电磁兼容知识点总结

合集下载

电磁兼容知识点总结

电磁兼容知识点总结

电磁兼容知识点总结一、电磁兼容概述电磁兼容(EMC)是指电子设备在电磁环境中正常运行,同时不对其他设备产生干扰的能力。

在现代电子设备中,电磁兼容性已成为一项至关重要的性能指标。

二、电磁兼容性标准与规范为了确保电磁兼容性,各种国际和地区标准与规范应运而生。

其中,最知名的包括国际电工委员会(IEC)的系列,以及美国联邦通信委员会(FCC)的Part 15系列。

这些标准与规范对电子设备的电磁辐射、抗干扰能力和静电放电等指标做出了详细规定。

三、电磁干扰源电磁干扰源多种多样,主要包括电源开关、无线电发射器、雷电等自然干扰源,以及各种电子设备的运行过程产生的干扰。

其中,电源开关是常见的电磁干扰源之一,其产生的谐波电流和电压波动可能对其他设备造成干扰。

四、电磁抗扰度要求为了确保电子设备的正常运行,电磁抗扰度要求应运而生。

这些要求主要包括对静电放电、电快速瞬变脉冲群、浪涌、电压跌落等干扰的抵抗能力。

在设计和生产过程中,应充分考虑这些因素,以确保设备在遭受这些干扰时仍能正常工作。

五、电磁屏蔽与滤波技术为了达到电磁兼容性要求,电磁屏蔽与滤波技术被广泛应用于电子设备中。

电磁屏蔽主要通过金属隔离材料将干扰源与外界隔离,而滤波技术则通过特殊设计的电路或器件,阻止或减弱干扰信号的传播。

这些技术对于提高设备的电磁抗扰度和降低电磁辐射具有重要意义。

六、电磁兼容性测试与认证为了验证电子设备的电磁兼容性,各种测试与认证机构应运而生。

这些机构通过模拟实际工作条件和电磁环境,对电子设备进行严格的测试和认证,以确保其符合相关标准和规范的要求。

获得电磁兼容性认证是电子产品进入市场的重要条件之一。

七、提高电磁兼容性的设计策略在设计阶段,采取一些策略可以提高电子设备的电磁兼容性。

例如,合理布局电路板上的元件和布线,选择合适的滤波器和电容,使用屏蔽材料等。

对于高频电路设计,还应考虑信号的完整性、反射和串扰等问题。

八、结论电磁兼容性是现代电子设备不可或缺的性能指标之一。

电磁兼容知识

电磁兼容知识

电磁兼容设计中的实践知识●什么是电磁兼容性问题?电磁兼容问题可以分为两类,一类是电子电路、设备、系统在工作时由于相互干扰或受到外界的干扰,使其达不到预期技术指标。

如装于机柜内的由微处理器构成的控制电路受到装在同一个机柜内的马达的干扰的问题。

另一类电磁兼容问题,设备虽然没有直接受到干扰的影响,仍达不到规定的功能性指标,但不能通过国家的电磁兼容标准,如计算机设备产生超过电磁发射标准规定的极限值,或在电磁敏感度、静电敏感度等方面达不到要求。

●电子产品要满足那些电磁兼容标准?军用产品要满足GJB151A-97、GJB152A-97标准,民用设备要满足GB9254、GB6833等标准或行业内规定的有关标准。

军用标准比民用标准严格得多。

无论那一种标准,其测试都是十分复杂的,并对测试环境和设备有严格的要求,因此测试要到指定的实验室进行。

●使设备达到电磁兼容状态的技术有哪些?为了使设备或系统达到电磁兼容状态,通常应用印制电路板设计、屏蔽机箱、电源线滤波、信号线滤波、接地、电缆设计等技术。

●做电磁兼容设计时有那些文献资源可以利用?国外在电磁兼容设计方面有许多手册可以参考,国内除了一些国外设计规范的中文译本外,还有“电磁兼容工程设计手册”。

如果要系统地学习电磁兼容知识,可以参考“电磁兼容原理”。

●什么材料可以作为屏蔽材料?具有较高导电、导磁特性的材料可以作为屏蔽材料。

常用的屏蔽材料有钢板、铝板、铝箔铜板、铜箔等。

随着对民用产品电磁兼容性要求的严格化,越来越多的厂家采取在塑料机箱上镀镍或铜的方法来实现屏蔽。

●电磁屏蔽与静电屏蔽有什么不同?电磁屏蔽指的是对电磁波的屏蔽,而静电屏蔽指的是对静电场的屏蔽。

静电屏蔽要求屏蔽体必须接地。

影响屏蔽体电磁屏蔽效能的不是屏蔽体接地与否,而是屏蔽体导电连续性。

破坏屏蔽体的导电连续性的因素有屏蔽体上不同部分的接缝、开口等。

电磁屏蔽对屏蔽体的导电性要求要比静电屏蔽高得多。

●材料的屏蔽效能只与屏蔽材料有关吗?不是,对于实际的屏蔽机箱,屏蔽效能在更大程序上依赖于机箱的结构,即导电连续性。

电磁兼容知识点总结(一)2024

电磁兼容知识点总结(一)2024

电磁兼容知识点总结(一)引言概述:电磁兼容是指电子设备在共同工作环境中,能够互不干扰,同时保持自身功能不受到干扰的能力。

本文将总结电磁兼容的相关知识点,以帮助读者更好地理解和应用这一概念。

正文:一、电磁兼容的基本概念与原理1.1 电磁辐射与电磁感应的基本原理1.2 互相干扰的电磁场作用方式1.3 电磁兼容的基本目标和要求1.4 电磁兼容设计的基本原则1.5 电磁兼容性评估的方法和指标二、电磁兼容性设计原则2.1 地线设计原则2.2 信号传输线设计原则2.3 电磁场屏蔽原则2.4 电源线设计原则2.5 接地设计原则三、电磁干扰源的特征与分析3.1 传导干扰源的特征与分析3.2 辐射干扰源的特征与分析3.3 外界电磁环境的特征与分析3.4 电气场强的测量方法3.5 干扰源定位与分析方法四、电磁屏蔽技术与方法4.1 电磁屏蔽材料的基本原理与特性4.2 电磁屏蔽的设计方法与措施4.3 电磁屏蔽效果的评估与验证方法4.4 常见电磁屏蔽结构的设计要点4.5 电磁屏蔽在实际工程中的应用五、电磁抗干扰技术与方法5.1 模拟滤波器设计原则与方法5.2 数字滤波器设计原则与方法5.3 过电压保护技术与方法5.4 对抗电源变动的技术与方法5.5 抗电磁干扰设计的实践案例总结:通过本文对电磁兼容的知识点总结,我们了解了电磁兼容的基本概念、原理和设计原则。

我们还学习了电磁干扰源的特征与分析方法,电磁屏蔽技术与方法,以及电磁抗干扰技术与方法。

电磁兼容设计的实践应用对于维护电子设备的正常运行至关重要。

希望读者能够通过本文对电磁兼容的知识点有更深入的了解,以应对实际工程中可能遇到的电磁兼容问题。

电磁兼容课程知识点总结

电磁兼容课程知识点总结

电磁兼容课程知识点总结一、电磁兼容基础知识1.1 电磁兼容的基本概念电磁兼容是指在特定的电磁环境下,电子、通信设备和系统在不受到外来电磁辐射的干扰或干扰他人,保证其正常工作的能力。

1.2 电磁干扰的分类电磁干扰主要可以分为传导干扰和辐射干扰两大类。

传导干扰是通过导体传输,比如电源线传导电磁干扰。

辐射干扰是通过空气传输,比如无线电台产生的电磁辐射。

1.3 电磁兼容的重要性在现代电子设备和通信系统日益复杂的情况下,电磁兼容的重要性越来越突出。

如果设备没有良好的电磁兼容性,容易受到外界电磁干扰,影响其正常工作。

1.4 电磁兼容标准和法规为了确保电子设备和通信系统的电磁兼容性,在各国都有一系列的电磁兼容标准和法规,比如欧洲的CE标志、美国的FCC标准等。

二、电磁场理论2.1 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,包括电场和磁场之间的相互关系,是电磁场理论的基础。

2.2 电磁波的特性电磁波是由电场和磁场振荡而产生的一种波动,具有传播速度快、能够在真空中传播、波长和频率可调节等特点。

2.3 电磁波的传播特性电磁波的传播特性包括波速、波长、频率、极化、幅度等,这些特性决定了电磁波的传播范围和传播方式。

三、电磁兼容的分析方法3.1 电磁兼容的测试方法电磁兼容的测试方法包括辐射测试、传导测试、电磁场强度测试、电磁脉冲测试等,用于评估设备的电磁兼容性能。

3.2 电磁兼容的仿真模拟方法电磁兼容的仿真模拟方法包括有限元分析、电磁场求解和电磁兼容性分析软件等,可以用于预测设备在不同电磁环境下的性能。

3.3 电磁兼容的设计方法电磁兼容的设计方法包括布线设计、地线设计、屏蔽设计、滤波器设计等,用于提高设备的电磁兼容性能。

四、电磁兼容的干扰控制方法4.1 电磁辐射的控制方法电磁辐射的控制方法包括合理布局、优化线路、采用屏蔽结构等,用于减少设备产生的电磁辐射。

4.2 电磁传导的控制方法电磁传导的控制方法包括使用滤波器、采用平衡电路、采用防干扰接口等,用于减少设备对外界电磁干扰的敏感性。

电磁兼容知识点总结

电磁兼容知识点总结

电磁兼容知识点总结一、电磁干扰的特点1.电磁干扰的来源电磁干扰主要来自于电子设备、无线通信设备、电源线、雷电放电、静电放电等。

其中电子设备是产生电磁干扰最主要的来源,包括计算机、通信设备、电视机、音响、照明设备等。

这些设备在工作时会产生电磁场,从而对其它设备产生干扰。

2.电磁干扰的传播电磁干扰的传播途径主要有辐射传播和传导传播两种方式。

辐射传播是指电磁波以空间传播的方式传播干扰,主要影响范围是设备本身周围的空间。

传导传播是指电磁波通过导体传播干扰,通常是通过电源线、信号线、地线等传导到其它设备。

3.电磁干扰的特点电磁干扰的特点包括频率广泛、能量巨大、传播速度快、影响范围广等。

由于电磁干扰的这些特点,一旦产生干扰就会对其它设备产生不同程度的影响,从而影响设备的正常工作。

二、电磁兼容的基本原理和方法1.基本原理电磁兼容的基本原理是通过设计、测试和控制减小设备产生的电磁干扰和提高设备抗干扰能力,使设备在电磁环境中能够共存共存。

为了实现这一目标,需要对设备进行整体设计,考虑其电磁兼容性,包括电源线滤波、辐射和导体电磁干扰控制、接地系统设计等。

2.基本方法电磁兼容的基本方法主要包括以下几种:a.增加滤波器滤波器是电磁兼容的重要手段,它能够有效地减小电磁干扰并提高设备对外部干扰的抵抗能力。

常见的滤波器有电源线滤波器、信号线滤波器、天线滤波器等。

b.增加屏蔽屏蔽是减小电磁辐射和提高设备抗干扰能力的重要手段,主要包括电磁屏蔽罩、屏蔽涂料、屏蔽隔板等。

通过在设备内部或外部增加屏蔽,可以有效减小电磁干扰。

c.合理设计接地系统接地系统是提高设备抗干扰能力的关键因素,通过合理设计接地系统可以减小设备对外部干扰的敏感性和提高设备对外部干扰的抵抗能力。

d.改善功率供应改善功率供应是减小电磁干扰的重要手段,包括选择优质的电源装置、增加稳压器、提高电源线的质量等。

e.系统整体设计系统整体设计是电磁兼容的关键环节,通过对系统整体进行电磁兼容性的考虑,可以有效地减小系统产生的电磁干扰并提高其抗干扰能力。

电磁兼容复习要点

电磁兼容复习要点
采用数字方法,比如数字滤波、坏值剔除等。
如果传导干扰已经进入系统,怎么办?
提高系统的抗扰性
(1)采用数字信号
(2)采用滞环比较器
公共阻抗干扰的成因
噪声电流在系统间的公共阻抗上产生噪声电压,并由此对系统的工作产生干扰。
单点接地系统的特点
单点接地系统一般线路都比较长,引线长会使电感量增大,不适合高频,不适合有很快的上升下降沿的数字电路,要求单点接地系统的地线长度小于<λ/20。
7.根据系统特点,对症下药;
第二章抗干扰技术
按传播途径不同的干扰分类方法
根据干扰进入系统途径的不同,干扰常被分为两大类类:传导干扰是通过导线,阻容,变压器等传播干扰,即“路”的干扰;另一种是辐射干扰,通过空间进行传播,即“场”的干扰。细分又分为直接传导干扰、公共阻抗干扰、电场耦合干扰、磁场耦合干扰、电磁场耦合干扰。
电磁场耦合干扰的抑制
电磁场屏蔽是对付电磁场耦合干扰最主要的方法。
电磁场屏蔽的作用和影响的因素????????????????????????
1、吸收作用----频率磁导率电导率越高,吸收越好
2、反射作用---屏源距离,波阻抗,电磁场源----阻抗相差越大,反射损耗越大
3、多次反射衰减
远场近场的划分,及干扰在不同场中表现出的特性
1、差模干扰本质上就是传导干扰;
2、差模干扰的抑制方法与传导干扰一样;
利用源阻抗的差异对传导干扰进行抑制
一般而言,干扰源的阻抗较大,而信号源的阻抗较小。降低敏感设备的输入阻抗。
利用信号与干扰的持续时间不同
利用频谱的差异对传导干扰进行抑制
加设各种滤波器,其中最常用的滤波器是低通滤波器。
3、差模干扰无法用差分电路去除;
有源器件本身对噪声相对比较敏感,因此并不适合用于EMC设计。

电磁兼容重点

电磁兼容重点

第一章1 、电磁干扰的危害主要体现在两个方面:一是电气、电子设备之间的相互影响;二是电磁污染对人体的影响。

2 、电磁兼容研究的目的是为了消除或降低自然的和人为的电磁干扰,减少其危害,提高设备或系统的抗电磁干扰能力,保证设备或系统的电磁兼容性。

3 、电磁兼容学科的主要研究内容: 1、电磁干扰特性及其传播原理研究电磁干扰特性及其传播耦合理论是电磁兼容学最基本的的任务之一。

2、电磁危害及电磁频谱管理有效地管理、合理地利用电磁频谱是电磁兼容的一项必要内容。

3、电磁干扰的工程分析方法及控制技术电磁兼容控制技术始终是电磁兼容学科中最活跃的课题。

4、电磁兼容的设计方法费效比的综合考虑是电磁兼容性设计中的一项重要内容。

5 、电磁兼容性测量和试验技术电磁兼容性测量和试验是一项非常重要的工作,它是产品电磁兼容性的最终考核手段并且应当贯穿于产品开发、试制的整个过程。

6、电磁兼容标准和工程管理电磁兼容性标准时电磁兼容件设计和试验的依据。

7、电磁兼容分析和预测电磁兼容分析和预测是合理的电磁兼容性设计的的基础。

8 、电磁脉冲及其防护电磁脉冲的干扰及其防护已成为近年来电磁兼容学科的一个重要研究内容。

4、电磁兼容设计方法: 1、问题解决法问题解决法是先研制设备,然后针对调试中出现的电磁干扰问题,采用各种电磁干扰抑制技术加以解决。

2、规范法规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。

3、系统法系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。

5 、电磁兼容课程的特点: 1、电磁兼容一电磁场理论为基础:电磁兼容研究电磁干扰的规律及抑制措施,对其分析必然要采用电磁场理论的方法和结论。

2、电磁兼容是一门综合性边缘科学:电磁兼容学科涵盖几乎所有的工业领域,设计多学科知识。

3、电磁兼容时间性较强:它是一门实践性很强的应用学科,特别重视实践经验和技能。

4、大量引用无线电技术的概念和术语:例如,电气设备对骚扰信号的响应称为”敏感“,导线和导线间的相互耦合有时称为”串扰“。

电磁兼容总结

电磁兼容总结

电磁兼容性包含三个方面的含义:
1、电磁环境应是给定或可以预期的;
2、设备不应产生超过标准或规范所规定的电磁噪声;
3、设备应满足标准所规定的电磁噪声敏感度限值的要求。

所谓电磁兼容,是指在有限的空间、时间和频谱资源条件下,各种设备可以共存、并不产生相互不利影响状态。

设备的电磁兼容性,即设备在指定的电磁环境中正常工作、且不对环境和环境中其它设备产生不利影响的能力。

电磁兼容性设计
明确电磁环境(制定相应的电磁兼容标准)
设备的抗干扰设计
抑制设备产生和发射电磁干扰噪声
试验检测方法、手段、标准和设备
干扰的产生、传播、作用
形成电磁干扰必然具备三个基本要素:干扰源、传播途径、敏感设备
1、三个要素缺一不可,少一个就构不成电磁兼容问题,所以电磁兼容设计和解决电磁兼容问题就要从这三个要素着手。

2、抑制干扰最有效的方法:在干扰源处对干扰进行抑制。

3、电磁兼容措施必须综合治理,全局考虑。

电磁兼容设计的基本原则
1.不单纯追求抗干扰性能;
2.自始至终,全程参与;
3.从源头下手,标本兼治;
4.全局考虑,不留死角;
5.与时俱进;
6.因地制宜,充分考虑性能、成本、可靠性等之间的综合效益;
7.根据系统特点,对症下药;。

电磁兼容基础知识

电磁兼容基础知识

电磁兼容基础知识
源网络),它接受从待测设备发射出来的信 号,再把这个信号传给接收机,接收机检测 并显示出干扰信号的电平.接收机必须足够 灵敏能读出低电平的信号,并且不发生失真. 此外,接收机的带宽和检波特性也必须确定. 所有上述因素都必须满足要求才能确保测量 的结果是有意义和可重复的,而且能同在另 一地方测量的结果相比较. 其次,对设备抗扰度测量装置的要求, 它的关键件是一个高功率的信号源.从现时
电磁兼容基础知识
一,电磁兼容基础 (一)概述 一 概述 随着科学技术的发展,越来越多的电气和电子 进入了社会各领域,它推动了社会物质的丰富和 精神文明的进步.但伴随电气和电子设备应用而 产生的电磁兼容骚扰问题又给人们带来了无穷的 烦恼. 电气和电子设备所产生的电磁骚扰,可以以 辐射和传导的形式进行传播.电磁骚扰可以干扰 广播,电视和通讯的接收,可以造成仪器和设备 工作的失常,失效甚至损坏.
电磁兼容基础知识
由雷电产生的大气噪声,其频率在10MHz以 下. 10MHz以上的自然噪声是由宇宙射电 噪声和太阳辐射引起的. 人为造成的噪声又分为有意和无意的两 种.所谓有意的是指那些必须发射电磁波的 电子设备,例如调幅波,调频波,电视以及 其他的广播发射机,还有雷达和导航用发射 机,移动无线电通讯机等.所谓无意噪声源 包括计算机设备,继电器,开关,荧光照明 灯,电弧焊机等.有意无意的噪声源与日俱 增,尤其在城市已经到了相当严重的地步.
电磁兼容基础知识
电磁兼容基础知识
⑷干扰功率的测量 一般认为试品产生的30MHz以上干扰,其 能量是通过辐射传播到被干扰设备去的.而 且干扰能量最主要是通过靠近试品的那部分 电源线(仅指裸露在试品外的部分)来辐射 的.因此试品所产生的干扰能量可以用一个 环绕电源线的吸收装置吸收到的最大功率来 衡量.这个吸收装置被称为干扰功率吸收钳 (铁氧体钳). 图3.2.4是干扰功率的测量简图.

电磁兼容设计知识点

电磁兼容设计知识点

电磁兼容设计知识点电磁兼容(Electromagnetic Compatibility,简称EMC)是指电子设备在相互连接的电磁环境下能够正确地工作,并且不会对周围电磁环境造成任何不良的影响。

在现代社会中,电子设备的普及与日俱增,各种电子产品频繁操作,因而电磁兼容设计就显得尤为重要。

本文将介绍电磁兼容设计的一些重要知识点。

1. 泄漏辐射(Radiated Emissions)泄漏辐射是指电子设备在操作过程中产生的电磁辐射,如果超过一定的限制,就可能对周围的其他设备或电子产品产生干扰。

为了防止泄漏辐射,设计人员需要:- 采用良好的地线和电源线布局,以减少辐射;- 使用屏蔽材料和屏蔽罩来隔离电磁波;- 注意电源线的滤波和抑制干扰。

2. 传导干扰(Conducted Emissions)传导干扰是指电子设备中的电流和信号通过导线或电源线传播到其他设备中,从而引起干扰。

为了防止传导干扰,设计人员需要:- 使用滤波器和抑制器来减少传导干扰;- 选择合适的电源线和导线,以降低传导噪声;- 合理布局电子元件,减少互连线的长度。

3. 抗干扰能力(Immunity)抗干扰能力是指电子设备在外部电磁场的干扰下仍然能够正常工作的能力。

为了提高设备的抗干扰能力,设计人员需要:- 使用屏蔽技术来防止外界电磁场的干扰;- 采用合适的滤波电路来减少干扰;- 在设计中考虑设备的抗干扰能力,选择合适的元件和材料。

4. 地线设计(Grounding)地线设计在电磁兼容设计中占据重要地位。

一个良好的地线设计可以有效减少电磁辐射、提高抗干扰能力。

设计人员需要注意以下几点:- 使用独立的地线和电源地线,防止互相干扰;- 利用地面平面和聚集电流来提高地线的效果;- 按照电路的功能要求选择合适的地线类型。

5. 屏蔽设计(Shielding Design)屏蔽设计是电磁兼容设计中常用的方法,通过使用屏蔽材料和屏蔽罩来隔离电磁波,减少干扰。

设计人员需要注意以下几点:- 选择合适的屏蔽材料,如金属、导电橡胶等;- 在关键区域使用屏蔽罩,确保信号的完整性;- 设计良好的接地方式,提高屏蔽效果。

电磁兼容(EMC)基础知识

电磁兼容(EMC)基础知识

电磁兼容(EMC)基础知识本文思维导图:01EMC(Electro Magnetic Compatibility,电磁兼容)是指电子、电气设备或系统在预期的电磁环境中,不会因为周边的电磁环境而导致性能降低、功能丧失或损坏,也不会在周边环境中产生过量的电磁能量,以致影响周边设备的正常工作。

EMI(Electro Magnetic Interference,电磁干扰):自身产生的电磁干扰不能超过一定的限值。

EMS(Electro Magnetic Susceptibility,电磁抗扰度):自身承受的电磁干扰在一定的范围内。

电磁环境:同种类的产品,不同的环境就有着不同的标准。

需要说明的是,以上都基于一个前提:一定环境里,设备或系统都在正常运行下。

02电磁干扰的产生原因:电压/电流的变化中不必要的部分。

电磁干扰的耦合途径有两种:导线传导和空间辐射。

导线传导干扰原因是电流总是走“最小阻抗”路径。

以屏蔽线为例,低频(f<1kHz)时,导线的电阻起到主要作用,大部分电流从导线的铜线中流过;高频(f>10kHz)时,环路屏蔽层的感抗小于导线的阻抗,因此信号电流从屏蔽层上流过。

干扰电流在导线上传输有两种方式:共模和差模。

一般有用的信号为差模信号,因此共模电流只有转变为差模电流才能对有用信号产生干扰。

阻抗平衡防止共模电流向差模转变,可以通过多点接地用来降低地线公共阻抗,减小共地线阻抗干扰。

空间辐射干扰分近场和远场。

近场又称为感应场,与场源的性质密切相关。

当场源为高电压小电流时,主要表现为电场;当场源为低电压大电流时,主要表现为磁场。

无论是电场还是磁场,当距离大于λ/2π时都变成了远场。

远场又称为辐射场。

远场属于平面波,容易分析和测量,而近场存在电场和磁场的相互转换问题,比较复杂。

这里面有问题的是如果导线变成天线,有时候就分不清是传导干扰还是辐射干扰?低频带下特别是30 MHz以下的主要是传导干扰。

或者可以估算当设备和导线的长度比波长短时,主要问题是传导干扰,当它们的尺寸比波长长时,主要问题是辐射干扰。

EMC基础必学知识点

EMC基础必学知识点

EMC基础必学知识点
1. 什么是EMC? EMC是电磁兼容的缩写,指的是电子设备在电磁环境中正常工作,不产生不可接受的干扰,也不受其他设备的干扰。

2. 电磁辐射和电磁感应:电磁辐射是指电磁波在空间中的传播,而电磁感应是指电磁波对接收器件产生的电磁场效应。

3. 电磁兼容测试:包括辐射发射测试、辐射抗干扰测试、传导发射测试、传导抗干扰测试、静电放电测试、浪涌电流测试等测试方法。

4. 电磁波频谱:电磁波频谱是指电磁波在频率上的分布,从低频到高频分别是直流、低频、射频、微波、红外线、可见光、紫外线、X射线和伽马射线。

5. 辐射发射:是指电子设备在工作过程中通过电磁波在空间中传播,例如无线电、电视、手机等无线通信设备。

6. 辐射抗干扰:是指电子设备在电磁环境中受到其他设备的干扰时仍能正常工作,例如家用电器受到电信号干扰而不受影响。

7. 传导发射:是指电子设备在工作过程中通过电源线、信号线等传导方式将电磁波传递到其他设备上。

8. 传导抗干扰:是指电子设备在电磁环境中受到其他设备的传导干扰时仍能正常工作,例如高频电磁场对电子设备的传播线进行干扰。

9. 静电放电:是指电子设备在操作过程中由于电荷的不平衡而引起的电流突然释放,例如人体静电放电对电子元件造成的损坏。

10. 浪涌电流:是指电子设备在电源启动、断电、过电压等情况下突然产生的大电流脉冲,容易对电子设备造成损坏。

以上是EMC的基础必学知识点,有助于了解电磁兼容的相关概念和测试方法。

电磁兼容知识点总结

电磁兼容知识点总结

电磁兼容知识点什么是电磁兼容?电磁兼容(Electromagnetic Compatibility, EMC)是指在特定的电磁环境中,各种电子设备能够在不相互干扰的情况下正常工作并共存的能力。

在现代社会中,电子设备的日益普及给我们的生活带来了很多便利,但同时也带来了电磁干扰的问题。

电磁兼容的研究旨在避免电磁干扰对设备正常工作和通信造成的负面影响,确保设备之间的互相兼容性。

电磁干扰的来源电磁干扰是指各种电子设备之间或设备与电磁环境之间的相互干扰现象。

电磁干扰的来源可以分为内部干扰和外部干扰两种。

内部干扰内部干扰是指同一个设备内部各个部件之间的相互干扰。

这种干扰常常是由于设备内部电路设计不当、接地不良或信号线的不正确布局而导致的。

例如,高频信号线和低频信号线交叉布局就会引起串扰干扰。

外部干扰外部干扰是指来自于其他电子设备、天线、电力系统、雷电等外部电磁源对设备产生的干扰。

这种干扰主要通过空气传播,也可以通过传导、辐射等方式产生。

常见的外部干扰源有电压干扰、电流干扰、电磁波干扰等。

电磁兼容的评价指标为了保证设备之间的互相兼容性,我们需要依据一些评价指标来对电磁兼容性进行评估。

以下是一些常见的电磁兼容评价指标:电磁敏感性电磁敏感性是指设备对外部电磁场的响应能力。

如果设备对外部电磁场的响应过于敏感,就容易受到外部干扰而产生故障。

一般来说,电磁敏感性越低,设备的抗干扰能力越强。

电磁辐射电磁辐射是指设备在工作过程中向外部环境辐射出的电磁波。

当设备辐射的电磁波超过一定限值时,会对周围的其他设备造成干扰。

因此,减小电磁辐射是提高电磁兼容性的重要手段之一。

入射抑制比入射抑制比是指设备对外部电磁场的抑制能力。

当设备工作时,它的内部电路产生的电磁场可能会干扰周围的其他设备。

入射抑制比越高,设备对外部干扰的影响越小。

传导抑制比传导抑制比是指设备内部电路之间相互干扰的抑制能力。

当设备内部的高频信号线和低频信号线相交布局时,容易产生串扰干扰。

电磁兼容复习提纲

电磁兼容复习提纲

1、电磁兼容的基本概念
电磁兼容、EMC、EMI、EMS、EMP、ESD、EFT、
近场
远场
电磁干扰的三要素
典型、常见的骚扰源
屏蔽效能、插入损耗、射频阻抗、转移阻抗、地阻抗干扰、地环路干扰、搭接效能、差模干扰、共模干扰、感性耦合、容性耦合、峰值检波、准峰值检波、3m法、主模和高次模、天线系数、截止频率
2、电磁兼容标准体系
电磁兼容标准体系的框架
标准化组织:CISPR、IEC TC77
3、电磁兼容常用单位(计算)
dBm、dBuV、dBuV/m、dBuA/m及相关单位的转换。

4、传输线的基础知识(计算)
特性阻抗、反射系数、电压驻波比、输入阻抗、阻抗匹配。

5、电磁场(计算)
波阻抗、平面电磁波、极化、反射、衰减(趋肤效应、趋肤深度)
6、天线的基础知识
电偶极子、磁偶极子、近场和远场
7、屏蔽(计算)
电屏蔽、磁屏蔽、电磁屏蔽的基本原理
空腔谐振
波导通风窗
电磁屏蔽的设计指标
电磁屏蔽设计的要点
电磁屏蔽效能测试:窗口法、同轴法。

8、接地和搭接
单点接地和多点接地的选择准则,为什么?
地阻抗干扰的抑制措施、地环路干扰的抑制措施
9、滤波
EMI滤波器的特点
使用的注意事项
滤波器插入损耗的测试方法
10、试验
接收机的关键技术指标:分辨带宽、检波方式。

线路阻抗稳定网络
电流探头
试验场地:开阔试验场、半电波暗室。

电磁兼容考点总结材料

电磁兼容考点总结材料

第二章电磁兼容基本原理1.电磁兼容三要素:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,成为电磁干扰三要素。

2.电路受干扰程度S=WC/I3.从来源分:自然骚扰和人为骚扰。

从骚扰属性分;功能性骚扰和非功能性骚扰从耦合方式分:传导骚扰和辐射骚扰从频谱宽度分:宽带骚扰和窄带骚扰从频率X围分:甚低频骚扰(30Hz以下)、工频与音频骚扰(50Hz及其谐波)、载频骚扰(10kHz一300kHz)、射频及视频骚扰(300kHz一300MHz)、微波骚扰(300MHz一100GHz)。

4.电磁骚扰传播方式:传导耦合:指一个电路中的骚扰电压或骚扰电流通过公共电路流通到另一个电路中的欧和方式。

磁场耦合:是指一个回路中的骚扰电流通过磁通在另一个回路中感应电动势,以传播骚扰的耦合方式。

电场耦合:是指一个电路中导体的骚扰电压通过与其临近的另一电路中导体之间相互的电容耦合产生骚扰电流,以传播骚扰的耦合方式。

辐射耦合:是指电磁骚扰在空间中以电磁波的形式传播,耦合至被干扰电路。

5.在产品电磁兼容设计时,要注意以下几方面:①跟据使用环境获取对系统的电磁兼容性要求;②在方案论证初期就提出产品的电磁兼容性指标;③把电磁兼容性设计融入产品的功能设计中,而不是采取事后的补救措施;④通过试验、测量确认系统已达到电磁兼容性要求;⑤对产品进行跟踪调查,保证其寿命期内的电磁兼容问题。

第四章滤波1.滤波器作用:就是要限制接收装置的频带,使得在不影响有用信号的前提下抑制无用信号。

2.吸收式滤波器:又称有损滤波器,它采用有损耗的滤波元件,使骚扰信号的能量消耗在滤波器中,以达到抑制干扰的目的。

常见的有:铁氧体磁芯,抗干扰电缆。

3.电源线滤波器作用:抑抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI滤波器),后者是防止电网中的骚扰进入设备。

安装应注意的问题:1滤波器的安装位置设备的入口/出口处2滤波器输入和输出引线的隔离输入与输出分开3滤波器的接地与设备外壳的大面积导电接触第六章瞬态骚扰抑制1.开关操作瞬态骚扰的抑制可在感性负载两端或开关触点两端采取抑制措施,也可以两种方法同时采用,具体措施应根据实际情况而定。

电磁兼容复习

电磁兼容复习

电磁兼容复习第⼀章概论1、电磁兼容:IEC(国际电⼯技术委员会):设备或系统在其电磁环境中能正常⼯作⽽⼜不对该环境中任何事物构成不能承受的电磁骚扰的能⼒。

研究在有限的空间、有限的时间、有限的频谱资源条件下,各种⽤电设备可以共存⽽不致引起降级的⼀门科学。

三个基本要素:时间、空间、频谱(0~400GHz)。

2、名词术语:电磁环境:存在于给定场所的所有电磁现象的总和。

电磁发射:从源到外发出电磁能的现象(包含传导发射、辐射发射,是⽆意的)。

噪声:影响信号并能够使信号携带的信息产⽣畸变的⼀种⼲扰。

电路中除有⽤信号外的电信号均为噪声。

⼲扰:由于⼀种或多种发射、辐射、感应或其组合所产⽣的⽆⽤能量对电⼦设备的接受产⽣的影响,如不存在这种⽆⽤能量则后果可以避免。

噪声导致的不希望的结果称为⼲扰。

⽆⽤信号:可能损害有⽤信号接收的信号。

⼲扰信号:损害有⽤信号接收的信号。

电磁骚扰:任何可能引起装置、设备或系统性能降低或对有⽣命或⽆⽣命物质产⽣损害作⽤的电磁现象,可能是电磁噪声、⽆⽤信号或传播媒介⾃⾝的变化。

产⽣的根本原因是⽹络参数的突变。

电磁⼲扰:电磁骚扰引起的设备、传输通道或系统性能的下降。

抗扰度(民⽤):装置、设备或系统⾯临电磁骚扰不降低运⾏性能的能⼒。

敏感性(军⽤)⾼,抗扰度低。

抗扰度电平、抗扰度限值、兼容性电平、发射限值、发射电平、设计裕度、抗扰度裕度、发射裕度、兼容性裕度。

分贝的概念:功率、电压等,⽤较⼩的坐标表⽰较⼤范围的变量。

电尺⼨:物理尺⼨与骚扰源波长的相对值。

电⼩尺⼨:电尺⼨⼩于⼗分之⼀。

(物理尺⼨远⼩于波长称为电⼩)电压损坏阈值(绝缘破坏),能量损坏阈值(发热),电场、磁场损坏阈值。

4、电磁兼容组成三要素:骚扰源、耦合途径、敏感设备。

(电磁兼容基本要素:时间空间频谱)5、电磁兼容的三⽅⾯含义:电磁环境是给定的或可预期的,设备电磁骚扰发射符合标准要求,满⾜电磁敏感性或者抗扰度要求。

6、电磁骚扰源分为⾃然和⼈为两类,电磁骚扰产⽣的根本原因是⽹络参数的突变,即导体中有电压或电流的变化。

电磁兼容基础知识

电磁兼容基础知识

电磁兼容基础知识引言电子电器产品的电磁兼容性能是一项非常重要的技术指标,它不仅关系到产品本身的安全性、可靠性,也关系到电磁环境的保护问题。

国内外现都十分重视产品的电磁兼容质量管理。

这就要求从事相关产品设计、制造和品质管理的人员均应该掌握电磁兼容的一些基本理论、标准要求和设计技术。

一、电磁兼容现象及基本理论电磁兼容(Electromagnetic Compatibility——EMC),其定义是:设备或系统在其所处的电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

从上述定义可以看出,一台设备或一个系统的电磁兼容性都包括两个方面,一是它对同一电磁环境中其它设备的抗干扰能力或称敏感性,二是它对其它产品的电磁骚扰特性。

电磁骚扰(Electromagnetic Disturbance——EMI)定义为“任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害作用的电磁现象”。

电磁骚扰可能是电磁噪声、无用信号或传播媒介自身的变化。

(注:一般意义上的“有用的电磁信号或电磁能量”在电磁兼容领域也有可能被认为是电磁骚扰源。

)电磁骚扰的表现形式一般有两种,一是通过导体传播骚扰电压、电流,一是通过空间传播骚扰电磁场。

前者称为传导骚扰,后者称为辐射骚扰。

例如,电视机的电磁骚扰主要有:对公用电网的无线电骚扰和低频骚扰(如注入谐波电流)、对公用电视天线系统的骚扰、向空间辐射的电磁场等。

抗扰度(Immunity to a Disturbance)定义为“装置、设备或系统面对电磁骚扰不降低运行性能的能力”。

电磁敏感性(Electromagnetic Susceptibility——EMS)定义为“在存在电磁骚扰的情况下,装置、设备或系统不能避免性能降低的能力”。

实际上,抗扰度与敏感性都反映的是对电磁骚扰的适应能力,仅仅是从不同的角度而言,敏感性高即意味着抗扰度低。

对应电磁骚扰的两种表现形式,设备对电磁骚扰的抗扰性也同样分为传导抗扰性和辐射抗扰性。

电磁兼容的基础知识

电磁兼容的基础知识

一、电磁兼容的定义电磁兼容一词源于英语Electromagnetic Compatibility,简称EMC。

国标《电磁兼容术语》中定义为:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物枸成不能承受的电磁骚扰的能力。

军标《电磁干扰与电磁兼容性名词术语》中定义为:设备在共同的电磁环境中能一起执行各自的功能的共存状态。

即该设备不会由于受到处于同一电磁环境中其他设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其他设备因受其电磁发射导致或遭受不允许的降级。

电磁环境是由空间时间和频谱三要素组成的。

二、电磁兼容的研究领域•骚扰源特性。

包括电磁骚扰的产生机理,频域与时域的特性,表征其特性的参数,抑制其发射强度的方法等。

•敏感设备的抗干扰性能。

被干扰的设备或可能受电磁骚扰影响的设备称为敏感设备,在系统分析中称为骚扰接收器。

•电磁骚扰的传播特性。

即严究电磁骚扰如何从骚扰源传播到敏感设备上去,包括辐射与传导。

电磁骚扰的传播特性的特点在于源的非理想化以及宽的频率范围。

•电磁兼容测量。

包扩测量设备、测量方法、数据处理方法、测量结果的评价等。

由于电磁兼容的复杂性,理论的结果和实际相距较远,使得电磁兼容测量尤为重要。

为了各国测量结果之间的可比性,必须详细规定测量仪器的各方面指标。

•系统内与系统间的电磁兼容性。

如欲解决电磁兼容问题,分别严究源、传播以及被干扰对象是不够的。

在一个系统内与系统间,干扰源可能同时是敏感设备;传播的途径往往是多通道的;干扰源与敏感设备不只一个等。

这就需要对系统内的或系统间的电磁兼容问题进行分析和预测。

由于系统间的电磁兼容的复杂性,不可能要求分析系统内与系统间的问题达到非常高的精度,但预测误差过大又失去了实际意义。

三、电磁干扰的危害。

•干扰电视的收看、广播收音机的收听。

•数字系统与数据传输过程中数据的丢失。

•在设备分系统或系统级正常工作的破环。

•医疗电子设备的工作失常。

•自动化微处理器控制系统的工作失控。

电磁兼容基本知识一、术语定义

电磁兼容基本知识一、术语定义

电磁兼容基本知识一、术语定义1. 额定电压EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V,50Hz;美国:115V, 60Hz)2.额定电流在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。

在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出:3.试验电压在EMI滤波器的指定端子之间和规定时间内施加的电压。

试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。

4.泄漏电流EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出:I LC=2×π× F×C×V其中,F为工作频率,C为接地电容的容量,V为线-地电压5.插入损耗是衡量滤波器效果的指标。

指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。

它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。

在50Ω系统内测试时,可用下式来表示:IL=20Lg(E0/E1)其中,IL-插入损耗(单位:dB);EO-负载直接接到信号源上的电压;E1-插入滤波器后负载上的电压6.气候等级指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX前2位数字代表滤波器的最低工作温度中间数字代表滤波器的最高工作温度后2位数字代表质量认定时在规定稳态湿热条件下的试验天数7. 绝缘电阻绝缘电阻是指滤波器相线,中线对地之间的阻值。

通常用专用绝缘电阻表测试。

8. 电磁干扰(EMI)电磁干扰经常与无线电频率干扰(RFI)交替使用。

从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填空题1、电磁干扰的危害主要体现在两个方面:a.电气、电子设备的相互影响;b.电磁污染对人体的影响2、电磁兼容设计方法:a.问题解决法。

问题解决法是先研制设备,然后针对调试中出现的电磁干扰的问题,采用各种电磁干扰抑制技术加以解决。

b.规范法。

规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。

c.系统法。

系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。

3、电磁干扰的三要素1、形成电磁干扰的三个基本条件:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,称为电磁干扰三要素。

骚扰源——耦合通道——敏感单元2、电路受干扰的程度可用公式描述IWC S S 为电路受干扰的程度;W 为骚扰源的强度;C 为骚扰源通过某种路径到达被干扰处的耦合因素;I 为被干扰电路的抗干扰性能。

4、 屏蔽技术是利用屏蔽体阻断或减少电磁能量在空间传播的一种技术,是减少电磁发射和实现电磁骚扰防护的最基本,最重要的手段之一,采用屏蔽有两个目的,一是限制内部产生的辐射超出某一个区域,二是防止外来的辐射进入某一区域。

5、常用的电磁密封衬垫有1.金属丝网衬垫2.导电布衬垫3.导电橡胶4.指形簧片6、电源线滤波器:作用主要是抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI 滤波器),后者是防止电网中的骚扰进入设备(称为电源滤波器)6、干扰控制接地:1.浮地2.单点接地3.多点接地4.混合接地8、电磁兼容性GB 的定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

9、电磁骚扰:可能引起装置、设备或系统性能降低或对有生命、无生命物质产生损害作用的电磁现象。

电磁骚扰可以是电磁噪声、无用信号或有用信号,也可以是传播媒介自身的变化。

10、电磁干扰:由电磁骚扰引起的设备、系统或传播通道的性能下降。

电磁骚扰是指电磁能量的发射过程,后者则强调电磁骚扰造成的后果。

11、谐波电流的抑制方法1、电流侧设置LC 滤波器2、采取有源功率因数校正3、采用PWM 整流器4、多绕组变压器的多脉整流简答题1】、电磁兼容研究的内容主要包括:1、电磁干扰特性及其传播机理。

因此研究电磁干扰特性及其传播耦合理论是电磁兼容学科的基本任务之一。

2、电磁危害及电磁频谱管理。

有效地管理、合理的利用电磁频谱是电磁兼容的一项必要内容3、电磁干扰的工程分析方法及控制技术。

因此,电磁兼容控制技术始终是电磁兼容学科中最活跃的课题4、电磁兼容的设计方法。

因此,费效比的综合考虑是电磁兼容设计中的一项重要内容。

5、电磁兼容性测量和试验技术。

因此高精度的电磁发射及电磁敏感度自动测试系统的研制,开发及应用于工程实践,是电磁兼容学科研究的重要内容。

6、电磁兼容性标准和工程管理。

电磁兼容性标准是电磁兼容设计和试验的依据。

7、电磁兼容分析和预测。

电磁兼容分析和预测是合理的电磁兼容性设计的基础8、电磁脉冲及其防护。

因此电磁脉冲的干扰及其防护问题已经成为近年来电磁兼容学科的一个重要研究内容。

2】、电磁兼容课程的特点:1、电磁兼容以电磁理论为基础。

因此电磁兼容原理是以电磁场理论为基础的2、电磁兼容是一门综合性边缘学科。

因此,掌握电磁兼容需要多学科知识基础。

3、电磁兼容实践性较强。

因此,要掌握并灵活运用电磁兼容技术需要设计者不断地去实践,积累经验。

4、大量引用无线电技术的概念和术语。

5、计量单位的特殊性。

电磁兼容工程中最常用的度量单位是分贝(dB)3】电磁骚扰的分类与传播方式电磁骚扰一般可分为两大类:自然骚扰和人为骚扰,自然骚扰是指来源于自然现象而非人工装置产生的电磁骚扰,人为骚扰是来源于人工装置的电磁骚扰。

电磁骚扰的传播方式:1、传导耦合——是指一个电路中的骚扰电压或骚扰电流通过公共电路流通到另一个电路中的耦合方式;其特点是两个电路之间至少有两个电器连接节点2、磁场耦合——是指一个回路中的骚扰电流通过连接磁通在另一个电路中感应电动势,以传播骚扰的耦合方式3、电场耦合——是指一个电路中导体的骚扰电压通过与其临近的另一个电路中导体之间的相互电容耦合产生骚扰电流,以传播骚扰的耦合方式4、辐射耦合——是指电磁骚扰在空间中以电磁波的形式传播,耦合至被干扰电路。

4】屏蔽体设计原则1、明确电磁骚扰源及敏感单元如果是屏蔽体外部电磁骚扰,则要了解设备的工作环境和可能的骚扰源及强度,找出设备内部易受干扰的电路及承受能力;如果是屏蔽体内部电磁场,则要判断主要的内部骚扰源及可能产生的辐射场强,了解设备的工作环境及其对设备辐射场强的限值要求;如果是屏蔽内部骚扰对设备本身的干扰,则找出内部骚扰源和被干扰电路2、大致确定屏蔽体的屏蔽效能根据第一步已知的骚扰场强及防护要求,按式S E E E SE 0lg 20= 或S E H H SE 0lg 20=计算屏蔽体应达到的屏蔽效能要求3、确定屏蔽方式根据产品的外观设计要求和要屏蔽的骚扰的磁场的性质及频率等,确定屏蔽方式、屏蔽体厚度等4、进行屏蔽完整性设计根据产品的功能设计要求,确定屏蔽体上必须的孔缝及电缆穿透等,并采取相应的技术措施以避免因屏蔽不完整而带来的屏蔽效果下降5】屏蔽体上的孔缝对屏蔽效果的影响1、对于抑制低频磁场的高导磁材料屏蔽体,由于开孔或开缝影响了沿磁力线方向的磁阻,使其增大,降低了对磁场的分流作用。

2、对于抑制高频磁场和电磁波的良导体屏蔽体,由于开孔或开缝影响了屏蔽体感应涡流的抑制作用,使得磁场和电磁波穿过孔缝进入屏蔽体内3、对于抑制电厂的屏蔽,由于缝隙影响了屏蔽体的电连续性,使之不能成为一个等位体,屏蔽体上的感应电荷不能顺利的从接地线走掉。

6】常用的浪涌抑制器件有哪些?各有何特点?用于什么场合?1、电火花隙2、金属氧化物压敏电阻3、硅瞬变吸收二极管特点及适用场合:1、气体放电管电流吸收能力大,但相应速度低,有后续电流,离散型大,且电压分档小,适合做第一级粗保护2、压敏电阻响应速度高,可有较大的吸收能力,但固有电容较大,不适合用在高频电路。

3、硅瞬变吸收二极管,响应速度很高,电压分档很多,但带电流负荷能力较弱,用于精保护7】EMC 设计中应该考虑的问题:1、识别潜在的骚扰源和敏感单元。

一般应关注数字时钟电路、数字信号、电源开关、模拟信号、直流电源线和低速数字信号等2、识别关键的电流路径。

电流要形成回路;电流要走最小阻抗路径3、识别潜在的天线。

天线由两部分组成,且天线的两部分之间要有一个激励电压。

4、分析可能的耦合机理。

可归纳为传导耦合、电场耦合、磁场耦合和辐射耦合四种。

8】谐波的产生、危害及谐波标准:产生:由于电力电子器件的非线性特性,会在电力电子系统中产生谐波电流 危害:1、电压畸变 谐波电流在线路阻抗上产生的压降引起端电压的畸变,当线路阻抗的电抗分量较大时,电压畸变严重,可能对电网中的其他设备产生影响2、过零噪声3、零线过热4、对变压器和异步电动机的影响5、使无功补偿电容器过载6、集肤效应谐波电流标准A 类是平衡的三相设备、家用电器(不包括列入D 类的设备)、电动工具(不包括便携式工具)、白炽灯调光器、音频设备,以及后面3类之外的设备B 类是便携式工具以及非专业的电弧焊接设备C 类是照明设备,D 类是功率小于600W 的个人计算机、计算机显示器以及电视接收机等9】产品电磁兼容设计注意事项:1、根据使用环境获取对系统的电磁兼容性要求2、在方案论证初期就提出产品的电磁兼容性指标3、把电磁兼容性设计融入产品的功能设计中,而不是采取事后的补救措施4、通过实验,测量确认系统已经达到电磁兼容性要求5、对产品进行跟踪调查,保证其寿命期内电磁兼容问题10】磁场屏蔽:1、利用高导磁材料进行磁场屏蔽利用高导磁材料的低磁阻特性,对骚扰磁场进行分路,可使被屏蔽体包围的区域的磁场大大减弱(H1<<H0)2、利用导电材料产生反向的抵消磁场来实现磁场的屏蔽以导体作屏蔽体,在外部高频磁场作用下屏蔽体表面产生感应涡流,而涡流产生的方向磁场抵消穿越该屏蔽体的外部磁场,从而实现磁场屏蔽。

屏蔽效能 B A R SE ++= ||4||lg2021Z Z R = δδte A t 69.8lg 20== )1lg(202d te B --=11】滤波器的作用就是要限制接收装置的频带,使得在不影响有用信号的前提下抑制无用信号。

滤波器的种类很多,按照滤波器的能量损耗特性分为:反射式滤波器,吸收式滤波器按照滤波器在电路中的位置和作用可分为信号滤波,电源滤波,电磁干扰滤波,电源去耦滤波,谐波滤波——按照滤波电路中是否包含有源器件分为:有源滤波,无源滤波——按照滤波器的频率特性:高通,低通,带通,带阻滤波等。

12】滤波器的插入损耗公式)lg(2021U U IL = IL 为插入损耗(dB );U1是在信号源于负载阻抗之间不接滤波器时,信号源在负载阻抗上产生的电压;U2是在信号源与负载阻抗之间插入滤波器时,信号源在负载阻抗上产生的电压13】吸收式滤波器:又称为有损滤波器,它采用有损耗的滤波元件,使骚扰信号的能量消耗在滤波器中,以达到抑制干扰的目的,有1、铁氧体磁心2、抗干扰电缆14】滤波器安装注意方面:1、滤波器的安装位置滤波器应尽量安装在设备的入口/出口处,未经处理的电源线在机内走线不宜过长,以防止产生辐射;最好采用插座式滤波器,使其进线、出线分别位于机箱内外两侧2、滤波器输入和输出引线的隔离滤波器的输入与输出引线应分隔开,而不能捆扎在一起,以防止骚扰在引线之间耦合,若由于位置与空间的限制而无法分隔开,则应采用屏蔽线3、滤波器的接地滤波器不宜用细长导线接地,而应保持滤波器的地与设备外壳有一个大的导电接触面,以保证良好的接地,同时设备外壳必须接地。

15】接地的目的:1、建立与大地相连的低阻抗通路,使雷击电流、静电放电电流等从接地通路直接流入大地,而不致影响设备或系统的正常工作及人身安全2、建立设备外壳与附近金属导体之间的低阻抗通路,当设备中存在漏电电流时,不至于危及人身安全。

3、设备或者系统的各部分都连接到一个公共点或等位面,以便有一个公共的参考电位,消除两个悬浮电路之间可能存在的干扰电压。

4、将屏蔽体接地,使屏蔽发挥作用5、将滤波器接地,使滤波器能起到抑制共模干扰的作用6、印制电路板上的信号电路接到地平面,以提供一个信号返回通路。

7、汽车飞机上的非常重要的电路接车体或机体的金属外壳,以提供一个电流返回通路。

16】常用的搭接方法:1、焊接通过焊接使需要接触的导体永久连接,是比较理想的搭接方法,可避免金属面曝露在空气中,因锈蚀而引起的搭接性能下降2、铆接铆接也实现了永久连接,在铆接部位的阻抗很小,但其他部位阻抗较大,在高频时不能提供良好的低阻抗连接3、栓接通过螺栓连接,可以拆卸,但长时间使用后可能出现连接松动,有时通过螺纹接触的两个面会变成接触线,并且由于腐蚀及高频电流的集肤效应,射频电流沿螺旋线流动,因而在很大程度上呈现电感性。

相关文档
最新文档