、工业制造中的快速定制等领域。

3. SLS技术SLS技术是一种利用激光烧结粉末材料进行层层堆积的三维打印技术,通过使用激光将粉末材料局部烧结固化,形成物体的过程。

SLS技术的特点有:-可制造复杂结构:SLS技术可以实现复杂结构的制造,适用于精细零件制作。

SLA光固化成型:最成熟的3D打印技术

SLA光固化成型:最成熟的3D打印技术

SLA光固化成型:最成熟的3D打印技术光固化技术可以追溯到1977年,美国的Swainson提出使用射线来引发材料相变,制造三维物体。

由于资金问题,该项目于1980年终止。

同样的研究于1984年在巴特尔实验室(Battelle Laboratories)展开,该研究项目被称为光化学加工(Photochemical Machining)。

尽管当时政府为这项技术提供了完善的实验室硬件支撑,但是没能够实现商业化。

1983年,Charles Hull发明了光固化成型技术,并在1986年获得申请专利。

同年,Charles Hull在加利福尼亚州成立了3D Systems 公司,致力于将光固化技术商业化。

1988年,3D Systems推出第一台商业设备SLA-250,光固化快速成型技术在世界范围内得到了迅速而广泛的应用。

SLA-250的面世成为了3D打印技术发展史上的一个里程碑事件,其设计思想和风格几乎影响了后续所有的3D打印设备。

光固化工作原理光固化成型(Stereo Lithography Appearance,SLA或SL)主要是使用光敏树脂作为原材料, 利用液态光敏树脂在紫外激光束照射下会快速固化的特性。

光敏树脂一般为液态,它在一定波长的紫外光(250 nm~400 nm)照射下立刻引起聚合反应,完成固化。

SLA通过特定波长与强度的紫外光聚焦到光固化材料表面,使之由点到线、由线到面的顺序凝固,从而完成一个层截面的绘制工作。

这样层层叠加,完成一个三维实体的打印工作。

具体打印流程:1. 在树脂槽中盛满液态光敏树脂,可升降工作台处于液面下一个截面层厚的高度,聚焦后的激光束在计算机控制下沿液面进行扫描,被扫描的区域树脂固化,从而得到该截面的一层树脂薄片;2. 升降工作台下降一个层厚距离,液体树脂再次暴露在光线下,再次扫描固化,如此重复,直到整个产品成型;3. 升降台升出液体树脂表面,取出工件,进行相关后处理,通过强光、电镀、喷漆或着色等处理得到需要的最终产品。

立体光固化成型技术

立体光固化成型技术

立体光固化成型技术立体光固化成型技术(Stereolithography,简称SLA)是一种利用紫外光定向聚合特定光敏树脂,通过分层处理,逐层堆叠完成三维实体模型制造的一种先进制造技术。

SLA 技术在工业,医疗,建筑,消费品等领域得到了广泛的应用。

SLA技术的过程可以简单地概括为:先通过CAD软件设计出所需物品的数字模型,然后将数字模型导入到SLA成型机,机器将数字模型分解成很多薄层,逐层固化树脂,形成三维实体,最后再通过后处理工艺如清洗、喷涂涂料等工艺进行加工。

1. 高精度和高质量SLA技术具有非常高的制作精度,其平均加工精度能够达到0.1mm级别,使得最终制作的产品质量稳定可靠。

2. 制造速度快相较于传统的制造技术,如铸造、加工等,SLA技术具有制造速度快的优势,可大大节约制造时间成本,节约企业的生产成本。

3. 成品表面平整SLA技术通过逐层极其平整的成型,使得成品表面非常平整,不需要额外研磨和喷涂等后续工艺处理。

4. 生产效率高SLA技术可以通过分层处理,用较短的时间生产出细节丰富、形状各异的产品,使得生产效率大大提高,降低了生产成本。

5. 应用广泛SLA技术广泛应用于制造行业和工业领域,如汽车、医疗、消费品、航空等工业和医疗领域。

SLA技术虽然具有许多优点,但仍然存在一些问题需要解决,如最终成品均匀性、清洗和处理等。

尽管如此,SLA技术以其高质量、高效率和广泛的应用领域,仍然是一种非常有前途的制造技术。

近年来,随着3D打印技术的发展,SLA技术也在技术和应用方面得到了不断的优化和拓展。

新材料的研发和新的工艺流程的创新,使得SLA技术应用的范围不断扩大,并在制造领域取得了重大突破。

SLA技术应用于汽车领域,可以大幅度缩短车型的设计和开发周期,提高试车效率,及时发现设计上的问题,从而大幅度降低成本。

SLA技术也可以用于制造特殊材料的复杂零件,使得汽车在性能、外观和安全等方面得到提高。

医疗领域也是SLA技术的重要应用领域,SLA技术可以制造出三维的仿真器官或人体组织模型,便于医生更好地分析、诊断和治疗病患。

第二部分:简述目前的3D打印技术之SLA光固化立体成型

第二部分:简述目前的3D打印技术之SLA光固化立体成型

光固化立体造型(Stereolithography,SLA)
据维基百科记载,1984年的第一台快速成形设备采用的就是光固化立体造型工艺,现在的快速成型设备中,以SLA的研究最为深入,运用也最为广泛。

平时我们通常将这种工艺简称“光固化”,该工艺的基础是能在紫外光照射下产生聚合反应的光敏树脂。

与其它3D打印工艺一样,SLA 光固化设备也会在开始“打印”物体前,将物体的三维数字模型切片。

然后电脑控制下,紫外激光会沿着零件各分层截面轮廓,对液态树脂进行逐点扫描。

被扫描到的树脂薄层会产生聚合反应,由点逐渐形成线,最终形成零件的一个薄层的固化截面,而未被扫描到的树脂保持原来的液态。

当一层固化完毕,升降工作台移动一个层片厚度的距离,在上一层已经固化的树脂表面再覆盖一层新的液态树脂,用以进行再一次的扫描固化。

新固化的一层牢固地粘合在前一层上,如此循环往复,直到整个零件原型制造完毕。

SLA 工艺的特点是,能够呈现较高的精度和较好的表面质量,并能制造形状特别复杂(如空心零件)和特别精细(如工艺品、首饰等)的零件。

3D打印技术之SLA(立体光固化成型法)

3D打印技术之SLA(立体光固化成型法)

3D打印技术之SLA(立体光固化成型法)SLA(Stereo lithography Appearance),即立体光固化成型法。

SLA技术3d打印机的原理用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。

这样层层叠加构成一个三维实体。

SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。

其工艺过程是:首先,通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;其次,激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;然后,升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型,最后,将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。

SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。

SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。

因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。

SLA 技术的优势1.光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。

2.由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。

3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。

4.使CAD数字模型直观化,降低错误修复的成本。

5.为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。

6.可联机操作,可远程控制,利于生产的自动化。

SLA 技术的缺陷1.SLA系统造价高昂,使用和维护成本过高。

d打印技术之sla(立体光)

d打印技术之sla(立体光)
成三维实体。
在SLA过程中,液态光敏树脂被倒入一 已固化的层面上再次覆盖一层液态树脂, 个容器中,激光束在液面按计算机指令 以便进行下一层的扫描和累积。这个过 逐层进行扫描,使树脂发生聚合反应形 程反复进行,直至整个工件完成。
成固化层。
SLA技术的特点
高精度
由于SLA技术采用激光逐层扫描 固化,因此可以获得高精度的 打印结果。
科研领域
在材料科学、生物医学、机械工程等学科中,SLA 技术可用于制造实验所需的样品和模型。
学生创新实践
通过SLA技术,学生可以自主设计和制造创新产品, 培养实践能力和创新思维。
THANKS FOR WATCHING
感谢您的观看
05 SLA(立体光)3D打印的实 际应用案例
工业设计领域
01
02
03
复杂零件制造
SLA技术能够制造出复杂 形状和结构的零件,广泛 应用于航空、汽车、电子 等工业领域。
功能测试模型
通过SLA技术快速制造出 产品原型,用于进行功能 测试和优化设计。
模具制作
在塑料、陶瓷等材料的模 具制作中,SLA技术能够 提高模具的精度和寿命。
光敏树脂材料在打印过程中通过 光聚合反应固化,形成精确的三
维结构。
光敏树脂材料的性能直接影响打 印成品的精度、强度和耐久性。
其他可用的材料
01
除了光敏树脂材料,SLA(立体光 )3D打印技术还可以使用其他可用 的材料,如陶瓷、玻璃、金属等 。
02
这些材料的加入可以扩展SLA(立 体光)3D打印技术的应用范围,满 足更多领域的需求。
光敏树脂材料选择
根据模型需求选择合适的光敏 树脂材料,确保打印质量。
打印开始
按照切片处理后的指令,逐层 进行打印。

光固化立体成形

光固化立体成形

光固化立体成形1 .工艺过程原理光固化立体成形是采用立体印刷(Stereo Lithography Apparatus , SLA )原理的一种工艺,也是最早出现的、技术最成熟和应用最广泛的快速原型技术,由美国3D Systems 公司在20 世纪80 年代后期推出。

SLA 的成形方法是在树脂液槽中盛满液态光敏树脂,使其在激光束的照射下快速固化,成形过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。

然后,工作台下降一层薄片的高度,已固化的塑料薄片就被一层新的液态树脂所顶盖,以便进行第二层激光扫描固化,新固化的一层牢固地枯结在前一层上,如此重复不已,直到整个产品成形完毕。

最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。

整个成形过程的原理如图8 一4 所示。

3D Systems 公司的SLA 快速原型技术一直处于领先地位,1 997 年,该公司的SLA 机器的销售量占市场份额的26 %。

3D Systems 公司最近相继推出的新产品有:SLA 一3500 、SLA 一5000 和SLA 一7000 , SLA 一250 型因价格较低,技术成熟、性能稳定同世界上目前应用最多的快速原型设备。

新的SLA 一3500 型采用固态Nd : YVO .激光,使加工速度比SLA 一250 型提高53 %。

SLA 一5000 和SLA 一7000 型进一步加大了激光功率和加工零件尺寸。

2 . SLA 的优缺点及应用范围SLA 快速原型技术的优点是:1 )系统工作稳定,系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直至整个工艺过程结束。

2 )尺寸精度较高,可确保工件的尺寸精度在0 . lmm 以内。

3 )表面质量较好,工件的最上层表面很光滑,侧面可能有台阶状不平及不同层面间的曲面不平。

3D打印技术种类

3D打印技术种类

精心整理3D打印技术种类SLA/DLP技术SLA是"StereolithographyAppearance"的缩写,即立体光固化成型法。

用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。

这样层层叠加构成一个三维实体。

SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。

SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,SLA用原型模代替熔模精密铸造中的蜡模。

SLA技术成形速度较快,精度高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。

DLP激光成型技术和SLA立体平版印刷技术比较相似,不过它是使用高分辨率的数字光处理器(DLP)投影仪来固化液态光聚合物,逐层的进行光固化,由于每层固化时通过幻灯片似的片状固化,因此速度比同类型的SLA立体平版印刷技术速度更快。

该技术成型精度高,在材料属性、细节和表面光洁度方面可匹敌注塑成型的耐用塑料部件。

精细度指数★★★★★硬度强度指数★★★FDM熔融层积成型技术FDM即是FusedDepositionModeling,熔融挤出成型工艺的材料一般是热塑性材料,如ABS、PC、尼龙等,以丝状供料。

材料在喷头内被加热熔化。

喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结。

每一个层片都是在上一层上堆积而成,上一层对当前层起到定位和支撑的作用。

随着高度的增加,层片轮廓的面积和形状都会发生变化,当形状发生较大的变化时,上层轮廓就不能给当前层提供充分的定位和支撑作用,这就需要设计一些辅助结构-“支撑”,对后续层提供定位和支撑,以保证成形过程的顺利实现。

这种工艺不用激光,使用、维护简单,成本较低。

用ABS制造的原型因具有较高强度而在产品设计、测试与评估等方面得到广泛应用。

SLA成型技术的基本原理

SLA成型技术的基本原理

SLA成型技术的基本原理SLA(Stereolithography Apparatus)成型技术是一种常用的三维打印技术,使用光敏感树脂材料通过紫外线激光束来逐层固化,最终得到一个具有所需形状的实体模型。

1.设计与准备:首先,需要通过计算机辅助设计(CAD)软件来创建模型的三维数学模型。

然后,将其转化为SLA打印机可以识别并处理的文件格式,如STL格式。

2.光固化树脂材料:SLA工艺使用的是一种光敏感树脂材料。

这种材料的特点是在紫外线照射下可以发生光聚合反应,即会固化成固体。

3.工作平台:打印前,需要准备一个水平的工作平台。

这个平台会根据每一层设计模型的几何图形上升或下降。

平台可以由激光束或者马达进行控制。

4.光激光束固化:工作台被放置在一个透明的液体基床上,基床可以是光聚合树脂。

当打印过程开始时,紫外线激光束从固定位置开始照射在液体基床上呈现的固化部位。

5.固化层与模型形成:紫外线激光束照射在树脂表面的点上,引起光聚合反应。

在这个过程中,树脂材料以聚合的形式变得坚固,不再是液体。

当这一层打印完成后,工作台便向上升起一个定高的距离,随后在其上再倒入一层树脂材料。

6.重复打印:整个过程会反复进行,即逐层的固化,同时工作台也会进行上升或下降,以将新层的液体树脂移入。

每一层与前一层接触并粘合,最终形成完整的物体。

7.必要的后处理:打印结束后,模型上可能仍有残余的树脂。

这些残余物可以通过水洗或者其他化学方法来清洁,并用紫外线照射进行进一步的固化。

最后,为了获得平滑的表面,需要进行打磨,抛光或者上漆等后处理工作。

光固化成形法-SLA

光固化成形法-SLA

光固化成型法(Stereo lithography Appearance:SLA)一、概念该技术以光敏树脂为原料,计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的树脂薄层产生光聚合反应,从而形成零件的一个薄层截面。

当一层固化完毕,移动工作台,在原先固化子的树脂表面再敖上一层新新的液态树脂以便进行下层扫描固化。

新固化的一层牢固地粘合地层上,如此重复至整个零件原型制造完毕。

光固化成型技术的特点优点:成型过程自动化程度高SLA系统非常稳定,加工开始后,成型过程可以完全自动化,直至原型制作完成。

尺寸精度高SLA原型的尺寸精度可以达到±0.1mm。

优良的表面质量虽然在每层固化时侧面及曲面可能出现台阶,但上表面仍可得到玻璃状的效果。

可以制作结构十分复杂的模型、尺寸比较精细的模型可以直接制作面向熔模精密铸造的具有中空结构的消失型制作的原型可以一定程度地替代塑料件缺点:制件易变形成型过程中材料发生物理和化学变化较脆,易断裂性能尚不如常用的工业塑料设备运转及维护成本较高液态树脂材料和激光器的价格较高使用的材料较少目前可用的材料主要为感光性的液态树脂材料液态树脂有气味和毒性,并且需要避光保护,以防止提前发生聚合反应,选择时有局限性需要二次固化经快速成型系统光固化后的原型树脂并未完全被激光固化。

SLA成型件的主要应用1)直接制造各种树脂样品件或功能件,用作结构验证和功能测试。

2)制作精细零件。

3)制造有透明效果的制件。

4)制造出的原型件可快速翻制各种模具。

5)代替熔模精密铸造中的消失模用来生产金属零件。

应用现状:多样化的研究,,收缩、应力变形,,对颜色、结构、导电性、易燃性、耐腐蚀性和柔性等性能的考虑,,降低成本,,硬化机理二、使用的材料SLA(光固化)材料:光敏环氧树脂、光敏乙烯醚、光敏环氧丙稀酸酯。

SLA对材料性能的基本要求:光照下迅速固化;较小的临界曝光和较大的固化穿透深度,固化收缩率小、具有足够的强度和表面粗糙度,毒性小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3D打印技术之S L A(立体光
固化成型法)
-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
3D打印技术之SLA(立体光固化成型法)SLA(Stereo lithography Appearance),即立体光固化成型法。

SLA技术3d打印机的原理
用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。

这样层层叠加构成一个三维实体。

SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。

其工艺过程是:
首先,通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;
其次,激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;
然后,升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型,
最后,将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。

SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。

SLA技术成形速度较快,精
度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。

因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。

SLA 技术的优势
1.光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。

2.由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。

3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。

4.使CAD数字模型直观化,降低错误修复的成本。

5.为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。

6.可联机操作,可远程控制,利于生产的自动化。

SLA 技术的缺陷
1.SLA系统造价高昂,使用和维护成本过高。

2.SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻。

3.成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存。

4.预处理软件与驱动软件运算量大,与加工效果关联性太高。

5.软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员熟悉。

相关文档
最新文档