2019-2020年七年级数学期末试卷
(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)
2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。
2019-2020学年山东省泰安市七年级(上)期末数学试卷(五四学制)
2019-2020学年山东省泰安市七年级(上)期末数学试卷(五四学制)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列图形不是轴对称图形的是()A .B .C .D .2.(4分)在实数227-,π,0.1010010001中,是无理数的是()A .227-BC .πD .0.10100100013.(4分)如图,//B C E F,//A C D F,添加下列一个条件后,仍无法判断A B CD E F∆≅∆的是()A .B CE F= B .A CD F= C .A DB E= D .CF∠=∠4.(4分)如图,在C D 上求一点P ,使它到O A 、O B 的距离相等,则P 点是( )A .线段C D 的中点B .O A 与CD B ∠的平分线的交点 C .O B 与D C A ∠的平分线的交点D .C D 与A O B ∠的平分线的交点5.(4分)已知点(,1)A a 与点(4,)B b -关于原点对称,则ab+的值为()A .5B .5-C .3D .3-6.(4的算术平方根是()A .4B .4±C .2D .2±7.(4分)如图,一个底面圆周长为24m ,高为5m 的圆柱体,一只蚂蚁沿侧表面从点A 到点B 所经过的最短路线长为()A .12mB .15mC .13mD .9.13m8.(4分)正比例函数(0)y kx k =≠的函数值y 随x 的增大而减小,则一次函数y x k=-的图象大致是()A .B .C .D .9.(4分)下列运算中:5112=;2==-;3=;8=,错误的个数有( )A .1个B .2个C .3个D .4个10.(4分)如图,在平面直角坐标系中,A B C ∆位于第二象限,点A 的坐标是(2,3)-,先把A B C ∆向右平移4个单位长度得到△111A B C ,再作与△111A B C 关于x 轴对称的△222A B C ,则点A 的对应点2A 的坐标是()A.(3,2)--D.(1,2)-C.(1,2)-B.(2,3)11.(4分)如图,有一个直角三角形纸片,两直角边6B C c m=,现将直角边A C=,8A C c m沿直线A D折叠,使它落在斜边A B上,且与A E重合,则C D等于()A.3c m B.4c m C.5c m D.6c m12.(4分)如图,A B C=,D是B C的中点,A C的垂直平分线分别交A C、∆中,A B A CA D、A B于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二、填空题(本大题共8个小题,每小题4分,共32分,将答案填在答题纸上)13.(4分)一个等边三角形的对称轴有条.14.(4分)若2425x=,则x=.15.(4分)点(3,1)++在直角坐标系的y轴上,则点P的坐标为.P m m16.(4分)如图,在A B C∠∠=︒,B D平分A B C∠交A C于点D,则A D BA=.36∆中,A B A C的度数是.17.(4分)已知一次函数y k x b=+的图象经过点(0,3)A -和(1,1)B -,则此函数的表达式为 .18.(4分)在A B C ∆中,50A∠=︒,30B∠=︒,点D 在A B 边上,连接C D ,若A C D ∆为直角三角形,则B C D ∠的度数为 度. 19.(4分)如图,A B C ∆与A E F ∆中,A B A E=,B CE F=,BE∠=∠,A B 交E F 于D .给出下列结论:①A F CA F E∠=∠;②B FD E=:③B F EB A E∠=∠;④B F D C A F∠=∠.其中正确的结论是 .(填写所正确结论的序号).20.(4分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445O A A A A A A A A A →→→→⋯”的路线运动,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是 .三、解答题:本大题共7个小题,满分70分..解答应写出文字说明、证明过程或演算步骤.21.(15分)(1+-(2)|2||1||--+(3)已知2(21)90x--=,求x 的值.22.(7分)我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形A B C D 是一个筝形,其中A BC B=,A DC D=.请说明:(1)A B DC B D∆≅∆;(2)B D 垂直平分线段A C .23.(8分)如图,在平面直角坐标系中,已知A B C ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)画出A B C ∆关于y 轴对称的△111A B C ;(2)A B C ∆的三个顶点的横坐标与纵坐标同时乘以1-,得到对应的点2A ,2B ,2C .请画出△222A B C .24.(8分)如图所示,已知A B C ∆中,8A Bc m=,6A Cc m=,10B Cc m=.分别以三边A B ,A C及B C 为直径向外作半圆,求阴影部分的面积.25.(10分)如图,在A B C ∆中.A BA C=,120A∠=︒,6B C=,A B 的垂直平分线交B C于M ,交A B 于E ,A C 的垂直平分线交B C 于N ,交A C 于F .请说明:B MM N N C==.26.(10分)如图,在A B C=,过B C上一点D作B C的垂线,交B A的延长线∆中,A B A C于点P.交A C于点Q.试判断A P Q∆的形状,并证明你的结论.27.(12分)某校为表彰在“创文明城,点赞泰城”书画比赛中表现优秀的同学,决定购买水彩盒或钢笔作为奖品.已知1个水彩盒28元、1支钢笔30元.(1)恰逢“十一”商店举行“优惠促销”活动,具体办法如下:水彩盒”九折”优惠:钢笔10支以上超出部分“八折”优惠.若买x个水彩盒需要y元,买x支钢笔需要2y元,求1y,2y关于x的函数关系式.1(2)当购买数量为多少时,购买两种奖品的费用相同;(3)当购买数量为80时,购买两种奖品的费用差距是多少?2019-2020学年山东省泰安市七年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列图形不是轴对称图形的是()A.B.C.D.【解答】解:A不是轴对称图形;B是轴对称图形;C是轴对称图形;D是轴对称图形;故选:A.2.(4分)在实数22-,π,0.1010010001中,是无理数的是()7A.22-B C.πD.0.1010010001 7【解答】解:22A-是分数,属于有理数;.7B=,是整数,属于有理数;3C.π是无理数;D是有限小数,属于有理数..0.1010010001故选:C.3.(4分)如图,//∆≅∆A C D F,添加下列一个条件后,仍无法判断ABCDE FB C E F,//的是()A .B CE F=B .ACD F= C .A DB E= D .CF∠=∠【解答】解://B C E F,A B C E ∴∠=∠,//A C D F, A E D F ∴∠=∠, ∴添加B CE F=,A CD F=可以根据()A A S 证得全等;添加A DB E=(推知)A BD E =可以根据()A S A 证得全等. 添加CF∠=∠时,没有边的参与,无法证得全等.故选:D .4.(4分)如图,在C D 上求一点P ,使它到O A 、O B 的距离相等,则P 点是()A .线段C D 的中点B .O A 与CD B ∠的平分线的交点 C .O B 与D C A ∠的平分线的交点D .C D 与A O B ∠的平分线的交点【解答】解:点P 到O A 、O B 的距离相等,∴点P 在A O B ∠平分线上,∴点P 是C D 与A O B ∠平分线的交点,故选:D .5.(4分)已知点(,1)A a 与点(4,)B b -关于原点对称,则ab+的值为()A .5B .5-C .3D .3-【解答】解:由(,1)A a 关于原点的对称点为(4,)B b -,得4a =,1b=-,3a b +=,故选:C .6.(4的算术平方根是()A .4B .4±C .2D .2±【解答】解:4=,4的算术平方根2,∴的算术平方根是2,故选:C .7.(4分)如图,一个底面圆周长为24m ,高为5m 的圆柱体,一只蚂蚁沿侧表面从点A 到点B 所经过的最短路线长为()A .12mB .15mC .13mD .9.13m【解答】解:将圆柱体的侧面展开,连接A B .如图所示: 由于圆柱体的底面周长为24m , 则124122A Dm=⨯=.又因为5A C m=,所以13A Bm==.即蚂蚁沿表面从点A 到点B 所经过的最短路线长为13m . 故选:C .8.(4分)正比例函数(0)y kx k =≠的函数值y 随x 的增大而减小,则一次函数yx k=-的图象大致是()A .B .C .D .【解答】解:正比例函数(0)ykx k =≠的函数值y 随x 的增大而减小,k ∴<,一次函数yx k =-的一次项系数大于0,常数项大于0,∴一次函数yx k=-的图象经过第一、三象限,且与y 轴的正半轴相交.故选:A .9.(4分)下列运算中:5112=;2==-;3=;8=,错误的个数有( )A .1个B .2个C .3个D .4个【解答】解:1312==,原计算错误;=,这个式子没有意义,原计算错误;3=-,原计算错误;4=,原计算错误,错误的个数有4个, 故选:D .10.(4分)如图,在平面直角坐标系中,A B C ∆位于第二象限,点A 的坐标是(2,3)-,先把A B C ∆向右平移4个单位长度得到△111A B C ,再作与△111A B C 关于x 轴对称的△222A B C ,则点A 的对应点2A 的坐标是()A .(3,2)-B .(2,3)-C .(1,2)-D .(1,2)-【解答】解:如图所示:点A 的对应点2A 的坐标是:(2,3)-. 故选:B .11.(4分)如图,有一个直角三角形纸片,两直角边6A Cc m=,8B Cc m=,现将直角边A C沿直线A D 折叠,使它落在斜边A B 上,且与A E 重合,则C D 等于( )A .3c mB .4c mC .5c mD .6c m【解答】解:在R t A B C ∆中,由勾股定理可知:10A B ===,由折叠的性质可知:D CD E=,6A CA E ==,90D E AC ∠=∠=︒,1064B E A B A E ∴=-=-=,90D E B∠=︒,设D Cx=,则8B Dx=-,D E x=,在R t B E D ∆中,由勾股定理得:222B E D EB D+=,即2224(8)xx +=-,解得:3x=,3C D ∴=.故选:A .12.(4分)如图,A B C ∆中,A BA C=,D 是B C 的中点,A C 的垂直平分线分别交A C 、A D、A B 于点E 、O 、F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对【解答】解:A B A C=,D 为B C 中点,C D B D∴=,90B D OC D O ∠=∠=︒,在A B D ∆和A C D ∆中,A B A C A D A D B D C D=⎧⎪=⎨⎪=⎩,A B D A C D∴∆≅∆;E F垂直平分A C ,O A O C∴=,A EC E=,在A O E ∆和C O E ∆中,O A O C O E O E A E C E=⎧⎪=⎨⎪=⎩,A O E C O E∴∆≅∆;在B O D ∆和C O D ∆中,B DCD B D O C D O O D O D =⎧⎪∠=∠⎨⎪=⎩,B O DC O D∴∆≅∆;在A O C ∆和A O B ∆中,A C AB O A O A OC O B=⎧⎪=⎨⎪=⎩,A O C A O B∴∆≅∆;故选:D .二、填空题(本大题共8个小题,每小题4分,共32分,将答案填在答题纸上)13.(4分)一个等边三角形的对称轴有3条.【解答】解:如图:一个等边三角形的对称轴有3条,故答案为:3.14.(4分)若2425x=,则x=52±.【解答】解:2425x=,可得:52x=±,故答案为:52±15.(4分)点(3,1)P m m++在直角坐标系的y轴上,则点P的坐标为(0,2)-.【解答】解:点(3,1)P m m++在直角坐标系的y轴上,30m∴+=,解得:3m=-,故12m+=-,则点P的坐标为:(0,2)-.故答案为:(0,2)-.16.(4分)如图,在A B C∆中,A B A C=.36A∠=︒,B D平分A B C∠交A C于点D,则A D B∠的度数是108︒.【解答】解:A B A C=,36A∠=︒,1(18036)722A B C C ∴∠=∠=⨯︒-︒=︒,B D平分A B C ∠,36A B D D B C ∴∠=∠=︒,180()180236108A D B A A D B ∴∠=︒-∠+∠=︒-⨯︒=︒,故答案为:108︒. 17.(4分)已知一次函数yk x b=+的图象经过点(0,3)A -和(1,1)B -,则此函数的表达式为23y x =- .【解答】解:由题意可得方程组31b k b =-⎧⎨+=-⎩,解得23k b =⎧⎨=-⎩,则此函数的解析式为:23y x =-,故答案为23yx =-.18.(4分)在A B C ∆中,50A ∠=︒,30B∠=︒,点D 在A B 边上,连接C D ,若A C D ∆为直角三角形,则B C D ∠的度数为 60或10 度. 【解答】解:分两种情况: ①如图1,当90A D C∠=︒时,30B ∠=︒,903060B C D ∴∠=︒-︒=︒; ②如图2,当90A C D∠=︒时,50A ∠=︒,30B∠=︒,1803050100A C B ∴∠=︒-︒-︒=︒,1009010B C D ∴∠=︒-︒=︒,综上,则B C D ∠的度数为60︒或10︒; 故答案为:60或10;19.(4分)如图,A B C ∆与A E F ∆中,A B A E=,B CE F=,BE∠=∠,A B 交E F 于D .给出下列结论:①A F CA F E∠=∠;②B FD E=:③B F EB A E∠=∠;④B F D C A F∠=∠.其中正确的结论是 ①③④ .(填写所正确结论的序号).【解答】解:A B A E=,B CE F=,BE∠=∠,()A B C A E F S A S ∴∆≅∆,C A F E ∴∠=∠,E A F B A C∠=∠,A FA C=,A F C C∴∠=∠,A F C A F E∴∠=∠,故①符合题意,A FBC F A C A F E B F E ∠=∠+∠=∠+∠,B F E F AC ∴∠=∠,故④符合题意, E A F B A C ∠=∠, E A B F A C∴∠=∠,E A B BF E∴∠=∠,故③符合题意,由题意无法证明B F D E=,故②不合题意,故答案为:①③④.20.(4分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445O A A A A A A A A A →→→→⋯”的路线运动,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是(1010,0).【解答】解:每6202,0,2-0,202063364÷=⋯,∴点2020P 的纵坐标为0,点的横坐标规律:12,1,32,2,52,3,⋯,2n ,∴点2020P 的横坐标为1010, ∴点2020P 的坐标(1010,0),故答案为(1010,0).三、解答题:本大题共7个小题,满分70分..解答应写出文字说明、证明过程或演算步骤.21.(15分)(1+-(2)|2||1||--+(3)已知2(21)90x--=,求x 的值.【解答】解:(1-16322=-+-32=(2)|2||1||--+21=--+-3=-(3)2(21)9x -=,213x ∴-=±, 解得:2x=或1x=-.22.(7分)我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形A B C D 是一个筝形,其中A BC B=,A DC D=.请说明:(1)A B DC B D∆≅∆;(2)B D 垂直平分线段A C .【解答】解:(1)在A B D ∆和C B D ∆中,A B C B A D C D D B D B=⎧⎪=⎨⎪=⎩()A B D C B D S S S ∴∆≅∆(2)由(1)知,A B DC BD ∆≅∆A DBCD B∴∠=∠,且A D C D=B D∴垂直平分线段A C23.(8分)如图,在平面直角坐标系中,已知A B C ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)画出A B C ∆关于y 轴对称的△111A B C ;(2)A B C ∆的三个顶点的横坐标与纵坐标同时乘以1-,得到对应的点2A ,2B ,2C .请画出△222A B C .【解答】解:(1)如图所示,△111A B C 即为所求; (2)如图所示,△222A B C 即为所求.24.(8分)如图所示,已知A B C ∆中,8A Bc m=,6A Cc m=,10B Cc m=.分别以三边A B ,A C及B C 为直径向外作半圆,求阴影部分的面积.【解答】解:2228610+=,222A BA CB C∴+=90B A C ∴∠=︒∴以A B 为直径的半圆的面积2211()8()22A B S c m ππ==以A C 为直径的半圆的面积22219()()222A C S c m ππ==以B C 为直径的半圆的面积223125()()222B C S c m π==2118624()22A B C S A B A C c m ∆==⨯⨯=∴()212324A B C S S S S S c m∆=++-=阴影25.(10分)如图,在A B C ∆中.A B A C=,120A∠=︒,6B C=,A B 的垂直平分线交B C于M ,交A B 于E ,A C 的垂直平分线交B C 于N ,交A C 于F .请说明:B M M N N C==.【解答】解:连接A M ,A NA B A C=,120B A C∠=︒,30B C ∴∠=∠=︒E M垂直平分A BB M A M∴=,30M A B B ∴∠=∠=︒120A M B ∴∠=︒,60A M N ∴∠=︒同理:C NA N=,6060A N MA M N M A N A N M ∠=︒∠=∠=∠=︒A N M∴∆是等边三角形B M M NC N∴==.26.(10分)如图,在A B C ∆中,A BA C=,过B C 上一点D 作B C 的垂线,交B A 的延长线于点P .交A C 于点Q .试判断A P Q ∆的形状,并证明你的结论.【解答】解:A P Q ∆是等腰三角形.证明:Q D B D Q C C∠=∠+∠,P D CB P∠=∠+∠,又A B A C=,B C∴∠=∠,P D Q C A Q P∴∠=∠=∠,A P A Q ∴=,A P Q∴∆是等腰三角形.27.(12分)某校为表彰在“创文明城,点赞泰城”书画比赛中表现优秀的同学,决定购买水彩盒或钢笔作为奖品.已知1个水彩盒28元、1支钢笔30元.(1)恰逢“十一”商店举行“优惠促销”活动,具体办法如下:水彩盒”九折”优惠:钢笔10支以上超出部分“八折”优惠.若买x 个水彩盒需要1y 元,买x 支钢笔需要2y 元,求1y ,2y 关于x 的函数关系式.(2)当购买数量为多少时,购买两种奖品的费用相同; (3)当购买数量为80时,购买两种奖品的费用差距是多少? 【解答】解:(1)根据题意得:1280.925.2y x x=⨯=,230(010)2460(10)x x y x x ⎧=⎨+>⎩剟;(2)根据题意得:25.22460x x =+,解得50x=,即当购买数量为50时,购买两种奖品的费用相同;(3)购买数量为80时, 购买水彩盒需要花费为:25.2802016⨯=(元); 购买钢笔需要花费为:2480601980⨯+=(元);2016198036-=(元),答:当购买数量为80时,购买两种奖品的费用差距是36元.。
2019--2020第二学期期末考试七年级数学试题(附答案)
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:
(人教版)2019—2020年七年级上册期末数学试卷(含解析)
(人教版)2019—(人教版)2019—2020年七年级上册期末数学试卷(含解析)一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=52.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c3.下列四个实数中;是无理数的为()A.B.C.D.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.25.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= .12.实数27的立方根是.13.列等式表示“比a的3倍大5的数等于a的4倍”为.14.把命题“对顶角相等”改写成“如果…那么…”的形式:.15.已知(x﹣1)2=4;则负数x的值为.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于度.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 度.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为千米.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2()又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE()∴∠CDE+ =180°()又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD()∴∠A=∠4()24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?27.如图;在平面直角坐标系中;点O为坐标系原点;点A(3a;2a)在第一象限;过点A向x轴作垂线;垂足为点B;连接OA;S△AOB=12.点M从点O出发;沿y轴的正半轴以每秒2个单位长度的速度运动;点N从点B出发;沿射线BO以每秒3个单位长度的速度运动;点M与点N同时出发;设点M的运动时间为t秒;连接AM ;AN;MN.(1)求a的值;(2)当0<t<2时;①请探究∠ANM;∠OMN;∠BAN之间的数量关系;并说明理由;②试判断四边形AMON的面积是否变化?若不变化;请求出;若变化;请说明理由.(3)当OM=ON时;请求出t的值及△AMN的面积.2015-2016学年黑龙江省哈尔滨市南岗区七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分;共计30分.请将答案写在题后面的表格中1.下列方程中;是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元);且未知数的次数是1;这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程;故此选项错误;B、是一元一次方程;故此选项正确;C、是二元一次方程;故此选项错误;D、是二元二次方程;故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义;关键是掌握只含有一个未知数;未知数的指数是1;一次项系数不是0.2.下列说法正确的是()A.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a∥cB.在同一平面内;a;b;c是直线;且a⊥b;b⊥c;则a⊥cC.在同一平面内;a;b;c是直线;且a∥b;b⊥c;则a∥cD.在同一平面内;a;b;c是直线;且a∥b;b∥c;则a⊥c【考点】平行线;垂线.【分析】根据题意画出图形;从而可做出判断.【解答】解:先根据要求画出图形;图形如下图所示:根据所画图形可知:A正确.故选:A.【点评】本题主要考查的是平行线;根据题意画出符合题意的图形是解题的关键.3.下列四个实数中;是无理数的为()A.B.C.D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念;一定要同时理解有理数的概念;有理数是整数与分数的统称.即有限小数和无限循环小数是有理数;而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数;故A错误;B、是有理数;故B错误;C、是有理数;故C错误;D、是无理数;故D正确;故选:D.【点评】此题主要考查了无理数的定义;其中初中范围内学习的无理数有:π;2π等;开方开不尽的数;以及像0.1010010001…;等有这样规律的数.4.若关于x的方程2x+a﹣4=0的解是x=﹣2;则a的值等于()A.﹣8 B.0 C.8 D.2【考点】一元一次方程的解.【分析】把x=﹣2代入原方程;得到关于a的一元一次方程;解方程得到答案.【解答】解:由题意得;2×(﹣2)+a﹣4=0;解得:a=8;故选:C.【点评】本题考查的是方程的解的定义;使方程两边的值相等的未知数的值是方程的解.5.在平面直角坐标系中;将点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;则平移后对应点的坐标是()A.C.【考点】坐标与图形变化-平移.【分析】根据横坐标;右移加;左移减;纵坐标;上移加;下移减可得平移后对应点的坐标是(﹣1+2;4+3);再计算即可.【解答】解:点A(﹣1;4)向右平移2个单位长度;再向上平移3个单位长度;平移后对应点的坐标是(﹣1+2;4+3);即(1;7);故选:A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移;关键是掌握点的坐标的变化规律.6.如图所示;点E在AC的延长线上;下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;B、根据内错角相等;两直线平行可得AB∥CD;故此选项正确;C、根据内错角相等;两直线平行可得BD∥AC;故此选项错误;D、根据同旁内角互补;两直线平行可得BD∥AC;故此选项错误;故选:B.【点评】此题主要考查了平行线的判定;关键是掌握平行线的判定定理.7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1;﹣1);(﹣1;2);(3;﹣1);则第四个顶点的坐标为()A.C.【考点】坐标与图形性质;矩形的性质.【分析】本题可在画出图后;根据矩形的性质;得知第四个顶点的横坐标应为3;纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3;2).故选:B.【点评】本题考查学生的动手能力;画出图后可很快得到答案.8.某村原有林地108公顷;旱地54公顷;为保护环境;需把一部分旱地改造为林地;使旱地面积占林地面积的20%.设把x公顷旱地改为林地;则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地;根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地;根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用;关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.9.如图;a∥b;c;d是截线;∠1=70°;∠2﹣∠3=30°;则∠4的大小是()A.100°B.105°C.110°D.120°【考点】平行线的性质.【分析】首先根据邻补角的定义求得∠2的度数;则∠3即可求得;然后根据平行线的性质求得∠5;进而求得∠4.【解答】解:∠2=180°﹣∠1=180°﹣70°=110°;∵∠2﹣∠3=30°;∴∠3=∠2﹣30°=110°﹣30°=80°;∵a∥b;∴∠5=∠3=80°;∴∠4=180°﹣∠5=180°﹣80°=100°.故选A.【点评】本题考查了邻补角的定义和平行线的性质;两直线平行;同位角相等;理解角之间的位置关系是关键.10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个【考点】实数大小比较.【专题】推理填空题;实数.【分析】①两个正数;哪个数的越大;则它的算术平方根就越大;据此判断即可.②首先分别求出、8的平方各是多少;然后根据两个正数;哪个数的平方越大;则这个数就越大;判断出、8的大小关系即可.③根据﹣1所得的差的正负;判断出、1的大小关系即可.④根据﹣0.5所得的差的正负;判断出、0.5的大小关系即可.【解答】解:∵8<10;∴<;∴①正确;=65;82=64;∵65>64;∴>8;∴②不正确;∵﹣1=<=0;∴<1;∴③正确;∵﹣0.5=>=0;∴>0.5;∴④正确.综上;可得大小关系正确的式子的个数是3个:①③④.故选:C.【点评】(1)此题主要考查了实数大小比较的方法;要熟练掌握;解答此题的关键是要明确:正实数>0>负实数;两个负实数绝对值大的反而小.(2)解答此题的关键还要明确:两个正数;哪个数的平方越大;则这个数就越大.二、填空题:每小题3分;共计30分.请将答案写在题后面的表格中11.点A(a;b)在x轴上;则ab= 0 .【考点】点的坐标.【分析】根据x轴上点的纵坐标等于零;可得b的值;根据有理数的乘法;可得答案.【解答】解:由点A(a;b)在x轴上;得b=0.则ab=0;故答案为:0.【点评】本题考查了点的坐标;利用x轴上点的纵坐标等于零得出b的值是解题关键.12.实数27的立方根是 3 .【考点】立方根.【专题】计算题.【分析】如果一个数x的立方等于a;那么x是a的立方根;根据此定义求解即可.【解答】解:∵3的立方等于27;∴27的立方根等于3.故答案为3.【点评】此题主要考查了求一个数的立方根;解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算;用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.列等式表示“比a的3倍大5的数等于a的4倍”为3a+5=4a .【考点】等式的性质.【分析】根据等量关系;可得方程.【解答】解:由题意;得3a+5=4a;故答案为:3a+5=4a.【点评】本题主要考查了等式的基本性质;理解题意是解题关键.14.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角;那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等;放在“如果”的后面;结论是这两个角的补角相等;应放在“那么”的后面.【解答】解:题设为:对顶角;结论为:相等;故写成“如果…那么…”的形式是:如果两个角是对顶角;那么它们相等;故答案为:如果两个角是对顶角;那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式;“如果”后面是命题的条件;“那么”后面是条件的结论;解决本题的关键是找到相应的条件和结论;比较简单.15.已知(x﹣1)2=4;则负数x的值为﹣1 .【考点】有理数的乘方.【专题】计算题;实数.【分析】方程利用平方根定义求出解;即可确定出负数x的值.【解答】解:方程(x﹣1)2=4;开方得:x﹣1=2或x﹣1=﹣2;解得:x=3或x=﹣1;则负数x的值为﹣1.故答案为:﹣1.【点评】此题考查了有理数的乘方;熟练掌握运算法则是解本题的关键.16.如图;a∥b;∠1=∠2;∠3=40°;则∠4等于70 度.【考点】平行线的性质.【分析】根据两条直线平行;同旁内角互补可以得∠1+∠2=140°;求出∠2;再利用平行线的性质得出∠4.【解答】解:∵a∥b;∴∠2+∠1+∠3=180°;∵∠1=∠2;∠3=40°;∴∠2=70°;∴∠4=70°;故答案为:70【点评】此题考查平行线的性质;关键是主要运用了平行线的性质解答.17.有一列数;按一定规律排成1;﹣3;9;﹣27;81;﹣243;…;其中某三个相邻数的和是5103;则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1;而其中某三个相邻数的和是5103;设第一个的数为x;由此即可得到关于x的方程;解方程即可求解.【解答】解:设第一个的数为x;依题意得x﹣3x+9x=5103;∴x=729;∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律;解题的关键是首先认真观察所给数字;然后找出隐含的规律即可解决问题.18.如图;直线AB.CD相交于点O;OE⊥AB;O为垂足;如果∠EOD=38°;则∠AOC= 52 度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义;可得∠AOE=90°;根据角的和差;可得∠AOD的度数;根据邻补角的定义;可得答案.【解答】解:∵OE⊥AB;∴∠AOE=90°;∴∠AOD=∠AOE+∠EOD=90°+38°=128°;∴∠AOC=180°﹣∠AOD=180°﹣128°=52°;故答案为:52.【点评】本题考查了垂线的定义;对顶角相等;邻补角的和等于180°;要注意领会由垂直得直角这一要点.19.以下四个命题:①在同一平面内;过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截;同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限.其中正确命题的序号为①③.【考点】命题与定理.【分析】根据在同一平面内;过一点有且只有一条直线与已知直线垂直;两条平行的直线被第三条直线所截;同旁内角互补;数轴上的点与实数是一一对应关系;点P(x;y)的坐标满足xy<0;则点P的横纵坐标符号相反;可得P在二、四象限进行分析.【解答】解:①在同一平面内;过一点有且只有一条直线与已知直线垂直;说法正确;②两条直线被第三条直线所截;同旁内角互补;说法错误;③数轴上的每一个点都表示一个实数;说法正确;④如果点P(x;y)的坐标满足xy<0;那么点P一定在第二象限;说法错误;正确的命题有①③;故答案为:①③.【点评】此题主要考查了命题与定理;关键是熟练掌握课本上所学的定理.20.在风速为24千米/时的条件下;一架飞机顺风从A机场飞到B机场要用2.8小时;它逆风飞行同样的航线要用3小时;则A;B两机场之间的航程为2016 千米.【考点】一元一次方程的应用.【分析】设无风时飞机的航速是x千米/时;根据顺风速度×顺风时间=逆风速度×逆风时间;列出方程求出x的值;进而求解即可.【解答】解:设无风时飞机的航速是x千米/时;依题意得:2.8×(x+24)=3×(x﹣24);解得:x=696;则3×(696﹣24)=2016(千米).答:A;B两机场之间的航程是2016千米.故答案为2016.【点评】此题考查了一元一次方程的应用;用到的知识点是顺风速度=无风时的速度+风速;逆风速度=无风时的速度﹣风速;关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.三、解答题:其中21-22题各8分;23题6分;24题8分;25-27题各10分;共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用立方根及算术平方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简;合并即可得到结果.【解答】解:(1)原式=4﹣9=﹣5;(2)原式=﹣1.7+1.8﹣=0.1.【点评】此题考查了实数的运算;熟练掌握运算法则是解本题的关键.22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)根据解方程的一般步骤:去括号、移项、合并同类项、系数化为1;可得方程的解;(2)两边都乘以分母的最小公倍数6去分母后;去括号、移项、合并同类项、系数化为1后可得方程的解.【解答】解:(1)去括号;得:2x+16=3x﹣3;移项;得:2x﹣3x=﹣3﹣16;合并同类项;得:﹣x=﹣19;系数化为1;得:x=19;(2)去分母;得:18x+3(x﹣1)=2(2x﹣1);去括号;得:18x+3x﹣3=4x﹣2;移项;得:18x+3x﹣4x=﹣2+3;合并同类项;得:17x=1;系数化为1;得:x=.【点评】本题主要考查解一元一次方程的基本技能;熟练掌握去分母、去括号、移项、合并同类项、系数化为1是关键.23.完成下面的证明:如图;∠1+∠3=180°;∠CDE+∠B=180°;求证:∠A=∠4.证明;∵∠1=∠2(对顶角相等)又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行)∴∠CDE+ ∠C =180°(两直线平行;同旁内角互补)又∠CDE+∠B=180°;∴∠B=∠C∴AB∥CD(内错角相等;两直线平行)∴∠A=∠4(两直线平行;内错角相等)【考点】平行线的判定与性质.【专题】推理填空题.【分析】欲证明∠A=∠4;只需推知AB∥CD;利用平行线的性质即可证得结论.【解答】证明:∵∠1=∠2(对顶角相等);又∠1+∠3=180°;∴∠2+∠3=180°;∴AB∥DE(同旁内角互补;两直线平行);∴∠CDE+∠C=180°(两直线平行;同旁内角互补);又∠CDE+∠B=180°;∴∠B=∠C.∴AB∥CD(内错角相等;两直线平行);∴∠A=∠4(两直线平行;内错角相等).故答案是:对顶角相等;同旁内角互补;两直线平行;∠C;两直线平行;同旁内角互补;错角相等;两直线平行;两直线平行;内错角相等.【点评】本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.24.阅读下面“将无限循环小数化为分数”材料;并解决相应问题:我们知道分数写成小数形式即0.;反过来;无限循环小数0.写成分数形式即.一般地;任何一个无限循环小数都可以写成分数形式吗?如果可以;应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x;由0.=0.777…可知;10x=7.777…;所以10x﹣x=7;解方程;得x=.于是;得0.=.再以无限循环小数0.为例;做进一步的讨论.无限循环小数0.=0.737373…;它的循环节有两位;类比上面的讨论可以想到如下的做法.设0.=x;由0.=0.737373…可知;100x=73.7373…;所以100x﹣x=73.解方程;得x=;于是;得0.=.请仿照材料中的做法;将无限循环小数0.化为分数;并写出转化过程.【考点】一元一次方程的应用.【专题】阅读型.【分析】先设0.=x;由0.=0.9898…;得100x=98.9898…;100x﹣x=98;再解方程即可.【解答】解:设0.=x;由0.=0.9898…;得100x=98.9898…;所以100x﹣x=98;解方程得:x=.于是0.=.【点评】此题主要考查了一元一次方程的应用;解答本题的关键是找出其中的规律;即通过方程形式;把无限小数化成整数形式.25.如图;直线AB;CD相交于点O;OA平分∠EOC;且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2;点F在OC上;直线GH经过点F;FM平分∠OFG;且∠MFH﹣∠BOD=90°;求证:OE∥GH.【考点】平行线的判定;角的计算.【分析】(1)根据邻补角的定义求出∠EOC;再根据角平分线的定义求出∠AOC;然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°;得出∠ONF=90°;求出∠OFM=54°;延长∠OFG=2∠OFM=108°;证出∠OFG+∠EOC=180°;即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3;∴∠EOC=180°×=72°;∵OA平分∠EOC;∴∠AOC=∠EOC=×72°=36°;∴∠BOD=∠AOC=36°.(2)延长FM交AB于N;如图所示:∵∠MFH﹣∠BOD=90°;FM平分∠OFG;∴∠MFC=∠MFH=∠BOD+90°=126°;∴∠ONF=126°﹣36°=90°;∴∠OFM=90°﹣36°=54°;∴∠OFG=2∠OFM=108°;∴∠OFG+∠EOC=180°;∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键;(2)有一定难度.26.元旦期间;某玩具店从玩具批发市场批发玩具进行零售;部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天;该玩具店批发A;B两种型号玩具共59个;用去了1344元钱;这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天;该玩具店用第一天全部售完后的总零售价钱批发A;B;C三种型号玩具中的两种玩具共68个;且当天全部售完;请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?【考点】一元一次方程的应用.【分析】(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;题中的等量关系为:A种型号玩具的个数×A种型号玩具的批发价+B种型号玩具的个数×B种型号玩具的批发价=1344元;依此列出方程;解方程求出x的值;则当天赚的钱=(A种型号玩具的零售价﹣批发价)×A种型号玩具的个数+(B种型号玩具的零售价﹣批发价)×B种型号玩具的个数;(2)分三种情况:①购买A;B两种型号玩具;②购买A;C两种型号玩具;③购买B;C两种型号玩具.分别求出每一种情况下全部售完后赚的钱;比较即可.【解答】解:(1)设A种型号玩具批发了x个;则B种型号玩具批发了(59﹣x)个;由题意得:20x+24(59﹣x)=1344;解得x=18;所以59﹣x=41.则18×(25﹣20)+41×(30﹣24)=336(元).答:这两种型号玩具当天全部售完后一共能赚336元钱;(2)该玩具店用第一天全部售完后的总零售价为:1344+336=1680(元).分三种情况:①购买A;B两种型号玩具.设A种型号玩具批发了a个;则B种型号玩具批发了(68﹣a)个;由题意得:20a+24(68﹣a)=1680;解得a=12;所以68﹣a=56.则12×(25﹣20)+56×(30﹣24)=396(元);②购买A;C两种型号玩具.设A种型号玩具批发了b个;则B种型号玩具批发了(68﹣b)个;由题意得:20b+28(68﹣a)=1680;解得b=28;。
2019-2020学年人教版七年级数学下册期末测试题(含答案)
2019-2020学年七年级数学下册期末测试卷一.选择题(共10小题)1.下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.2.下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+13.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米4.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.15.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)6.一副三角板如图放置,若AB∥DE,则∠1的度数为()A.105°B.120°C.135°D.150°7.如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.8.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12cm,高是20cm,那么所需彩带最短的是()A.13cm B.4cm C.4cm D.52cm9.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是()A.8B.9C.10D.1110.如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.24°C.30°D.36°二.填空题(共6小题)11.若x2﹣x+k是完全平方式,则k的值为.12.如图,在△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠CBD=16°,则∠BAC=°.13.若n满足(n﹣2019)2+(2020﹣n)2=1,则(n﹣2019)(2020﹣n)=.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=.15.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=,ON=6,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.三.解答题(共7小题)17.计算:(1)(2x2)3﹣2x2•x3+2x5;(2)(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2.18.先化简,再求值:(5x3y2﹣3x2y3)÷(﹣xy)﹣3x(2xy﹣y2),其中x=﹣,y=3.19.如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC=BC(保留作图痕迹,不写作法)20.如图,C是线段AB的中点,且CD∥BE,CD=BE.试猜想AD与CE平行吗?并说明理由.21.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.22.某商场的一种书法笔每只售价25元,书法练习本每本售价5元.为促销,商场制定了两种优惠方案:买一支书法笔就赠送一本书法练习本;方案二:按够买金额的九折付款,我校书法社团够买10支书法笔,x(x>10)本练习本.(1)请你写出两种优惠方案的实际付款金额y(元)与x(本)之间的关系式.(2)当购买多少本书法练习本时,两种优惠方案的实付金额一样?23.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C →B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.参考答案与试题解析一.选择题(共10小题)1.下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.2.下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.3.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米【分析】0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,在本题中a为5,n为5前面0的个数.【解答】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选:D.4.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.1【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选:B.5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)【分析】利用平方差公式的结构特征判断即可.【解答】解:能用平方差公式计算的是(﹣m﹣n)(﹣m+n),故选:C.6.一副三角板如图放置,若AB∥DE,则∠1的度数为()A.105°B.120°C.135°D.150°【分析】利用平行线的性质以及三角形的内角和定理即可解决问题.【解答】解:如图,延长EF交AB于H.∵AB∥DE,∴∠BHE=∠E=45′,∴∠1=180°﹣∠B﹣∠EHB=180°﹣30°﹣45°=105°,故选:A.7.如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.【分析】根据题意可以得到各段内爸爸距家(点O)的距离为S与散步的时间为t之间的关系,从而可以得到哪个选项是正确的.【解答】解:由题意可得,△AOB为等腰三角形,OA=OB,爸爸从家(点O)出发,沿着OA→AB→BO的路径去匀速散步,则从O到A的过程中,爸爸距家(点O)的距离S随着时间的增加而增大,从A到AB的中点的过程中,爸爸距家(点O)的距离S随着时间的增加而减小,从AB的中点到点B的过程中,爸爸距家(点O)的距离S随着时间的增加而增大,从点B到点O的过程中,爸爸距家(点O)的距离S随着时间的增加而减小,故选:D.8.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12cm,高是20cm,那么所需彩带最短的是()A.13cm B.4cm C.4cm D.52cm【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【解答】解:由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202,所以彩带最短是52cm.故选:D.9.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是()A.8B.9C.10D.11【分析】作DM⊥AC于M,DN⊥AB于N.首先证明BD:DC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,构建方程即可解决问题;【解答】解:作DM⊥AC于M,DN⊥AB于N.∵AD平分∠BAC,DM⊥AC于M,DN⊥AB于N,∴DM=DN,∴S△ABD:S△ADC=BD:DC=•AB•DN:•AC•DM=AB:AC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,∵△OAE的面积比△BOD的面积大1,∴△ADC的面积比△BEC的面积大1,∴S﹣S=1,∴S=10,故选:C.10.如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.24°C.30°D.36°【分析】在DC上取DE=DB.连接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.证明△ABD≌△AED(HL)即可求解.【解答】解:如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,,∴Rt△ABD≌Rt△AED(HL).∴AB=AE,∠B=∠AED.又∵AB+BD=DC,∴EC=DC﹣DE=DC﹣BD=(AB+BD)﹣BD=AB=AE,即EC=AE,∴∠C=∠CAE,∴∠B=∠AED=2∠C,又∵∠B+∠C=180°﹣∠BAC=72°,∴3∠C=72°,∴∠C=24°,故选:B.二.填空题(共6小题)11.若x2﹣x+k是完全平方式,则k的值为.【分析】根据完全平方公式的特点,知一次项是两个数的积的2倍,则可以确定第二个数,进一步确定k值.【解答】解:根据完全平方公式的特点,知第一个数是x,则第二个数应该是,则k ==.故答案为:.12.如图,在△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠CBD=16°,则∠BAC=37°.【分析】根据翻转变换的性质得到CB=CD,∠ACB=∠ACD,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:由折叠的性质可知,CB=CD,∠ACB=∠ACD,∵∠CBD=16°,CB=CD,∴∠DCB=180°﹣16°×2=148°,∴∠ACB=∠ACD==106°,∵CA=CB,∴∠BAC==37°,故答案为:37.13.若n满足(n﹣2019)2+(2020﹣n)2=1,则(n﹣2019)(2020﹣n)=0.【分析】根据完全平方公式得到[(n﹣2019)+(2020﹣n)]2=(n﹣2019)2+2(n﹣2019)(2020﹣n)+(2020﹣n)2=1,由于(n﹣2019)2+(2020﹣n)2=1,代入计算即可求解.【解答】解:∵(n﹣2019)2+(2020﹣n)2=1,∴[(n﹣2019)+(2020﹣n)]2=(n﹣2019)2+2(n﹣2019)(2020﹣n)+(2020﹣n)2=1+2(n﹣2019)(2020﹣n)=1,∴(n﹣2019)(2020﹣n)=0.故答案为:0.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=65°或25°.【分析】根据△ABC中∠A为锐角与钝角分为两种情况解答.【解答】解:(1)当AB的中垂线MN与AC相交时,∵∠AMD=90°,∴∠A=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=(180°﹣∠A)=65°;(2)当AB的中垂线MN与CA的延长线相交时,∴∠DAB=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=∠DAB=25°.故答案为65°或25°.15.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为8:40.【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【解答】解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷=12,所以乙走完全程需要时间为:4÷12=(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=,ON=6,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,OM′=OM=,ON′=ON=6,∴在Rt△M′ON′中,M′N′===.故答案为:.三.解答题(共7小题)17.计算:(1)(2x2)3﹣2x2•x3+2x5;(2)(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2.【分析】(1)根据积的乘方、同底数幂的乘法可以解答本题;(2)根据平方差公式和完全平方公式可以解答本题.【解答】解:(1)(2x2)3﹣2x2•x3+2x5=8x6﹣2x5+2x5=8x6;(2)(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2=[(x+y)+2][(x+y)﹣2]﹣(x2+4xy+4y2)+3y2=(x+y)2﹣4﹣x2﹣4xy﹣4y2+3y2=x2+2xy+y2﹣4﹣x2﹣4xy﹣4y2+3y2=﹣2xy﹣4.18.先化简,再求值:(5x3y2﹣3x2y3)÷(﹣xy)﹣3x(2xy﹣y2),其中x=﹣,y=3.【分析】根据多项式除以单项式和单项式乘多项式可以化简题目中的式子,然后将x、y 的值代入化简后的式子即可解答本题.【解答】解:(5x3y2﹣3x2y3)÷(﹣xy)﹣3x(2xy﹣y2)=﹣5x2y+3xy2﹣6x2y+3xy2=﹣11x2y+6xy2,当x=﹣,y=3时,原式=﹣11×(﹣)2×3+6×(﹣)×32=.19.如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC=BC(保留作图痕迹,不写作法)【分析】作AB的垂直平分线交BC于P,则P A=PB,所以P A+PC=PB+PC=BC.【解答】解:如图,点P为所作.20.如图,C是线段AB的中点,且CD∥BE,CD=BE.试猜想AD与CE平行吗?并说明理由.【分析】根据C是线段AB的中点,可得AC=BC,再根据CD∥BE,可得∠ACD=∠CBE,再根据SAS证明△ACD和△CBE全等,得∠A=∠BCE,进而证明AD∥CE.【解答】解:AD与CE平行,理由如下:∵C是线段AB的中点,∴AC=BC,∵CD∥BE,∴∠ACD=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠A=∠BCE,∴AD∥CE.21.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.22.某商场的一种书法笔每只售价25元,书法练习本每本售价5元.为促销,商场制定了两种优惠方案:买一支书法笔就赠送一本书法练习本;方案二:按够买金额的九折付款,我校书法社团够买10支书法笔,x(x>10)本练习本.(1)请你写出两种优惠方案的实际付款金额y(元)与x(本)之间的关系式.(2)当购买多少本书法练习本时,两种优惠方案的实付金额一样?【分析】(1)y1(元)=书法笔总价钱+(x﹣10)本练习本总价钱;y2(元)=(书法笔总价钱+练习本总价钱)×0.9,根据这两个相等关系列式即可;(2)比较(1)中的关系式列出方程解答即可.【解答】解:(1)y1=25×10+(x﹣10)×5=5x+200;y2=(25×10+5x)×0.9=4.5x+225.(2)当y1=y2时,即5x+200=4.5x+225,解得:x=50;答:当购买50本书法练习本时,两种优惠方案的实付金额一样23.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C →B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.【分析】(1)当t=1s时,△ACP是直角三角形,根据公式求△ACP的面积;(2)如图3,过P作PH⊥AB于H,Rt△PHB中,PB=8﹣2t,根据勾股定理列方程可求解;(3)分四种情况进行讨论:①如图4,根据AC=CP列式求解;②如图5,根据AC=AP列式求解;③如图6,AP=PC,根据AP=PB列式求解;④如图7,AC=CP,根据AP的值列式求解.【解答】解:(1)如图1,点P在BC上,由题意得:CP=2t,当t=1时,PC=2,∴S△ACP=AC•PC=×6×2=6;如图2,Rt△ACB中,由勾股定理得:AB==10,(2)如图3,AP平分∠CAB,过P作PH⊥AB于H,∵∠C=90°,∴PC=PH=2t,∵∠C=∠AHP=90°,AP=AP,∴△ACP≌△AHP,∴AH=AC=6,∴BH=4,在Rt△PHB中,PB=8﹣2t,∴(2t)2+42=(8﹣2t)2,t=;则当t=时,线段AP是∠CAB的平分线;(3)当△ACP是等腰三角形时,有四种情况:①如图4,AC=CP,2t=6,t=3,②如图5,AC=AP,18﹣2t=6,t=6,③如图6,AP=PC,过P作PG⊥AC于G,∵∠C=90°,∴PG∥BC,∴AP=PB,即18﹣2t=2t﹣8,t=,④如图7,AC=CP,过C作CM⊥AB于M,∴AM=PM,tan∠CAB==,设CM=4x,AM=3x,则AC=5x,5x=6,x=,∴AP=6x=6×=,18﹣2t=,t=5.4,综上所述,当△ACP是等腰三角形时,t的值是3s或6s或s或5.4s.1、三人行,必有我师。
【人教版】数学七年级下册《期末考试题》(带答案)
22.某校在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:
“A--国学诵读”、“B--演讲”、“C--书法”、“D---课本剧”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
12 如果 ,则x-y=_______.
15.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.
16.如图,把一块含有30°角的直角三角板的直角顶点放在相互平行的两条直线的其中一条上,如果∠1=38°,那么∠2的度数是______________.
【答案】C
【解析】
分析:根据无理数是无限不循环小数,判断出 , ,0.123112233111222333…, ,- ,这些数中,无理数有多少个即可.
详解: , ,0.123112233111222333…, ,- ,其中无理数有3个: ,0.123112233111222333…,- .
故选C.
点睛:此题主要考查了无理数的含义和求法,要熟练掌握,解答此题的关键是要明确:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.
17.对于非负实数x “四舍五入”到个位的值记为 ,即当m为非负整数时,若 ,则 .如: , ,……根据以上材料,若 ,则x应满足的条件是_______________________.
三、解答题(18小题5分,19(1)小题6分,19(2)小题7分,20小题7分,满分25分)
2019-2020学年山西七年级(上)期末数学试卷(含解析)
2019-2020学年山西省七年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列代数式是同类项的一组是()A.﹣a2b与﹣ab2B.ab3与﹣3b3a C.ab与abc D.m与n2.(3分)如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于()A.100°B.90°C.70°D.50°3.(3分)2019年9月8日至16日,中华人民共和国第十一届少数民族传统体育运动会在郑州市举行.运动会期间,公交车总运营车次为476208次,完成运营里程742万公里.数据742万用科学记数法表示为()A.7.42×102B.7.42×105C.7.42×106D.7.42×1074.(3分)从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.5.(3分)如图所示,已知数轴上两数a和b,下列关系正确的是()A.a<﹣b<b<﹣a B.﹣a<﹣b<a<b C.﹣b<﹣a<a<b D.a<b<﹣b<﹣a6.(3分)下列各式中,一定成立的是()A.22=(﹣2)2B.﹣22=|﹣22|C.﹣(﹣2)3=﹣|﹣23|D.23=(﹣23)7.(3分)用一副三角尺可以画出许多不同的角度,以下角度不能用三角尺画出的是()A.75°B.60°C.40°D.30°8.(3分)数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述何者正确?()A.在A的左边B.介于A、C之间C.介于C、O之间D.介于O、B之间9.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“祝”字所在面相对的面上的汉字是()A.新B.年C.快D.乐10.(3分)如图,将一张长方形纸片按图中方式折叠,图中与∠1一定相等的角有()A.1个B.2个C.3个D.4个二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)如图,CE∥BA,图中一定与∠B相等的角是.12.(3分)m+3与1﹣2m互为相反数,则m=.13.(3分)如图,在一条笔直道路l的两侧,分别有A,B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,要使存放点到A,B小区的距离之和最小,则存放点应该建在E处,理由是.14.(3分)在一张长方形纸片上剪去个小长方形得到如图所示的纸片(阴影部分),当x=5.5,y=4时,阴影部分的周长是.15.(3分)如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD 互余,其中正确的有(只填写正确结论的序号).三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(15分)计算:(1)﹣12020﹣;(2)25×;(3)108°18'﹣(56°30'+20°33').17.(6分)先化简再求值:,其中x=1,y=﹣2.18.(6分)如图所示,一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,小正方形中的数字表示在该位置的小立方体的个数.请分别画出从正面、左面看到的这个几何体的形状图.19.(8分)如图,已知△ABC和△CDE,点E在AB边上,且AB∥CD,EC为∠AED的平分线,若∠BCE=30°,∠B=44°,求∠D的度数.20.(10分)我们将两数的和与积相等的等式称为“和谐”等式.(1)计算并完成下列等式:第1个:=;第2个:=;第3个:=;…(2)按以上等式的规律,请再写出一个符合这个规律的“和谐”等式;(3)按以上等式的规律,请写出第n个“和谐”等式.21.(10分)在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.(8分)如图,一只蚂蚁在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发,爬向B,C,D处.规定:向上或向右走为正,向下或向左走为负,如从A到B记为:A→B(+1,+4),从B到A 记为:B→A(﹣1,﹣4).其中括号内第一个数表示左右方向运动情况,第二个数表示上下方向运动情况,根据以上材料,解答下面的问题:(1)从A到C记为A→C,从B到D记为B→D;(2)若这只蚂蚁的行走路线为A→B→C→D,请计算该蚂蚁走过的路程.23.(12分)如图,已知直线AB与射线CD平行,∠CEB=100°.点P是直线AB上一动点,过点P作PQ ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,CF交直线AB于点F,CG平分∠ECF,点P,F,C都在点E的右侧.(1)求∠PCG的度数;(2)若∠EGC﹣∠ECG=40°,求∠CPQ的度数;(3)把题中条件“射线CD”改为“直线CD”,条件点P,F,C都在点E的右侧”改为“点P,F,G都在点E的左侧”,请你在图2中画出PC,CF,CG,并直接写出∠PCG的度数.2019-2020学年山西省七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同不是同类项,故C错误;D、字母不同不是同类项,故D错误;故选:B.2.【解答】解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠ACD=∠1=40°,∠BCD=∠2=60°,∴∠3=∠ACD+∠BCD=100°.故选:A.3.【解答】解:742万=7420000=7.42×106,故选:C.4.【解答】解:从正面看是,故选:D.5.【解答】解:∵由图可知a<0<b,﹣a>b,∴a<﹣b<b<﹣a.故选:A.6.【解答】解:A、22=(﹣2)2=4,正确;B、﹣22=﹣4,|﹣22|=4,错误;C、﹣(﹣2)3=8,﹣|﹣23|=﹣8,错误;D、23=8,﹣23=﹣8,错误,故选:A.7.【解答】解:∵一副三角尺有:30°,45°、60°、90°,∴能用三角尺画出的是:30°,45°、60°、90°、15°、75°.故选:C.8.【解答】解:∵c<0,b=5,|c|<5,|d﹣5|=|d﹣c|,∴BD=CD,∴D点介于O、B之间,故选:D.9.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“祝”字相对的字是“年”.故选:B.10.【解答】解:如图所示:由平行线的性质可得∠1=∠2,∠1=∠3,由对顶角相等可得∠1=∠4.故图中与∠1一定相等的角有3个.故选:C.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.【解答】解:∵CE∥BA,∴∠B=∠ECD.故答案为:∠ECD.12.【解答】解:∵m+3与1﹣2m互为相反数,∴m+3+1﹣2m=0,m=4,故答案为:4.13.【解答】解:公共自行车存放点应该建在E处,理由是:两点之间,线段最短.故答案为:两点之间,线段最短.14.【解答】解:根据题意得:2(2x+2y)+2(2y﹣y)=4x+4y+2y=4x+6y,当x=5.5,y=4时,原式=22+24=46,故答案为:4615.【解答】解:①∵OB,OD分别平分∠COD,∠BOE,∴∠COB=∠BOD=∠DOE,设∠COB=x,∴∠COD=2x,∠BOE=2x,∴∠COD=∠BOE,故①正确;②∵∠COE=3x,∠BOD=x,∴∠COE=3∠BOD,故②正确;③∵∠BOE=2x,∠AOC=90°﹣x,∴∠BOE与∠AOC不一定相等,故③不正确;④∵OA⊥OB,∴∠AOB=∠AOC+∠COB=90°,∵∠BOC=∠BOD,∴∠AOC与∠BOD互余,故④正确,∴本题正确的有:①②④;故答案为:①②④.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.【解答】解:(1)原式=,=,=,=;(2)原式=,=,=25×1,=25;(3)原式=108°18'﹣76°63',=107°78'﹣76°63',=31°15'.17.【解答】解:原式=﹣6x2y+8xy2﹣2xy2+6x2y﹣8=6xy2﹣8当x=1,y=﹣2时,原式=6×1×4﹣8=24﹣8=16.18.【解答】解:如图所示:.19.【解答】解:∵AB∥CD,∴∠B=∠DCB,∠DCE=∠AEC,∠AED+∠D=180°.∵∠B=44°,∴∠DCB=44°.∵∠BCE=30°,∴∠DCE=∠DCB+∠BCE=44°+30°=74°.∴∠AEC=∠DCE=74°.∵EC为∠AED的平分线,∴∠AED=2∠AEC=2×74°=148°,∴∠D=180°﹣148°=32°.20.【解答】解:(1)第1个:=﹣;第2个:=﹣;第3个:=﹣;故答案为:;;;(2)答案不唯一,如;(3)第n个“和谐”等式是.21.【解答】解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.【解答】解:(1))∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+3,+4);B→D记为(+3,﹣1);(2)根据已知可得A→B记为:(+1,+4),B→C记为(+2,0),C→D记为(+1,﹣2),故该蚂蚁走过的路程为1+4+2+1+|﹣2|=10.故答案为:(+3,+4),(+3,﹣1).23.【解答】解:(1)∵AB∥CD,∠CEB=100°∴∠ECQ=80°.∵∠PCF=∠PCQ,CG平分∠ECF,∴.(2)∵AB∥CD,∴∠QCG=∠EGC,∠ECQ=180°﹣∠CEB=80°,∵CG平分∠ECF,∴∠ECG=∠GCF,又∵∠EGC﹣∠ECG=40°,∴∠QCG﹣∠GCF=40°,即∠QCF=40°,∵∠PCF=∠PCQ,即CP平分∠QCF,∴,∴∠ECP=∠ECQ﹣∠PCQ=80°﹣20°=60°,∵PQ∥CE,∴∠CPQ=∠ECP=60°.(3)如图所示,即为所求.∵AB∥CD,∠CEB=100°∴∠ECQ=∠BEC=100°.∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=ECQ=50°,∴∠PCG=50°.第11页(共11页)。
江苏省南通市如东县 2019-2020学年七年级(下)期末数学试卷 解析版
2019-2020学年江苏省南通市如东县七年级(下)期末数学试卷一.选择题(共10小题)1.在实数3.1415,,,中,是无理数的是()A.3.1415B.C.D.2.在平面直角坐标系中,点P(﹣5,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,两条直线被第三条直线所截,在所标识的角中,下列说法不正确的是()A.∠1与∠5是同旁内角B.∠1与∠2是邻补角C.∠3与∠5是内错角D.∠2与∠4是对顶角4.下列长度的三条线段,能组成三角形的是()A.5,6,10B.5,6,11C.5,7,2D.3,4,85.不等式2x+3>1的解集在数轴上表示正确的是()A.B.C.D.6.下列调查中,调查方式选择合理的是()A.为了了解一批袋装食品是否含有防腐剂,选择全面调查B.为了了解某电视节目的收视率,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解某批次汽车的抗撞击能力,选择全面调查7.下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的例子是()A.∠A=40°,∠B=20°B.∠A=40°,∠B=60°C.∠A=40°,∠B=90°D.∠A=40°,∠B=120°8.已知|2x+4|+(5﹣y﹣m)2=0,且y>0,则m的取值范围是()A.m>﹣5B.m<﹣5C.m>5D.m<59.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.10.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为()A.180°﹣α﹣βB.α+βC.α+2βD.2α+β二.填空题(共8小题)11.实数9的算术平方根等于.12.语句“x的4倍与3的和不大于6”用不等式可表示为.13.某正n边形的一个内角为108°,则n=.14.已知a,b满足方程组,则a+b=.15.如图,直线AB∥DE,AC⊥BC,若∠1=139°,则∠CAB=度.16.若点M(x,x+2)在第二象限,则整数x的值是.17.△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有个.18.在平面直角坐标系xOy中,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+2|y1﹣y2|.若A(2,1),B(﹣1,m),且d(A,B)≤5,则实数m的取值范围是.三.解答题19.(1)计算:+|﹣2|﹣;(2)解不等式组.20.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?请列方程组求解.21.在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(5,2),B(2,﹣1),过点A画AC⊥x轴,垂足为C.(1)按照要求画出平面直角坐标系xOy;(2)写出点C的坐标;(3)△ABC的面积为.22.如图,△ABC中,∠ACB=90°,AC=16cm,BC=12cm,AB=20cm,若动点P从点C开始按沿C→A→B→C的路径运动,且速度为每秒3cm,设运动时间为t秒.(1)当CP把△ABC的面积分成相等的两部分时,t的值为多少?(2)当t=8时,求CP把△ABC分成的两部分面积之比.23.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.24.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.25.在平面直角坐标系xOy中,将△ABC进行平移,使点A,B,C分别移到点A′,B′,C′.已知A(0,t),B(0,n),A′(t,t),B′(m﹣n,t+4).(1)试用含t的式子表示m和n;(2)若C(﹣2t,m+1),其中t>0,求证:B′C∥x轴;(3)在(2)的条件下,若S△BCB′=3,求点C′的坐标.26.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=54°,则∠ABX+∠ACX=36°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=α,∠DBE=β,请直接写出∠DCE的度数(用含α和β的式子表示);③如图4,∠ABD,∠ACD的12等分线相交于点G1、G2…、G11,若∠BDC=115°,∠BG1C=60°,求∠A的度数.2019-2020学年江苏省南通市如东县七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.在实数3.1415,,,中,是无理数的是()A.3.1415B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、3.1415是有限小数,是有理数,故此选项不符合题意;B、=2是整数,是有理数,故此选项不符合题意;C、是分数,是有理数,故此选项不符合题意;D、是无理数,故此选项符合题意.故选:D.2.在平面直角坐标系中,点P(﹣5,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(﹣5,4)位于第二象限.故选:B.3.如图,两条直线被第三条直线所截,在所标识的角中,下列说法不正确的是()A.∠1与∠5是同旁内角B.∠1与∠2是邻补角C.∠3与∠5是内错角D.∠2与∠4是对顶角【分析】依据同旁内角、邻补角、内错角以及对顶角的概念,即可得出结论.【解答】解:A.∠1与∠5是同旁内角,说法正确;B.∠1与∠2是邻补角,说法正确;C.∠3与∠5不是内错角,∠4与∠5是内错角,故说法错误;D.∠2与∠4是对顶角,说法正确;故选:C.4.下列长度的三条线段,能组成三角形的是()A.5,6,10B.5,6,11C.5,7,2D.3,4,8【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、5+6>10,能构成三角形;B、5+6=11,不能构成三角形;C、5+2=7,不能构成三角形;D、3+4<8,不能构成三角形.故选:A.5.不等式2x+3>1的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:2x>1﹣3,2x>﹣2,x>﹣1,故选:D.6.下列调查中,调查方式选择合理的是()A.为了了解一批袋装食品是否含有防腐剂,选择全面调查B.为了了解某电视节目的收视率,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解某批次汽车的抗撞击能力,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解一批袋装食品是否含有防腐剂,具有破环性,应采用抽样调查,故此选项不合题意;B、为了了解某电视节目的收视率,应选择抽样调查,故此选项符合题意;C、为了了解神舟飞船的设备零件的质量情况,意义重大,应采用全面调查,故此选项不合题意;D、为了了解某批次汽车的抗撞击能力,具有破环性,应采用抽样调查,故此选项不合题意;故选:B.7.下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的例子是()A.∠A=40°,∠B=20°B.∠A=40°,∠B=60°C.∠A=40°,∠B=90°D.∠A=40°,∠B=120°【分析】说明命题“两个锐角的和是钝角”是假命题的反例为两个锐角的和小于90°即可.【解答】解:利用∠A=40°,∠B=20°可判断“两个锐角的和是钝角”是假命题.故选:A.8.已知|2x+4|+(5﹣y﹣m)2=0,且y>0,则m的取值范围是()A.m>﹣5B.m<﹣5C.m>5D.m<5【分析】根据非负数的性质列出方程组用m表示出y的值,再根据y<0求出m的取值范围即可.【解答】解:∵|2x+4|+(5﹣y﹣m)2=0,∴5﹣y﹣m=0,y=5﹣m.∵y>0,∴5﹣m>0,解得m<5.故选:D.9.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.【分析】设该店有客房x间,房客y人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【解答】解:设该店有客房x间,房客y人;根据题意得:,故选:A.10.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为()A.180°﹣α﹣βB.α+βC.α+2βD.2α+β【分析】根据三角形的内角和,四边形的内角和定理,以及三角形的外角的意义,得出∠ADC与α、β的关系.【解答】解:在四边形ABCD中,∠ADC=360°﹣α﹣(∠DCB+∠DAB)=360°﹣α﹣(360°﹣2∠PCD﹣2∠P AD)=2(∠PCD+∠P AD)﹣α=2(∠ADC﹣β)﹣α,∴∠ADC=α+2β,故选:C.二.填空题(共8小题)11.实数9的算术平方根等于3.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:实数9的算术平方根是:=3.故答案为:3.12.语句“x的4倍与3的和不大于6”用不等式可表示为4x+3≤6.【分析】“x的4倍”即4x,“与3的和”即“+3”,根据“不大于6”即≤6可得答案.【解答】解:“x的4倍与3的和不大于6”用不等式可表示为4x+3≤6,故答案为:4x+3≤6.13.某正n边形的一个内角为108°,则n=5.【分析】易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数.【解答】解:∵正n边形的一个内角为108°,∴正n边形的一个外角为180°﹣108°=72°,∴n=360°÷72°=5.故答案为:5.14.已知a,b满足方程组,则a+b=﹣2.【分析】直接将两方程相加进而得出a+b的值.【解答】解:∵a,b满足方程组,∴4a+4b=﹣8,则a+b=﹣2.故答案为:﹣2.15.如图,直线AB∥DE,AC⊥BC,若∠1=139°,则∠CAB=49度.【分析】先根据三角形外角与内角的关系,求出∠2,再利用平行线的性质求出∠CAB.【解答】解:∵AC⊥BC,∴∠C=90°.∵∠1=∠C+∠2,∴∠2=∠1﹣∠C=139°﹣90°=49°.∵AB∥DE,∴∠CAB=∠2=49°.故答案为:49.16.若点M(x,x+2)在第二象限,则整数x的值是﹣1.【分析】根据点M在第二象限列出关于x的不等式组,解之可得答案.【解答】解:∵点M(x,x+2)在第二象限,∴,解得﹣2<x<0,∴整数x的值为﹣1,故答案为:﹣1.17.△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有9个.【分析】结合三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”和已知条件,进行分析.【解答】解:根据已知条件和三角形的三边关系,得当a=8,b=7时,则c=6或5或4或3或2;当a=8,b=6时,则c=5或4或3;当a=8,b=5时,则c=4.则满足条件的三角形共有9个.故答案为:9.18.在平面直角坐标系xOy中,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+2|y1﹣y2|.若A(2,1),B(﹣1,m),且d(A,B)≤5,则实数m的取值范围是0≤m≤2.【分析】根据题意给出的公式列出不等式后即可求出a的取值范围.【解答】解:∵A(2,1),B(﹣1,m),且d(A,B)≤5,∴d(A,B)=3+2|1﹣m|≤5,∴|1﹣m|≤1,∴﹣1≤1﹣m≤1,∴0≤m≤2,故答案为0≤m≤2.三.解答题19.(1)计算:+|﹣2|﹣;(2)解不等式组.【考点】2C:实数的运算;CB:解一元一次不等式组.【专题】511:实数;524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)利用绝对值和立方根的性质进行计算,然后再算加减即可;(2)首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:(1)原式=+2﹣﹣3=﹣1;(2),由不等式①得x≤1,由不等式②得x<4,∴不等式组的解集为x≤1.20.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?请列方程组求解.【考点】8A:一元一次方程的应用;9A:二元一次方程组的应用.【专题】124:销售问题;69:应用意识.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张,则,解得.答:甲种票买了20张,乙种票买了15张.21.在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(5,2),B(2,﹣1),过点A画AC⊥x轴,垂足为C.(1)按照要求画出平面直角坐标系xOy;(2)写出点C的坐标;(3)△ABC的面积为3.【考点】D5:坐标与图形性质;K3:三角形的面积.【专题】552:三角形;64:几何直观;66:运算能力.【分析】(1)直接利用已知点画出平面直角坐标系即可;(2)根据坐标系得出答案;(3)利用所在三角形面积减去一个三角形面积进而得出答案.【解答】解:(1)如图所示:(2)点C的坐标为:(5,0);故答案为:(1,0);(3)△ABC的面积为:3×3﹣×1×3=3;故答案为:3.22.如图,△ABC中,∠ACB=90°,AC=16cm,BC=12cm,AB=20cm,若动点P从点C开始按沿C→A→B→C的路径运动,且速度为每秒3cm,设运动时间为t秒.(1)当CP把△ABC的面积分成相等的两部分时,t的值为多少?(2)当t=8时,求CP把△ABC分成的两部分面积之比.【考点】K3:三角形的面积.【专题】552:三角形;67:推理能力.【分析】(1)根据三角形的中线将三角形分成面积相等的两部分,列出方程可求解;(2)求得P A=8,即可求得PB=12,根据三角形面积公式即可求得.【解答】解:(1)∵当点P是AB中点时,CP把△ABC的面积分成相等的两部分;∴3t=16+,解得t=;(2)∵3×8=24,∴AC+AP=24,∴AP=8,BP=12,∵△APC和△BPC同高,∴S△APC:S△BPD=2:3.23.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【考点】II:度分秒的换算.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.24.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【专题】11:计算题;541:数据的收集与整理.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a 与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.25.在平面直角坐标系xOy中,将△ABC进行平移,使点A,B,C分别移到点A′,B′,C′.已知A(0,t),B(0,n),A′(t,t),B′(m﹣n,t+4).(1)试用含t的式子表示m和n;(2)若C(﹣2t,m+1),其中t>0,求证:B′C∥x轴;(3)在(2)的条件下,若S△BCB′=3,求点C′的坐标.【考点】RB:几何变换综合题.【专题】152:几何综合题;69:应用意识.【分析】(1)根据平移变换坐标之间的关系构建方程组求解即可.(2)利用(1)中结论证明点B′,点C的纵坐标相等即可.(3)利用三角形的面积公式求出t的值,再利用平移变换的规律解决问题即可.【解答】解:(1)由题意,,解得.(2)∵C(﹣2t,m+1),m=2t+4,∴C(﹣2t,t+4),∵B′(t,t+4),且t>0,∴B′C∥x轴.(3)∵B(0,t+4),B′(t,t+4),C(﹣2t,t+4)∴S△BCB′=(t+2t)()=3,解得t=2(负值已舍去),∴A(0,2),A′(2,3),C(﹣4,7),∵点A向右平移2个单位,再向上平移1个单位得到A′,∴C(﹣4,7)向右平移2个单位,再向上平移1个单位得到C′,∴C′(﹣2,8).26.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=54°,则∠ABX+∠ACX=36°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=α,∠DBE=β,请直接写出∠DCE的度数(用含α和β的式子表示);③如图4,∠ABD,∠ACD的12等分线相交于点G1、G2…、G11,若∠BDC=115°,∠BG1C=60°,求∠A的度数.【考点】38:规律型:图形的变化类;K7:三角形内角和定理.【专题】552:三角形;69:应用意识.【分析】(1)结论:∠BDC=∠A+∠B+∠C.连结AD并延长到点E,利用三角形的外角的性质求解即可.(2)①利用(1)中结论计算即可.②图3中,设∠ADC=∠CDB=x,∠AEC=∠CEB=y,构建方程组解决问题即可.③设∠ABD=x°,∠ACD=y°,构建方程组解决问题即可.【解答】解:(1)∠BDC=∠A+∠B+∠C.理由:连结AD并延长到点E.∵∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,∴∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠B,∴∠BDC=∠BAC+∠B+∠C.(2)①∵∠BXC=∠ABX+∠ACX+∠A=90°,∠A=54°,∴∠ABX+∠ACX=36°.故答案为36.②如图3中,设∠ADC=∠CDB=x,∠AEC=∠CEB=y,则有∠DCE=x+y+α,β=2x+2y+α,∴∠DCE=.故答案为.③设∠ABD=x°,∠ACD=y°.由题意可得,解得∠A=55°.。
安徽省芜湖市2019-2020学年七年级(下)期末考试数学试卷 解析版
2019-2020学年安徽省芜湖市七年级(下)期末数学试卷一、选择题:(本大题10个小题,每小题4分,共30分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.(4分)下列计算正确的是()A.﹣22=4B.=±4C.=D.=22.(4分)下列调查工作适合采用普查方式的是()A.学校在给学生订做校服前进行的尺寸大小的调查B.质检部门对各厂家生产的电池使用寿命的调查C.电视台对正在播出的某电视节目收视率的调查D.环保部门对某段水域的水污染情况的调查3.(4分)已知点A(a,b)在第四象限,那么点B(b,﹣a﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C 两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°5.(4分)在下列实数,3.14159265,,﹣8,,,中无理数有()A.3个B.4个C.5个D.6个6.(4分)如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3B.∠F=35°C.DF=5D.AB∥DE7.(4分)《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.8.(4分)下列说法正确的是()A.x=3.14是不等式2x﹣5>0的一个解B.+5<2x是一元一次不等式C.不等式组有一个正整数解D.不等式:﹣2x+3>0的解集是:x>9.(4分)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)10.(4分)如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有()个A.1B.2C.3D.4二、填空题:(本大题5个小题,每小题4分,共20分)11.(4分)求实数的整数部分数字是.12.(4分)如图,直线a和b被直线c所截,∠1=110°,当∠2=时,直线a∥b成立.13.(4分)关于x的不等式(3﹣2a)x<1的解集是x>,则a的取值范围是.14.(4分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是cm2.15.(4分)已知点A(﹣4,0),B(2,0),点C在y轴上,且△ABC的面积等于12,则点C的坐标为.三、简答题:(本大题6个小题、共50分,解答时每小题必须给出必要的演算过程或推理步骤.)16.(1)解方程组;(2)解不等式组并将解集在数轴上表示.17.(7分)如图,BC∥AD,∠1=∠E,求证:∠A=∠C.18.(8分)如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度.已知△ABC的顶点A(﹣2,5)、B(﹣4,1)、C(2,3),将△ABC平移得到A'B'C',点A(a,b)对应点A'(a+3,b﹣4)(1)画出△A'B'C'并写出点B'、C'的坐标.(2)试求△A'B'C'的面积.(3)在x轴上存在一点P,使得S△ABP=7,则点P的坐标是.19.(6分)某中学有学生2400名,为了响应市“科学应对、群防群控、增强体质、战胜疫情”的号召,学校决定利用课外活动时间举行体育锻炼,为了让学生在篮球、足球、排球和乒乓球这四项球类运动中选择一项球类进行锻炼,对学生开展了随机调查,并将结果绘制成如图所示不完整的统计图.请根据以上信息,完成下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱乒乓球的人数,并补全条形统计图;(3)请你估计该阳光中学的学生中最喜爱篮球运动的学生人数约有多少名?20.(9分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(10分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.2019-2020学年安徽省芜湖市七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共30分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.(4分)下列计算正确的是()A.﹣22=4B.=±4C.=D.=2【分析】直接利用二次根式、立方根的性质分别化简得出答案.【解答】解:A、﹣22=﹣4,故此选项错误;B、=4,故此选项错误;C、=2,故此选项错误;D、=2,正确.故选:D.【点评】此题主要考查了立方根以及算术平方根,正确化简各数是解题关键.2.(4分)下列调查工作适合采用普查方式的是()A.学校在给学生订做校服前进行的尺寸大小的调查B.质检部门对各厂家生产的电池使用寿命的调查C.电视台对正在播出的某电视节目收视率的调查D.环保部门对某段水域的水污染情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、学校在给学生订做校服前进行的尺寸大小的调查,人数较少,应采用全面调查,故此选项符合题意;B、质检部门对各厂家生产的电池使用寿命的调查,调查具有破坏性,应采用抽样调查,故此选项不合题意;C、电视台对正在播出的某电视节目收视率的调查,范围较广,意义不大,应采用抽样调查,故此选项不合题意;D、环保部门对某段水域的水污染情况的调查,不可能全面调查,应采用抽样调查,故此选项不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(4分)已知点A(a,b)在第四象限,那么点B(b,﹣a﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点得出答案.【解答】解:∵点A(a,b)在第四象限,∴a>0,b<0,∴﹣a﹣1<0,∴点B(b,﹣a﹣1)在第三象限.故选:C.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标特点是解题关键.4.(4分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C 两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.【点评】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.5.(4分)在下列实数,3.14159265,,﹣8,,,中无理数有()A.3个B.4个C.5个D.6个【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:,,∴,3.14159265,﹣8,是有理数,无理数有:,,共3个.故选:A.【点评】本题主要考查的是无理数的概念,熟练掌握无理数的概念是解题的关键.6.(4分)如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3B.∠F=35°C.DF=5D.AB∥DE【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿BC的方向平移到△DEF的位置,BC=5,∠A=70°,∠B=75°,∴CF=BE=3,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,AB∥DE,∴A、B、D正确,不符合题意;C错误,符合题意,故选:C.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.7.(4分)《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程.8.(4分)下列说法正确的是()A.x=3.14是不等式2x﹣5>0的一个解B.+5<2x是一元一次不等式C.不等式组有一个正整数解D.不等式:﹣2x+3>0的解集是:x>【分析】解出不等式(组)的解集,根据不等式的解的定义,就是能使不等式成立的未知数的值,就可以作出判断.【解答】解:A、由于不等式2x﹣5>0的解集为x>2.5,所以x=3.14是不等式2x﹣5>0的一个解,正确,符合题意;B、+5<2x表示是一元一次不等式,故错误,不符合题意.C、解不等式x+3<5得x<2,解不等式3x﹣1>8得x>3,所以不等式组无解,错误,不符合题意;D、不等式x﹣3>2的解集是x<,故错误,不符合题意;故选:A.【点评】本题考查了不等式(组)的解集,解答此题关键是掌握解不等式的方法.9.(4分)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)【分析】根据坐标的定义可求得y值,根据线段BC最小,确定BC⊥AC,垂足为点C,进一步求得BC的最小值和点C的坐标.【解答】解:依题意可得:∵AC∥x轴,A(﹣3,2)∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选:D.【点评】本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.10.(4分)如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有()个A.1B.2C.3D.4【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故①正确;②∵∠CEG=∠ACB,而∠GEC与∠GCE不一定相等,∴CA不一定平分∠BCG,故②错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故③正确;④∵∠ABC+∠ACB=90°,∵CD平分∠ACB,BE平分∠ABC,∴∠EBC=∠ABC,∠DCB=∠ACB,∴∠DFB=∠EBC+∠DCB=(∠ABC+∠ACB)=45°,∵∠CGE=90°,∴∠DFB=∠CGE,故④正确.故选:C.【点评】本题主要考查的是三角形内角和定理、平行线的性质,熟知直角三角形的两锐角互余是解答此题的关键.二、填空题:(本大题5个小题,每小题4分,共20分)11.(4分)求实数的整数部分数字是35.【分析】直接估算无理数的大小进而得出整数部分.【解答】解:∵352=1225,∴35<<36,∴实数的整数部分数字是:35.故答案为:35.【点评】此题主要考查了估算无理数的大小,正确估算无理数的范围是解题关键.12.(4分)如图,直线a和b被直线c所截,∠1=110°,当∠2=70°时,直线a∥b成立.【分析】根据平行线的判定定理即可得到结论.【解答】解:当∠2=70°时,直线a∥b,∵∠1=110°,∴∠3=70°,∵∠2=70°,∴∠3=∠2,∴直线a∥b.故答案为:70°.【点评】本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题的关键.13.(4分)关于x的不等式(3﹣2a)x<1的解集是x>,则a的取值范围是a>.【分析】根据解一元一次不等式的依据可得关于a的不等式,解之可得.【解答】解:∵(3﹣2a)x<1的解集是x>,∴3﹣2a<0,解得a>,故答案为:a>.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.(4分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是44cm2.【分析】设小长方形的长、宽分别为xcm,ycm,根据图示可以列出方程组,然后解这个方程组即可求出小长方形的面积,接着就可以求出图中阴影部分的面积.【解答】解:设小长方形的长、宽分别为xcm,ycm,依题意得,解之得,∴小长方形的长、宽分别为8cm,2cm,∴S阴影部分=S四边形ABCD﹣6×S小长方形=14×10﹣6×2×8=44cm2.【点评】此题是一个信息题目,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.15.(4分)已知点A(﹣4,0),B(2,0),点C在y轴上,且△ABC的面积等于12,则点C的坐标为(0,4)或(0,﹣4).【分析】先设C点的坐标是(0,x),根据图可知×AB×OC=×6•|x|=12,解即可求x,进而可求C 点坐标.【解答】解:如右图所示,设C点的坐标是(0,x),∵S△ABC=12,∴×AB×OC=×6•|x|=12,∴|x|=4,故点C的坐标是(0,4)或(0,﹣4).故答案为(0,4)或(0,﹣4).【点评】本题考查了三角形的面积,坐标与图形的性质等知识,解题的关键是不要漏解.三、简答题:(本大题6个小题、共50分,解答时每小题必须给出必要的演算过程或推理步骤.)16.(1)解方程组;(2)解不等式组并将解集在数轴上表示.【分析】(1)方程组利用加减消元法求出解即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1),①×2﹣②得:﹣11y=﹣22,解得:y=2,把y=2代入①得:x=1,∴方程组的解为;(2)解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.(7分)如图,BC∥AD,∠1=∠E,求证:∠A=∠C.【分析】由∠1=∠E,可判定AB∥EC,根据平行线的性质,可得∠ADE=∠A,又由BC∥AD,可得∠C =∠ADE,即可求解.【解答】证明:∵∠1=∠E,∴AB∥EC,∴∠ADE=∠A,∵BC∥AD,∴∠C=∠ADE,∴∠A=∠C.【点评】此题考查了平行线的判定与性质.此题难度不大,注意掌握数形结合思想的应用.18.(8分)如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度.已知△ABC的顶点A(﹣2,5)、B(﹣4,1)、C(2,3),将△ABC平移得到A'B'C',点A(a,b)对应点A'(a+3,b﹣4)(1)画出△A'B'C'并写出点B'、C'的坐标B′(﹣1,﹣3),C′(5,﹣1).(2)试求△A'B'C'的面积10.(3)在x轴上存在一点P,使得S△ABP=7,则点P的坐标是(﹣8,0)或(﹣1,0).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题.(2)利用分割法求三角形的面积即可.(3)分两种情形,分别构建方程解决问题即可.【解答】解:(1)如图,△A'B'C'即为所求,B′(﹣1,﹣3),C′(5,﹣1).故答案为B′(﹣1,﹣3),C′(5,﹣1).(2)S△A′B′C′=4×6﹣×2×4﹣×2×4﹣×2×6=10.故答案为10.(3)设P(m,0),当点P在直线AB的右侧时,×2×1+×(m+4)×5﹣×1×(m+4)=7,解得m=﹣1,当点P在直线AB的左侧时,×5×(﹣4﹣m)+×(﹣2﹣m)×4﹣×5×(﹣2﹣m)=7,解得m=﹣8,∴满足条件的点P的坐标为(﹣8,0)或(﹣1,0).故答案为(﹣8,0)或(﹣1,0).【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数构建方程解决问题.19.(6分)某中学有学生2400名,为了响应市“科学应对、群防群控、增强体质、战胜疫情”的号召,学校决定利用课外活动时间举行体育锻炼,为了让学生在篮球、足球、排球和乒乓球这四项球类运动中选择一项球类进行锻炼,对学生开展了随机调查,并将结果绘制成如图所示不完整的统计图.请根据以上信息,完成下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱乒乓球的人数,并补全条形统计图;(3)请你估计该阳光中学的学生中最喜爱篮球运动的学生人数约有多少名?【分析】(1)用篮球的人数除以篮球的人数所占的百分比,即可解答;(2)用总人数乘以最喜爱乒乓球的人数所占的百分比,即可补全统计图;(3)用阳光中学的总人数乘以最喜爱篮球运动的学生人数所占的百分比即可.【解答】解:(1)本次调查共抽取的学生数是:160÷40%=400(人);(2)喜爱乒乓球的人数有:400×30%=120(人),补全统计图如下:(3)根据题意得:2400×40%=960(名),答:阳光中学的学生中最喜爱篮球运动的学生人数约有960名.【点评】本题主要考查了条形统计图和扇形统计图的识别,观察条形统计图、扇形统计图获得有效信息是解题关键.20.(9分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21.(10分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为∠PFD+∠AEM=90°.请说明理由作PG∥AB,如图①所示则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为∠PFD﹣∠AEM=90°.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【分析】(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.【解答】解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.【点评】本题考查了平行线的性质、角的互余关系;熟练掌握平行线的性质,弄清角之间的数量关系是解决问题的关键.。
四川省成都市郫都区2019-2020学年七年级(下)期末考试数学试卷 解析版
2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b34.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.()∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.()∵∠AME=∠CNE,∴∠1=∠2.()∵∠1=∠2,∴MP∥NQ.()18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了分钟;上述过程中,小明所走的路程为米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°【分析】利用对顶角的定义得出∠AOC=80°,进而利用角平分线的性质得出∠COM的度数.【解答】解:∵∠BOD=∠AOC(对顶角相等),∠BOD=80°,∴∠AOC=80°,∵射线OM是∠AOC的平分线,∴∠COM=×∠AOC=×80°=40°.故选:D.3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b3【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、(a3)2=a6,故此选项错误;B、a6÷a3=a3,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣ab)3=﹣a3b3,正确.故选:D.4.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到白球是随机事件,不是必然事件,∴选项A不符合题意,选项C符合题意;∵摸到黑球是随机事件,∴选项B、D不符合题意;故选:C.7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间【分析】地表以下岩层的温度随着所处深度的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是深度,因变量是岩层的温度.【解答】解:∵地表以下岩层的温度随着所处深度的变化而变化,∴自变量是深度,因变量是岩层的温度.故选:B.8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短【分析】根据三角形具有稳定性解答即可.【解答】解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性,故选:A.9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米【分析】根据三角形的三边关系定理可得50﹣20<x<50+20,再解即可.【解答】解:由题意得:50﹣20<x<50+20,即30<x<70,观察选项,D选项符合题意.故选:D.10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF【分析】由平行可得到∠B=∠DEF,又BE=CF推知BC=EF,结合全等三角形的判定方法可得出答案.【解答】解:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF.A、当AB=DE时,可用SAS证明△ABC≌△DEF,故本选项错误;B、当∠A=∠D时,可用AAS证明△ABC≌△DEF,故本选项错误;C、当AC=DF时,根据SSA不能判定△ABC≌△DEF,故本选项正确;D、当AC∥DF时,可知∠ACB=∠F,可用ASA证明△ABC≌△DEF,故本选项错误;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为9或﹣9.【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【解答】解:∵x2+2mx+81是一个完全平方式,∴2mx=±2•x•9,解得:m=±9.故答案为:9或﹣9.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为15cm2.【分析】根据三角形的面积公式解答即可.【解答】解:∵在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,∴AD⊥BC,∴△ABC的面积=,故答案为:15cm2.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是55°.【分析】先根据平角的定义求出∠3,再利用平行线的性质求出∠2=∠3即可.【解答】解:∵∠1+∠3=180°﹣90°=90°,∠1=35°,∴∠3=55°,∵AB∥CD,∴∠2=∠3=55°,故答案为:55°.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为31元.【分析】根据图表中数据可得出,y与x的函数关系进而得出答案.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).【分析】(1)根据零指数次幂,负指数次幂的性质,有理数的乘方进行计算,再乘除,后加减即可求解;(2)根据整式乘法的法则计算,再合并同类项即可求解.【解答】解:(1)原式==1﹣4+9=6;(2)原式=10a2﹣8a+20a2+2a﹣6=30a2﹣6a﹣6.16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.【分析】原式中括号中利用单项式乘多项式,完全平方公式以及平方差公式化简,去括号合并后得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣6xy+9y2+x2﹣4y2﹣2x2+5xy)﹣y=﹣xy+5y2﹣y,当x=﹣2,y=﹣3时,原式=﹣6+45+3=42.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等)∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义)∵∠AME=∠CNE,∴∠1=∠2.(等量代换)∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行)【分析】利用平行线的性质定理和判定定理解答即可.【解答】解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等),∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义),∵∠AME=∠CNE,∴∠1=∠2.(等量代换),∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行).故答案为:两直线平行,同位角相等;角平分线的定义;等量代换;同位角相等,两直线平行.18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是0.8;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【分析】(1)根据三角形内角和定理计算,得到答案;(2)根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【解答】解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠F AC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+F A=20,由(2)可知,DA=DB,F A=FC,∴BC=DB+DF=FC=DA+DF+F A=20.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.【分析】(1)由角平分线的性质和平角的性质可求结论;(2)由“AAS”可证△BDE≌△DCF;(3)通过证明四边形DEFC是平行四边形,可得EF∥BC.【解答】证明:(1)∵DE平分∠ADB,DF平分∠ADC,∴∠PDE=∠ADB,∠FDP=∠ADC,∴∠EDF=∠PDE+∠PDF=∠ADB+∠ADC=(∠ADB+∠ADC)=90°,∴DE⊥DF;(2)∵BE⊥DE,DF⊥CF,∴∠BED=∠DFC=90°,∵∠BDE+∠CDF=90°,∠CDF+∠DCF=90°,∴∠BDE=∠DCF,∴DE∥CF,∵D是BC中点,∴BD=DC,在△BDE和△DCF中,,∴△BDE≌△DCF(AAS),(2)∵△BDE≌△DCF,∴DE=CF,∵DE∥CF,∴四边形DEFC是平行四边形,∴EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解答】解:()2019×()﹣2020===.故答案为:.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=180°﹣2∠α.【分析】利用平行线的性质可得∠α=∠3,∠1=∠β,再利用平角定义可得答案.【解答】解:∵AB∥CD,∴∠α=∠3,∠1=∠β,由折叠可得∠3=∠2,∵∠2+∠3+∠1=180°,∴∠β+2∠α=180°,∴∠β=180°﹣2∠α,故答案为:180°﹣2∠α.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.【分析】当a分别取2,0,1,3,4时,解方程ax﹣1﹣3(x+1)=﹣3x得到正整数的个数,然后根据概率公式求解.【解答】解:当a=﹣2时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣3x,解得x=﹣2;当a=0时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣1﹣3x﹣3=﹣3x,无解;当a=1时,方程ax﹣1﹣3(x+1)=﹣3x化为x﹣1﹣3x﹣3=﹣3x,解得x=4;当a=3时,方程ax﹣1﹣3(x+1)=﹣3x化为3x﹣1﹣3x﹣3=﹣3x,解得x=;当a=4时,方程ax﹣1﹣3(x+1)=﹣3x化为4x﹣1﹣3x﹣3=﹣3x,解得x=1;所以使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的结果数为2,所以展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率=.故答案为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=2或4.【分析】延长AD至E,使DE=AD,连接CE,由“SAS”可证△ABD≌△ECD,可得CE=AB=6,由三角形的三边关系可得1<AD<5,即可求解.【解答】解:延长AD至E,使DE=AD,连接CE,在△ABD与△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=6,在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<10,∴1<AD<5,∵AD为偶数,∴AD=2或4,故答案为2或4.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为1.【分析】作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB 分别交于点M与N则P'P''的长即为△PMN周长的最小值;连接OP',OP'',过点O作OC⊥P'P'',在Rt△OCP'中求出OC即可.【解答】解:作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB分别交于点M与N则P'P''的长即为△PMN周长的最小值,连接OP',OP'',过点O作OC⊥P'P''于点C由对称性可知OP=OP'=OP'',∵OP=2,∠AOB=60°,∴∠P'=∠P''=30°,OP′=OP''=2,∴OC==1;故答案为1.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了20分钟;上述过程中,小明所走的路程为3800米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.【分析】(1)根据函数图象中的数据,可以计算出小明中途休息用了多少分钟,小明所走的路程是多少;(2)根据函数图象中的数据和题意,可以计算出a的值.【解答】解:(1)由图象可得,小明中途休息用了60﹣40=20(分钟),上述过程中,小明所走的路程为3800米,故答案为:20,3800;(2)由题意可得,a﹣60=(3800﹣2800)÷25,解得,a=100,即a的值是100.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3a2b+3ab2;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.【分析】【知识生成】利用面积相等推导公式(a+b)2﹣4ab=(a﹣b)2;【知识迁移】利用体积相等推导(a+b)3=a3+b3+3a2b+3ab2;(1)应用知识生成的公式,进行变形,代入计算即可;(2)先根据非负数的性质得:a+b=6,ab=7,由知识迁移的等式可得结论.【解答】解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.【分析】(1)结论:CE∥AB.证明△BAD≌△CAE(SAS)可得结论.(2)利用全等三角形的性质证明∠ADB=∠AEC=120°,证明∠ADB+∠ADE=180°即可解决问题.(3)结论:BE=AE+EC.在线段BE上取一点H,使得BH=CE,设AC交BE于点O.利用全等三角形的性质证明△AEH是等边三角形即可.【解答】(1)解:结论:CE∥AB.理由:如图1中,∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=60°,∴∠BAC=∠ACE=60°,∴AB∥CE.(2)证明:如图2中,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC,∵△ADE是等边三角形,∴∠AED=∠ADE=60°,∵∠BEC=60°,∴∠AEC=∠AED+∠BEC=120°,∴∠ADB=∠AEC=120°,∴∠ADB+∠ADE=120°+60°=180°,∴B,D,E共线.(3)解:结论:BE=AE+EC.理由:在线段BE上取一点H,使得BH=CE,设AC交BE于点O.∵△ABC是等边三角形,∴AB=BC,∠BAC=60°,∵∠BEC=60°,∴∠BAO=∠OEC=60°,∵∠AOB=∠EOC,∴∠ABH=∠ACE,∵BA=CA,BH=CE,∴△ABH≌△ACE(SAS),∴∠BAH=∠CAE,AH=AE,∴∠HAE=∠BAC=60°,∴△AEH是等边三角形,∴AE=EH,∴BE=BH+EH=EC+AE,即BE=AE+EC.。
浙江省温州市2019-2020学年第二学期七年级期末考试数学试卷 解析版
2019-2020学年浙江省温州市七年级(下)期末数学试卷一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠42.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣73.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy34.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.69.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.8010.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=.12.因式分解:m2﹣mn=.13.要使分式的值为0,则x的值为.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为人.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为cm.17.已知关于x,y的方程组的解互为相反数,则常数a的值为.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).20.解方程(组):(1);(2)+1=.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共只.(2)被检测电灯泡的最少使用寿命至少为时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.2019-2020学年浙江省温州市七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠4【分析】根据同位角、内错角、同旁内角、对顶角的定义进行判断即可.【解答】解:A、∠1和∠A是同旁内角,故本选项符合题意;B、∠2和∠A是同位角,不是同旁内角,故本选项不符合题意;C、∠3和∠A不是同旁内角,故本选项不符合题意;D、∠4和∠A是内错角,不是同旁内角,故本选项不符合题意.故选:A.2.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000005=5×10﹣6,故选:C.3.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy3【分析】运用单项式乘单项式的运算法则计算即可.【解答】解:y2•(﹣2xy)=﹣2x•(y2•y)=﹣2xy3.故选:A.4.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:4+a=5,解得:a=1,故选:B.5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日【分析】通过图形直观可以得出温差最大的日期,即同一天的最高气温与最低气温的差最大.【解答】解:由图形直观可以得出6月14日温差最大,是35﹣25=10(°C),故选:D.6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab【分析】分别根据单项式乘单项式与去括号的法则逐一判断即可.【解答】解:A.2a(a﹣1)=2a2﹣2a,故本选项不合题意;B.a(a+3b)=a2+3ab,故本选项符合题意;C.﹣3(a+b)=﹣3a﹣3b,故本选项不合题意;D.a(﹣a+2b)=﹣a2+2ab,故本选项不合题意.故选:B.7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°【分析】根据两条直线平行,同旁内角互补,即可得∠1与∠2的关系.【解答】解:如图,∵直角三角板的直角顶点放在直尺的一边上,∴∠2=∠3,∠1+∠4=90°,∵直尺的两边平行,∴∠3+∠4=180°,∴∠2+90°﹣∠1=180°,∴∠2﹣∠1=90°.故选:D.8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.6【分析】利用十字相乘法的结果特征判断即可求出m的值.【解答】解:∵多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),而(x+4)(x﹣2)=x2+2x﹣8,∴m=2,故选:B.9.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.80【分析】设长方形的长为a,宽为b,根据四个半圆的周长之和为14π,可得a+b=14,根据面积之和为29π,可得a2+b2=116,进而求出ab的值即可.【解答】解:设长方形的长为a,宽为b,由题意得,πa+πb=14π,即:a+b=14,π×()2﹣π×()2=29π,即:a2+b2=116,∴ab=[(a+b)2﹣(a2+b2)]=(196﹣116)=40,故选:C.10.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.【分析】设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,相向而行,等量关系为:甲路程+乙路程=s;同向而行,等量关系为:甲路程﹣乙路程=s,则10xa+3xa =s,10xb﹣3xb=s,联立即可求得的值.【解答】解:设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,依题意有10xa+3xa=s①,10xb﹣3xb=s②,①﹣②得10xa+3xa﹣(10xb﹣3xb)=0,13a﹣7b=0,=,故选:B.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=4﹣x2.【分析】利用平方差公式计算即可得到结果.【解答】解:(2+x)(2﹣x)=22﹣x2=4﹣x2.故答案为:4﹣x2.12.因式分解:m2﹣mn=m(m﹣n).【分析】提取公因式m,即可将此多项式因式分解.【解答】解:m2﹣mn=m(m﹣n).故答案为:m(m﹣n).13.要使分式的值为0,则x的值为1.【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴1﹣x=0且x﹣2≠0,解得x=1,故答案为:1.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为10人.【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【解答】解:6÷(30%﹣15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.【分析】根据运算的定义即可直接求解【解答】解:5⊗(﹣2)=5﹣2=.故答案为:.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为 5.5cm.【分析】根据线段的和差关系可求AC+A′C′的长度,除以2可求A′C′的长度,再根据线段的和差关系可求CC′的长度,即为直线AB平移的距离.【解答】解:AC+A′C′=AC′﹣A′C=9﹣2=7(cm),A′C′=7÷2=3.5(cm),CC′=A′C+A′C′=2+3.5=5.5(cm).故直线AB平移的距离为5.5cm.故答案为:5.5.17.已知关于x,y的方程组的解互为相反数,则常数a的值为15.【考点】97:二元一次方程组的解.【专题】521:一次方程(组)及应用;66:运算能力.【分析】②﹣①求出2x+2y=a﹣15,根据已知得出a﹣15=0,求出即可.【解答】解:∵②﹣①得:2x+2y=a﹣15,∵关于x,y的方程组的解互为相反数,∴x+y=0,即2x+2y=0,∴a﹣15=0,∴a=15,故答案为15.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.【考点】KD:全等三角形的判定与性质;LE:正方形的性质;N4:作图—应用与设计作图.【专题】13:作图题;69:应用意识.【分析】设BE=BG=DF=DH=x,AE=CF=y.想办法构建方程组求出x,y即可解决问题.【解答】解:设BE=BG=DF=DH=x,AE=CF=y.∵四边形ABCD是正方形,∴AB=BC=CD=AD=x+y,∠ABC=∠ABG=90°,∠ADF=∠CDH=90°,∵BE=BG=DF=DH,∴△BGE≌△DFH(SAS),∠BEG=∠DFH=45°,∴EG=FH,∠AEG=∠CFH=135°,∵EA=FC,∴△AEG≌△CFH(SAS),∴S△AEG=S△CFH,∴xy+y(x+y)=20 ①,=②,由①②可得,∴正方形的面积=(2+)2=.故答案为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).【考点】4C:完全平方公式;4H:整式的除法.【专题】512:整式;66:运算能力.【分析】(1)根据完全平方公式展开后,再合并同类项即可;(2)根据大学生除以单项式的运算法则计算即可.【解答】解:(1)原式=a2+2a+1﹣a2=2a+1;(2)原式=(8x2y)÷(2x)﹣(4x3)÷(2x)=4xy﹣2x2.20.解方程(组):(1);(2)+1=.【考点】98:解二元一次方程组;B3:解分式方程.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)利用加减消元法解方程组;(2)去分母得到整式方程﹣2x+x﹣1=1,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),①+②×2得3x+2x=9+16,解得x=5,把x=5代入②得5﹣y=8,解得y=﹣3,所以方程组的解为;(2)去分母得﹣2x+x﹣1=1,解得x=2,经检验,原方程的解为x=﹣2.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】先按照分式的混合运算法则进行化简,再代入使原式有意义的值进行计算.【解答】解:原式==,∵m=±1或0时,原式无意义,∴取m=2时,原式=.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共200只.(2)被检测电灯泡的最少使用寿命至少为1100时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?【考点】V5:用样本估计总体;V8:频数(率)分布直方图.【专题】54:统计与概率;65:数据分析观念.【分析】(1)根据直方图中的数据,可以得到被检测的灯泡一共多少只;(2)根据直方图中的数据,可以得到被检测电灯泡的最少使用寿命至少为多少时;(3)根据统计图中的数据,可以计算出合格的电灯泡有多少只.【解答】解:(1)被检测的电灯泡共10+80+70+40=200(只),故答案为:200;(2)被检测电灯泡的最少使用寿命至少为1100时,故答案为:1100;(3)40000×=38000(只),即合格的电灯泡有38000只.23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;556:矩形菱形正方形;558:平移、旋转与对称;67:推理能力.【分析】(1)由折叠的性质得出∠AEB=∠AEF,证出AE⊥EG,进而得出结论;(2)求出∠AEB=70°,由平行线的性质进而得出答案.【解答】(1)证明:由折叠知∠AEB=∠AEF,∵EG平分∠CEF,∴∠FEG=∠CEG,∵∠AEB+∠AEF+∠FEG+∠CEG=180°,∴∠AEG=∠AEF+∠FEG=90°,∴AE⊥EG,∵HG⊥EG,∴HG∥AE;(2)解:∵∠CEG=20°,∠AEG=90°,∴∠AEB=70°,∵四边形ABCD是长方形,∴AD∥BC,∴∠AEB=∠DAE=70°,∵HG∥AE,∴∠DHG=∠DAE=70°.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.【考点】95:二元一次方程的应用;9A:二元一次方程组的应用.【专题】521:一次方程(组)及应用;69:应用意识.【分析】(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,根据“购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,根据总价=单价×数量,即可得出关于a,b的二元一次方程,再结合可使用时间=免洗手消毒液总体积÷每天需消耗的体积,即可求出结论;(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,根据需将9.6L 的免洗手消毒液进行分装且分装时平均每瓶需损耗20ml,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可得出各分装方案,选择(m+n)最小的方案即可得出结论.【解答】解:(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,依题意,得:,解得:.答:甲种免洗手消毒液的单价为15元,乙种免洗手消毒液的单价为25元.(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,依题意,得:15a+25b=5000,∴===10.答:这批消毒液可使用10天.(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,依题意,得:300m+500n+20(m+n)=9600,∴m=30﹣n.∵m,n均为正整数,∴和.∵要使分装时总损耗20(m+n)最小,∴,即分装时需300ml的空瓶4瓶,500ml的空瓶16瓶,才能使总损耗最小.。
山东省菏泽市鄄城县2019-2020学年七年级(下)期末数学试卷(含解析)
2019-2020学年山东省菏泽市鄄城县七年级(下)期末数学试卷一、选择题(每题3分,共24分)1.(3分)2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是()A.B.C.D.2.(3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气3.(3分)三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线4.(3分)已知三角形的三边长分别为4,5,x,则x不可能是()A.3B.5C.7D.95.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m36.(3分)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④7.(3分)如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A.B.C.D.8.(3分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)9.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为.10.(3分)若3m=9n=2.则3m+2n=.11.(3分)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)12.(3分)某下岗职工购进一批水果,到集贸市场零售,已知卖出的苹果数量x与售价y 的关系如表所示:数量x(千克)12 3 45售价(元)2+0.14+0.26+0.38+0.410+0.5则y与x的关系式是.13.(3分)计算:20082﹣2009×2007=.14.(3分)如下图,直线a∥b,则∠A=度.三、解答题(共78分)15.(6分)计算:(1)()﹣2﹣23×0.125+20110+|﹣1|.(2)2(a4)3﹣a2a10+(﹣2a7)2÷a2.16.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.17.(6分)已知:如图,点B,F,C,E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:∠B=∠E.18.(8分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?19.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.20.(8分)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.21.(8分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.22.(8分)如图,△ABC中,∠ACB=90°,延长AC到D,使得CD=CB,过点D作DE ⊥AB于点E,交BC于F.求证:AB=DF.23.(10分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?24.(10分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.2019-2020学年山东省菏泽市鄄城县七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意.故选:A.2.(3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气【分析】根据函数的定义解答.【解答】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选:C.3.(3分)三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线【分析】三角形的角平分线与中线重合时才能将三角形分成面积相等的两部分,三角形的中位线将三角形分成面积为1:3,三角形的高只有与中线重合时才能将三角形分成面积相等的两部分,三角形的中线将三角形的一条边平均分成2部分,以这2部分分别为底,分别求新三角形的面积,面积相等.【解答】解:(1)三角形的角平分线把三角形分成两部分,这两部分的面积比分情况而定;(2)三角形的中位线把三角形分成两部分,这两部分的面积经计算得:三角形面积为梯形面积的;(3)三角形的高把三角形分成两部分,这两部分的面积比分情况而定;(4)三角形的中线AD把三角形分成两部分,△ABD的面积为•BD•AE,△ACD面积为•CD•AE;因为AD为中线,所以D为BC中点,所以BD=CD,所以△ABD的面积等于△ACD的面积.∴三角形的中线把三角形分成面积相等的两部分.故选:D.4.(3分)已知三角形的三边长分别为4,5,x,则x不可能是()A.3B.5C.7D.9【分析】已知两边时,第三边的范围是大于两边的差,小于两边的和.这样就可以确定x 的范围,也就可以求出x的不可能取得的值.【解答】解:5﹣4<x<5+4,即1<x<9,则x的不可能的值是9,故选:D.5.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m3【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.6.(3分)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④【分析】根据平行线的判定方法可以一一证明①、②、③、④都能判断a∥b.【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选:D.7.(3分)如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A.B.C.D.【分析】先求出转盘上所有的偶数,再根据概率公式解答即可.【解答】解:∵在1,3,4,5,6,7,8,9中,偶数有4,6,8,∴转动转盘一次,指针指向的数字为偶数所在区域的概率=.故选:B.8.(3分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个【分析】结论①错误.因为图中全等的三角形有3对;结论②正确.由全等三角形的性质可以判断;结论③正确.利用全等三角形的性质可以判断.结论④正确.利用全等三角形和等腰直角三角形的性质可以判断.【解答】解:结论①错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论②正确.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,即△ABC的面积等于四边形CDOE的面积的2倍.结论③正确,理由如下:∵△AOD≌△COE,∴OD=OE;结论④正确,理由如下:∵△AOD≌△COE,∴CE=AD,∵AB=AC,∴CD=EB,∴CD+CE=EB+CE=BC.综上所述,正确的结论有3个.故选:C.二、填空题(每题3分,共18分)9.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.10.(3分)若3m=9n=2.则3m+2n=4.【分析】根据幂的乘方与积的乘方进行解答即可.【解答】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:411.(3分)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第③块去配,其依据是根据定理ASA (可以用字母简写)【分析】显然第③中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.【解答】解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.故答案为:③;ASA.12.(3分)某下岗职工购进一批水果,到集贸市场零售,已知卖出的苹果数量x与售价y 的关系如表所示:数量x(千克)12 3 45售价(元)2+0.14+0.26+0.38+0.410+0.5则y与x的关系式是y=2.1x.【分析】应先得到1千克苹果的售价,总售价=单价×数量,把相关数值代入即可求得相关函数关系式.【解答】解:易得1千克苹果的售价是2.1元,那么x千克的苹果的售价:y=2.1x,故答案为:y=2.1x.13.(3分)计算:20082﹣2009×2007=1.【分析】把2009×2007变形为(2008+1)(2008﹣1),再运用平方差公式进行计算即可.【解答】解:20082﹣2009×2007=20082﹣(2008+1)(2008﹣1)=20082﹣(20082﹣1)=20082﹣20082+1=1.故应填:1.14.(3分)如下图,直线a∥b,则∠A=25度.【分析】本题主要利用平行线的性质以及三角形内角与外角之间的关系解题.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.三、解答题(共78分)15.(6分)计算:(1)()﹣2﹣23×0.125+20110+|﹣1|.(2)2(a4)3﹣a2a10+(﹣2a7)2÷a2.【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、乘方的意义、绝对值的性质进行计算,再算乘法,后算加减即可;(2)先利用积的乘方计算法则、同底数幂的乘法运算法则、积的乘方运算法则进行计算,再算单项式除法,后算加减即可.【解答】解:(1)原式=4﹣8×+1+1=4﹣1+1+1=5;(2)原式=2a12﹣a12+4a14÷a2=2a12﹣a12+4a12=5a12.16.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.【分析】先把整式进行化简,再把x=4代入进行计算即可.【解答】解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.17.(6分)已知:如图,点B,F,C,E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:∠B=∠E.【分析】先证出BC=EF,∠ACB=∠DFE,再证明△ACB≌△DFE,得出对应角相等即可.【解答】证明:∵BF=CE,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ACB和△DFE中,,∴△ACB≌△DFE(SAS),∴∠B=∠E.18.(8分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?【分析】(1)根据抽水时间乘以抽水速度,可得抽水量,根据蓄水量减去抽水量,可得剩余水量;(2)根据自变量与函数值的对应关系,可得自变量相应的函数值;(3)根据自变量与函数值的对应关系,可得函数值相应自变量的值.【解答】解:(1)Q=800﹣50t;(2)当t=6时,Q=800﹣50×6=500(立方米).答:6小时候,池中还剩500立方米;(3)当Q=200时,800﹣50t=200,解得t=12.答:12小时后,池中还有200立方米的水.19.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.【分析】先根据角平分线的性质得出∠2=∠BAC,∠1=∠ACD,再由∠1+∠2=90°即可得出结论.【解答】证明:∵AE平分∠BAC,CE平分∠ACD,∴∠2=∠BAC,∠1=∠ACD.∵∠1+∠2=90°,∴∠BAC+∠ACD=180°,∴CD∥AB.20.(8分)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.【分析】(1)用黄球的个数除以所有球的个数即可求得概率;(2)根据概率公式列出方程求得红球的个数即可.【解答】解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:=,解得:x=5.故后来放入袋中的红球有5个.21.(8分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【分析】(1)求出AE∥GF,求出∠2=∠A=∠1,根据平行线的判定推出即可;(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,求出∠3,根据平行线的性质求出∠C即可.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.22.(8分)如图,△ABC中,∠ACB=90°,延长AC到D,使得CD=CB,过点D作DE ⊥AB于点E,交BC于F.求证:AB=DF.【分析】根据余角的定义得出∠D=∠B,再根据ASA证明△DFC和△BAC全等,最后根据全等三角形的性质证明即可.【解答】证明:∵DE⊥AB,∴∠DEA=90°,∵∠ACB=90°,∴∠DEA=∠ACB,∴∠D=∠B,在△DCF和△ACB中,,∴△DCF≌△ACB(ASA),∴AB=DF.23.(10分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?【分析】(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得到达书店时间,离开书店时间,根据有理数的减法,克的答案;(3)根据函数图象的纵坐标,可得相应的路程,根据有理数的加法,可得答案;(4)根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得速度.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从(8分)到(12分),故小明在书店停留了4分钟.(3)一共行驶的总路程=1200+(1200﹣600)+(1500﹣600)=1200+600+900=2700米;共用了14分钟.(4)由图象可知:0~6分钟时,平均速度==200米/分,6~8分钟时,平均速度==300米/分,12~14分钟时,平均速度==450米/分,所以,12~14分钟时速度最快,不在安全限度内.24.(10分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.【分析】(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.【解答】证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∠ABD=∠ABC﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC(AAS),∴ME=AD=BD.。
郑州市2019-2020学年七年级下期期末考试数学试题卷(含答案)
郑州市2019-2020学年七年级下期期末考试数学试题卷(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A. B. C. D.2.据悉,中科院已经成功攻克了2nm 级芯片的一个关键技术,技术的全称为“垂直纳米 环栅晶体管”,该项技术完全由我国中科院院士自主研发,获得了多项专利,不但为我国研发2nm 芯片打下了一个非常好的基础,还可能使我国成为世界上第一个拥有2nm 芯片的国 家,已知2nm =0.000 000 002m ),0.000 000 002用科学记数法表示为( ) A .2×10-9 B .2×10-8 C .0.2×10 -9 D .0.2×10-83.下列计算正确的是( )A .a 6•a 4=a 24B .(a 3)3=a 6C (ab 4)4=ab 4D .a 10÷a 9=a 4.如图,直线a ∥b ,一块含60角的直角三角板ABC (∠A =60°) 按如图所示放置若∠1=43°,则∠2的度数为( ) A .101° B .103° C .105° D .107°5.下面是一些可以自由转动的转盘,按照转出黄色的可能性由大到小进行排列正确的 是( ).A .②④①③B .①②③④C .③①④②D .④①③②6.下面三个图是三个基本作图的作图痕迹,关于三条弧①、②、③有以下三种说法: ①弧①是以点O 为圆心,以任意长为半径所作的弧; ②弧②以点A 为圆心,以任意长为半径所作的弧; ③弧③以点O 为圆心,以大于12DE 的长为半径所作的弧 其中正确说法的个数为( )A .3个B .2个C .1个D .0个 7.下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .∠A =∠D ,∠B =∠E ,∠C =∠F D .AB =DE ,BC =EF ,△ABC 的周长=△DEF 的周长①②③102030405060708090100支撑物的高度h(cm)4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35小车下滑的时间t(s)下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23sC.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快9.七巧板是我国祖先的一项卓越创造,下面四幅图中有三幅图是小明用如图所示的七巧板拼成的,不是用如图所示的七巧板拼成的是( )A.B C. D.10.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙若图甲和图乙中中阴影部分的面积分别为3和30,则正方形A,B的面积之和为( )A.33B.30C.27D.24二、填空题(每小题3分,共15分)11.( - 3.14)0-(1)-2 = .212.如图△ABC≌△EFD,请写出一组图中平行的线段________.13.一天,小明洗手后没有把水龙头拧紧,如果该水龙头每分钟约滴出100滴水,每滴水约0.04毫升,那么所滴出的水的总量y(毫升)与小明离开的时间x(分钟)之间的关系式可以表示为______.14有一种数字游戏,操作步骤为:第一步任意写一个自然数(以下简称为原数,原数中至少有一个偶数数字),且位数小于10;第二步再写一个新三位数,它的百位数字是原数中偶数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数,以下每一步都以上一步得到的数为原数按照第二步的规则进行重复操作,则重复第二步的操作2020次后得到的数是______.15.如图,∠AOB=45°,点M、N分别在射线OA,OB上,MN=7,△OMN的面积为14,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为______.DCBA12G H F M E D AB C三、解答题(共55分)16.(6分)先化简,再求值:[(x -y )2-(x +2y )(x -2y )]÷(12y );其甲x =2,y =-110. 17.(6分)学习了“简单的轴对称图形”一课后,马老师带领数学兴趣小组的同学来到了 校园一角进行探究学习.校园一角的形状如图(1)所示,其中AB ,BC ,CD 表示围墙.同学们想通过作角平分线在图示的区域中找一点P (如图(2)所示),使得点P 到三面墙的距离都相等.请你用尺规作图的方法在图(2)中作出点P (不写作法,但要保留作图痕迹),并解释这样做的道理图(2)图(1) 图(2)18.(8分)如图,已知点E 在BC 上,BD ⊥AC ,EF ⊥AC ,垂足分别为D 、F ,点M 、G 在 AB 上,GF 交BD 于点H ,∠BMD +∠ABC =180°,∠1=∠2,则有MD ∥GF .下面是小颖 同学的思考过程,请你在括号内填上依据 思考过程:因为BD ⊥AC ,EF ⊥AC ,垂足分别为D 、F (已知), 所以∠BDC =90°,∠EFC =90°( )所以∠BDC =∠EFC (等量代换)所以_______(同位角相等,两直线平行) 所以∠2=∠CBD ( )因为∠1=∠2(已知),所以∠1=∠CBD ( 所以________(内错角相等,两直线平行) 因为∠BMD +∠ABC =180°( ) 所以MD ∥BC ( ) 所以MD ∥GF ( )19.(8分)如图,在△ABC 中,BD ⊥AC 于点D ,CE 平分∠ACB 交AB 于点E ,∠A 65°,∠CBD =36°,求∠BEC 的度数图3图1图2 AB C P C B ADE E D A BC (米)(分钟)家离家距离20.(8分)小明和小颖用一副去掉大、小王的扑克牌做摸牌游戏(扑克牌有四种花色,每 种花色有13张):小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,45,6,2,8,9,10,J ,Q ,K ,A ,且牌面的大小与花色无关).然后两人把摸到的牌都放回重新开始游戏(1)若小明已经摸到的牌面为2,则小明获胜的概率为______,小颖获胜的概率为____. (2)若小明已经摸到的牌面为5,然后小颖摸牌,那么小明和小颖获胜的概率分别是多 少?21.(9分)小明骑自行车从家出发去上学,当他骑了一段路时想起要买某本书,于是又 折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间t (分)与离家 距离S (米)的关系示意图,根据图中提供的信息回答下列问题:(1)小明家到学校的路程是_____米,小明在书店停留了______分钟; ((2)在整个上学的途中_____(哪个时间段)小明骑车速度最快,最快的速度是___米/分 (3)请求出小明从家出发多长时间后,离学校的距离是600米?22.(10分)在学习全等三角形知识时,数学兴趣小组发现这样一个模型,它是由两个共 顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通 过资料查询,他们得知这种模型称为“手拉手模型”兴趣小组进行了如下探究(1)如图1,两个等腰三角形△ABC 和△ADE 中,AB =AC ,AE =AD ,∠BAC = ∠DAE ,连接BD ,CE ,如果把小等腰三角形的腰长看作是小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB 全等的三角形是_______此时线段BD 和CE 的数量关系是_________; (2)如图2,两个等腰直角三角形△ABC 和△ADE 中,AB =AC ,AE =AD ,∠BAC =∠DAE =90°,连接BD ,CE ,两线交于点P ,请判断线段BD 和CE 的数量关系和位置关系,并说明理由; (3)如图3,已知△ABC ,请完成作图:以AB ,AC 为边分别向△ABC 外作等边△ABD 和等边△ACE (等边三角形三条边相等,三个角都等于60°),连接BE ,CD ,两线交于点P , 并直接写出线段BE 和CD 的数量关系及∠PBC +∠PCB 的度数.12GHF M ED AB C郑州市2019—2020学年下期期末考试七年级数学 参考答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.C ;2.A ;3.D ;4.B ;5.C ;6.D ;7.D ;8.D ;9.B ; 10.A. 二、填空题(每小题3分,共15分)11.3-; 12.答案不唯一∥,FE AB ; 13.x y 4=; 14.123; 15. 8.三、解答题(共55分)16.(6分)解:原式=(x 2-2xy+y 2-x 2+4y 2)÷(12y)=(-2xy+5y 2) ÷(12y)=-4x+10y , 当x=2,y=-110时,原式=-4×2+10×(-110)=-9. 17.(6分)解:如图,点P 即为所求;.......................4分因为点P 在∠ABC 的平分线上,所以点P 到AB 的距离 等于点P 到BC 的距离;又因为点P 在∠BCD 的平分线上,所以点P 到BC 的 距离等于点P 到CD 的距离.所以点P 到AB ,BC ,CD 的距离相等. .......................6分 (说明:本题解法不唯一,其它解法对应给分)18.(8分)思考过程:因为BD ∠AC ,EF ∠AC ,垂足分别为D 、F (已知),所以∠BDC =90°,∠EFC =90°(垂直的定义). .........................1分 所以∠BDC =∠EFC (等量代换).所以 BD ∥EF (同位角相等,两直线平行). .........................2分 所以∠2=∠CBD ( 两直线平行,同位角相等 ). .........................3分 因为∠1=∠2(已知), 所以∠1=∠CBD ( 等量代换 ). .........................4分所以BC∥GF ( 内错角相等,两直线平行 ). .........................5分 因为∠BMD +∠ABC=180°(已知), .........................6分所以MD ∠GF ( 同旁内角互补,两直线平行 ). .........................7分 所以DM ∠BC ( 平行于同一条直线的两条直线平行 ). .........................8分150012009006003001412108642(米)(分钟)学校家离家距离时间19.(8分)解:∵BD ⊥AC ,∠CBD =36°,∴∠BCD=90°-∠CBD=90°- 36°= 54°. .......................2分 ∵CE 平分∠ACB ,∴∠ACE=12∠ACB=12×54°=27°. .......................4分 ∵∠A=65°,∠A+∠AEC+∠ACE=180°,∴∠AEC=180°-∠A -∠ACE=180°- 65°- 27°=88°. ......................6分 ∵∠AEC+∠BCE=180°,∴∠BEC=180°-∠AEC=180°-88°=92°. .......................8分 (说明:本题解法不唯一,其它解法对应给分) 20.(8分)解:(1) 0 , 1716 ;.......................4分(2)P (小明获胜)=17451125143==⨯ ,P (小颖获胜)= .171251365149==⨯答:小明获胜的概率是174,小颖获胜的概率为1712. .......................8分 21.(9分)解:⑴1500,4;.....................2分⑵12—14分钟,450; .....................4分 ⑶1200÷6=200(米),(1500-600)÷200=92(分钟) 1500-600=900(米),1200-900=300(米), (1200-600)÷(8-6)=300(米/分) 300÷300=1(分钟),6+1=7(分钟). (1500-600)÷(14-12)=450(米/分), (1500-600-600)÷450=23(分钟), 12+23=1223(分钟)答:小明从家出发分钟或或3212729后,离学校的距离是600米. ............9分 (说明:本题解法不唯一,其它解法对应给分)22.(10分)解:(1)∠AEC ,BD =CE ; ...................2分 (2)BD=CE 且BD ∠CE ;....................4分 理由如下:因为∠DAE =∠BAC =90°,如图2. 所以∠DAE +∠BAE =∠BAC +∠BAE . 所以∠DAB =∠EAC .DEP图3ABC在∠DAB 和∠EAC 中,⎪⎩⎪⎨⎧=∠=∠=.,,AC AB EAC DAB AE AD所以∠DAB ≌∠EAC (SAS ). .......................6分 所以BD =CE ,∠DBA =∠ECA . 因为∠ECA+∠ECB+∠ABC=90°,所以∠DBA +∠ECB+∠ABC=90°. 即∠DBC+∠ECB=90°.所以∠BPC=180°-(∠DBC+∠ECB )=90°. 所以BD ⊥CE .综上所述:BD =CE 且BD ⊥CE . .......................8分(3)如图3所示,BE =CD ,∠PBC+∠PCB =60°. ...................10分。
2019—2020学年度第二学期期末考试七年级数学试题及答案
七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。
福建省宁德市2019-2020学年七年级上学期期末数学试题(含答案)
初一数学试题 第 1 页 共 8 页宁德市2019-2020学年度第一学期期末七年级质量检测数 学 试 题(满分:100分;考试时间:90分钟)友情提示:所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效. 一、选择题(本大题共10小题,每小题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列四个数中比2-小的数是A .3-B .1-C .0D .12.单项式313a b -的系数是A .1-B .13-C .13D .43.为庆祝新中国成立70周年,天安门广场举行盛大国庆阅兵仪式,参加这次阅兵的有59个方队和联合军乐团,总规模约15 000人.将15 000用科学记数法表示为 A .0.15 ×105 B .1.5×104 C .15×103 D .1.5×1054.要清楚地反映近几日气温的变化情况,最适合制作的是A .折线统计图B .扇形统计图C .频数直方图D .频数分布表错误!未找到引用源。
5.如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是 A .长方体 B .球 C .圆柱D .圆锥6.下列运算正确的是A .33a b ab +=B .22232a a a -=C .3(1)31a a -=-D .(1)1a a --=--7.下列调查中,适宜采用抽样调查的是A .对飞机零部件质量的调查B .对全班45位同学身高的调查C .对动车站客流量的调查D .对全运会运动员使用兴奋剂的调查 8.关于53的意义,描述正确的是A .表示5个3相加B .表示3个5相加C .表示5个3相乘D .表示3个5相乘9.对有理数运算的描述,下列说法错误的是A .同号两数相加,取相同的符号,并把绝对值相加B .减去一个数,等于加上这个数的相反数C .两数相乘,同号得正,异号得负,并把绝对值相乘第5题图初一数学试题 第 2 页 共 8 页D .除以一个数等于乘这个数的绝对值10.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD 是正方形; 乙:如图2,盒子底面的四边形ABCD 是正方形;丙:如图3,盒子底面的四边形ABCD 是长方形,AB =2AD .将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是 A .甲>乙>丙 B .甲>丙>乙 C .丙>甲>乙D .丙>乙>甲二、填空题(本大题共6小题,每小题3分,满分18分) 11.12的相反数是 . 12.由321x x =-得321x x -=-,在此变形中,方程两边同时 .13.某班学生参加学校组织的“垃圾分类”知识竞赛,将学生成绩制成如图所示的频数分布直方图(每组数据包括左端值不包括右端值),其中成绩为“优良”(80分及80分以上)的学生有 人.14.比较两个角的大小关系:小明用度量法测得∠AOB =45°,∠COD =50°;小丽用叠合法比较,将两个角的顶点重合,边OB 与OD 重合,边OA 和OC 置于重合边的同侧,则边OA .(填序号:①“在∠COD 的内部”;②“在∠COD 的外部”;③“与边OC 重合” ) 15.如图,是一个数值转换机,若输入的数为5,则输出的数是 .16.若线段A 1A 2=1,在线段A 1A 2的延长线上取一点A 3,使A 2是A 1A 3的中点;在线段A 1A 3的延长线上取一点A 4,使A 3是A 1A 4的中点;在线段A 1A 4的延长线上取一点A 5,使A 4是A 1A 5的中点……,按这样操作下去,线段A 1A 2020= .图2 图3第13题图第15题图图1D C12初一数学试题 第 3 页 共 8 页三、解答题(本大题共7题,满分52分) 17.(本题满分12分)计算:(1)2113(2)4--÷--; (2)5218263-⨯-+1(); (3)22313()222a b ab a b ab ---.18.(本题满分5分)解方程:5122x x -+=.19.(本题满分5分)如图,∠COD =45°,∠BOD =13∠COD ,OC 是∠AOB 的平分线,求∠AOD 的度数.20.(本题满分6分)春节前,由35名同学组成的志愿者小分队,共制作了180个纸灯笼送给敬老院.平均每名男生制作4个,每名女生制作6个.求男生、女生各多少名.21.(本题满分6分)如图,用10个大小相同的小立方块搭成一个组合体. (1)请在指定位置画出该组合体从左面、上面看到的形状图; (2)在不改变该组合体中小立方块个数的前提下,从中移动一个小立方块,使所得新组合体与原组合体相比,从左面、上面看到的形状图保持不变,但从正面看到的形状图改变了,请画出新组合体从正面看到的所有可能的形状图.(所给的方格图不一定全用,不够可添)从左面看从上面看(原组合体)从正面看 (新组合体)O AB CD初一数学试题 第 4 页 共 8 页 22.(本题满分9分)在精准扶贫政策的扶持下,贫困户老李今年试种的百香果获得大丰收,共收获2 000千克.扶贫小组帮助他将百香果按照品质从高到低分成A ,B ,C ,D ,E 五个等级,并根据数据绘制了如下的扇形统计图和频数分布表:请根据图表信息解答下列问题:(1)m =__________;n =__________;a =__________; (2)求扇形统计图中“E ”所对应的圆心角的度数;(3)为了帮助贫困户老李销售百香果,扶贫小组联系了甲、乙两位经销商.他们分别给出如下收购方案:甲:全部按5元/千克收购;乙:按等级收购:C 等级单价为6.5元/千克,每提高一个等级单价提高1元/千克,剩下的D ,E 两个等级单价均为2元/千克.请你通过计算,判断哪个经销商的方案使老李盈利更多.23.(本题满分9分)如图,在数轴上点A 所表示的数是5-,点B 在点A 的右侧,AB =6;点C 在AB 之间, AC =2BC .(1)在数轴上描出点B ;(2)求点C 所表示的数,并在数轴上描出点C ;(3)已知在数轴上存在点P ,使P A +PC =PB ,求点P 所表示的数.A初一数学试题 第 5 页 共 8 页宁德市2019-2020学年度第一学期期末七年级质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题3分,满分30分)1.A 2.B 3.B 4.A 5.D 6.B 7.C 8.C 9.D 10.C 二、填空题:(本大题有6小题,每小题3分,满分18分)11.12-; 12.减去2x (加上(2x -)或2x -); 13.26; 14.①; 15.23; 16.20182.三、解答题(本大题共7题,满分52分) 17.(本题满分12分)解:(1)原式=1342--⨯+ ·································································· 2分=1122--+ ······································································ 3分 =11-; ······································································· 4分(2)原式=152181818263⨯-⨯+⨯ ······················································· 2分=91512-+ ······································································· 3分 =6; ················································································ 4分或原式=35418()666⨯-+ ································································ 2分=2186⨯ ············································································ 3分=6; ················································································ 4分 (3)原式=2231332222a b ab a b ab --+ ···················································· 2分=ab . ·············································································· 4分18.(本题满分5分)解: 4+512x x -=. ·············································································· 2分5241x x -=-+. ·········································································· 3分 33x =-. ············································································· 4分 1x =-. ············································································· 5分 19.(本题满分5分)解:因为∠COD =45°,∠BOD =错误!未找到引用源。
北京市门头沟区2019-2020学年七年级数学下学期期末考试试卷【含答案】
北京市门头沟区2019-2020学年七年级数学下学期期末考试试卷一.选择题(共8小题)1.把不等式x≤1的解集表示在数轴上,正确的是( )A.B.C.D.2.a2×a3的结果是( )A.a6B.a5C.2a6D.2a53.空气的密度是0.00129克每立方厘米,将0.00129用科学记数法表示应为( )A.1.29×10﹣3B.1.29×10﹣5C.1.29×10﹣4D.1.29×10﹣24.下列事件中,必然事件是( )A.任意掷一枚均匀的硬币,正面朝上B.通常情况下,抛出的篮球会下落C.从一副扑克牌中,随意抽出一张是大王D.三角形内角和为360°5.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM等于( )A.38°B.104°C.140°D.142°6.如果a>b,那么下列不等式变形正确的是( )A.a+5<b+5B.<C.﹣4a>﹣4b D.a﹣2>b﹣27.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A.13,13B.14,10C.14,13D.13,148.近年来,某市旅游事业稳步发展,下面是根据该市旅游网提供的数据制成的2016年~2019年旅游总人数和旅游总收入同比增长率统计图:下面有三个推断:①从2016年到2019年,年旅游总人数增长最多的是2018年,比上一年增长了0.3亿人次;②从2016年到2019年,年旅游总收入最高的是2018年;③如果2016年旅游总收入为2442.1亿元,那么2015年旅游总收入约为2220亿元.其中所有合理的推断的序号是( )A.①②B.②③C.①③D.①②③二.填空题(共8小题)9.计算:(π﹣5)0= .10.如果把方程3x+y=2写成用含x的代数式表示y的形式,那么y= .11.写出方程x﹣y=1的一个整数解为 .12.如图中的四边形均为长方形,根据图形的面积关系,写出一个正确的等式: .13.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为 .14.关于x的不等式ax>b的解集是x<.写出一组满足条件的a,b的值:a= ,b= .15.如图,点O为直线AB上一点,OC⊥OD于O,如果∠1=35°,那么∠2= °.16.学完一元一次不等式解法后,老师布置了如下练习:解不等式≥7﹣x,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步去分母,得15﹣3x≥2(7﹣x),第二步去括号,得15﹣3x≥14﹣2x,第三步移项,得﹣3x+2x≥14﹣15,第四步合并同类项,得﹣x≥﹣1,第五步系数化为1,得x≥1.第六步把它的解集在数轴上表示为:老师看后说:“小明的解题过程有错误!”问:请指出小明从第几步开始出现了错误,并说明判断依据.答: .三.解答题(共11小题)17.把下列各式分解因式:(1)6x4﹣12x2z.(2)2x2﹣18.18.计算:(1)(a+b)(a﹣b)﹣a2.(2)(a+2)(a﹣3)+(a+2)2.19.如图,点P是∠ABC内一点.(1)过点P画BC的垂线,垂足为点D;(2)过点P画BC的平行线交AB于点E;(3)如果∠B=40°,那么∠PEB= °.20.解方程组.21.先化简,再求值:[(2x﹣y)2+x(y﹣4x)+8y2]÷3y,其中x=3,y=﹣1.22.解不等式组,并写出它的所有正整数解.23.完成下面的证明:(1)已知:如图1,AB∥CD.求证:∠1+∠3=180°.证明:∵AB∥CD(已知),∴∠1+∠2=180°( ),又∵∠2=∠3( ),∴∠1+∠3=180°( ),(2)已知:如图2,AM∥EF,∠1=∠B.求证:∠2=∠C.证明:∵∠1=∠B(已知),∴EF∥BC( ),∵AM∥EF(已知),∴AM∥BC( ),∴∠2=∠C( ).24.为响应国家“低碳环保,绿色出行”的号召,区政府基于“服务民生”理念,运用信息化管理与服务手段,为居住区和旅游景点等人流量集中的地区提供公共自行车服务的智能交通系统.小明针对某校七年级学生(共16个班,480名学生)每月使用公共自行车的次数进行了调查.(1)小明采取的下列调查方式中,比较合理的是 ;理由是: ;A.对七年级(1)班的全体同学进行问卷调查;B.对七年级各班的班长进行问卷调查;C.对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:①在扇形统计图中,“10次以下”所在的扇形的圆心角等于 度;②补全条形统计图;③根据调查结果,估计七年级每月使用公共自行车次数是“16至20次”的同学有 人.25.已知:如图,在三角形ABC中,点E、G分别在AB和AC上,EF⊥BC于点F,AD⊥BC于点D,连接DG.如果∠1=∠2,请猜想AB与DG的位置关系,并证明你的猜想.26.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m个笔袋需要y1元,买n 筒彩色铅笔需要y2元.请用含m,n的代数式分别表示y1和y2;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.27.如果x是一个有理数,我们定义{x}表示不小于x的最小整数.如{3.2}=4,{﹣2.6}=﹣2,{5}=5,{﹣6}=﹣6.由定义可知,任意一个有理数都能写成x={x}﹣b的形式(0≤b<l).(1)直接写出{x}与x,x+1的大小关系:提示1:用“不完全归纳法”推导{x}与x,x+1的大小关系;提示2:用“代数推理”的方法推导{x}与x,x+1的大小关系.(2)根据(1)中的结论解决下列问题:①直接写出满足{3m+7}=4的m取值范围;②直接写出方程{3.5n﹣2}=2n+1的解.2019-2020学年北京市门头沟区七年级(下)期末数学试卷参考答案与试题解析一.选择题(共8小题)1.把不等式x≤1的解集表示在数轴上,正确的是( )A.B.C.D.【分析】根据比1小的数在1的左边,x≤1包括界点1,据此求解即可.【解答】解:把不等式x≤1的解集表示在数轴上,正确的是.故选:A.2.a2×a3的结果是( )A.a6B.a5C.2a6D.2a5【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:a2×a3=a5.故选:B.3.空气的密度是0.00129克每立方厘米,将0.00129用科学记数法表示应为( )A.1.29×10﹣3B.1.29×10﹣5C.1.29×10﹣4D.1.29×10﹣2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00129用科学记数法表示应为1.29×10﹣3.故选:A.4.下列事件中,必然事件是( )A.任意掷一枚均匀的硬币,正面朝上B.通常情况下,抛出的篮球会下落C.从一副扑克牌中,随意抽出一张是大王D.三角形内角和为360°【分析】根据必然事件的意义,逐项进行判断即可.【解答】解:任意掷一枚均匀的硬币,可能是正面朝是上,也可能反面向上,因此选项A是随机事件;由于地球的引力,抛出的篮球会下降,因此是必然事件;从一副扑克牌随机取出一张,不一定是大王;三角形的内角和为180°,因此是不可能事件,故选:B.5.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM等于( )A.38°B.104°C.140°D.142°【分析】根据邻补角互补求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠AOD=104°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:D.6.如果a>b,那么下列不等式变形正确的是( )A.a+5<b+5B.<C.﹣4a>﹣4b D.a﹣2>b﹣2【分析】根据不等式的性质对各选项进行判断.【解答】解:∵a>b,∴a+5>b+5,a>b,﹣4a<﹣4b,a﹣2>b﹣2.故选:D.7.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A.13,13B.14,10C.14,13D.13,14【分析】根据众数、中位数的定义进行选择即可.【解答】解:这7个数据分别为12,15,14,10,13,14,11,众数和中位数分别是14,13,故选:C.8.近年来,某市旅游事业稳步发展,下面是根据该市旅游网提供的数据制成的2016年~2019年旅游总人数和旅游总收入同比增长率统计图:下面有三个推断:①从2016年到2019年,年旅游总人数增长最多的是2018年,比上一年增长了0.3亿人次;②从2016年到2019年,年旅游总收入最高的是2018年;③如果2016年旅游总收入为2442.1亿元,那么2015年旅游总收入约为2220亿元.其中所有合理的推断的序号是( )A.①②B.②③C.①③D.①②③【分析】①由条形图,分别计算从2016年到2019年年旅游总人数增长量,再比较即可;②由折线图可得:从2016年到2019年,年旅游总收入最高的是2019年;③由2016年旅游总收入为2442.1亿元,增长率为10%,即可求得2015年旅游总收入.【解答】解:①∵1.84﹣1.70=0.14,2.14﹣1.84=0.30,2.31﹣2.14=0.17,而0.14<0.17<0.30,∴从2016年到2019年,年旅游总人数增长最多的是2018年,比上一年增长了0.3亿人次,故本选项推断合理;②由折线图可知,从2016年到2019年,旅游总收入同比增长率连年增加,所以年旅游总收入最高的是2019年,故本选项推断不合理;③∵2016年旅游总收入为2442.1亿元,增长率为10%,∴2442.1÷(1+10%)≈2220(亿元),∴2015年旅游总收入约为2220亿元,故本选项推断合理.故选:C.二.填空题(共8小题)9.计算:(π﹣5)0= 1 .【分析】根据零指数幂:a0=1(a≠0)求解可得.【解答】解:(π﹣5)0=1,故答案为:1.10.如果把方程3x+y=2写成用含x的代数式表示y的形式,那么y= 2﹣3x .【分析】把x看做已知数求出y即可.【解答】解:方程3x+y=2,解得:y=2﹣3x,故答案为:2﹣3x11.写出方程x﹣y=1的一个整数解为 等(答案不唯一) .【分析】把y看做已知数表示出x,即可确定出整数解.【解答】解:方程整理得:x=1+y,当y=1时,x=2,则方程的整数解为等(答案不唯一),故答案为:等(答案不唯一).12.如图中的四边形均为长方形,根据图形的面积关系,写出一个正确的等式: (a+b)(m+n)=am+an+bm+bn .【分析】大长方形的长为(a+b),宽为(m+n),因此面积为(a+b)(m+n),图中四个小长方形的面积和为am+an+bm+bn,因此有(a+b)(m+n)=am+an+bm+bn.【解答】解:由图形面积的不同计算方法可得,(a+b)(m+n)=am+an+bm+bn;故答案为:(a+b)(m+n)=am+an+bm+bn.13.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为 .【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.14.关于x的不等式ax>b的解集是x<.写出一组满足条件的a,b的值:a= ﹣1 ,b= 1 .【分析】根据不等式的基本性质1即可得.【解答】解:由不等式ax>b的解集是x<知a<0,∴满足条件的a、b的值可以是a=﹣1,b=1,故答案为:﹣1、115.如图,点O为直线AB上一点,OC⊥OD于O,如果∠1=35°,那么∠2= 55 °.【分析】先根据垂直的定义可得∠COD=90°,再根据平角的定义即可求解.【解答】解:∵OC⊥OD于O,∴∠COD=90°,又∠1=35°,∴∠2=180°﹣∠1﹣∠COD=180°﹣35°﹣90°=55°.故答案为:55.16.学完一元一次不等式解法后,老师布置了如下练习:解不等式≥7﹣x,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步去分母,得15﹣3x≥2(7﹣x),第二步去括号,得15﹣3x≥14﹣2x,第三步移项,得﹣3x+2x≥14﹣15,第四步合并同类项,得﹣x≥﹣1,第五步系数化为1,得x≥1.第六步把它的解集在数轴上表示为:老师看后说:“小明的解题过程有错误!”问:请指出小明从第几步开始出现了错误,并说明判断依据.答: 小明从第三步出现错误,依据是不等式的基本性质1 .【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:第一步去分母,得15﹣3x≥2(7﹣x),第二步去括号,得15﹣3x≥14﹣2x,第三步移项,得﹣3x﹣2x≥14﹣15,第四步合并同类项,得﹣5x≥﹣1,第五步系数化为1,得x≤.第六步把它的解集在数轴上表示为:故答案为:小明从第三步出现错误,依据是不等式的基本性质1.三.解答题(共11小题)17.把下列各式分解因式:(1)6x4﹣12x2z.(2)2x2﹣18.【分析】(1)直接提取公因式即可求解;(2)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:(1)6x4﹣12x2z=6x2(x2﹣2z);(2)2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).18.计算:(1)(a+b)(a﹣b)﹣a2.(2)(a+2)(a﹣3)+(a+2)2.【分析】(1)先按平方差公式计算,再合并同类项;(2)先根据多项式乘多项式法则,完全平方公式进行计算,再合并同类项.【解答】解:(1)原式=a2﹣b2﹣a2=﹣b2;(2)原式=a2﹣3a+2a﹣6+a2+4a+4=2a2+3a﹣2.19.如图,点P是∠ABC内一点.(1)过点P画BC的垂线,垂足为点D;(2)过点P画BC的平行线交AB于点E;(3)如果∠B=40°,那么∠PEB= 140 °.【分析】(1)根据垂线的定义即可过点P画BC的垂线,垂足为点D;(2)根据平行线的定义即可过点P画BC的平行线交AB于点E;(3)根据平行线的性质和∠B=40°,即可求出∠PEB的度数.【解答】解:(1)如图,直线PD即为所求;(2)如图,直线PE即为所求;(3)因为PE∥BC,所以∠PEB+∠B=180°(两条直线平行,同旁内角互补),所以∠PEB=180°﹣40°=140°.故答案为:140.20.解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2﹣②×3得:﹣5x=﹣15,即x=3,将x=3代入①得:y=1,则方程组的解为.21.先化简,再求值:[(2x﹣y)2+x(y﹣4x)+8y2]÷3y,其中x=3,y=﹣1.【分析】先根据完全平方公式,单项式乘以多项式法则计算,再合并同类项,再计算多项式除以单项式,最后代值计算.【解答】解:原式=(4x2﹣4xy+y2+xy﹣4x2+8y2)÷3y=(﹣3xy+9y2)÷3y=﹣x+3y,当x=3,y=﹣1时,原式=﹣3﹣3=﹣6.22.解不等式组,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3,23.完成下面的证明:(1)已知:如图1,AB∥CD.求证:∠1+∠3=180°.证明:∵AB∥CD(已知),∴∠1+∠2=180°( 两直线平行,同旁内角互补 ),又∵∠2=∠3( 对顶角相等 ),∴∠1+∠3=180°( 等量代换 ),(2)已知:如图2,AM∥EF,∠1=∠B.求证:∠2=∠C.证明:∵∠1=∠B(已知),∴EF∥BC( 同位角相等,两直线平行 ),∵AM∥EF(已知),∴AM∥BC( 如果两条直线都和第三条直线平行,那么这两条直线也互相平行 ),∴∠2=∠C( 两直线平行,内错角相等 ).【分析】(1)先证明∠1+∠2=180°,再根据∠2=∠3证明∠1+∠3=180°即可;(2)先证明EF∥BC,再根据AM∥EF证明AM∥BC,最后根据平行线的性质可得∠2=∠C.【解答】(1)证明:∵AB∥CD(已知),∴∠1+∠2=180°(两直线平行,同旁内角互补),又∵∠2=∠3(对顶角相等),∴∠1+∠3=180°(等量代换),(2)证明:∵∠1=∠B(已知),∴EF∥BC(同位角相等,两直线平行),∵AM∥EF(已知),∴AM∥BC(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠2=∠C(两直线平行,内错角相等).故答案为:两直线平行,同旁内角互补;对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,内错角相等.24.为响应国家“低碳环保,绿色出行”的号召,区政府基于“服务民生”理念,运用信息化管理与服务手段,为居住区和旅游景点等人流量集中的地区提供公共自行车服务的智能交通系统.小明针对某校七年级学生(共16个班,480名学生)每月使用公共自行车的次数进行了调查.(1)小明采取的下列调查方式中,比较合理的是 C ;理由是: 这样选择样本具有代表性、普遍性和可操作性 ;A.对七年级(1)班的全体同学进行问卷调查;B.对七年级各班的班长进行问卷调查;C.对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:①在扇形统计图中,“10次以下”所在的扇形的圆心角等于 36 度;②补全条形统计图;③根据调查结果,估计七年级每月使用公共自行车次数是“16至20次”的同学有 96 人.【分析】(1)根据样本选择的代表性、普遍性、可操作性得出答案;(2)①求出调查人数,得出“10次以下”所占的百分比,即可求出相应的圆心角的度数;②求出“10﹣15次”的人数,即可补全条形统计图;③样本估计总体,样本中“16至20次”的所占的百分比为,即可估计总体480人中“16至20次”的人数.【解答】解:(1)故答案为:C,这样选择样本具有代表性、普遍性和可操作性;(2)①80÷40%=200(人),360°×=36°,故答案为:36°;②200×30%=60(人),补全条形统计图如图所示:③480×=96(人),故答案为:96.25.已知:如图,在三角形ABC中,点E、G分别在AB和AC上,EF⊥BC于点F,AD⊥BC于点D,连接DG.如果∠1=∠2,请猜想AB与DG的位置关系,并证明你的猜想.【分析】根据平行线的判定和性质定理即可得到结论.【解答】解:AB∥DG,理由:∵EF⊥BC,AD⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.26.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m个笔袋需要y1元,买n 筒彩色铅笔需要y2元.请用含m,n的代数式分别表示y1和y2;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.【分析】(1)设每个笔袋的原价为x元,每筒彩色铅笔的原价为y元,根据“1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用总价=单价×数量,即可用含m,n的代数式分别表示y1和y2;(3)代入m=95,n=95求出y1,y2的值,比较后即可得出结论.【解答】解:(1)设每个笔袋的原价为x元,每筒彩色铅笔的原价为y元,依题意,得:,解得:.答:每个笔袋的原价为14元,每筒彩色铅笔的原价为15元.(2)依题意,得:y1=0.9×14m=12.6m;当0<n≤10时,y2=15n;当n≥11时,y2=15×10+0.8×15(n﹣10)=12n+30.∴y2=.(3)当m=95时,y1=12.6m=12.6×95=1197;当n=95时,y2=12n+30=12×95+30=1170.∵1197>1170,∴购买彩色铅笔省钱.27.如果x是一个有理数,我们定义{x}表示不小于x的最小整数.如{3.2}=4,{﹣2.6}=﹣2,{5}=5,{﹣6}=﹣6.由定义可知,任意一个有理数都能写成x={x}﹣b的形式(0≤b<l).(1)直接写出{x}与x,x+1的大小关系:提示1:用“不完全归纳法”推导{x}与x,x+1的大小关系;提示2:用“代数推理”的方法推导{x}与x,x+1的大小关系.(2)根据(1)中的结论解决下列问题:①直接写出满足{3m+7}=4的m取值范围;②直接写出方程{3.5n﹣2}=2n+1的解.【分析】(1)利用x={x}﹣b,其中0≤b<1及定义“{x}表示不小于x的最小整数”可得解;(2)①由(1)中{x}与x,x+1的大小关系,得不等式3m+7≤{3m+7}<(3m+7)+1,求解即可;②由(1)中{x}与x,x+1的大小关系,得不等式3.5n﹣2≤{3.5n﹣2}<(3.5n﹣2)+1,求解该不等式,并结合2n+1为整数,可求得n的取值范围.【解答】解:(1)∵{x}表示不小于x的最小整数,且x={x}﹣b,其中0≤b<1,∴x≤{x}<x+1;(2)①∵{3m+7}=4∴3m+7≤{3m+7}<(3m+7)+1∴3m+7≤4<(3m+7)+1解得:﹣<m≤﹣1∴满足{3m+7}=4的m的取值范围为﹣<m≤﹣1.②{3.5n﹣2}=2n+1依题意得:3.5n﹣2≤{3.5n﹣2}<(3.5n﹣2)+1,且2n+1为整数∴3.5n﹣2≤2n+1<(3.5n﹣2)+1,解得:<n≤2∴<2n+1≤5∴整数2n+1为4或5.∴n=或n=2.。
2019-2020学年广东省汕头市龙湖区七年级(上)期末数学试卷解析版
2019-2020学年广东省汕头市龙湖区七年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.53.(3分)据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1084.(3分)下列各式的计算,正确的是()A.3a+2b=5ab B.5y2﹣3y2=2C.4m2n﹣2mn2=2mn D.﹣12x+7x=﹣5x5.(3分)如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B6.(3分)下列各式运用等式的性质变形,错误的是()A.若﹣a=﹣b,则a=bB.若=,则a=bC.若ac=bc,则a=bD.若(m2+1)a=(m2+1)b,则a=b7.(3分)如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b﹣a<0D.8.(3分)把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°9.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元10.(3分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2019个图中共有正方形的个数为()A.2019B.2021C.6049D.6055二、填空题(本大题7小题,每小题4分,共28分,将答案填在答题纸上)11.(4分)在有理数﹣2、﹣1、0、1 中,最小的数是.12.(4分)单项式﹣的系数是,次数分别是.13.(4分)已知已知实数x,y满足|x﹣3|+(y+4)2=0,则代数式(x+y)2019的值为.14.(4分)如图:若CD=4cm,BD=7cm,B是AC的中点,则AC的长为.15.(4分)已知x+2y﹣5=0,则代数式2x+4y﹣7的值是.16.(4分)某车间有22名工人,每人每天可以生产600个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应如何安排生产螺钉和螺母的工人各多少名?设该车间每天有x人生产螺钉,则根据题意列出的方程为.17.(4分)在求1+3+32+33+34+35+36+37+38的值时,李敏发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①然后在①式的两边都乘3,得3S=3+32+33+34+35+36+37+38+39②②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,所以S=请爱动脑筋的你求出1+5+52+53+54+…+52019的值.正确答案是.三、解答题:本大题3小题,每小题6分,共18分.解答应写出文字说明、证明过程或演算步骤.18.(6分)计算:(﹣2)3×(﹣)+30÷(﹣5)﹣|﹣3|19.(6分)化简:5(3a2b﹣ab2)﹣(ab2+3a2b)20.(6分)解方程:2(3y﹣1)﹣3(2﹣4y)=10四、解答题:本大题3小题,每小题8分,共24分.解答应写出文字说明、证明过程或演算步骤.21.(8分)老师在黑板上出了一道解方程的题,小明马上举起手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6②8x+3x=1﹣6+4③11x=﹣1④x=⑤老师说;小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填编号);请您认真地做出正确答案.22.(8分)如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.23.(8分)如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.五、解答题:本大题2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤. 24.(10分)某校计划购买20张书柜和一批书架,现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元;A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品8折;设该校购买x(x>20)只书架.(1)若该校到同一家超市选购所有商品,则到A超市要准备元货款,到B超市要准备元货款;(用含x的式子表示)(2)若规定只能到其中一个超市购买所有商品,当购买多少只书架时,无论到哪家超市所付货款都一样?(3)若该校想购买20张书柜和100只书架,且可到两家超市自由选购,你认为至少准备多少货款,并说明理由.25.(10分)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?2019-2020学年广东省汕头市龙湖区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:﹣2019的相反数是:2019.故选:B.2.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.3.【解答】解:14420000=1.442×107.故选:A.4.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.5y2﹣3y2=2y2,所以不能合并,故本选项不合题意;C.4m2n与﹣2mn2不是同类项,所以不能合并,故本选项不合题意;D.﹣12x+7x=﹣5x,正确,故本选项符合题意.故选:D.5.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→C→F→B.故选:B.6.【解答】解:A、两边都乘以﹣1,结果不变,故A正确;B、两边都乘以c,结果不变,故B正确;C、c等于零时,除以c无意义,故C错误;D、两边都除以(m2+1),结果不变,故D正确;故选:C.7.【解答】解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.8.【解答】解:∠ABC=30°+90°=120°.故选:D.9.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.10.【解答】解:图①中的正方形剪开得到图②,图②中共有3×1+1=4个正方形;将图②中一个正方形剪开得到图③,图③中共有3×2+1=7个正方形;将图③中一个正方形剪开得到图④,图④中共有3×3+1=10个正方形……发现规律:第n个图中共有正方形的个数为:3(n﹣1)+1=3n﹣2则第2019个图中共有正方形的个数为3×2019﹣2=6055.故选:D.二、填空题(本大题7小题,每小题4分,共28分,将答案填在答题纸上)11.【解答】解:∵﹣2<﹣1<0<1,∴最小的是﹣2.故答案为﹣2.12.【解答】解:单项式﹣的系数是﹣,次数是3,故答案为:﹣;3.13.【解答】解:∵|x﹣3|+(y+4)2=0,∴x﹣3=0,y+4=0,解得:x=3,y=﹣4,故(x+y)2019=(3﹣4)2019=﹣1.故答案为:﹣1.14.【解答】解:∵CD=4cm,BD=7cm,∴BC=BD﹣CD=7﹣4=3(cm),∵B是AC的中点,∴AC=2BC=6cm.故答案为:6cm.15.【解答】解:∵x+2y﹣5=0,∴x+2y=5,∴2x+4y﹣7=2(x+2y)﹣7=10﹣7=3.故答案为:3.16.【解答】解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得1000(22﹣x)=2×600x,故答案是:1000(22﹣x)=2×600x.17.【解答】解:设S=1+5+52+53+54+ (52019)则5S=5+52+53+54+ (52020)5S﹣S=52020﹣1,4S=52020﹣1,则S=,即1+5+52+53+54+…+52019的值是,故答案为:.三、解答题:本大题3小题,每小题6分,共18分.解答应写出文字说明、证明过程或演算步骤.18.【解答】解:原式=﹣8×(﹣)﹣6﹣3=6﹣6﹣3=﹣3.19.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2.20.【解答】解:去括号得:6y﹣2﹣6+12y=10,移项合并得:18y=18,解得:y=1.四、解答题:本大题3小题,每小题8分,共24分.解答应写出文字说明、证明过程或演算步骤.21.【解答】解:他错在第①步(填编号),正确答案为:4(2x﹣1)=12﹣3(x+2)①8x﹣4=12﹣3x﹣6②8x+3x=12﹣6+4③11x=10④x=⑤,故答案为:①22.【解答】解:(1)由长方体纸盒的平面展开图知,a与﹣1、b与2、c与3是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以a=1,b=﹣2,c=﹣3.故答案为:1,﹣2,﹣3.(2)5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc=5a2b﹣(2a2b﹣6abc+3a2b)+4abc=5a2b﹣2a2b+6abc﹣3a2b+4abc=10abc.当a=1,b=﹣2,c=﹣3时,原式=10×1×(﹣2)×(﹣3)=10×6=60.23.【解答】解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°;(2)∠DOC=×∠BOC=×70°=35°∠AOE=×∠AOC=×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.五、解答题:本大题2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤. 24.【解答】解:(1)设买x张书架,根据题意得A超市所花钱数为:20×210+70(x﹣20)=70x+2800,B超市所花钱数为:0.8(20×210+70x)=56x+3360.(2)由题意,得70x+2800=56x+3360,解得:x=40.答:购买40只书架时,无论到哪家超市所付货款都一样.(3)因为买一个书柜赠一个书架相当于打7.5折,B超市的优惠政策为所有商品8折,所以应该到A超市购买20个书柜和20个书架,到B超市购买80个书架.20×210+70×80×0.8=8680(元)答:至少准备8680元贷款.25.【解答】解:(1)OB=3OA=30.故B对应的数是30;(2)设经过x秒,点M、点N分别到原点O的距离相等①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等;(3)设经过y秒,恰好使AM=2BN.①点N在点B左侧,则3y=2(30﹣2y),解得y=,3×﹣10=;②点N在点B右侧,则3y=2(2y﹣30),解得y=60,3×60﹣10=170;即点M运动到或170位置时,恰好使AM=2BN.故答案为:30.。
人教版七年级下册期末数学试卷(含解析)
2019-2020学年辽宁省营口市七年级(下)期末数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.沙燕风筝是北京传统风筝中最具代表性的,不仅性能良好,还有祈福的寓意.图是一种北京沙燕风筝的示意图,在下面的四个图中,能由图经过平移得到的是()A.B.C.D.2.的平方根是()A.3B.﹣3C.±3D.±93.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)4.若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3B.3﹣a<3﹣b C.﹣3a>﹣3b D.3a<3b5.下列调查中,不适合用全面调查方式的是()A.嫦娥四号月球探测器发射前对重要零部件的检查B.对新冠肺炎确诊患者同机乘客进行医学检查C.日光灯管厂要检测一批灯管的使用寿命D.了解某班同学的身高情况6.已知方程组的解满足x=y,则k的值为()A.1B.2C.3D.47.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为()A.20°B.125°C.20°或125°D.35°或1108.若关于x的不等式组无解,则m的取值范围是()A.m≤9B.m≥9C.m≥5D.m≤﹣59.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x人,小学在校生y人,由题意可列方程组()A.B.C.D.10.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④二、填空题(每题3分,共24分)11.“a,b,c是直线,若a⊥b,b⊥c,那么a⊥c”这个命题是命题.(填“真”或者“假”)12.若a<<b,且a,b是两个连续的整数,则ab的值为.13.如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.请你用所学的数学知识说明道理?.14.若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为.16.甲、乙两人同求关于x,y的方程ax﹣by=7的整数解,甲正确地求出一个解为,乙把ax﹣by=7看成ax﹣by=1求得一个解为,则a b的值为.17.如果(x﹣2)2=9,则x=.18.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1向右跳到A2(2,1),第三次点A2跳到A3(﹣2,2),第四次点A3向右跳动至点A4(3,2),…,依此规律跳动下去,则点A2019与点A2020之间的距离是.三、解答题(共66分)19.计算:(﹣2)3×+×()2﹣.20.解方程组或解不等式组:(1);(2).21.补全下面的证明过程和理由:如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F证明:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(),∴∠C=().∴AC∥DF().∴∠A=().∵EF∥AB,∴∠F=().∴∠A=∠F.22.某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,绘制了两幅尚不完整的统计图如图所示.根据统计图中的信息解答下列问题:(1)若A组的频数比B组小24,则频数分布直方图中a=;b=.(2)扇形统计图中n=,并补全频数分布直方图;(3)若成绩在80分以上为优秀,全校共有2000名学生,请估计成绩优秀的学生有多少名?23.将若干吨分别含铁72%和含铁58%的两种矿石混合后配成含铁64%的矿石70吨.求两种矿石分别需要多少吨?24.某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生产一件A 产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少?25.如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+3|+=0,现同时将点A,B分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.(1)请求出C,D两点的坐标;(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠BOP的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在直接写出点M的坐标;若不存在,试说明理由.参考答案与试题解析一.选择题(共10小题)1.沙燕风筝是北京传统风筝中最具代表性的,不仅性能良好,还有祈福的寓意.图是一种北京沙燕风筝的示意图,在下面的四个图中,能由图经过平移得到的是()A.B.C.D.【分析】平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移.【解答】解:根据“平移”的定义可知,由题图经过平移得到的图形如下:故选:D.2.的平方根是()A.3B.﹣3C.±3D.±9【分析】求出的值,根据平方根的定义求出即可.【解答】解:∵=9,∴的平方根是±3,故选:C.3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.4.若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3B.3﹣a<3﹣b C.﹣3a>﹣3b D.3a<3b【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减3,不等号的方向不变,故本选项不符合题意;B、两边都乘以﹣1,不等号的方向改变,然后两边同时加3,不等号方向不变,即3﹣a>3﹣b.故本选项符合题意;C、两边都乘以﹣3,不等号的方向改变,故本选项不符合题意;D、两边都乘以3,不等号的方向不变,故本选项不符合题意;故选:B.5.下列调查中,不适合用全面调查方式的是()A.嫦娥四号月球探测器发射前对重要零部件的检查B.对新冠肺炎确诊患者同机乘客进行医学检查C.日光灯管厂要检测一批灯管的使用寿命D.了解某班同学的身高情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、嫦娥四号月球探测器发射前对重要零部件的检查,精确度要求高,适合普查;B、对新冠肺炎确诊患者同机乘客进行医学检查,事关重大,适合普查;C、日光灯管厂要检测一批灯管的使用寿命,调查具有破坏性,不易普查;D、了解某班同学的身高情况,人数较少,适合普查;故选:C.6.已知方程组的解满足x=y,则k的值为()A.1B.2C.3D.4【分析】将方程组用k表示出x,y,根据方程组的解满足x=y,得到关于k的方程,即可求出k的值.【解答】解:解方程组得,∵关于x,y的二元一次方程组组的解满足x=y,∴,解得:k=1.故选:A.7.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为()A.20°B.125°C.20°或125°D.35°或110【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【解答】解:设∠β为x,则∠α为3x﹣40°,若两角互补,则x+3x﹣40°=180°,解得x=55°,∠α=125°;若两角相等,则x=3x﹣40°,解得x=20°,∠α=20°.故选:C.8.若关于x的不等式组无解,则m的取值范围是()A.m≤9B.m≥9C.m≥5D.m≤﹣5【分析】先求出两个不等式的解集,再根据不等式组无解列出关于m的不等式求解即可.【解答】解:解不等式﹣>1,得:x>7,解不等式2(m﹣x)≥4,得:x≤m﹣2,∵不等式组无解,∴m﹣2≤7,则m≤9,故选:A.9.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x人,小学在校生y人,由题意可列方程组()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,或,故选:A.10.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④【分析】根据平行线的性质、角平分线的定义、余角的性质等来判断即可.【解答】解:∵AH⊥BC,EF∥BC,∴①AH⊥EF正确;∵BF平分∠ABC,∴∠ABF=∠CBF,∵EF∥BC,∴∠EFB=∠CBF,∴②∠ABF=∠EFB正确;∵BE⊥BF,而AC与BF不一定垂直,∴BE∥AC不一定成立,故③错误;∵BE⊥BF,∴∠E和∠EFB互余,∠ABE和∠ABF互余,而∠EFB=∠ABF,∴④∠E=∠ABE正确.故选:D.二.填空题11.“a,b,c是直线,若a⊥b,b⊥c,那么a⊥c”这个命题是假命题.(填“真”或者“假”)【分析】利用垂直的定义进行判断即可.【解答】解:平面内a,b,c是直线,若a⊥b,b⊥c,那么a∥c,故原命题错误,是假命题,故答案为:假.12.若a<<b,且a,b是两个连续的整数,则ab的值为56.【分析】直接利用的取值范围得出a,b的值,进而得出答案.【解答】解:∵7<<8,a<<b,其中a、b为两个连续的整数,∴a=7,b=8,∴ab=56.故答案为:56.13.如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.请你用所学的数学知识说明道理?在同一平面内,过一点有且只有一条直线与已知直线垂直.【分析】利用垂线的性质进行解答即可.【解答】解:王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.所用的数学知识是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故答案为:在同一平面内,过一点有且只有一条直线与已知直线垂直.14.若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3.【分析】不等式两边同时除以a﹣3即可求解不等式,根据不等式的性质可以得到a﹣3一定小于0,据此即可求解.【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为151°.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,同旁内角互补解答.【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故答案为151°.16.甲、乙两人同求关于x,y的方程ax﹣by=7的整数解,甲正确地求出一个解为,乙把ax﹣by=7看成ax﹣by=1求得一个解为,则a b的值为25.【分析】把代入方程ax﹣by=7得出a+b=7;把代入ax﹣by=1得出a﹣2b=1,求出组成的方程组的解即可.【解答】解:把代入方程ax﹣by=7得:a+b=7;把代入ax﹣by=1得:a﹣2b=1,即,解得:a=5,b=2,所以a b=52=25,故答案为:25.17.如果(x﹣2)2=9,则x=x1=5,x2=﹣1.【分析】相当于求9的平方根.【解答】解:开方得x﹣2=±3,即x﹣2=3或x﹣2=﹣3.解得x1=5,x2=﹣1.故答案为:x1=5,x2=﹣1.18.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1向右跳到A2(2,1),第三次点A2跳到A3(﹣2,2),第四次点A3向右跳动至点A4(3,2),…,依此规律跳动下去,则点A2019与点A2020之间的距离是2021.【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2019与点A2020的坐标,进而可求出点A2019与点A2020之间的距离.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点A2019的坐标是(﹣1010,1010).∵点A2019与点A2020的纵坐标相等,∴点A2019与点A2020之间的距离=1011﹣(﹣1010)=2021,故答案为:2021.三.解答题(共7小题)19.计算:(﹣2)3×+×()2﹣.【分析】原式利用平方根及立方根定义化简,计算即可得到结果.【解答】解:原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36.20.解方程组或解不等式组:(1);(2).【分析】(1)利用加减消元法求解可得;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1),①×3﹣②,得:﹣11y=﹣11,解得y=1,将y=1代入①,得:3x﹣1=2,解得:x=1,则方程组的解为;(2),解不等式①得:x>2,解不等式②得:x≤5,则不等式组的解集为2<x≤5.21.补全下面的证明过程和理由:如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F证明:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠ABD(两直线平行,内错角相等).∵EF∥AB,∴∠F=∠ABD(两直线平行,内错角相等).∴∠A=∠F.【分析】证出∠C=∠D,得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.【解答】解:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠ABD(两直线平行,内错角相等).∵EF∥AB,∴∠F=∠ABD(两直线平行,内错角相等).∴∠A=∠F.故答案为:对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等.22.某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,绘制了两幅尚不完整的统计图如图所示.根据统计图中的信息解答下列问题:(1)若A组的频数比B组小24,则频数分布直方图中a=16;b=40.(2)扇形统计图中n=126,并补全频数分布直方图;(3)若成绩在80分以上为优秀,全校共有2000名学生,请估计成绩优秀的学生有多少名?【分析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C组的人数是:200×25%=50.补全频数分布直方图如下:(3)2000×(1﹣25%﹣20%﹣8%)=940(名).答:估计成绩优秀的学生有940名.故答案为:(1)16,40;(2)126.23.将若干吨分别含铁72%和含铁58%的两种矿石混合后配成含铁64%的矿石70吨.求两种矿石分别需要多少吨?【分析】设含铁72%的矿山需要x吨,含铁58%的矿山需要y吨,根据“将若干吨分别含铁72%和含铁58%的两种矿石混合后配成含铁64%的矿石70吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设含铁72%的矿山需要x吨,含铁58%的矿山需要y吨,依题意得:,解得:.答:含铁72%的矿山需要30吨,含铁58%的矿山需要40吨.24.某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生产一件A 产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少?【分析】(1)关系式为①A产品需甲种原料量+B产品需甲种原料量≤280;②A产品需乙种原料量+B产品需乙种原料量≤190,列不等式组即可求解;(2)利润为:A产品数量×400+B产品数量×350,按自变量的取值求得最大利润.【解答】解:(1)设生产A产品x件,生产B产品(50﹣x)件,则解得30≤x≤32.5∵x为正整数∴x可取30,31,32.当x=30时,50﹣x=20,当x=31时,50﹣x=19,当x=32时,50﹣x=18,所以工厂可有三种生产方案,分别为方案一:生产A产品30件,生产B产品20件;方案二:生产A产品31件,生产B产品19件;方案三:生产A产品32件,生产B产品18件;(2)法一:方案一的利润为30×400+20×350=19000元;方案二的利润为31×400+19×350=19050元;方案三的利润为32×400+18×350=19100元.因此选择方案三可获利最多,最大利润为19100元.法二:设生产A产品x件,生产B产品(50﹣x)件,可获利共y元,∴y=400x+350(50﹣x)=50x+17500,∵此函数y随x的增大而增大,∴当x=32时,可获利最多,最大利润为19100元.25.如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+3|+=0,现同时将点A,B分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.(1)请求出C,D两点的坐标;(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠BOP的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在直接写出点M的坐标;若不存在,试说明理由.【分析】(1)利用非负数的性质求出a、b,即可解决问题;(2)如图2中,结论:∠DQP+∠QPO+∠BOP=360°.作PH∥AB.根据平行线的性质即可证明;(3)分两种情形当点M在y轴上,设M(0,m),由题意:×5×2=×|m﹣2|×3;当点M在x轴上时,设M(n,0),由题意:•|n+3|×2=×5×2,分别解方程即可解决问题.【解答】解:(1)∵|a+3|+=0,∴|a+3|=0+=0,∴a=﹣3 b=2,∴A(﹣3,0)B(2,0),∴C(﹣5,2),D(0,2);(2)结论:∠PQD+∠OPQ+∠BOP=360°.过点P作PH∥AB.∵将点A,B分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点A,B的对应点C,D.∴CD∥AB,∴PH∥AB∥CD,∴∠PQD+∠QPH=180°,∠BOP+∠HPO=180°,∴∠PQD+∠QPH+∠BOP+∠HPO=360°,∴∠PQD+∠OPQ+∠BOP=360°.(3)当点M在y轴上,设M(0,m),由题意:×5×2=×|m﹣2|×3,解得m=或﹣,∴M(0,)或(0,﹣).当点M在x轴上时,设M(n,0),由题意:•|n+3|×2=×5×2,解得n=2或﹣8,∴M(﹣8,0)或(2,0),综上所述,满足条件的点M的坐标为(0,)或(0,﹣)或(﹣8,0)或(2,0).。
广西北海市2019-2020学年七年级下学期期末数学试题(解析版)
【点睛】本题主要考查了垂线,关键是掌握垂线定义,掌握邻补角互补.
21.如图,AF//DC,AD// BC,∠ABE= 100°,求∠CBF,∠A,∠C,∠D的度数.
【答案】∠CBF=100°,∠A=100°,∠C= 100°,∠D=80°
因为在这10人中,月销售量不低于平均数10台的只有4人,月销售不低于中位数8台的有8人,
所以想让一半以上的销售人员达到月销售目标,(1)中的中位数最适合作为月销售目标.
【点睛】本题考查了平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.
20.如图,直线AB,CD相交于点O.射线OF⊥CD于点O,∠BOF=30°,求∠BOD,∠AOD的度数.
【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把a与b 值代入计算即可求出值.
【详解】
,
当 , 时,
原式= .
【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
19.一销售某品牌冰箱的公司有营销人员10人,销售部为制定营销人员月销售冰箱定额(单位:台),统计了10人某月的销售量如下表:
3.下列运算正确的是()
A. B.
C. D.
【答案】D
【解析】
【分析】用单项式乘以单项式法则计算A,用幂的乘方法则计算B,用积的乘方法则计算C、D,即可判断.
【详解】∵ ,故选项A错误;
,故选项B错误;
,故选项C错误;
,故选项D正确.
故选:D.
【点睛】本题考查了单项式乘单项式、幂的乘方、积的乘方等知识点,题目比较简单,掌握整式的乘法法则是解决本题的关键.
江苏省淮安市淮安区2019-2020学年七年级上学期期末数学试题
江苏省淮安市淮安区2019-2020 学年七年级上学期期末数学试题考试范围: xxx;考试时间:100 分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题 )请点击修改第I 卷的文字说明评卷人得分一、单选题1. -3 的相反数为()A .-3B .3C. 0 D .不能确定2.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300 人次,数字48300 用科学计数法表示为()A .4.83 104B .4.83105C.48.3103 D .0.483105 3.如图,数轴的单位长度为 1,如果点 ??表示的数为 -2 ,那么点 ??表示的数是().A .-1B .0C. 3 D . 44.下列各题中,运算结果正确的是()A .3a 2b 5abB .4x2y2xy22xyC.5 y23y2 2 y 2D. 7 a a 7a25.在同一平面内,下列说法中不正确的是()A.两点之间线段最短B.过直线外一点有且只有一条直线与这条直线平行C.过直线外一点有且只有一条直线与这条直线垂直D .若AC BC ,则点 C 是线段 AB 的中点.试卷第 1页,总 5页6.如图是一个正方体的展开图,折好以后与“学 ”相对面上的字是( )A .祝B .同C .快D .乐7.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利30 元,则商品进价为( )元 .A .90B .100C . 110D .1208.如图,用一副特制的三角板可以画出一些特殊角 .在下列选项中,不能画出的角度是()A . 81oB . 63oC . 54oD . 55o第 II 卷(非选择题 )请点击修改第 II 卷的文字说明评卷人得分二、填空题9.已知 x1 是方程 2ax a 3的解,则 a __________ .10 22 __________3 ..比较大小:711 .若 ∠132o,则1的余角为 __________ o. 12 .如图, 直线 AB ,CD 相交于点 O ,若∠ AOC +∠ BOD = 100 °,则∠ AOD 等于 __________度.试卷第 2页,总 5页13.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b=______.(用含字母 a 的代数式表示)14 .若线段 AB=8cm , BC=3cm ,且 A 、 B 、 C 三点在同一条直线上,则AC=______ cm . 15 .已知 a ﹣ 2b = 3,则 7﹣ 3a+6 b = _____.16 .若规定这样一种运算法则 a ※b=a 2+2ab ,例如 3※ (-2) = 3 2+ 2 ×3 ×(-2) =-3 , 则 (-2) ※ 3的值为 _______________.评卷人 得分三、解答题17.计算:( 1)1 3 6 ( 1)33(2)( 2)3 4 [5 ( 3)2]18 .解方程:( 1) 2( x 2) 6( 2)x1 1 1 x2 319 .( 1)化简:a(5a 3b) 2(a 2b)( 2)先化简,再求值:2( x 2 2xy)2( x 2 2 xy) ,其中 x1 , y1220 .按要求画图:如图,在同一平面内有三点A 、B 、C .( 1)画直线 AB 和射线 BC ;( 2)连接线段 AC ,取线段 AC 的中点 D ;( 3)画出点 D 到直线 AB 的垂线段 DE .21.如图:已知直线 AB 、 CD 相交于点 O , ∠ COE=90°试卷第 3页,总 5页(1)若∠ AOC=36°,求∠ BOE 的度数;(2)若∠ BOD :∠ BOC=1 : 5,求∠ AOE 的度数.22.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午 7点开出,速度是每小时 24 千米.汽车上午 10 点开出,速度为每小时40 千米,结果同时到达乙地.求甲、乙两地的海路和公路长.23.( 1)根据如图( 1)所示的主视图、左视图、俯视图,这个几何体的名称是.(2)画出如图( 2)所示几何体的主视图、左视图、俯视图.24.已知关于m 的方程115的解也是关于x 的方程2 x 3n 3 的解.2m 6( 1)求m, n的值;( 2)已知线段AB m,在直线 AB 上取一点P,恰好使APm ,点Q为PB的中PB点,求线段AQ 的长.25.(探索新知)如图 1,点C在线段AB上,图中共有 3 条线段:AB 、 AC 和 BC ,若其中有一条线段的长度是另一条线段长度的两倍,则称点 C 是线段 AB 的“二倍点”.( 1)①一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)②若线段 AB 20 , C 是线段 AB 的“二倍点”,则BC(写出所有结果)(深入研究)如图 2,若线段AB20cm ,点 M 从点B的位置开始,以每秒 2 cm的速度向点 A 运试卷第 4页,总 5页动,当点 M 到达点 A 时停止运动,运动的时间为t 秒.(2)问t为何值时,点M是线段AB的“二倍点”;(3)同时点N从点A的位置开始,以每秒 1 cm的速度向点B运动,并与点M同时停止 .请直接写出点M是线段AN的“二倍点”时t的值 .试卷第 5页,总 5页参考答案1. B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解: -3的相反数为 3 ;故选: B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.2. A【解析】【分析】科学记数法的表示形式为 a × 10 n的形式,其中 1 ≤ |a| < 10 , n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 10时,n是正数;当原数的绝对值< 1 时, n 是负数.【详解】解:48300 4.83104;故选: A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为 a × 10 n的形式,其中 1 ≤|a|< 10 , n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3. C【解析】【分析】观察数轴根据点 B 与点 A 之间的距离即可求得答案.答案第 1 页,总 14 页【详解】观察数轴可知点 A 与点 B 之间的距离是 5 个单位长度,点 B 在点 A 的右侧,因为点 A 表示的数是 -2, -2+5=3,所以点 B 表示的数是3,故选 C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.4. C【解析】【分析】根据合并同类项的运算法则进行计算,即可得到答案.【详解】解: A 、3a2b 无法计算,故 A 错误;B 、4 x2y2xy2无法计算,故 B 错误;C 、5 y23y2 2 y2,故C正确;D 、7a a 8a ,故D错误;故选: C.【点睛】本题考查了合并同类项的运算法则,解题的关键是熟练掌握合并同类项的运算法则. 5. D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解: A 、两点之间线段最短,正确;B、过直线外一点有且只有一条直线与这条直线平行,正确;答案第 2 页,总 14 页C、过直线外一点有且只有一条直线与这条直线垂直,正确;D 、若AC BC ,则点C是线段AB的中点,错误;故选: D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.6. D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选: D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7. A【解析】【分析】设该商品进价为x 元,则售价为(x+70 )× 75% ,进一步利用售价- 进价 =利润列出方程解答即可.【详解】解:设该商品进价为x 元,由题意得(x+70 )× 75% -x=30解得: x=90 ,答案第 3 页,总 14 页答:该商品进价为90元.故选: A.【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.8. D【解析】【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减,逐一分析即可.【详解】解: A、814536,则 81 角能画出;B、63367245,则63o角能画出;C、549036 ,则54o 可以画出;D 、 55 °不能写成 36 °、 72 °、 45 °、 90 °的和或差的形式,不能画出;故选: D.【点睛】此题考查的知识点是角的计算,关键是用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.9. 1【解析】【分析】直接把 x1代入 2ax a3,即可求出 a 的值 .【详解】解:把 x1代入 2ax a 3 ,则2a ( 1)a 3 ,解得: a 1 ;答案第 4 页,总 14 页故答案为: 1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 10.【解析】【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵223,722∴ 3 ;7故答案为:.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 11.58o【解析】【分析】根据余角的定义,即可得到答案.【详解】解:∵∠132o,∴ 1的余角为:901=90 32 =58 ;故答案为: 58o.【点睛】本题考查了余角的定义,解题的关键是熟练掌握余角的定义进行解题.12. 130【解析】【分析】根据对顶角相等和邻补角的定义求解.【详解】解:∵∠ AOC=∠BOD,且∠ AOC+∠BOD=100°,∴∠ AOC=50°,∴∠ AOD=180° - ∠AOC=130°.故答案为130.【点睛】本题考查对顶角和邻补角的定义及性质.13. a-5【解析】【分析】设阴影部分上面的数字为x,下面为 x+7 ,根据日历中数字特征确定出 a 与 b 的关系式即可.【详解】设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1 ,x+7=a+1 ,即 b-1=a-6,整理得: b=a-5,故答案为: a-5【点睛】此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.14. 5 或 11.【解析】试题分析:分为两种情况:①如图 1 ,AC=AB+BC= 8+3 =11 ;②如图 2 ,AC=AB﹣BC= 8﹣3 =5 ;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意分两种情况画出图形是解决此题的关键.15. -2【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵ a﹣2b= 3,∴7﹣ 3a+6b= 7﹣ 3( a﹣ 2b)= 7﹣ 3×3=﹣ 2.故答案为:﹣ 2.【点睛】本题考查的知识点是根据已知条件求代数式的值,此类题目往往先利用整体思想将原式变形,再代入已知条件求值 .16. -8【解析】【分析】将 a=-2, b=3 代入 a※ b=a2+2ab 计算可得结果 .【详解】(-2)※ 3=(-2)2+2×( -2)×3=4-12=-8 ,故答案为: -8【点睛】本题主要考查有理数的混合运算,解题的关键是掌握新定义规定的运算法则,有理数的混合运算顺序与运算法则.17.( 1) -3 ;( 2) 8【解析】【分析】( 1 )先计算乘法,再计算加法,即可得到答案;( 2 )先计算乘方和括号内的运算,然后再计算乘除法即可.【详解】解:(1)13 6 (1)3 3=1 2=3 ;(2)( 2)3 4 [5 ( 3)2]=84(4)=8. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算的运算法则.181 ) x 5 2.( ;( ) x 1【解析】【分析】( 1 )先去括号,然后移项合并,即可得到答案;( 2 )先去分母,然后去括号,移项合并,即可得到答案.【详解】解:( 1 ) 2( x 2)6 ,∴ 2x 4 6 ,∴ 2x10 ,∴ x 5 ;( 2)x1 1 1 x ,2 3∴ 3(x 1) 6 2(1 x) ,∴ 3x 3 6 22x ,∴ 5x5 ,∴ x 1 .【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法进行解题. 19.( 1)2a b ;(2)8xy ,4【解析】【分析】( 1 )先去括号,然后合并同类项,即可得到答案;( 2 )先把代数式进行化简,然后把x、 y 的值代入计算,即可得到答案.【详解】解:( 1 )a(5a 3b) 2(a 2b)= a5a 3b 2a 4b=2a b ;( 2 )2( x22xy)2( x22xy)= 2x24xy 2x24xy=8xy ;当 x 11时,, y2原式 =1(1) 4. 82【点睛】本题考查了整式的化简求值,整式的混合运算,解题的关键是熟练掌握整式混合运算的运算法则进行解题.20.( 1 )见详解;( 2 )见详解;( 3 )见详解 .【解析】【分析】(1 )根据直线和射线的概念作图可得;(2 )根据线段的概念和中点的定义作图可得;(3 )过点 D 作 DE ⊥ AB 于点 E,连接 DE 即可.【详解】解:( 1 )如图所示,直线AB和射线BC即为所求;(2 )如图线段 AC 和点 D 即为所求;(3 )线段 DE 为所求垂线段 .【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.21.( 1)54°;( 2)120 °【解析】试题分析:( 1)根据平角的定义求解即可;( 2)根据平角的定义可求∠ BOD,根据对顶角的定义可求∠ AOC,根据角的和差关系可求∠ AOE 的度数.试题解析:解:( 1)∵∠ AOC=36°,∠ COE=90°,∴∠ BOE=180°﹣∠ AOC﹣∠ COE=54°;1( 2)∵∠ BOD :∠ BOC=1: 5,∴∠ BOD =180°×15=30 °,∴∠ AOC=30 °,∴∠ AOE=30 °+90 °=120 °.22.海路长240千米,公路长280千米.【解析】【分析】根据题意列方程求解即可.【详解】设:汽车行驶x 小时,则轮船行驶(x-3 )小时,根据题意可列方程,24x=40(x-3)-40,解方程得, x=10,∴公路长40 ( x-3 ) =280千米,海路长为24x=240千米.【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找出等量关系.23.( 1)球(体);(2)见解析【解析】【分析】(1 )根据三视图都是圆,可得几何体为球体;(2 )分别画出从正面、左面、上面看所得到的图形即可.【详解】解:(1 )球体的三视图都是圆,则这个几何体为球体;故答案为:球;(2 )如图所示:【点睛】此题主要考查了作图——三视图,关键是掌握从正面、左面、上面看所得到的图形,注意所看到的棱都要表示到图中.24. (1) m 6, n 3;(2) AQ21154或2【解析】【分析】( 1)解出关于m 的方程的解,即m 的值,再将m 值代入关于x 的方程求 n 值;( 2)分两种情况讨论,即P 点在 B 点的左边和右边,根据线段之间的关系求线段长即可.【详解】解 :11m 15,26 m 1610,Q关于 m 的方程1m15的解也是关于x 的方程2 x 3n 3 的解,26x m 6 ,将 x6,代入方程2x 3n 3 得;2 63n3 ,解得 : n 3 ,故 m6, n3;2由1知:AB6,AP 3 ,PB①点 P 在线段AB上时,如图所示:Q AB AP3,6,PBAP 93 , BP,22Q点Q为PB的中点,PQ BQ 1BP3 24AQ AP9321 PQ442②点 P 在线段AB的延长线上时,如图所示:QAB 6,AP3,PBPB 3,Q点Q为PB的中点,PQ BQ 3,2AQ AB315 BQ 6,2122故 AQ15或. 42【点睛】本题考查了同解方程的概念,一元一次方程的解法以及线段的度量,数形结合思想和分类讨论思想是解答此题的关键.25.( 1)①是;② 10 或20或 40;(2)5 或10或20;(3)8或 60或 15333372【解析】【分析】( 1)①可直接根据“二倍点”的定义进行判断;②可分为三种情况进行讨论,分别求出BC 的长度即可;(2)用含 t 的代数式分别表示出线段 AM 、BM 、AB ,然后根据“二倍点”的意义,分类讨论得结果;(3)用含 t 的代数式分别表示出线段 AN 、 NM 、 AM ,然后根据“二倍点”的意义,分类讨论.【详解】解:(1)①因为线段的中点把该线段分成相等的两部分,该线段等于 2 倍的中点一侧的线段长.∴一条线段的中点是这条线段的“二倍点”故答案为:是 .②∵ AB20 , C 是线段 AB 的“二倍点”,当 AB2BC 时, BC 120 10;2当 AC 2BC 当 BC 2AC 时,时,BC1202033BC2204033;;故答案为: 10 或20或40;33(2)当 AM=2BM 时, 20-2t=2 × 2t,解得: t= 10;3当 AB=2AM 时, 20=2×( 20-2t),解得: t=5 ;当 BM=2AM 时, 2t=2 ×( 20-2t),解得: t= 20;3答: t 为10或 5 或20时,点 M 是线段 AB 的“二倍点”;33(3)当 AN=2MN 时, t=2[t- ( 20-2t) ] ,解得: t=8 ;当 AM=2NM时,20-2t=2[t-(20-2t)],解得:t=15;2当 MN=2AM时,t-(20-2t)=2(20-2t),解得:t=60;7答: t 为15或 8 或60时,点 M 是线段 AN 的“二倍点”.27【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“二倍点”的定义分类讨论,理解“二倍点”是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年七年级数学期末试卷
一、选择题(每题
2分,共20分)
1、下列等式不正确的是()
A 、6
32
4
2
623b
a ab
b
a B 、
11
134
23
3222
1n
m mn
n m C 、
15
114
3
32
2
y
x xy
xy y
x D 、216
15
.025
.0125.06
3
2
2、用平方差公式计算1112
x
x
x 结果正确的是(
)
A 、12
x
B 、1
4
x
C 、4
1
x
D 、4
1
x
3、如图,下列判断正确的是(
)
A 、4对同位角,4对内错角,4对同旁内角
B 、4对同位角,4对内错角,2对同旁内角
C 、6对同位角,4对内错角,4对同旁内角
D 、6对同位角,4对内错角,2对同旁内角
4、如图,∠1=∠2,DE ∥BC ,∠B =75°,∠ACB =44°,那么∠BCD 为()
A 、83
B 、88
C 、90
D 、78
5、三角形两边为7和2,其周长为偶数,则第三边的长为()
A 、3
B 、6
C 、7
D 、8
6、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中无法判定△ABE ≌△ACD 的是()A 、AD=AE B 、∠AEB=∠ADC
C 、BE=CD
D 、AB=AC 7、一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,当梯子
的顶端下滑了4米时,梯子的底端在水平方向上滑动了()
A 、4米
B 、7米
C 、8米
D 、以上答案均不对
8、在等边三角形所在平面内有一点P ,使得△PBC 、△PAC 、△PAB
都是等腰三角形,则具有该性质的点有()
A 、1个
B 、7个
C 、10个
D 、无数个
9、掷一个一般的骰子时,朝上的点数不小于3的概率是(
)
A 、0
B 、
6
1C 、
3
1D 、
3
28
7
654
3
21题3 2
1E
D
C
B A
题4
E
D C
B A
题6
题7
10、如图,△ABC 的高AD 、BE 相交于点O ,
则∠C 与∠BOD 的关系是()
A 、相等
B 、互余
C 、互补
D 、不互余、不互补也不相等
二、填空:(每题2分,共32分)11、计算)8)(4(2
2
mx x n x x 的结果不含2x 和3
x 的项,那么m=
;n= .
12、若2
24
19y Mxy
x
是完全平方式,则
M=
. 13、“推三角尺画平行线”的理论依据是
.
14、已知A 、B 互为相反数,C 、D 互为倒数,M 的相反数是
2
1的倒数,则M
B
A CD
M
22
的值为
.
15、已知二元一次方程
03y x 的一个解是
b
y
a x 其中
0a 那么239b a 的
值为.
16、某课外兴趣小组外出活动,若每组
7人,则余下3人;若每组8人,则不足5人,求这
个课外小组分成几组?解:设.
列出方程组为
.
17、如图AB ∥CD ,直线EF 分别交于AB 、CD 于E 、F ,E 平分∠BEF ,
若∠1=72°,则∠2= °.
18、如图,已知
AB=AC ,CD=BD ,E 在线段AD 上,
则图中全等三角形有对. 19、已知等腰三角形的两边
a 、
b 满足等式
03
322
2
b a b a ,
则该等腰三角形的周长为.
20、如图,已知
AB=AC ,用“SAS ”定理证明△ABD ≌△ACE ,
还需添加条件;若用“ASA ”证明,还
需添加条件;若用“AAS ”证明,还需添加条件;图中除△ABD ≌△ACE 之外,还有△
≌△
.
O
E D C
B
A
题10
2
1
G
F
E
D
C
B
A E
D
C
B
A
F
E D
C B
A
题17
题18
题20
三、解答题(21-23题每题6分,24、25每题7分,26、27每题8分)21、已知:3y
x
,7xy .
求:①2
2
y x
的值;
②2
2
y xy x
的值;
③2
y
x 的值
22、用乘法公式计算:①
200320012002
2
;②12
12
124
2
…1
2
2n
34y x
y x 3521
3y
ax
by
x
1
224、将下列事件发生的概率标在图中:
(1)2008年奥运会在中国北京举行;(2)骆驼比马大;
(3)两个奇数的商还是奇数;(4)五边形的内角和是720°;
(5)小黄是男生.
23、若方程组
与
有相同的解,求
a 、
b 的值.
1(100%)(50%)
2
1
0必然发生
不可能发生
25、已知,如图,AC ∥BD ,∠C =90°,BC =BD ,AC =BE.
那么AC 、DE 相等吗?为什么?
26、某班学生60人进行一次数学测验,成绩分成:
50~59、60~69、70~79、80~89、90~100
五组,前四组频率分别为05.0,15.0,35.0,30.0.
求这次测验中优分(不低于
80分)的人数是多少?并画出条形统计图。
27、操作与探究
如图,已知△ABC ,
(1)画出∠B 、∠C 的平分线,交于点
O ;
(2)过点O 画EF ∥BC ,交AB 于点E ,AC 于点F ;(3)写出可用图中字母表示的相等的角,并说明理由;(4)若∠ABC=80°,∠ACB=60°,求∠A ,∠BOC 的度数;
又若∠ABC=70°,∠ACB=50°,求∠A ,∠BOC 的度数;(5)根据(4)的解答,请你猜出∠
BOC 与∠A 度数的大小关系
这个结论对任意一个三角形都成立吗?为什么?
F
E D
C
B
A
题25
C
B
A
题27。