水力压裂技术方案

合集下载

采油工程第5章水力压裂技术

采油工程第5章水力压裂技术
第5章 水力压裂技术
5.1 造缝机理 5.2 压裂液
5.3 支撑剂
5.4 压裂设计
5.5 压裂设备及工艺方法
思考题
第5章 水力压裂技术
水力压裂是利用地面高压泵组,将高粘液体以大大超
过地层吸收能力的排量注入井中,在井底憋起高压,当此压 力大于井壁附近的地应力和地层岩石抗张强度时在井底附近 地层产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延 伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底 附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝, 使井达到增产增注的目的。 水力压裂增产增注的原理主要是降低了井底附近地 层中流体的渗流阻力和改变了流体的渗流状态,使原来的径 向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒 间的单向流动,消除了径向节流损失,大大降低了能量消耗。 因而油气井产量或注水井注入量就会大幅度提高。
3.泡沫压裂液 泡沫压裂液是用于低压低渗油气层改造的新型压裂液。 其最大特点是易于返排滤失少以及摩阻低等。基液多用淡水、 盐水、聚合物水溶液;气相为二氧化碳、氮气、天然气;发泡 剂用非离子型活性剂。泡沫干度为65%~85%,低于65%则粘 度太低,超过92%则不稳定。 泡沫压裂液也具有不利因素 (1)由于井筒气一液柱的压降低,压裂过程中需要较高的 注入压力,因而对深度大于2000m以上的油气层,实施泡沫压 裂是困难的。 (2)使用泡沫压裂液的砂比不能过高,在需要注入高砂比 情况下,可先用泡沫压裂液将低砂比的支撑剂带人,然后再泵 人可携带高砂比支撑剂的常规压裂液。 泡沫压裂液的粘度稳定性取决于泡沫干度(泡沫质量),即 气体体积与泡沫液总体积之比,典型值为70%~80%。
z X y z y X
ቤተ መጻሕፍቲ ባይዱ
X
图5-4 人工裂缝方向示意图

煤层气井水力压裂技术

煤层气井水力压裂技术
特点
适用于低渗透煤层,能够提高煤 层的渗透性,增加天然气产量, 是煤层气开发中的关键技术之一 。
技术原理
01
02
03
高压水流注入
通过高压水泵将高压水流 注入煤层,利用水压将煤 层压裂。
支撑剂填充
在压裂过程中,向裂缝中 填充支撑剂,如砂石等, 以保持裂缝处于开启状态。
气体流动
压裂后,煤层中的天然气 通过裂缝和孔隙流动,被 开采出来。
智能化发展
利用人工智能、大数据和物联网技术,实现水力压裂过程 的实时监测、智能分析和自动控制,提高压裂效率和安全 性。
绿色环保
研发低污染或无污染的压裂液和支撑剂,降低压裂过程对 环境的影响,同时加强废弃物的处理和回收利用。
多层压裂和水平井压裂
发展多层压裂和水平井压裂技术,提高煤层气开采效率, 满足市场需求。
煤层孔隙度
孔隙度决定了煤层的储存空间和吸附能力,孔隙度高的煤层有利于 气体的吸附和扩散。
压裂液性能
பைடு நூலகம்
粘度
粘度是压裂液的重要参数,它决 定了压裂液在煤层中的流动阻力, 粘度越高,流动阻力越大。
稳定性
压裂液的稳定性决定了其在高压 和高剪切条件下保持稳定的能力, 稳定性好的压裂液能够保持较好 的流动性和携砂能力。
解决方案
为了降低水力压裂技术的成本,研究 人员和工程师们正在探索新型的压裂 液和支撑剂,以提高其性能并降低成 本。同时,优化压裂施工方案、提高 施工效率也是降低成本的有效途径。 此外,加强设备的维护和保养、提高 设备的利用率也是降低水力压裂成本 的重要措施之一。
06
水力压裂技术的前景展 望
技术发展方向
能力和导流能力。
裂缝网络设计
裂缝走向

水力压裂综采工作面安全技术措施

水力压裂综采工作面安全技术措施

水力压裂综采工作面安全技术措施1.通风技术措施:水力压裂综采工作面需要将瓦斯等有害气体及时排走,确保工作面通风良好。

要在工作面进眼处设置风门,防止有害气体回流;在采煤面和回采巷道上部设置人工送风机,增加通风量;定期对风机进行检查和维护,确保风机正常运转。

2.支护技术措施:水力压裂综采工作面需要采用合适的支护技术,确保工作面的稳定。

常用的支护方式有锚杆支护、锚索支护和合成材料支护等。

支护设备要按照规定的标准进行安装和使用,支护材料要选用质量合格的产品。

3.瓦斯抽放技术措施:矿井中常常存在瓦斯,水力压裂综采工作面的运行会产生更多的瓦斯。

为了防止瓦斯积聚,需要采取瓦斯抽放措施。

可在工作面的回采巷道设置抽排管道,通过抽风机将瓦斯抽出矿井外。

同时要定期对抽排设备进行检查和维护,确保设备的正常运行。

4.火灾防治技术措施:水力压裂综采工作面的工作环境容易引发火灾。

为了防止火灾的发生,首先要做好火灾防治宣传教育工作,提高职工的防火意识。

同时要加强对电气设备的管理,防止电气设备引起火灾。

在工作面和回采巷道设置水枪等消防设备,以便在火灾发生时能够及时进行灭火。

5.安全监测技术措施:水力压裂综采工作面需要对矿井的地质构造、地应力和瓦斯浓度等进行实时监测,及时发现问题并采取措施处理。

可以采用地声波监测、应力监测和瓦斯浓度监测等技术手段,对工作面进行全面监测。

此外,水力压裂综采工作面还需制定科学合理的作业方案,明确作业顺序和步骤,并在作业过程中加强对职工的培训和安全教育,提高职工的安全意识和技能水平。

同时,加强对设备的巡检和周期性维护,确保设备的正常运行。

第6章 水力压裂技术(20130325)

第6章 水力压裂技术(20130325)

(2)破裂压力计算方法
裂缝方位: 水力裂缝总是沿着垂直于最小主应力方向延伸。 (1)σz=min(σx ,σy ,σz) 水平缝 垂直缝
(2)σx(σy)=min(σx ,σy ,σz) 方向:取决于最小主应力方向
4.破裂压力梯度
破裂压力梯度用下式表示:

地层破裂压力 油层中部深度
浅层:水平缝
2)粒径及其分布 3)支撑剂类型与铺砂浓度 4)其它因素 如支撑剂的质量、密度以及颗粒园球度等
返回
第四节
压裂设计的任务:
压裂设计
优选出经济可行的增产方案
压裂设计的原则:
最大限度发挥油层潜能和裂缝的作用 使压裂后油气井和注入井达到最佳状态
压裂井的有效期和稳产期长
压裂设计的方法:
根据油层特性和设备能力,以获取最大产量或经济效 益为目标,在优选裂缝几何参数基础上,设计合适的加砂 方案。
FRCD=Wf˙Kf=(KW)f
裂缝参数:Lf,FRCD,是最关键的因素; 最大缝宽: Wmax, Wf
4 Wmax
动态缝宽:施工过程中的裂缝宽度;~10mm 支撑缝宽:裂缝闭合后的宽度 W支;3~5mm。
一、支撑剂的要求 1.粒径均匀;
2.强度大,破碎率小; 3.圆度和球度高;
4.密度小; 5.杂质少。
(2)受地层流体压缩性控制CⅡ :
当压裂液粘度接近油藏流体粘度时,控制压 裂液滤失的是储层岩石和流体的压缩性,这是因 为储层岩石和流体受到压缩,让出一部分空间压 裂液才得以滤失进去。
C
kCf 4.3 10 P r
3
1/ 2
s 式中: μr-地层流体粘度,mPa· ;
1 C

水力压裂工艺技术

水力压裂工艺技术

水力压裂工艺技术汇报人:目录•水力压裂工艺技术概述•水力压裂工艺技术流程•水力压裂工艺技术要点与注意事项•水力压裂工艺技术案例与实践•水力压裂工艺技术前景与展望01水力压裂工艺技术概述定义及工作原理水力压裂工艺技术是一种利用高压水流将岩石层压裂,以释放天然气或石油等资源的开采技术。

工作原理通过在地表钻井,将高压水流注入地下岩层,使岩层产生裂缝。

随后,将砂子或其他支撑剂注入裂缝,防止裂缝闭合,从而提高岩层渗透性,便于油气资源流向井口,实现开采。

技术革新随着技术的不断发展,20世纪中后期,水力压裂工艺技术逐渐成熟,并引入了水平钻井技术,提高了开采效率。

初始阶段水力压裂工艺技术在20世纪初开始应用于石油工业,当时技术尚未成熟,应用范围有限。

现代化阶段进入21世纪,水力压裂工艺技术进一步完善,开始采用更精确的定向钻井技术和高性能支撑剂,降低了环境污染,并提高了资源开采率。

技术发展历程水力压裂工艺技术是石油工业中最重要的开采技术之一,尤其适用于低渗透油藏的开采。

石油工业水力压裂工艺技术也广泛应用于天然气领域,通过压裂岩层提高天然气产能。

天然气工业随着非常规油气资源(如页岩气、致密油等)的开采价值日益凸显,水力压裂工艺技术成为实现这些资源商业化开采的关键技术。

非常规资源开采技术应用领域02水力压裂工艺技术流程在施工前,需要对目标地层进行详细的地质评估,包括地层厚度、岩性、孔隙度、渗透率等参数,以确定最佳的水力压裂方案。

地质评估准备水力压裂所需的设备,包括压裂泵、高压管线、喷嘴、砂子输送系统等,确保设备完好、可靠。

设备准备对井口进行清理,确保井口无杂物、无阻碍,为水力压裂施工提供安全的作业环境。

井口准备施工前准备通过压裂泵将大量清水注入地层,使地层压力升高,为后续的压裂创造条件。

注水当地层压力达到一定程度时,通过喷嘴将携带有砂子的高压水射入地层,使地层产生裂缝。

压裂随着高压水的不断注入,砂子被携带进入裂缝,支撑裂缝保持开启状态,提高地层的渗透性。

突出工作面水力压裂方案及措施

突出工作面水力压裂方案及措施

松藻煤电公司打通一矿西区W2706S工作面水力压裂方案及安全技术措施松藻煤电公司打通一矿2013年7月矿审签栏编制人编制时间审核人审核时间部门意见签名时间部门意见签名时间抽采部抽采副总通风部通风副总生产部机电副总机运部地测副总安监部采掘副总地测部安全副总自动化总工程师办公室矿审签意见:目录1 引言 (3)2 突出煤层水力压裂技术增透原理 (3)3 西区W2706S工作面水力压裂技术路线 (3)4 西区W2706S工作面水力压裂方案 (4)4.1 试验地点概况 (4)4.2 试验设备及材料 (4)4.3 试验工艺流程 (5)4.3.1 前期准备工作 (5)4.3.2 压裂钻孔施工 (6)4.3.3 压裂孔封孔工艺及要求 (6)4.3.4 实施高压水力压裂 (7)4.3.5 压裂效果考察 (8)4.3.6 抽采效果考察 (8)5 水力压裂安全技术措施 (9)5.1 设备运输措施 (9)5.2 施钻及压裂安全措施 (11)6 组织保障措施 (15)6.1 组织机构 (15)6.2 人员职责 (15)6.3 水力压裂相关部门职责 (16)7 附图 (16)1 引言松藻煤电公司打通一矿为煤与瓦斯突出矿井,主采7、8号煤层均属严重突出煤层,为确保矿井安全,进行采掘作业前必须进行瓦斯预抽,实现抽采达标。

矿井现有的瓦斯预抽以底板茅口岩巷施工穿层钻孔、回采巷道施工本层孔抽采为主,而随着采区逐渐向下延深,煤层透气性系数逐渐降低,瓦斯压力、瓦斯含量均明显提高,导致钻孔密度大、钻孔工程量大、瓦斯预抽时间长,严重制约矿井生产部署。

为增加煤层透气性,提高煤层瓦斯预抽效果,根据煤电公司2013年水治瓦斯规划,打通一矿结合前期试验经验,拟对西区W2706S工作面进行水力压裂(施工地点W2706S专抽巷),进一步考察煤层实施压裂后瓦斯运移的基本规律,并逐步将该技术推广应用,以彻底解决煤层透气性差、瓦斯预抽困难的难题,真正实现全矿井抽采达标。

水力压裂方案汇总

水力压裂方案汇总

目录一、项目说明 (2)二、压裂地点煤层赋存特征 (3)1、煤层顶底板情况 (3)2、煤层赋存特征 (3)3、综合柱状图 (4)三、水力压裂设备选型及安装 (5)1、压裂设备选择 (5)2、水力压裂材料准备 (5)3、高压系统安装 (6)四、水力压裂实施方案 (6)1、水力压裂孔施工位置 (6)2、水压裂工艺流程 (6)3、水力压裂方案实施 (7)五、安全技术措施 (8)六、避灾路线 (11)七、效果考察方案 (11)1、未压裂区域参数考察 (11)2、水力压裂效果考察 (12)3、考察孔施工先后顺序 (13)1明德立志包容超越金黄庄矿业公司B103工作面水力压裂增透试验方案及安全技术措施一、项目说明金黄庄矿业为煤与瓦斯突出矿井, 2012年7月B102首采工作面开始施工底板穿层钻孔预抽,2013年5月开始施工煤巷,在瓦斯治理过程中,煤层体现出透气性差、难抽采的特点。

为增加煤层透气性,提高预抽穿层钻孔抽采效果,保证矿井安全生产及采掘接替,金黄庄矿业与安徽理工大学合作在B103工作面底抽巷实施预抽穿层钻孔高压水力压裂技术。

利用穿层钻孔对回采区域煤层进行水力压裂作业,使煤体卸压并增加煤层内部裂隙,从而增加煤层透气性,提高预抽穿层钻孔抽采效果。

项目由金黄庄矿业总经理朱树来及安徽理工大学刘泽功教授负责,小组成员见下表:姓名职称专业单位职责刘泽功教授安全工程安徽理工大学负责人朱树来工程师采矿工程金黄庄矿业负责人蔡峰副教授安全工程安徽理工大学成员刘健副教授安全工程安徽理工大学成员罗吉安副教授安全工程安徽理工大学成员马衍坤博士安全工程安徽理工大学成员高魁博士安全工程安徽理工大学成员曹国华工程师安全工程金黄庄矿业成员孔令平工程师采矿工程金黄庄矿业成员沈小青助理工程师安全工程金黄庄矿业成员明德立志包容超越二、压裂地点煤层赋存特征1、煤层顶底板情况根据矿井瓦斯治理进度,选择在B103工作面进行水力压裂试验项目。

根据-800m南翼辅助运输大巷探煤结果及B103工作面上下顺槽底板巷穿层钻孔分析,该区域B2煤层伪顶为厚度1.3m的粉砂岩,灰黑色,裂隙不发育,较坚硬,层理不明显,含植物根部化石;直接顶为厚度3.0m左右的细砂岩,灰色,层理发育,质坚硬,有较厚泥岩夹层;老顶为中砂岩,以浅灰白色为主,灰白色、浅灰绿色次之,矿物成分以石英为主,长石次之,泥钙质胶结,具斜层理及未充填斜交裂隙。

煤矿井下水力压裂增透抽采技术

煤矿井下水力压裂增透抽采技术

水力压裂提出的背景
4 煤层气开发与瓦斯治理的现状并不乐观
1)煤层气技术现状 对于非突出煤: ◆少数地区实现了局部商业化开发; ◆而支撑整个煤层气行业的是地面垂直井压裂完井工艺; ◆可以实现水力压裂强化增透抽采 对于突出煤: 地面煤层气开发的禁区、井下瓦斯产出的低效率区
煤矿井下水力压裂增透抽采技术
主要内容
1
2
3
水力压裂提出的背景
水力压裂技术简介
水力压裂技术装备及工艺
水力压裂的应用
4
1《防治煤与瓦斯突出规定 》要求区域消突先行
水力压裂提出的背景
第六条规定:防突工作坚持区域防突措施先行、局部防突措施补充的原则。突出矿井采掘工作做到不掘突出头、不采突出面。未按要求采取区域综合防突措施的,严禁进行采掘活动。 区域防突工作应当做到多措并举、可保必保、应抽尽抽、效果达标。
渝阳煤矿水力压裂
2
压裂地点定为N3704西瓦斯巷(下)
钻孔布置
为了准确地获取煤层参数,并检验压裂效果及测试抽采半径。本次陆续共布置标准孔2个、压裂孔1个、检验孔15个
压裂过程
压裂的有效时间为10小时30分。分两个阶段,第一阶段压裂第一阶段压裂持续时间为278分钟,第二阶段持续350分钟。煤岩层产生破裂时间为第111分钟,此时压力从45.1MPa突降至36.1MPa,流量从1.2m3/h升至2.6m3/h。
——水力压裂是实现区域消突和局部消突的有效技术
单一突出煤层区域消突困难
水力压裂提出的背景
2 提高预抽瓦斯浓度的需求
抽采瓦斯浓度、抽采量、抽采率抽采时间取决于煤层透气性以及抽采工艺 ——压裂是煤层增透的有效途径、是提高预抽瓦斯浓度抽采的有力保证
水力压裂提出的背景

第六章 水力压裂技术

第六章 水力压裂技术

第六章水力压裂技术水力压裂是油气井增产、注水井增注的一项重要技术措施,不仅广泛用于低渗透油气藏,而且在中、高渗油气藏的增产改造中也取得了很好的效果。

它是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层产生裂缝。

继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到增产增注目的工艺措施。

水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和改变流体的渗流状态,使原来的径向流动改变为油层与裂缝近似性的单向流动和裂缝与井筒间的单向流动,消除了径向节流损失,大大降低了能量消耗。

因而油气井产量或注水井注入量就会大幅度提高。

如果水力裂缝能连通油气层深处的产层(如透镜体)和天然裂缝,则增产的效果会更明显。

另外,水力压裂对井底附近受损害的油气层有解除堵塞作用。

6.1 造缝机理在水力压裂中,了解造缝的形成条件、裂缝的形态(垂直或水平)、方位等,对有效地发挥压裂在增产、增注中的作用都是很重要的。

在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以提高开采速度,而且还可以提高最终采收率,相反,则可能会出现生产井过早水窜,降低最终采收率。

造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压裂液的渗滤性质及注入方式有密切关系。

图6-1是压裂施工过程中井底压力随时间的变化曲线。

P是地层破裂压力,E P是裂缝延伸压力,S P是地层压力。

F238239图6-1 压裂过程井底压力变化曲线 a —致密岩石 b —微缝高渗岩石在致密地层内,当井底压力达到破裂压力F P 后,地层发生破裂(图6-1中的a),然后在较低的延伸压力E P 下,裂缝向前延伸。

水力压裂实施方案

水力压裂实施方案

水力压裂实施方案水力压裂是一种油气田开发中常用的增产技术,通过注入高压水将油气层岩石破裂,从而增加裂缝面积,提高油气产量。

在实施水力压裂时,需要严格按照一定的方案进行操作,以确保施工的安全和效果。

下面将针对水力压裂的实施方案进行详细介绍。

一、前期准备工作。

1. 油气层地质勘探,在确定进行水力压裂的油气层之前,需要进行地质勘探,了解油气层的地质条件和裂缝分布情况,为后续的施工提供依据。

2. 设备检查与准备,在实施水力压裂前,需要对压裂设备进行全面的检查,确保设备完好无损,并做好相应的准备工作,包括备足压裂液、检查管道连接等。

3. 安全防护措施,在施工前,要对现场进行安全评估,制定安全施工方案,确保施工人员的安全,同时做好环境保护工作,避免对周围环境造成影响。

二、施工操作流程。

1. 井口准备工作,将压裂设备与井口进行连接,进行密封检查,确保压裂液不会泄漏。

2. 压裂液注入,将预先准备好的压裂液注入到井下,通过高压泵将压裂液注入到油气层中,压裂液的注入速度和压力需要根据具体的地质条件进行调整。

3. 压裂过程监控,在压裂过程中,需要对压裂参数进行实时监控,包括压力、流量、注入速度等,及时调整压裂参数,确保压裂效果。

4. 压裂结束与产能评估,当压裂液注入完毕后,需要进行一定的停顿时间,观察裂缝情况,并对产能进行评估,以确定压裂效果。

三、施工后处理工作。

1. 设备清洗与维护,在压裂结束后,需要对压裂设备进行清洗和维护,确保设备的正常使用。

2. 数据分析与总结,对施工过程中的各项数据进行分析和总结,为后续的施工提供经验和参考。

3. 安全检查与环境保护,对施工现场进行安全检查,做好环境保护工作,确保施工过程中不会对环境造成污染。

通过以上的实施方案,可以有效地进行水力压裂施工,提高油气田的产能,实现油气资源的有效开发利用。

在实际施工中,需要严格按照方案进行操作,并根据具体的地质条件进行调整,以确保施工的安全和效果。

水力压裂方案汇总【】

水力压裂方案汇总【】

目录一、项目说明 (2)二、压裂地点煤层赋存特征 (3)1、煤层顶底板情况 (3)2、煤层赋存特征 (3)3、综合柱状图 (4)三、水力压裂设备选型及安装 (5)1、压裂设备选择 (5)2、水力压裂材料准备 (5)3、高压系统安装 (6)四、水力压裂实施方案 (6)1、水力压裂孔施工位置 (6)2、水压裂工艺流程 (6)3、水力压裂方案实施 (7)五、安全技术措施 (8)六、避灾路线 (11)七、效果考察方案 (11)1、未压裂区域参数考察 (11)2、水力压裂效果考察 (12)3、考察孔施工先后顺序 (13)1明德立志包容超越金黄庄矿业公司B103工作面水力压裂增透试验方案及安全技术措施一、项目说明金黄庄矿业为煤与瓦斯突出矿井, 2012年7月B102首采工作面开始施工底板穿层钻孔预抽,2013年5月开始施工煤巷,在瓦斯治理过程中,煤层体现出透气性差、难抽采的特点。

为增加煤层透气性,提高预抽穿层钻孔抽采效果,保证矿井安全生产及采掘接替,金黄庄矿业与安徽理工大学合作在B103工作面底抽巷实施预抽穿层钻孔高压水力压裂技术。

利用穿层钻孔对回采区域煤层进行水力压裂作业,使煤体卸压并增加煤层内部裂隙,从而增加煤层透气性,提高预抽穿层钻孔抽采效果。

项目由金黄庄矿业总经理朱树来及安徽理工大学刘泽功教授负责,小组成员见下表:姓名职称专业单位职责刘泽功教授安全工程安徽理工大学负责人朱树来工程师采矿工程金黄庄矿业负责人蔡峰副教授安全工程安徽理工大学成员刘健副教授安全工程安徽理工大学成员罗吉安副教授安全工程安徽理工大学成员马衍坤博士安全工程安徽理工大学成员高魁博士安全工程安徽理工大学成员曹国华工程师安全工程金黄庄矿业成员孔令平工程师采矿工程金黄庄矿业成员沈小青助理工程师安全工程金黄庄矿业成员明德立志包容超越二、压裂地点煤层赋存特征1、煤层顶底板情况根据矿井瓦斯治理进度,选择在B103工作面进行水力压裂试验项目。

根据-800m南翼辅助运输大巷探煤结果及B103工作面上下顺槽底板巷穿层钻孔分析,该区域B2煤层伪顶为厚度1.3m的粉砂岩,灰黑色,裂隙不发育,较坚硬,层理不明显,含植物根部化石;直接顶为厚度3.0m左右的细砂岩,灰色,层理发育,质坚硬,有较厚泥岩夹层;老顶为中砂岩,以浅灰白色为主,灰白色、浅灰绿色次之,矿物成分以石英为主,长石次之,泥钙质胶结,具斜层理及未充填斜交裂隙。

第五章:水力压裂技术

第五章:水力压裂技术

σ 此时有: 代入( 并换为有效应力( 此时有: θ = -σth,代入(5—8)式,并换为有效应力 )
σ x = σ x − ps,
σ y = σ y − ps ,σ θ = σ θ − pi ) , 则可得到垂直裂缝时的破裂压力,当产生 则可得到垂直裂缝时的破裂压力,
垂直裂缝时,井筒内注入流体的压力Pi即为地层的破裂压力Pf,所以形 垂直裂缝时,井筒内注入流体的压力 即为地层的破裂压力 成垂直裂缝的条件: 成垂直裂缝的条件:
σH ——最大水平主应力,Pa; ——最大水平主应力 Pa; 最大水平主应力,
ξ1,ξ2——水平应力构造系数,可由室内测试试验结果推算,无 ——水平应力构造系数 可由室内测试试验结果推算, 水平应力构造系数,
式中 因次; 因次;
ν
α
E
——泊松比,无因次; ——泊松比,无因次; 泊松比 ——岩石弹性模量 Pa; 岩石弹性模量, ——岩石弹性模量,Pa; ——毕奥特(Biot)常数 无因次。 毕奥特(Biot)常数, ——毕奥特(Biot)常数,无因次。
构造对应力的影响 a—逆断层区域 H=3σz 逆断层区域σ 逆断层区域 b—正断层区域 z=3σH 正断层区域σ 正断层区域
人工裂缝方向示意图
(三)井壁上的应力
1.井筒对地应力及其分布的影响 .
钻井后, 钻井后,井壁及其周围地 应力分布受到井筒的影响, 应力分布受到井筒的影响, 很复杂。简化起见, 很复杂。简化起见,将地 层中三维应力用二维方法 来处理。 来处理。用无限大平板中 钻有一个圆孔的受力情况 来分析。如图5—2所示。 所示。 来分析。如图 所示 在无限大平板上钻了圆孔 之后, 之后,使板内原来平衡的 应力重新分布, 应力重新分布,造成圆孔 附近的应力集中。 附近的应力集中。

水力压裂新技术

水力压裂新技术

Flow rate Prop conc
7
6 – 停止注入后,液体不断滤失 到渗透性地层 7 – 裂缝闭合在支撑剂上,形成了 一条导流通道
一、概述
2、水力压裂的目的

提高油井的产能--产的更多、更快。 压开了一条或多条有导流能力的裂缝通道通 过近井地带的伤害区。

延伸了裂缝的通道,使其有足够的深度进入
21 22 23 24 25 26 27 28 29 30 31 6-1 6-2 6-3 6-4 6-5 6-6 6-7 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-
二、水力压裂工艺技术
重复转向压裂技术(新技术)
4.现场实施及效果分析
增产情况: 新杨11-2井 该井于2002年1月投产,初期日产油1.0t,含水55%;2002年3月压裂改造, 初期日产油6.1t,含水32.5%。后来日产油1.3t,含水84.7%。为了提高单井
二、水力压裂工艺技术
重复转向压裂技术(新技术)
4.现场实施及效果分析
2005年江苏油田选择了两口井实施重复转向压裂,转向和增产效果都 很明显:
转向情况:
沙19-14井小型压裂测得人工裂缝方位为 北东向105.8度,加转向剂后,主压裂测得裂缝
方向为北东向54.9度,裂缝转向50.9゜
新杨11-2井小型压裂测得人工裂缝方位 为北东向79.5度,加转向剂后,主压裂测得裂
二、水力压裂工艺技术
2、压裂材料
(1)压裂液
1)作用:
压裂液的基本作用为:压开裂缝并使之延伸、降低地层温度、 输送并铺置支撑剂、压裂后液体能最大限度的破胶与返排,减少 对裂缝及油层的伤害。 2)分类: 前置液(压开油层、降温)、携砂液(携带砂子)、顶替液( 将井筒中的砂浆顶入地层)

水力压裂工艺技术

水力压裂工艺技术

调整方案制定
根据评估结果,制定调整 方案,包括重新注入支撑 剂、增加裂缝长度或改变 压裂液类型等。
04
水力压裂技术的关键技术及创新 发展
支撑剂的选择与性能评价
支撑剂的材质与性能
针对不同地层条件,选择合适的支撑剂材质,如陶粒、石英砂等 ,并评估其性能,如硬度、粒径分布等。
支撑剂的表面改性
通过物理或化学方法对支撑剂表面进行改性,提高其润湿性、渗透 性和抗破碎能力。
报, 2016, 37(3): 1-10.
[2] 李四. 水力压裂设计优化 及效果评价[J]. 岩石力学与工 程学报, 2018, 37(6): 1-15.
[3] 王五. 水力压裂技术在*油 田的应用研究[J]. 地球物理学
报, 2020, 63(7): 1-12.
THANK S感谢观看
井筒准备
清洗并准备井筒,包括通井、洗井等 操作,确保井筒内无杂质,为压裂作 业做好准备。
压裂液的配制与注入
01
02
03
压裂液选择
根据地质条件和目标需求 ,选择合适的压裂液,如 瓜胶、羟丙基瓜胶、石英 砂等。
压裂液配制
按照一定的比例和顺序将 压裂液的各成分混合在一 起,确保压裂液的各项性 能指标达到要求。
03
水力压裂技术的工艺流程
压裂前的准备
目标确定
明确压裂的目的和目标,如提高石油 或天然气的产量,改善井筒周围的应 力场等。
地质评估
收集并评估与目标区域相关的地质数 据,如岩石类型、地层厚度、地层破 裂压力等。
设备检查
确保压裂设备(如压裂车、混砂车等 )处于良好的工作状态,并准备好所 需的物资和器材。
02
水力压裂技术的基本原理

水力压裂技术

水力压裂技术
—线性压裂液 —成胶压裂液
ቤተ መጻሕፍቲ ባይዱ
泡沫或者增能压裂液
--N2、CO2或者二者的混合
油基压裂液 酸基压裂液
—稠化酸 —泡沫酸 —胶联酸
支撑挤以及影响裂缝导流能力的因素 支撑挤类型
砂类
—新疆砂、兰州砂
陶瓷类 宜兴、洛阳(中等强度、高强度、比重小)
树脂砂 闭合压力的增大 腐蚀
裂缝导流能力 降低的因素
该工艺是在前置液压开地层后注入转向剂(控底剂、 控顶剂),控制逢高的延伸。此外该转向剂还是良好的降 滤剂,可以有效降低酸液的滤失,促使酸液向地层深部穿 透。
几种压裂工艺 分层压裂工艺技术
油田开发进入中后期以后,层间矛盾加剧,水窜严重, 有针对性的分层压裂技术是挖潜的重要手段。
压裂防砂技术
A、树脂防砂机理 覆膜砂是在筛选好的石 英砂表面,涂敷一层能够耐 高温的树脂粘合剂,制成常 温下呈分散粒状的树脂覆膜 砂,施工时在泵入石英砂后 期将树脂覆膜砂尾追泵入油 层,在油层温度和压力下, 树脂粘合剂交联固化,在井 底附近形成一个渗透率较好 且具有一定强度的挡砂屏障 以达到防止地层出砂的目的 。
转向压裂的技术原理
暂堵剂为粘弹性的固体小颗粒,遵循 压裂井 流体向阻力最小方向流动的原则,转向剂 颗粒进入原有裂缝或高渗透层连通的井筒 的炮眼,部分进入地层中的裂缝端部或高 渗透层,在炮眼处和高渗透带产生滤饼桥 堵,使后续工作液不能向裂缝和高渗透带 进入,造成地层水平诱变应力的变化,当 原来的最小主应力有由于诱变应力的变化 暂堵剂 而变得比原来的最大主应力还大时,在一 定的水平两向应力差条件下,就会产生二 次破裂进而改变裂缝起裂方位以产生新缝。
井场准备
施工准备
压裂液准备 支撑挤准备 应急方案

采油工程(水力压裂)

采油工程(水力压裂)

3、支撑剂对裂缝的导流能力的影响 、 支撑剂的强度、尺寸、 支撑剂的强度、尺寸、排列及浓度都会直接影响 到裂缝的宽度和渗透率, 到裂缝的宽度和渗透率,同时还要考虑到支撑 剂与地层特性的相互关系。 剂与地层特性的相互关系。 1)在不同的闭合压力及岩性条件下,支撑剂的强 )在不同的闭合压力及岩性条件下, 度对裂缝的导流能力的影响 2)不同类型支撑剂及其在裂缝内的铺置浓度对裂 ) 缝的导流能力的影响 3)支撑剂颗粒大小、均匀程度对裂缝的导流能力 )支撑剂颗粒大小、 的影响 4)支撑剂裂缝的导流能力的影响 ) 4、支撑剂在裂缝中运行 、
3)当比值Kf·Wf/Kh(水平裂缝)或 Kf·Wf/K(垂 )当比值 (水平裂缝) ( 直裂缝)较小时, 直裂缝)较小时,增产水平裂缝的半径或垂直裂 缝的长度,增产效果不显著; 缝的长度,增产效果不显著;当水平裂缝的半径 或垂直裂缝的长度较小时,增大比值Kf·Wf/Kh 或垂直裂缝的长度较小时,增大比值 水平裂缝) ),即增大 (水平裂缝)或 Kf·Wf/K(垂直裂缝),即增大 (垂直裂缝), 裂缝的导流能力,增产效果提高不显著。 裂缝的导流能力,增产效果提高不显著。 5)对垂直裂缝而言,增产倍数与产层厚度无关。水 )对垂直裂缝而言,增产倍数与产层厚度无关。 平裂缝的增产倍数与产层厚度有关, 平裂缝的增产倍数与产层厚度有关,产层越薄增 产倍数越多。另一方面,厚油层形成水平裂缝时, 产倍数越多。另一方面,厚油层形成水平裂缝时, 如多压开几条缝,相当增大了裂缝的宽度, 如多压开几条缝,相当增大了裂缝的宽度,可以 获得更高的增产效果。 获得更高的增产效果。 压裂实践证明,孔隙性油气层, 压裂实践证明,孔隙性油气层,压裂增产倍数一般 几倍,若裂缝沟通了天然裂缝或高渗透区, 几倍,若裂缝沟通了天然裂缝或高渗透区,增产 倍数可以达到几十倍。 倍数可以达到几十倍。

水力压裂技术

水力压裂技术

水力压裂技术
水力压裂技术是一种能够有效提高油气产量的地质勘探辅助技术。

一、水力压裂技术简介
1.水力压裂技术是一种通过用大量液体以高压施加压力,将储层岩石纵向、横向或斜向地分裂,使油气储层内孔、构造释放效果良好的施工技术。

2.水力压裂技术以其技术效果显著、成本低廉、对地质环境影响小等特点,已成为油气工业中比较流行的勘探技术和钻井施工技术之一。

二、水力压裂技术的原理
1.原理一:岩石的压强特性是在真空条件下的极限吸水压强;
2.原理二:液体介质的施压作用比岩石压强体积力作用大;
3.原理三:射流压力随着注液速率的改变和液面的变化而改变。

三、水力压裂技术的操作步骤
1.准备:改变井口状态,将井内的液体抽掉,并由准备顶管和裂缝钢管完成井内准备工作;
2.打液:使用高压液压器,向井内注入高压水和外加剂;
3.关停:施工完成后将井口关闭;
4.返液:经过一段时间的流体停留后,逐步抽出返液;
5.解堵:在抽出液体后,通常还需要使用特殊器材进行清堵;
6.注气:施工完毕解堵后,将井内注入低温压缩空气,催流伤油气到井口。

四、水力压裂技术的应用
1.水力压裂技术以延伸释放原有储层压力、增大渗透率和改善分布状态等,有
效提高油气产量,拓宽油气可采范围;
2.水力压裂技术可以在油藏上把缝体内的水冻结下来限流,抑制油藏的水蔓延,阻断有害水的扩散;
3.水力压裂技术应用于井盖层上可以促使井内孔隙发育,增加原有油气藏储层
底板井段压裂柱面积,提高油气密度和油气产量;
4.水力压裂技术也可以解决管网供水受污染的问题,把被污染的水更新后用于
工业和农业生活用水等。

水力压裂技术

水力压裂技术

压裂工艺技术 压裂工艺技术是影响压裂增产效果的
一个重要因素。对于不同特点的油气层,

必须采取与之相适应的工艺技术,才能
保证压裂设计的顺利执行和取得较好的增 产效果。
压裂方式选择 压裂方式选择是压裂工艺中的一个很重要的
内容。压裂方式的选择主要是根据地质条
件、井身状况、工艺技术水平而定。
目前常用的压裂方式有:合层压裂、分层压 裂、一次分压多层和深层压裂。
结合离子,从而改变其理化性质,或破坏其离子交换能力,或破坏双
电层离子云之间的斥力,从而达到防止粘土水合膨胀或分散迁移的效 果。
压裂液的主要添加剂
7、降阻剂。在进行深井压裂作业时,需用降阻剂降低压 裂液在注入管柱中的沿程摩擦阻力,以提高泵效。 8、降滤失剂。通过在压裂液中添加降滤失剂可以增强压
裂液造壁性能,降低液体滤失量,提高液体效率。
压裂液的性能
5、配伍性。压裂液要与地层条件下的各种岩石矿物及流体有 较好的配伍性,不应在进入地层后产生不利于油气渗流的物 理-化学反应。 6、低残渣。要尽量降低压裂液中水不溶物的数量(残渣), 以免降低岩石及填砂裂缝的渗透率。 7、易返排。施工结束后大部分注入液体应能返排出井外,以 减少压裂液的损害。 8、货源广。价格便宜,便于配制。
低压管汇 储液罐
砂罐
混砂车
供液管汇
压裂泵车 监控车 高压管汇
压裂井口
压裂施工现场示意图
压裂增产增注机理
1、降低井底附近渗流阻力 2、改变井底附近渗流形态,使原来的径 向流动改变为油层流向裂缝近似性的单 向流和裂缝到井筒的单向流动,消除了 径向节流损失,大大降低了能量的消耗。
压裂液的定义和作用
压裂液是水力压裂改造油气层过程中的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国投新集能源股份有限公司新集二矿GUO TOU XIN JI NENG YUAN GU FEN YOU XIAN GONG SI XIN JI ER KUANG 新集二矿煤层增透技术试验方案设计:审核:安徽理工大学国投新集能源股份有限公司新集二矿编制日期:2014年2月17日1概况为提高预抽钻孔抽采效果,缩短预抽时间,保证矿井安全生产及采掘接替。

将在-650m1煤西翼截水巷进行预抽钻孔高压水力压裂项目的研究。

以解决矿井煤层透气性差、瓦斯预抽困难的难题。

为保证压裂有序、顺利实施,特编制此安全技术措施。

2试验区域概况-650m1煤西翼截水巷与地面相对位置处于矸石山西面。

该区域范围的地面水体及其它对本工程施工不构成影响。

-650m1煤西翼截水巷主要在1灰及其顶、底板岩石、煤线,1煤组底板岩石层位中向前掘进。

巷道施工过程中将会揭露2灰。

巷道依次揭露岩性如下: 2灰:厚度1.1~3.8m,平均2.4m。

粉砂岩:厚度0.5~1.9m,平均1.2m。

细砂岩:厚度2.1~4.3m,平均3.2m。

铝质泥岩:厚度0.3~1.1m,平均0.6m 。

1灰:厚度1.1~3.8m,平均2.4m。

砂质泥岩:厚度1.8~3.4m,平均2.5m。

泥质砂岩:厚度14.0~18.2m,平均15.0m。

-650m1煤西翼截水巷掘进过程中揭露岩层走向一般为85°~100°,倾向一般为355°~10°,岩层倾角一般为5°~20°,平均倾角9°左右。

岩层以单斜构造为主,根据上覆6、8煤层回采情况分析:预计巷道施工过程中,中、小断层、褶曲可能较为发育,局部煤(岩)层反倾(南倾)、裂隙较发育。

3水力压裂增透防突技术原理3.1 水力压裂机理及过程分析1.水力压裂机理分析水力压裂的基本原理是将高压水( 压裂液) 注入煤体中的裂缝内( 原有裂隙和压裂后出现的裂隙) ,克服最小主应力和煤体的抗裂压力,扩宽伸展并沟通这些裂缝,增加煤层相互贯通裂隙的数量和增大单一裂隙面的张开程度,进而在煤体中产生更多的人造裂缝与裂隙,从而增加煤层的透气性。

2.水力压裂过程分析煤层水力压裂是一个逐渐湿润煤体、压裂破碎煤体和挤排煤体中瓦斯的注水过程。

在注水的前期,注水压力和注水流量随注水时间呈线性升高;随后,注水压力与流量反向变化,并呈波浪状。

这直观反映出了在注水初期,具有一定压力和流速的压力水通过钻孔进入煤体裂隙,克服裂隙阻力运动。

当注入的水充满现有裂隙后,水流动受到阻碍,由于煤体渗透性较低,导致水流量降低,压力增高而积蓄势能;当积蓄的势能足以破裂煤体形成新的裂隙时,压力水进入煤体新的裂隙,势能转化为动能,导致压力降低,水流速增加;当注入的水( 压裂液) 携带煤泥堵塞裂隙时,煤体渗透性降低,水难以流动使流量下降,压力上升。

3.2 水力压裂合理注水参数分析煤层水力压裂包括煤体裂缝起裂和煤体裂缝延伸2个方面,煤体的裂缝起裂受许多因素的控制,一般通过试验加以确定。

根据以往研究表明: 煤体的裂缝起裂和延伸取决于注水速度( 时间效应) 、注水压力、煤体的非均质性( 规模效应) 和煤层的应力状态等,影响煤层水力压裂效果的压裂参数很多,主要可分为外部工艺因素和煤体内在本质因素2类。

1.外部工艺因素外部工艺因素主要包括注水压力、注水孔间距、注水流、注水速度、钻孔长度、封孔方法与封孔长度、注水时间等参数,它们互有联系和影响;同时还与地质和采矿技术因素以及压裂设备的性能有关。

(1)注水压力在一般开采条件下,煤体难以形成孔隙裂隙网,以致煤层难以得到充分的卸压增透,故在压裂时应施加一定的压力,才能将水有效地压裂到煤体中并使煤体产生裂隙起裂和延伸,形成孔隙裂隙网。

以往试验结果表明,在围压不变的条件下,随着注水压力的增加,导水系数呈非线性增大,当注水压力达到某一极限值时,导水系数骤然增大,此时煤体完全被压裂,内部形成大的贯通裂缝网,通常煤体裂隙起裂和延伸随注水压力的增加而增大。

因此,注水压力是衡量压裂效果的一个重要参数,如果注水压力过大且封孔深度与注水压力不匹配时,容易造成封孔段泄漏,影响压裂效果;如果注水压力过小,将起不到压裂效果,这就相当于中高压煤层注水润湿。

(2)注水压裂孔间距回采工作面注水孔间距根据压裂钻孔的压裂半径而定。

如果孔间距过小,则增加了钻孔和注水工作的施工量,同时在瓦斯抽放时容易抽出大量的水;如果孔间距过大,则可能存在注水空白带,即压裂孔的高压水不能有效地把瓦斯挤排到抽放孔,影响压裂效果和瓦斯抽放效果。

(3)封孔深度与封孔方法封孔是实现孔口密封、保证压力水不从孔口及附近煤壁泄漏的重要环节,是决定煤层水力压裂效果好坏的关键。

封孔深度也是水力压裂工艺的一个重要参数,决定封孔深度的因素是注水压力、煤层裂隙、沿巷道边缘煤体的破碎带深度、煤的透水性及钻孔方向等,一般封孔深度与注水压力成正比。

封孔深度应保证煤层在未达到要求的注水压力和注水量前,水不能由岩煤壁或钻孔向巷道渗漏。

(4)注水量煤体润湿需要一定的水,如果单孔注水量过大,虽然容易把游离瓦斯挤排出去,但增加了压裂工作的施工量和成本;如果注水量过小,可能影响压裂效果。

(5)注水速度注水速度是压裂工艺的一个重要参数,如果注水速度太快,新裂隙还没有生成,原有裂隙还没有扩宽并伸展,新老裂隙还没有沟通形成一个有效排泄瓦斯的孔隙裂隙网,则影响挤排瓦斯效果;同时,注水速度过快,要求注水压力等相应地增大。

如果注水速度过低,要达到一定的注水量,则注水时间增长,这将影响注水作业的进度,同时要求注水压力等相应地降低,可能起不到预期压裂效果。

2.煤体内在因素煤体内在因素主要包括: 煤体内部的孔隙裂隙特征( 煤层孔隙裂隙的发育程度) ,煤层的埋藏深度( 地压的集中程度) ,煤的化学组份( 水与煤的湿润边角和水的表面张力系数) ,瓦斯压力,煤层的顶底板状况。

(1)煤体内部的孔隙裂隙特征( 煤层孔隙裂隙的发育程度) 。

煤体是一种孔隙和裂隙都十分发育的双重介质。

二者共同构成了煤层水力压裂时的渗透通道和瓦斯挤排通道。

在煤层注水压裂的过程中,煤层孔隙裂隙发育程度对煤体的均匀湿润、物理力学特性的改变有重要影响。

压裂时,水在压力作用下以相当大的流速运动,包围被裂切割的煤块,同时缓慢地通过微小孔隙,向煤块内部渗透。

因此,煤体压裂效果不仅与煤的孔隙有关,还直接受裂隙的影响,裂隙不发育的煤体很难注水,此时就需要较高的压力迫使煤体产生新的裂隙和孔隙。

(2)瓦斯压力。

煤层内的瓦斯压力是水力压裂时的附加阻力。

压裂时,水压克服煤体瓦斯压力后所剩余的压力才是压裂时的有效压力,因此,煤层内的瓦斯压力越大,需要的注水压力也越高,所以瓦斯压力的大小也影响煤体的渗透性能和注水压力。

(3)煤的化学组份。

煤的化学组份对煤层压裂效果的影响主要表现在: 不同化学组份的煤体被水湿润的性质不同,以致瓦斯被挤排的程度不同。

煤体的湿润能力取决于水与煤的湿润边角和水的表面张力系数。

水与煤体的湿润边角大小反映了水分子与煤分子的吸引力大小,吸引力越大湿润边角越小,越易于注水,相反则难于注水。

因此,降低水的表面张力可以提高煤体的湿润能力,提高注水速度。

如果在注水流程中添加活性湿润剂( 压裂剂) ,降低水的表面张力,能增强水在煤层中的渗透能力,能解决水不能渗入煤体微裂隙等问题。

(4)煤层的埋藏深度。

随着埋藏深度的增加,煤层承受地层压力也随之增加。

受压力影响,裂隙被压紧,裂隙容积降低,渗透系数也会随之降低。

通常地应力大,注水压力必须克服地应力,才能有效地使煤体扩宽伸展裂隙,形成有效的孔隙裂隙网。

所以,煤层压裂时注水压力必须大于地应力。

4试验方案试验方案的指导思想是利用钻孔对煤体进行水力压裂增强1煤煤层透气性,提高瓦斯抽采效果。

在掌握水力压裂机理和压裂过程的基础上,从理论上分析了压裂参数及其影响因素,再结合现场应用,最终确定出合理的压裂参数。

深入研究合理的压裂参数对提高煤层的渗透率和煤层瓦斯的抽采效果具有现实意义,同时对水力压裂技术在新集二矿防突方面的推广应用具有很重要的意义。

针对水力压裂的技术特点因素进行分析、探索和试验,提出解决问题的对策并进行工业试验,确保试验过程的安全及全面。

具体现场试验方案为:1.选择适合的快段布置压裂孔和出水孔测试水力压裂半径;2.水力压裂完毕后距离压裂孔不同距离、分不同时间布置取芯钻孔取煤样化验煤体含水量;3.水力压裂、排水完毕后在水力压裂半径内考察水力压裂影响下抽采半径、煤层透气性系数;4.布置多组抽采钻孔考察水力压裂影响下走向、倾向抽采效果。

5水力压裂技术5.1 水力压裂水压选择根据林柏泉《含瓦斯煤体水力压裂动态变化特征研究》,煤层破裂压力主要与煤层赋存深度有关,两者之间可用下式表示:Pi=0.023H+1.3P+2.04 (1)式中:Pi——煤层破裂压力(MPa);P——煤层瓦斯压力(MPa),2.0MPa;H——煤层赋存深度(m),-650m。

计算可得,试验区域煤层破裂压力20MPa。

故本次水力压裂水压为:注水孔水压为20~30MPa。

压裂半径考察分为走向压裂半径和倾向压裂半径分别进行,具体布置形式如图1、2所示。

压裂过程中,出现以下情况之一判定压裂半径有效:1.出水钻孔明显出水;2.出水钻孔压力明显上升;3.围岩渗水,顶板掉渣和围岩深部爆裂声。

图 1 压裂平面图图 2 压裂剖面图5.2 水力压裂条件下抽采半径考察对1煤层实体段水力压裂后进行抽采40天的抽采半径考察。

采用考察钻孔瓦斯压力变化的考察方案,具体考察方案如图3、4所示。

原压裂孔若封孔完好可以用压裂孔代替抽采孔,若压裂孔不具备代替抽采孔的条件可以在压裂孔附近岩性完好处补打抽采孔,原压裂孔必须重新注浆封堵(抽采孔安装四参数流量自动计量装置,所有装自动计量装置均实现在线监测)。

考察步骤为:压裂后排水完毕→确定抽放时间→预计抽放半径→打测压孔→压力稳定后→抽采→观察测压孔瓦斯压力变化→确定对应抽放时间的抽采半径。

具体如图3、4所示。

图3压裂效果考察平面图图 4 压裂效果考察剖面图对1煤实体段水力压裂后,对抽采孔和压裂孔进行合茬抽采,考察水力压裂条下抽采效果,具体考察指标为:抽采孔流量、纯量、浓度。

(压裂孔压裂完毕抽采时,压裂孔和抽采孔安装四参数流量自动计量装置,所有装自动计量装置均实现在线监测,所有抽采孔口均安装闸阀)5.3水力压裂条件下煤体含水量的考察为了测试水力压裂条件下水力压裂湿润半径,在距离压裂孔不同距离、分不同时间布置取芯钻孔取煤样,将煤样送往安徽理工大学热力学实验室化验煤体水分。

取芯钻孔布置如图5所示。

图5 取芯钻孔布置图如图5所示,距离压裂孔由远向近分别布置取芯钻孔。

具体布置取芯钻孔顺序为:压裂完毕排水2天后布置距离压裂孔45米的1#取芯钻孔,间隔两天后布置5#取芯钻孔,间隔两天后布置2#取芯钻孔,间隔两天后布置4#取芯钻孔,间隔两天后布置3#取芯钻孔。

相关文档
最新文档