高中数学选修知识点总结

合集下载

高中数学选修一知识点总结

高中数学选修一知识点总结

高中数学选修一知识点总结本文将从以下几个方面对高中数学选修一的知识点进行总结:函数、三角恒等变换、数列与数学归纳法、排列与组合、数学归纳法、不等式及其应用。

通过本文的总结,希望能够帮助同学们更好地理解和掌握这些知识点。

1. 函数函数是高中数学的一个重要概念,也是数学研究的一个重要分支。

在高中数学选修一中,我们主要学习了一元二次函数、指数函数、对数函数、幂函数等基本函数,并学习了函数的性质、图像、基本性质以及相关的应用。

在学习函数的过程中,我们要掌握函数的定义,函数的性质,函数的图像与性质,以及函数的应用。

通过学习函数,可以帮助同学们更好地理解数学知识,提高数学解题的能力。

2. 三角恒等变换三角恒等变换是高中数学选修一中的一个重要知识点。

在学习三角恒等变换的过程中,我们主要学习了三角函数的基本概念,三角函数的性质,三角函数的图像等内容。

同时,我们也学习了三角函数的恒等变换,包括倍角公式、半角公式、和差化积公式等。

通过学习三角恒等变换,可以帮助同学们更深入地理解三角函数的概念和性质,提高解决三角函数相关问题的能力。

3. 数列与数学归纳法数列是高中数学选修一中的一个重要知识点。

在学习数列的过程中,我们主要学习了等差数列、等比数列、数列的通项公式、数列的性质、数列的应用等内容。

同时,我们还学习了数学归纳法,这是解决数列问题的一种重要方法。

通过学习数列与数学归纳法,可以帮助同学们更好地理解数列的概念和性质,提高解决数列问题的能力。

4. 排列与组合排列与组合是高中数学选修一中的一个重要知识点。

在学习排列与组合的过程中,我们主要学习了排列、组合、二项式定理、排列组合的性质与应用等内容。

通过学习排列与组合,可以帮助同学们更好地理解排列组合的概念和性质,提高解决排列组合问题的能力。

5. 不等式及其应用不等式是高中数学选修一中的一个重要知识点。

在学习不等式的过程中,我们主要学习了一元一次不等式、二元一次不等式、绝对值不等式、不等式的解法、不等式的性质与应用等内容。

数学选修部分知识点总结

数学选修部分知识点总结

数学选修部分知识点总结1. 高级代数高级代数是数学选修课中的重要内容,包括多项式、不等式、函数、方程组等知识点。

其中,多项式是一个常见的数学对象,它是一种形式为f(x) = a0 + a1x + a2x^2 + ... + anxn的函数,其中a0, a1, ..., an是常数,x是变量,n是一个非负整数。

多项式可以进行加法、减法和乘法运算,还可以进行整除运算,根据多项式的性质和运算规则可以求出多项式的零点、系数和导数等信息。

不等式是一个包含不等号的数学表达式,它可以表示变量之间的大小关系,比如x < y、x > y、x <= y、x >= y等。

解不等式时需要考虑不等式的性质和运算规则,通常可以通过变换形式、直接求解、图像法等方法来求解不等式的解集。

函数是一个常见的数学对象,它描述了一个自变量和一个因变量之间的关系。

函数可以用符号、公式、图像等形式来表示,包括线性函数、二次函数、指数函数、对数函数等不同类型的函数。

在学习函数的过程中,需要掌握函数的性质、函数的图像、函数的运算、函数的变换等内容。

方程组是由若干个方程组成的数学对象,它描述了多个未知数之间的关系。

方程组可以分为线性方程组和非线性方程组,根据方程组的性质和数量可以采用不同的解法,比如代入法、相消法、换元法等。

2. 几何几何是数学选修课中的另一个重要内容,包括向量、平面几何和立体几何等知识点。

向量是一个常见的数学对象,它描述了空间中的方向和大小,可以进行加法、减法和数乘等运算,具有平移和方向性等特点。

平面几何是关于平面图形的性质和运算的数学分支,它包括直线、圆、多边形等内容。

在学习平面几何时,需要了解平面几何的基本概念、定理和方法,比如点、直线、线段、角、全等、相似、圆等内容。

立体几何是关于立体图形的性质和运算的数学分支,它包括球、柱、锥、台等内容。

在学习立体几何时,需要了解立体几何的基本概念、定理和方法,比如体积、表面积、平行截面剖面等内容。

高中数学选修知识点总结

高中数学选修知识点总结

高中数学选修1-1知识点总结第一章 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and ) :命题形式p q ∧; ⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧p q ∨ p ⌝ 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线一、椭圆1、椭圆的定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.二、双曲线1、双曲线的定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。

第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。

全国版高中数学选修一知识点总结归纳

全国版高中数学选修一知识点总结归纳

全国版高中数学选修一知识点总结归纳高中数学选修一是进一步拓宽和深化学生对数学知识的学习,为进一步学习数学奠定基础。

下面是全国版高中数学选修一的知识点总结归纳:1.函数-函数的概念:自变量、因变量、定义域、值域、函数图像。

-初等函数:常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。

2.二次函数-二次函数的定义与性质:顶点、对称轴、增减性、最值、零点。

-二次函数的图像与方程:平移、对称变换。

-二次函数的应用:最优化问题、几何问题、物理问题等。

3.三角函数-弧度制与角度制:弧度与角度的相互转换。

-正弦函数、余弦函数与正切函数:定义、性质、图像、周期、幅值。

-三角函数的图像与变换:平移、倍数、反函数。

-三角函数的应用:角的计算、几何问题、物理问题等。

4.数列与数列的极限-数列的概念:递推公式、通项公式。

-等差数列:通项公式、前n项和、公差与项数之间的关系。

-等比数列:通项公式、前n项和、初项与公比之间的关系。

-数列的极限:数列的有界性、数列的单调性、数列极限的概念与判定。

5.极坐标系与参数方程-极坐标系:坐标系的概念、极坐标的表示、平面上点的极坐标、点的极坐标与直角坐标的转换。

-极坐标与参数方程的图形:心形线、阿基米德螺线、渐开线等。

6.矩阵与行列式-矩阵的概念与运算:矩阵的表示、矩阵的运算(加法、数乘、乘法)。

-矩阵的初等变换与逆矩阵:初等行变换、初等列变换、矩阵的秩、矩阵的逆。

-行列式的定义与性质:二阶与三阶行列式的计算。

-线性方程组与矩阵方程:线性方程组的解法、齐次与非齐次线性方程组。

7.向量与坐标-向量的概念与运算:向量的表示、向量的运算(加法、数乘、数量积、向量积)。

-向量的坐标表示与相互关系:向量与坐标的转换、数量积、向量积与坐标的关系。

-平面向量的线性变换与应用:向量的平移、旋转、反射等。

8.空间几何-空间直线的表示与性质:点向式、对称式、规范式、平行与垂直关系。

-空间平面的表示与性质:点法式、方向向量、平行与垂直关系、点与平面的距离。

高中数学选修三知识点全总结

高中数学选修三知识点全总结

高中数学选修三知识点全总结1. 复数与多项式:包括复数的概念,实部和虚部;复数的四则运算,共轭复数和模的概念;多项式的基本概念,包括系数、次数和根的概念;多项式的运算法则,包括加法、乘法、除法和求导等。

2. 数列与数学归纳法:数列的概念,包括等差数列和等比数列;数学归纳法的原理和步骤。

3. 几何证明选讲:包括三角形全等的证明方法,平行线的证明方法,线段的垂直平分线的证明方法,角的平分线的证明方法等。

4. 极坐标与参数方程:极坐标系的基本概念,极坐标与直角坐标的互化,极坐标方程的作图方法;参数方程的基本概念,参数方程的应用等。

5. 推理与证明:包括直接证明和间接证明,数学归纳法的应用,反证法的应用等。

6. 概率与统计:包括古典概型,几何概型,条件概率,独立事件的概率,随机变量的分布和数学期望等。

7. 优选法与试验设计初步:包括优选法的基本概念和应用,试验设计的基本概念和应用等。

8. 统筹法与图论初步:包括统筹法的基本概念和应用,图论初步的概念和应用等。

9. 坐标系与参数方程:包括直角坐标系、极坐标系和参数方程的基本概念和性质;平面解析几何的基本思想和应用等。

10. 矩阵与变换:包括矩阵的基本概念和性质,矩阵的初等变换和应用,矩阵的秩和行列式等。

11. 算法初步:包括算法的基本概念和应用,流程图和伪代码的编写,算法的复杂度分析等。

12. 初步概率:包括概率的基本概念和性质,古典概型和几何概型的计算和应用,条件概率和独立事件的概率等。

13. 统计案例分析:包括假设检验、方差分析、回归分析和协方差分析等统计方法的应用,以及对应的案例分析。

14. 优选法与试验设计:包括优选法的实际应用和试验设计的基本原理和方法,如何应用优选法和试验设计解决实际问题。

15. 统筹法与图论初步:包括统筹法的实际应用和图论初步的理论和应用,如何应用统筹法和图论初步解决实际问题。

这些知识点都是为了让学生更好地理解和掌握数学在实际生活中的应用,提高学生的数学素养和应用能力。

高中数学选修知识点归纳

高中数学选修知识点归纳

高中数学选修知识点归纳高中数学课程中,选修部分的内容涵盖了不同的数学分支,如函数、几何、概率等。

这些知识点在高中数学学习中具有重要作用,对于学生提高数学水平以及成功参加高考有极大的帮助。

本文将对高中数学选修知识点进行归纳总结,以期为学生提供一个全面的学习指南。

一、函数1.基础概念:定义域、值域、图像、单调性、奇偶性等。

2.初等函数:常函数、幂函数、指数函数、对数函数、三角函数等。

3.函数的运算:加减乘除、复合函数等。

4.函数的极限:极限的基本概念、极限的计算方法等。

5.导数与微分:函数的导数与微分、导函数、求导法则等。

二、几何1.向量:向量的基本概念、向量的加法、数量积、向量积等。

2.空间几何:空间直线和平面的位置关系、射影定理、球面三角形等。

3.解析几何:平面直角坐标系和极坐标系、点和线方程、圆和曲线方程、平面图形的性质等。

4.立体几何:正方体、正八面体、棱锥、棱台等的性质。

三、数列和数学归纳法1.数列:数列的基本概念、公差、前n项和等。

2.等差数列和等比数列:基本公式及其运用、求前n项和的公式等。

3.数学归纳法:基本概念、证明方法、注意事项等。

四、概率1.基本概念:随机事件、样本空间、概率、条件概率等。

2.概率的计算:加法原理、乘法原理、全概率公式等。

3.离散型随机变量:随机变量的定义、概率分布、期望和方差等。

4.统计学:样本和总体、频数分布表、统计图表(如直方图和散点图)等。

五、数理逻辑1.命题、联结词:命题的基本概念、逆命题、逆否命题、充分条件、必要条件等。

2.命题的等价和推理:等价命题、充要条件、引理、蕴含和推理等。

3.证明方法:数学归纳法、归谬法、逆证法等。

本文只是对高中数学选修部分知识点进行简要说明,更详细的内容需要学生通过自主学习、试题实践和参考教材等渠道进行深入掌握。

学生需要注意的是,以上内容只是高中数学选修课程的部分内容,学习高中数学还需注重基础知识和必修内容的学习,才能取得更好的学习效果。

高中数学必修选修全部知识点精华归纳总结

高中数学必修选修全部知识点精华归纳总结

高中数学必修 +选修知识点归纳新课标人教 A 版前言1.课程内容:必修课程由 5 个模块构成:必修 1:会合、函数观点与基本初等函数(指、对、幂函数)必修 2:立体几何初步、平面分析几何初步。

必修 3:算法初步、统计、概率。

必修 4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修 5:解三角形、数列、不等式。

以上是每一个高中学生所一定学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技术的主要部分,此中包含会合、函数、数列、不等式、解三角形、立体几何初步、平面分析几何初步等。

不一样的是在保证打好基础的同时,进一步重申了这些知识的发生、发展过程和实质应用,而不在技巧与难度上做过高的要求。

别的,基础内容还增添了向量、算法、概率、统计等内容。

选修课程有 4 个系列:系列 1:由 2 个模块构成。

选修 1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修 1—2:统计事例、推理与证明、数系的扩充与复数、框图系列 2:由3 个模块构成。

选修 2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修 2—2:导数及其应用,推理与证明、数系的扩大与复数选修 2—3:计数原理、随机变量及其散布列,统计事例。

系列 3:由 6 个专题构成。

选修 3—1:数学史选讲。

选修 3—2:信息安全与密码。

选修 3—3:球面上的几何。

选修 3—4:对称与群。

选修 3—5:欧拉公式与闭曲面分类。

选修 3—6:三平分角与数域扩大。

系列 4:由 10 个专题构成。

选修 4—1:几何证明选讲。

选修 4—2:矩阵与变换。

选修 4—3:数列与差分。

选修 4—4:坐标系与参数方程。

选修 4—5:不等式选讲。

选修 4—6:初等数论初步。

选修 4—7:精选法与试验设计初步。

选修 4—8:兼顾法与图论初步。

选修 4—9:风险与决议。

选修 4—10:开关电路与布尔代数。

高中数学解题基本方法一、配方法二、换元法三、待定系数法四、定义法五、数学归纳法六、参数法七、反证法八、消去法九、剖析与综合法十、特别与一般法十一、类比与归纳法十二、察看与实验法高中数学常用的数学思想一、数形联合思想二、类议论思想三、函数与方程思想四转变(化归)思想2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考有关考点:⑴会合与简略逻辑 : 会合的观点与运算、简略逻辑、充要条件⑵函数:映照与函数、函数分析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关观点、等差数列、等比数列、数列乞降、数列的应用⑷三角函数:有关观点、同角关系与引诱公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关观点与初等运算、坐标运算、数目积及其应用⑹不等式:观点与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的地点关系、线性规划、圆、直线与圆的地点关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的地点关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽摆列、组合和概率:摆列、组合应用题、二项式定理及其应用⑾概率与统计:概率、散布列、希望、方差、抽样、正态散布⑿导数:导数的观点、求导、导数的应用⒀复数:复数的观点与运算必修 1 数学知识点第一章:会合与函数观点§1 、把研究的象称元素,把一些元素成的体叫做会合。

高中选修5数学知识点总结

高中选修5数学知识点总结

高中选修5数学知识点总结一、基本概念1.1 对数函数对数函数是指以a为底的对数函数。

其定义域为正实数集合,值域为实数集合。

对数函数的图象是以直线 y=x 为对称轴的曲线。

1.2 指数函数指数函数是指 y=a^x 这种形式的函数。

其中a>0且a≠1,x∈R。

指数函数的图象是在(a,0)处与x轴相交,且随x的增大而增大。

1.3 导数与微分导数表示函数在某一点处的变化率,即函数的瞬时变化量与自变量的瞬时变化量的比值。

微分是导数的几何意义,在函数图像上表现为曲线的局部线性近似。

1.4 概率与统计概率是指某一事件发生的可能性。

概率是一个介于0和1之间的实数。

统计是通过收集、整理、分析、解释数据,从而得出结论的过程。

统计包括描述统计和推断统计。

1.5 三角函数三角函数是以角为自变量的周期函数。

常见的三角函数有正弦函数、余弦函数、正切函数等。

三角函数在数学和物理等领域有广泛的应用。

二、知识点应用2.1 对数函数的应用对数函数在科学、工程、经济、生活等领域都有广泛的应用。

例如在科学中常用对数函数来描述物理规律,工程中常用对数函数来描述振动、衰减等问题,经济学中常用对数函数来描述人口增长、资金投资等情况。

2.2 指数函数的应用指数函数在增长、衰减、放射性衰变、利滚利等问题中有广泛的应用。

在生活中,指数函数也常常用来描述生物或物种的增长、衰退等情况。

2.3 导数与微分的应用导数与微分在物理、工程、经济学等领域有广泛的应用。

例如在物理中,导数与微分可以描述速度、加速度、力等物理量的变化规律。

在经济学中,导数与微分可以用来描述边际效用、生产函数、成本函数等经济现象。

2.4 概率与统计的应用概率与统计在医学、人口学、金融等领域有广泛的应用。

例如在医学中,可以利用统计学方法来分析疾病的流行病学特征;在金融中,可以利用概率论来进行风险管理、投资决策等。

2.5 三角函数的应用三角函数在航空、航海、地理等领域有广泛的应用。

选修一高中数学知识点全总结

选修一高中数学知识点全总结

选修一高中数学知识点全总结高中数学是学生在中学阶段接触的较为深入和系统的数学知识体系。

它不仅包括了初中数学的基础知识,还引入了许多新的数学概念、理论和方法。

本文将对高中数学的主要知识点进行一个全面的总结,以帮助学生更好地理解和掌握这些知识。

一、集合与函数概念集合是高中数学的基础概念之一,它涉及到集合的定义、性质、运算等。

学生需要理解集合的含义,掌握集合间的包含关系、交集、并集、补集等基本概念。

函数作为高中数学的核心,学生需要了解函数的定义、性质、图象以及常见函数如一次函数、二次函数、指数函数、对数函数和三角函数的特点与性质。

二、数列与数学归纳法数列是一系列按照特定顺序排列的数。

在高中数学中,学生将学习到等差数列、等比数列的性质和求和公式,以及如何通过递推关系定义数列。

数学归纳法是一种证明方法,它在数列的证明题中尤为重要,学生需要掌握其基本步骤和应用。

三、三角函数与三角变换三角函数是高中数学中的重要内容,包括正弦、余弦、正切等基本三角函数的性质、图像和变换。

学生还需要了解三角恒等式,以及如何利用这些恒等式进行三角函数的化简和计算。

此外,反三角函数和三角方程也是这一部分的重要知识点。

四、平面向量与立体几何向量是数学中的一个重要概念,它在物理学和其他科学领域中也有广泛应用。

在高中数学中,学生将学习到向量的加法、数乘、数量积和向量积等运算,以及向量在几何中的应用,如向量的坐标表示和用向量方法解决几何问题。

立体几何部分则包括空间几何体的性质、多面体和旋转体的体积与表面积计算。

五、解析几何解析几何是高中数学中的一个高级主题,它将代数和几何结合起来,通过坐标系统来研究几何图形。

学生需要掌握直线、圆、椭圆、双曲线和抛物线等曲线的方程,以及这些曲线的性质和位置关系。

此外,学生还需要学习如何通过代数方法解决几何问题,如求解两直线的交点、计算点到直线的距离等。

六、概率与统计概率与统计是高中数学的应用部分,它涉及到随机事件的概率计算、概率分布、统计量的计算以及数据的收集、整理和分析。

高中数学选修知识点归纳

高中数学选修知识点归纳

高中数学选修知识点归纳高中数学选修知识点11、圆的定义:平面内到一定点的间隔等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的间隔为,那么有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线间隔 =半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:圆上两点,圆心必在中垂线上;两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:假如一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是断定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证假设干个点共线的重要根据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的根据②它是证明平面重合的根据公理4:平行于同一条直线的两条直线互相平行高中数学必修二知识点总结:空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线断定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],假设两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b高中数学选修知识点2解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用可以运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.数列(1)数列的概念和简单表示法①理解数列的概念和几种简单的表示方法(列表、图象、通项公式).②理解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在详细的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④理解等差数列与一次函数、等比数列与指数函数的关系不等关系一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联络.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②理解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.根本不等式:①理解根本不等式的证明过程.②会用根本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点高中数学选修知识点31.函数的概念:设A、B是非空的数集,假如按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:2假如只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)假如函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。

高中数学知识点总结选修

高中数学知识点总结选修

高中数学知识点总结选修高中数学选修包括了微积分、概率论与数理统计、数学分析等多个部分,下面就这些部分进行详细的知识点总结:一、微积分:1.导数与微分:导数的定义、导数的计算、导数的应用;微分的定义、微分的计算、微分中值定理。

2.函数的极限与连续性:函数的极限、函数的极限性质、函数的极限运算法则;函数的连续性、连续函数的性质、闭区间上连续函数的性质。

3.微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。

4.不定积分与定积分:不定积分的定义与性质、不定积分的计算、不定积分的应用;定积分的定义与性质、定积分的计算、定积分的应用。

5.常微分方程:常微分方程的基本概念、解的存在唯一性定理、一阶线性微分方程、可分离变量方程、齐次方程、一阶线性方程、可降阶的高阶方程。

二、概率论与数理统计:1.随机事件与概率:基本概念、事件的运算、事件的概率、频率与概率的关系。

2.随机变量与概率分布:随机变量的定义与分类、分布函数、离散型随机变量、连续型随机变量、随机变量的数学期望与方差。

3.随机事件的概率分布与数理统计:二项分布、泊松分布、正态分布、统计量的分布、大数定律、中心极限定理。

4.参数估计与假设检验:参数估计的方法、点估计与区间估计、假设检验的基本思想、假设检验的步骤。

三、数学分析:1.序列与极限:数列的性质、数列的极限、极限的性质与运算、单调数列、数列极限存在的判定准则。

2.函数极限与连续:函数的极限、极限性质与运算、函数的连续性与间断点的分类、闭区间上连续函数的性质、间断点的判定方法。

3.一元函数导数:函数导数的定义、导数的运算法则、函数的单调性与极值、函数的凹凸性与拐点。

4.不定积分与定积分:不定积分的定义与性质、基本积分法、换元积分法、分部积分法、定积分的定义与性质、牛顿-莱布尼茨公式、定积分的计算。

5.泰勒公式与函数的展开:泰勒公式的定义、泰勒公式的误差估计、泰勒展开式、函数的局部近似与全局近似。

数学选修2知识点总结

数学选修2知识点总结

数学选修2知识点总结数学选修2是高中数学课程中的一门重要课程,内容涵盖了许多重要的数学知识。

今天我们将对数学选修2的知识点进行总结,希望对您的数学学习有所帮助。

一、函数与导数1.1 函数的概念在数学中,函数是一种特殊的映射关系,它将一个自变量映射到一个因变量。

函数可以用数学表达式、图像或者数据集来描述。

1.2 导数的概念导数表示函数在某一点的瞬时变化率,也可以理解为函数曲线在某一点的切线斜率。

导数可以帮助我们求解各种函数的极值、凹凸性以及函数的图像性质。

1.3 常见函数的导数常见函数的导数包括多项式函数、指数函数、对数函数、三角函数等。

不同函数的导数具有不同的性质和计算方法。

1.4 导数的运算法则导数的运算法则包括和差积商法则、复合函数的导数、反函数的导数等。

1.5 函数的极值与最值利用导数的方法可以求解函数的极值和最值,从而帮助我们分析函数的性质和图像。

1.6 函数的应用函数的应用包括最优化问题、生物学问题、经济学问题等。

通过导数的方法,我们可以解决许多实际问题。

二、三角函数2.1 基本概念三角函数是描述角度与边的关系的函数,包括正弦函数、余弦函数、正切函数等。

2.2 三角函数的图像与性质三角函数的图像具有周期性、对称性和单调性等特点,通过这些性质我们可以分析三角函数的图像。

2.3 三角函数的运算三角函数的运算包括角度的加减、倍角、半角及其余弦和正弦的关系等。

2.4 三角函数的应用三角函数的应用包括三角测量、振动问题、电路问题等,通过三角函数可以解决这些实际问题。

三、数列与数学归纳法3.1 数列的概念数列是按一定规律排列的一组数字,其中每一个数字称为数列的项。

数列可以是等差数列、等比数列、递推数列等。

3.2 数学归纳法数学归纳法是一种证明数学命题的重要方法,通过证明当n=k时命题成立,并证明当n=k+1时命题也成立,从而得出结论当n为任意正整数时,命题均成立。

3.3 递推数列的通项公式递推数列的通项公式是指可以用一个数学表达式来表示数列的第n项的公式,它可以帮助我们快速计算数列中任意一项的值。

高中数学选修知识点总结

高中数学选修知识点总结

高中数学选修知识点总结一、函数1.函数的概念:自变量和因变量的关系。

2.函数的运算:函数的四则运算、复合运算和反函数运算。

3.函数的图像与性质:函数的图像、定义域、值域、单调性、奇偶性等。

4.常见函数类型:一次函数、二次函数、幂函数、指数函数、对数函数等。

5.函数的应用:函数在实际问题中的应用,如函数模型的建立和问题的解决。

二、数列与数列极限1.数列的概念:有序数的无穷序列。

2.等差数列和等比数列:求和公式、通项公式等。

3.数列的极限:数列的收敛、发散,以及极限的计算方法与性质。

4.级数:部分和的极限。

三、概率与统计1.事件与概率:事件的概念、概率的计算方法与性质。

2.条件概率与独立事件:条件概率的计算、事件的独立性判定。

3.排列与组合:对一组元素进行排列和组合的方法和性质。

4.统计学:数据的收集与整理、统计量(均值、中位数、众数等)的计算与性质。

5.正态分布:正态分布的定义、性质和应用。

四、解析几何1.平面与空间几何:平面与空间几何中的基本概念和性质。

2.直线与曲线:直线方程与曲线方程的求解与应用。

3.空间图形与方程:常见的空间图形和它们的方程。

4.参数方程与向量:参数方程的表示和应用、向量的概念和运算。

五、数论1.数论基本概念:因数与倍数、最大公约数和最小公倍数等。

2.同余与模运算:同余方程与模运算的基本性质。

3.线性同余方程组:线性同余方程组的求解、中国剩余定理。

4.费马小定理和欧拉定理:费马小定理和欧拉定理的应用。

六、离散数学1.图论:图的基本概念、树与网络。

2.数学归纳法:数学归纳法的应用与思维方法。

3.布尔代数:布尔代数的基本运算、推理与应用。

七、数学建模1.问题建模:将实际问题转化为数学问题的方法与思路。

2.模型分析与求解:选择合适的数学模型和求解方法,对问题进行分析和求解。

3.结果评价与优化:对数学模型的结果进行评价和分析,优化解决方案。

以上是对高中数学选修知识点的一个总结,其中涉及了很多不同的内容。

高中数学选修2-1、2-2知识点小结

高中数学选修2-1、2-2知识点小结

高中数学选修2-1、2-2知识点小结高中数学选修2-1、2-2知识点小结一、函数的概念和性质1. 函数的定义:函数是一个集合,它与另一个集合之间建立了一种特殊的对应关系,其中每一个输入元素对应唯一的输出元素。

2. 函数的性质:a. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

b. 奇偶性:函数的奇偶性取决于其对称性,奇函数关于原点对称,偶函数关于y轴对称。

c. 单调性:函数单调递增或单调递减等取决于导数的符号。

d. 周期性:函数的周期是指输入变量在一个范围内发生改变,输出值也以某种规律重复出现。

e. 增减性:函数增减性是指函数的导数的正负性质,导数大于0时函数增加,导数小于0时函数减少。

二、函数的基本类型1. 幂函数:y = x^a,其中a为常数,a>0时为增函数,a<0时为减函数。

2. 指数函数:y = a^x,其中a为常数,a>1时为增函数,0<a<1时为减函数。

3. 对数函数:y = loga(x),其中a为对数底,a>0且a≠1,a>1时为增函数,0<a<1时为减函数。

4. 三角函数:包括正弦函数、余弦函数、正切函数等。

5. 反三角函数:包括反正弦函数、反余弦函数、反正切函数等。

三、函数的图像与性质1. 函数的图像:通过计算函数的各个点的坐标,可以绘制出函数的图像。

2. 函数的对称性:可以通过判断函数的定义域和图像是否关于某条直线对称来确定函数的对称性。

3. 函数的周期性:可以通过计算函数在一个周期内的取值来确定函数的周期。

4. 函数的最值:可以通过计算函数的导数来确定函数的最值点。

四、函数的运算1. 函数的四则运算:可以通过加减乘除四则运算来得到新的函数。

2. 函数的复合:可以将多个函数合并成一个新函数,合并后的函数相当于依次将原函数的输出作为下一个函数的输入。

五、函数的导数1. 导数的定义:函数f(x)在点x处的导数定义为:f'(x)=lim(h→0)(f(x+h)-f(x))/h,表示函数的变化速率。

选修一高中数学知识点总结

选修一高中数学知识点总结

选修一高中数学知识点总结一、函数与方程函数是高中数学的核心概念之一,它描述了两个变量之间的依赖关系。

在高中数学中,我们主要学习了一次函数、二次函数、指数函数、对数函数和三角函数等基本函数类型。

一次函数的一般形式为y=kx+b,其中k为斜率,b为截距。

二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。

二次函数的图像是一个开口向上或向下的抛物线,其顶点坐标为(-b/2a, f(-b/2a))。

指数函数和对数函数是互为反函数的两类函数。

指数函数的一般形式为y=a^x,其中a>0且a≠1。

对数函数的一般形式为y=log_a(x),其中a>0且a≠1。

指数函数和对数函数在解决实际问题中有着广泛的应用,如在金融、生物学和化学等领域。

三角函数包括正弦函数、余弦函数和正切函数等。

这些函数与三角形的边长和角度有关,其基本关系可以通过三角恒等式来描述。

例如,正弦定理和余弦定理在解决与三角形相关的问题时非常有用。

在解决函数问题时,我们还需要掌握函数的性质,如单调性、奇偶性和周期性等。

此外,函数的极限和连续性也是高中数学中的重要概念。

二、数列与级数数列是由按照一定顺序排列的一列数构成的。

在高中数学中,我们学习了等差数列、等比数列以及它们的求和公式。

等差数列的通项公式为an=a1+(n-1)d,其中a1是首项,d是公差,n是项数。

等比数列的通项公式为an=a1*q^(n-1),其中a1是首项,q是公比,n是项数。

级数是由一系列数相加构成的无穷序列。

在高中数学中,我们主要学习了等差级数和等比级数。

等差级数的求和公式为S=n/2*(a1+an),等比级数的求和公式为S=a1*(1-q^n)/(1-q),其中n为项数,当q≠1时收敛。

三、解析几何解析几何是研究几何图形的数学分支,它通过坐标系统将几何问题转化为代数问题。

在高中数学中,我们学习了直线、圆、椭圆、双曲线和抛物线的方程及其性质。

直线的方程通常表示为y=mx+b,其中m是斜率,b是截距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-1知识点第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==. 14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程2a x c =± 2a y c =± 渐近线方程b y x a =± a y x b=± 17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==. 18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02p F y P =-+. 21、抛物线的几何性质:标准方程22y px =()0p > 22y px =-()0p > 22x py =()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤第三章 空间向量与立体几何22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.24、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.25、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量. 29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.30、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 31、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---.()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 44、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 45、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.49、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.51、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.。

相关文档
最新文档